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This paper describes how an optimizer for the dynamic vehicle routing problem (‘DVRP Optimizer’) is

coupled to a microscopic, behavior-based traffic simulation (‘MATSim’). The traffic simulation both generates

the demand for taxicab trips, and provides the congested network simulation in which the taxicabs operate.

The present implementation has passengers request a taxi when they depart; then they wait until they

are being picked up and delivered to their destination. Afterwards, taxicabs will drive to the next request

assigned to them, or remain idle until the next request arrives. Next, the paper defines the off-line and

on-line taxi dispatching problems, and presents three different dispatching strategies that are then evaluated

on a realistic scenario. The computational results show that a no-scheduling strategy – just assigning the

nearest empty taxi to each incoming request – works well as long as the system is not under heavy load. A

good distance metric – preferably taking time-dependent congestion into account – has a positive impact.

Under heavy load, however, the no-scheduling strategy clearly deteriorates, and scheduling strategies show

very clear advantages. The approach is constructed in a way that (1) other dispatch algorithms can be tested,

and that (2) it can process real world scenarios.
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1. Introduction
1.1. Optimization of taxi services

Optimization of taxi services may be considered from various perspectives and at different levels

of detail. There have been numerous studies related to organizing the taxi service on the city

level. Particularly, the issue of competition and regulation in the taxi market has been extensively

explored for over 40 years (e.g. Douglas 1972). Whether it is fleet sizing, pricing or other means

of regulating the market, the research focuses mostly on finding the demand-supply equilibrium

in a regulated or deregulated market (e.g. Cairns and Liston-Heyes 1996, Arnott 1996). These

studies have considered the properties of taxi services to be homogeneous in time and space, and

often limit the scope only to cruising or dispatching taxis. Recently, to address the issue of spatial

heterogeneity of taxi demand, Yang et al. have proposed a time-dependent network-oriented model

based on multiple origin-destination (OD) matrices (Yang and Wong 1998, Yang et al. 2005).

Regardless of the approach used, the research in this area is carried out on the macroscopic level

and deals with the long-term, strategic management.

On the opposite pole, there are issues focused on various aspects of managing a taxi fleet at the

operational level, and where each taxi and each request is considered separately (the microscopic

level of detail). However, prior to the appearance of ICT (Information and communications tech-

nology) allowing for real-time coordination of a fleet, these problems had not been in the centre

of interest; one of very few studies had been done by Bailey Jr and Clark Jr (1992). Over the last

decade, the on-line management of taxis has been gaining popularity, as ICT offers great opportu-

nities for managing the service even in real time. There are several theoretical studies investigating

on-line taxi dispatching algorithms, for instance, Ma and Wang (2007) have formulated the On-

line Weighted k-Taxi Problem, originating from the On-line k-Server Problem, and then designed

several algorithms and analysed their competitiveness ratio. In most cases, however, sophisticated

dynamic routing approaches are hard to analyse theoretically, and thus simulation tools are used.

In some studies multi-agent simulation is used to model (partial) independence of taxi drivers (e.g.

Cheng and Nguyen 2011, Seow et al. 2010, Alshamsi et al. 2009), other studies assume that taxi

dispatching is arranged in a centralised form (e.g. Lee et al. 2004, Wang et al. 2009).

The second category of problems related to the operational management of taxi service, though

beyond the scope of this paper, is taxi cruising. Here, the central focus is finding such cruising paths,

often ending at taxi ranks, that increase live miles (with passengers aboard) and simultaneously

reduce cruising miles. Powell et al. (2011) have proposed Spatio-Temporal Profitability (STP) maps

for guiding taxicabs to the most profitable taxi locations. Yuan et al. (2011) have developed a

recommendation system for both taxi drivers and passengers.
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Despite the growing interest in taxi dispatching, this area of research still lacks extensive studies.

