MOBi.plans -activity-based agent plans for MATSim

Patrick Manser, SBB Wolfgang Scherr, SBB Leuven, 29.04.2019

Agenda

1. Travel simulation @ SBB
2. MOBi.plans - activity-based demand model
3. MOBi.sim - new insights into our MATSim model

Purpose and Mission of Travel Modeling at SBB

\rightarrow Important requirements:

- Mid-term forecasts (2020 ... 2025)
- Long-term forecasts $(2040,2050)$ for long investment cycles
- Consistent coverage of rail demand and rail production
- Representation of future mobilities, technological and socio-economic change
- Numerical precision and prediction success
\rightarrow Purpose: models support business decisions and feed corporate processes in:
- service planning
- fleet and infrastructure planning
- financial planning
- corporate strategy

SIMBA MOBi: microscopic travel simulation of Switzerland

\rightarrow MOBi 1.0:

- released April 2018
- synpop and agents' plans given by senozon/ETH
\rightarrow MOBi 2.0:
- release May 2019
- the microscopic circle is complete: from synpop over travel demand through network simulation

MOBi.Plans' output: individual day plans

Each individual plan contains:
$\rightarrow \quad$ the permanent location of primary activities (work, education)
\rightarrow the desired number and kind of activities a person wishes to perform in a day
$\rightarrow \quad$ the pattern of how those activities are bundled in tours
$\rightarrow \quad$ the sequence of tours and the sequence of the activities within each tour
\rightarrow the exact geographic location where each activity will be performed
$\rightarrow \quad$ the mode choice for each tour or subtour
$\rightarrow \quad$ the duration and time of day for each desired activity

MOBi.Plans: microscopic travel demand

\rightarrow A sequence of steps to construct individual day plans
permanent preferences/choices

Tour and activity generation: definitions

\rightarrow Tour types:

- work tour
- education tour
- business tour
- secondary tour
\rightarrow Primary activities:
- work (W)
- education (E)
\rightarrow Secondary activities:
- Leisure (L)
- Shopping (S)
- Business (B)
- Education (EC)
- Accompany, escort (A)
- Other (O)

Sequence of discrete choice models

The impact of age and other person attributes

■ trips p.c.

■ out-of-hm. activities p.c.

- tours p.c.

Nested destination/location and mode choice

\rightarrow Mode choice (depending on LOS):

$$
P(m \mid i j)=\frac{\exp \left(V_{i j m}\right)}{\sum_{k} \exp \left(V_{i j k}\right)}
$$

m: mode [bike, car, pt, ride, walk] i: origin range $(0,7978)$ j: destination range(0, 7978)
$\mathrm{V}_{\mathrm{ijm}}$: utilitiy of m for ij
\mathbf{A}_{j} : attraction of destination j
\rightarrow Expected max. utility (EMU) over all modes from origin i to destination j :

$$
E M U_{i j}=\ln \left\{\sum_{m}\left[\exp \left(V_{i j m} / \theta\right)\right]\right\}
$$

\rightarrow Probability for destination j from origin $\mathrm{i}:$

$$
P(j \mid i)=\frac{\exp \left(\ln \left(\mathrm{A}_{j}\right)+\theta \cdot E M U_{i j}\right)}{\sum_{k}\left[\exp \left(\ln \left(\mathrm{~A}_{k}\right)+\theta \cdot E M U_{i k}\right)\right]}
$$

\rightarrow Shadow-pricing

$$
V(j \mid i)=\ln \left(\mathrm{A}_{j}\right)+\theta \cdot E M U_{i j}+\lambda_{j}+\lambda_{i j}
$$

\rightarrow Rubber-banding for secondary activities

Validation of the commuter matrix

Desired activity durations

Both duration and start times are descriptive probabilities, depending on:
\rightarrow the type of activity
\rightarrow socio-economic attributes of the person
\rightarrow the frequency of an activity in one plan (e.g. the workplace is visited once or twice)

Rule-based adjustment of plan components

The integrity of the plan requires constraints:
\rightarrow activities start and end within 0:00-24:00
\rightarrow an agent can perform one activity or one trip at a time only
\rightarrow Time budgets:

- total travel time <=X
- total activity time $<=\mathrm{Y}$
- total activity+travel <= Z
\rightarrow Adjustment: iterative review of destinations and durations

Scheduling procedure

Validation

Total out-of-home time per capita

Time of day distribution of trips

Validation after simulation with MATSim

Public transport passenger loads

Car volumes on street network

Properties of the model

\rightarrow Activity-based approach
\rightarrow Microscopic simulation through all model steps
\rightarrow High resolution of time and space

- aggregated zones in intermediary steps
- final demand has exact geographic locations
\rightarrow Person-based simulation
- household properties included persons' decisions
- but not modelling household interactions explicitly
\rightarrow Representation of 24 hours of the average weekday
\rightarrow Strong integrity (time and space) of activities and travel along 24-hour plans
\rightarrow Focus on variables explaining choice of public transportation
\rightarrow A strong effort in model calibration

New insights into our MATSim model

Trip-based scoring (since MATSim 11)

\rightarrow Example: utility of transfers as a function of travel time (whole trip)

Calibrating time of day distribution

\rightarrow typical durations (inspired by open Berlin scenario) in sub-activities
\rightarrow latest start time and opening time for special activities:

