Calculation of Skim Matrices Based on MATSim Data

Marcel Rieser • Simunto GmbH
Wolfgang Scherr •SBB AG

MATSim User Meeting
29. April 2019

Skim Matrices

Square table with performance indicators for trips between pair of zones.

- travel time (car)
- travel distance (car)
- travel time (pt)

	A	B	C	D
A	aa	$a b$	$a c$	$a d$
B	ba	$b b$	$b c$	$b d$
C	ca	cb	cc	$c d$
D	$d a$	$d b$	$d c$	$d d$

- travel distance (pt)
- fare (pt)
- \# transfers (pt)
- \# services / hour (pt)

Used for calculation of demand and destination choice.

Calculation of Skim Matrices

MATSim has no zones.

MATSim always calculates specific routes between two locations (transit stops, facilities, coordinates).
\rightarrow Aggregations of routes between zones.

Sampling-Points for Aggregation

Aggregation per OD pair:

- Choose 5 points per zone
- Calculate all 5×5 connections between two zones
- Take average of all 25 connections as value for OD pair

Points in a zone are chosen based on (weighted) facility locations.

Calculated Skim Matrices

Public Transport

- access time (from origin to first stop)
- egress time (from last stop to destination)
- travel time (first to last pt stop)
- number of transfers
- perceived service frequency
- average adaption time
- share of rail-based transportation (by distance)
- share of rail-based transportation (by travel time)

Privat Traffic

- travel time
- travel distance

Other

- beeline distance

Perceived Service Frequency

Example:
Travel from Bern to Zurich (Switzerland)

- 7 services per hour?
- 2 (fastest) services per hour?

Calculate average adaption time using roof-top method, derive service frequency from average adaption time.

Roof-Top Method to Calculate Average Adaption-Time

Calculate the minimal adaption time (leaving earlier or later) to reach the next best service (by Niek Guis, Nederlandse Spoorwegen)

Roof-Top Method: Example

Average Adaption time: 6.1 minutes
Average Headway: 24.4 minutes
Perceived Frequency: 2.46 services per hour

124710 15/h

Performance

We need to calculate values for each OD pair, even if there is no demand.
Calculation for Switzerland:

- national transport model: nearly 8000 zones
- 1 matrix: $8000 \times 8000=64$ million values
- each value is average of 25 routes (5×5)
- 1 matrix requires $\mathbf{1 . 6}$ billion route-calculations
- Average over multiple time of days (e.g. time-dependent travel times)

Using special algorithms to reduce computational effort (especially least-cost-path trees).

Performance

Calculation for Switzerland:

Computation	Time [h:mm]	Notes
initialization	0:45	
car matrices	8:30	4 time of days, 2:10 for a single time of day
pt matrcies	3:40	departure time window of 1 hour
bee-line matrix	0:02	

Calculation used up to 32 threads and 90 GB of RAM.

Open Source

The code is available at:
 github.com/SchweizerischeBundesbahnen/matsim-sbb-extensions
 (just search for "matsim-sbb-extensions" (:))

```
CalculateSkimMatrices skims =
    new CalculateSkimMatrices(zonesShapeFilename, zonesIdAttributeName, outputDirectory, numberOfThreads);
skims.calculateSamplingPointsPerZoneFromFacilities(facilitiesFilename, numberOfPointsPerZone, r, facility -> 1.0);
// alternative if you don't have facilities:
// skims.calculateSamplingPointsPerZoneFromNetwork(networkFilename, numberOfPointsPerZone, r);
skims.calculateNetworkMatrices(networkFilename, eventsFilename, timesCar, config, link -> true);
skims.calculatePTMatrices(transitScheduleFilename, earliestTime, latestTime, config, (line, route) -> true);
skims.calculateBeelineMatrix();
```

Thank you! and thanks to SBB!

Marcel Rieser
Simunto GmbH
rieser@simunto.com