However, as problems related to on-line taxi dispatching are special cases of the General Vehicle

Pickup and Delivery Problem (e.g. Savelsbergh and Sol 1995, Berbeglia et al. 2010), there are many

similar problems within the GVPDP family that have been studied more thoroughly. One of them

is the Dynamic Single Load Pickup and Delivery Problem (Fleischmann et al. 2004), often referred

to as Real-time Multivehicle Truckload Pickup and Delivery Problem (Yang et al. 2004), where

a vehicle, like in taxi dispatching, can serve only one request at once, but the time windows are

usually much broader and the demand is less dynamic. Another closely-related problem is the On-

line Dial-a-Ride Problem (Ascheuer et al. 2000), where trips can be shared and the demand is less

dynamic (relatively more request are submitted in advance). Also taxis are often included into the

Demand-Responsive Transport services, as an alternative transport mode to minibuses (Horn 2002).

Krumke et al. (2002) have investigated real-time dispatching of guided and unguided automobile

service units with soft time windows, which also has a lot of in common with taxi dispatching.

Last but not least, dynamic management of emergency services, especially assignment and dynamic

redeployment of vehicles (Gendreau et al. 2001), is closely related to dynamic dispatching of taxis.

1.2. Simulation of dynamic vehicle dispatching and routing

Since theoretical analyses of on-line optimization methods, such as competitive analysis, are of

limited applicability, the simulation approach is frequently used to evaluate, compare and refine

dynamic algorithms (Grötschel et al. 2001). However, the quality of results obtained with this

approach depends on the simulation method. In transport-related problems, simulation has to

incorporate realistically modeled dynamism of customer demand, traffic flow phenomena and fleet

management operations. These aspects are even more crucial when considering urban areas due to

high dynamics of traffic flow resulting in continuously changing travel times and often, depending

on the type of services, in high volatility of demand (e.g. taxi).

In recent years, several approaches that combine vehicle routing and traffic simulation have been

proposed and implemented. In one of the first works in this field, Regan et al. (1998) have proposed

a simplified simulation framework for the evaluation of dynamic fleet management systems for

truckload carrier operations. Taniguchi et al. (2001) have analyzed the integration of vehicle routing

optimization and traffic simulation for optimization of city-logistics oriented problems. Another

study is an application of the AIMSUN simulator for optimization of the VRP in cities (Barcelo

et al. 2007). Liao et al. (2008) have developed a system for the simulation-based evaluation of

DVRP strategies using real-time information.

Particularly in the case of taxi dispatching, the use of microscopic traffic simulators allows

for evaluating the performance of the service under different, often extreme, scenarios, such as
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sport/cultural events, bad weather conditions or public transport strikes. These issues, however,

remain almost unexplored. To the best knowledge of the authors, traffic flow simulators have been

applied only in Singapore; Lee et al. (2004) have used Paramics1 to simulate taxi dispatching

in Singapore’s Central Business District, whereas Seow et al. (2010) have coupled NTuCab taxi

dispatching software with the MITSIMLab microscopic traffic simulator (Ben-Akiva et al. 2001)

and run simulations for a 15 km x 10 km urban area.

All these approaches do not include realistic on-line demand generation; one cannot, for instance,

model the impact of traffic or transport service availability on customer demand. Moreover, the

systems were used only for small-scale problems, where a road network was of limited size and the

number of customers was not high.

1.3. Large scale microscopic traffic simulation

In order to keep track of the taxicab vehicles, it is necessary to simulate them individually. For

the same reason, requests need to be microscopic, i.e. there need to be discrete requests with the

parameters time of request, pickup location, and drop-off location.2 If one wishes, e.g. for future

developments, that demand is able to switch between taxicab and other modes, then all the demand

that could potentially use a taxicab needs to be microscopic. This line of argument motivates to

embed the taxicab simulation into a microscopic, behavior-oriented traffic simulation where all

travelers are simulated individually.