- education and work: morning peak
- home activity: evening peak

```
daily plan with sub-activities
<activity type="home_720" facility="H_38899" x="729760.0" y="277870.0" end_time="07:15:08" > </activity>
<leg mode="car"> </leg>
<activity type="work_480_mp" facility="B_367100" x="694861.0" y="240000.0" start_time="08:12:08" end_time="16:06:52" > </activity>
<leg mode="car"> </leg>
<activity type="home_60_18.0" facility="H_38899" x="729760.0" y="277870.0" start_time="17:03:52" end_time="17:48:40" > </activity>
<leg mode="walk"> </leg>
<activity type="shopping_120" facility="B_128200" x="729496.0" y="278121.0" start_time="17:51:01" end_time="19:37:01" > </activity>
<leg mode="walk"> </leg>
<activity type="home_720" facility="H_38899" x="729760.0" y="277870.0" start_time="19:39:23" > </activity>
```


Further information

\rightarrow matsim-sbb-extensions
\rightarrow Paper:

- Wolfgang Scherr, Chetan Joshi, Patrick Manser, Nathalie Frischknecht and Denis Métrailler. MOBi.Plans: A Microscopic, Activity-Based Travel Demand Model of Switzerland. Paper presented at STRC 2019
\rightarrow Contact:
- patrick.manser@sbb.ch
- wolfgang.scherr@sbb.ch

Tour and activity generation

\rightarrow A set of sequentially estimated LOGIT models

	Tour frequency				Sub tour frequency On primary tour	Stop frequency		
	Number of primary tours		Number of secondary tours			Number of sto	primary tour	Number of stops
	Work	Education	Business	Other		Outbound	Inbound	
Constant	X	X	X	X	X	X	X	X
Employment level	X	X	X	X	X	X	X	X
Main occupation is student/pupil		X		X	X			
Age	X	X	X	X	X	X	X	X
Is in management			X					
Presence of kids in $\mathrm{HH}(<18)$	X			X	X	X	X	X
Car available	X		X	X	X	X	X	X
Public transport subscription	X	x	x	X	X	X	X	X
Car distance to primary location	X	X	X			X	X	
Number of total tours Number of primary tours				X	X	X	X	X
Is a work tour Is a business tour					X	X	X	X
Accessibility home location Accessibility workedu location	X	x	X	X	X	X	X	X

Tour and activity generation

	Number of other tours per day				Number of stops during an other tour			
	0	1	2	3	1	2	3	4
Constant	0.000	+1.861***	+1.603***	-0.140	0.000	-2.645***	-4.060***	$-5.590^{* * *}$
Employment level = 0\%	0.000	+0.051	-0.229	-0.276	0.000	-0.108	-0.375*	-0.065
Employment level 1\%-39\% ${ }^{1}$	0.000	-0.008*	-0.011*	-0.007	0.000	-0.006	-0.011*	-0.003
Employment level 40\%-79\% ${ }^{1}$	0.000	$-0.014^{* * *}$	-0.017***	-0.026***	0.000	+0.004***	+0.006	+0.005
Employment level >=80\% ${ }^{1}$	0.000	-0.005*	-0.017***	-0.020***	0.000	$-0.016^{* * *}$	-0.015**	-0.011
Age < 18 ${ }^{1}$	0.000	-0.022	-0.047*	-0.038	0.000	+0.057***	+0.104***	+0.132***
$18<=$ age < 25^{1}	0.000	-0.078***	-0.059***	+0.059*	0.000	+0.012*	-0.008	-0.010
$25<=$ age < 65 ${ }^{1}$	0.000	-0.002	-0.000	-0.003	0.000	-0.003	-0.004	-0.005
$65<=$ age < 75^{1}	0.000	-0.019*	-0.016	-0.061***	0.000	+0.003	-0.005	-0.040*
Age >751	0.000	$-0.048^{* * *}$	-0.091***	-0.099***	0.000	-0.003	-0.027	-0.025
Presence of kids in the $\mathrm{HH}(<18)$	0.000	+0.035	+0.256***	+0.554***	0.000	+0.001	+0.016***	-0.011
Is student	0.000	$-0.726^{* * *}$	-0.625***	-0.882***				
Is apprentice	0.000	-0.390***	-0.154	+0.303				
Is pupil	0.000	-0.727***	-0.587***	-0.453				
Car available	0.000	+0.452***	+0.854***	+1.053***	0.000	+0.003	+0.088	+0.269**
PT subscription	0.000	-0.094**	$-0.141^{* * *}$	-0.230***	0.000	+0.123**	+0.281***	+0.489***
Number of primary tours	0.000	$-0.807^{* * *}$	$-1.850^{* * *}$	-2.566***				
Number of total tours					0.000	-0.006***	$-0.007^{* * *}$	-0.007***
Tour is a business tour						0.845	1.800	1.980
Car distance primary location								
Accessibility (home, multimodal)	0.000	+0.023***	+0.039***	+0.032*	0.000	$+0.018^{* * *}$	0.000	0.000
Accessibility * car_available ${ }^{2}$	0.000	-0.035***	-0.032***	-0.015***				
	Number of observations38149				Number of observations : 37503			
	Rho-square: 0.22				Rho-square: 0.468			
${ }^{1}$ piecewise linear variable								
${ }^{2}$ interaction term of 2 variables								
* $\mathrm{P} \leq 0.05$								
** $\mathrm{P} \leq 0.01$								
*** $\mathrm{P} \leq 0.001$								

\rightarrow Number of tours:

- $0=I$ do not leave home
- $1,2,3=$..
\rightarrow Number of stops:
- secondary activities on the tour
- complexity of the tour