Although several companies offer micro- or “nano-”simulations,3 they are either not able to

perform network loadings with millions of persons/vehicles, or they do not trace persons or vehicles

throughout the whole day. Non-commercial approaches include TRANSIMS4, SUMO5, MEZZO

(Burghout 2004, Burghout and Koutsopoulos 2009), and MATSim6. Out of these, MATSim is

arguably the one with least focus on traffic flow realism but with the highest computing speed and

the best behavioral model on the trip planning side (the input for the optimized service). MATSim

will be used for the present investigation since it is planned to investigate large scenarios and thus

high computing speed is imperative. Also see (Maciejewski and Nagel 2012) and references therein

for additional justification why MATSim was selected.

1 http://www.paramics.com

2 The time of the request could, in fact, be different from the desired pickup time. This will be considered in future
studies.

3 http://www.vissim.de, http://azalient.com, http://www.savannah-simulations.com, http://dynust.net,
http://www.aimsun.com, http://www.paramics.com

4 http://code.google.com/p/transims/

5 http://sumo.sourceforge.net

6 http://www.matsim.org

http://www.paramics.com
http://www.vissim.de
http://azalient.com
http://www.savannah-simulations.com
http://dynust.net
http://www.aimsun.com
http://www.paramics.com
http://code.google.com/p/transims/
http://sumo.sourceforge.net
http://www.matsim.org
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1.4. Outline

This paper describes how MATSim can be used to generate problem instances for dynamic vehicle

routing. This is achieved by coupling a DVRP Optimizer (Maciejewski and Nagel 2012, Sec. 3),

Sec. 3 into MATSim. Thus, during a normal MATSim traffic flow simulation, there will be synthetic

travelers that have taxicab as their mode of transport. They will call for a taxi when their preceding

activity has ended. The DVRP Optimizer will dispatch a taxi, the taxi will drive to the customer,

the customer will be delivered to his or her destination, etc. Since MATSim can be started with

different random seeds, this can provide a new instance every time it is run. Also, the system can

be run with different demands, e.g. for normal workdays vs. weekend days, and with different mode

choice functions, leading to larger or smaller shares of taxicab trips. The overall approach is a bit

similar to tournament platforms such as for soccer(Kim 1997), rescue operations (Takahashi et al.

2002), or energy trading (Block et al. 2010).

The paper starts by short descriptions of MATSim and the DVRP Optimizer, and a longer

description of how taxicabs are modeled (Sec. 2). Sec. 3 discusses taxi dispatching algorithms. In

particular, it describes several on-line strategies that are used in the simulations. Sec. 4 describes

the simulation scenario, based on the Polish city of Mielec, and the performance measures that are

collected during the simulations. Results are presented and discussed in Sec. 5. The paper finishes

with a discussion and conclusions.

2. Integration of MATSim and the DVRP Optimizer

The system consists of two fundamental components, namely MATSim and the DVRP Optimizer.

The first one is used for modeling transport supply (including the taxicab fleet) and demand

(including the taxi demand) and providing queue-based traffic flow simulation at microscopic level.

The other one is responsible for managing a fleet of taxis (or, in general, any vehicle fleet) within

the simulation. Since both components are separate and independent programs written in Java,

their coupling was done by means of the MATSim–DVRP Optimizer connector module that is

responsible for setting up the whole system and managing data flow and control flow.

The aim of this section is to provide the reader with details about relationship between the

MATSim and DVRP Optimizer data domains. Algorithms for the management of the taxicab fleet

are then presented in the following section.

2.1. MATSim

MATSim is an agent-based system for transport simulation with the primary focus on transport

planning. It allows for disaggregate activity-based modeling that consists of three main phases

which are run iteratively: planning, traffic flow simulation (also called network loading), and scoring.

The first phase (the planning phase) is used to create (zeroth iteration) or modify (subsequent
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iterations) the agents’ daily plans, each consisting of activities and legs connecting the locations

of subsequent activities. Next, during the simulation phase, all planned legs (along with activities)

are executed by means of a queue-based traffic flow simulator. Within this simulation links are

represented as FIFO queues with a set of parameters, among them: length, free-flow speed, flow

capacity, and storage capacity. The result of the traffic flow simulation is a set of events documenting

changes in the state of any object (not only the agents) having been simulated. During the third

phase (the scoring phase) the plans are evaluated against their actual execution (recorded in event

logs). The obtained scoring is then used for choosing and modifying plans in the planning phase

in the next iteration. The simulation ends after a termination criteria, based on a measure of the

system relaxation, is met.

In this paper, relaxation will be used to generate a “relaxed” initial state. For the taxicab runs,

the taxicab demand and supply will be added, and the DVRP Optimizer will be responsible to

dispatch the taxicabs. All other agent learning will be switched off at that point, i.e. there are not

more iterations.

2.2. DVRP Optimizer

The DVRP Optimizer is a Java framework for optimizing problems related to vehicle routing,

dispatching and scheduling. The software is intended to be as general and customizable as possible.

The framework is divided into three main parts, namely data (represents instances of various

problems), optimizer (creates routes/schedules for given input data), simulator (runs different

scenarios).

Currently, the framework allows to model a wide range of one-to-many (many-to-one) routing

problems, while many-to-many problems are limited to single load cases (dispatching). Currently,

hard time windows and time-dependent travel times and costs are supported. Due to the frame-

work’s flexibility, one can easily extend the model to cover other specific cases. By default, the

DVRP Optimizer uses a memetic algorithm for solving the Dynamic Multi-Depot Vehicle Routing

Problem with Time Windows and Time-Dependent Travel Times and Costs. In this study, however,

this algorithm was replaced with a queue-based one created exactly for taxi dispatching (see Sec. 3).

The standard simulator offers simple event-based simulation of customer service (request submis-

sion, modification and cancellation), fleet management (dispatching and monitoring of vehicles)

and traffic monitoring (changes in the travel times and costs). To obtain more realistic behavior,

one can use a more sophisticated simulator, which has been done in this study by integrating

MATSim and the DVRP Optimizer. More details on the framework are provided in (Maciejewski

and Nagel 2012).
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2.3. The integration idea

The DVRP Optimizer takes requests by customers as well as vehicle positions as input and provides

schedules to customers and vehicles as output. At the same time, it monitors the traffic state.

Schedules can either be provided at arbitrary times, e.g. after each customer request or after every

customer drop-off.

Since both the DVRP Optimizer and MATSim are written in JAVA, the integration was done

at the software level. MATSim agents perform sequences of activities and legs. When an activity

ends, the following leg is started by calling a departure handler corresponding to the leg’s mode. In

consequence, a departure handler was added that forwards the agent’s taxicab mode request to the

DVRP Optimizer. The DVRP Optimizer will decide on a taxicab vehicle, and send that vehicle to

the waiting customer. The customer will be picked up and driven to his or her destination, at which

point the customer starts his or her next activity while the taxicab waits for the next customer.

An early version of the coupling is described in (Maciejewski and Nagel 2012). There, the cou-

pling was fully off-line. That is, MATSim was run and the taxicab requests as well as the traffic

states (time-dependent link travel times) where recorded. The DVRP Optimizer was subsequently

run on that output. There was, however, no feedback into the traffic flow simulation. In conse-

quence, the performance of the traffic system was exactly as anticipated by the DVRP Optimizer

– taxicab vehicles would always arrive exactly as predicted. In consequence, the real-time reactive

capabilities of the DVRP Optimizer were not tested. The present investigation now inserts the

taxicab simulation fully into the MATSim context. Taxicabs are now real vehicles inside MATSim,

and are moved as part of the normal traffic flow dynamics. In consequence, they are now also part

of the normal stochastic delays that occur inside the simulation.

2.4. Network

In MATSim, the network consists of nodes connected by one-way links. Since the traffic flow

simulation uses a queue-based approach (Simão and Powell 1992, Gawron 1998, Simon et al. 1999),

links constitute the most basic network elements on which the simulation operates. Each link is a

FIFO queue and has a set of parameters describing traffic flows (e.g. length, number of lanes, flow

capacity, free-flow speed, etc.). Any trip in the network is a sequence of links, where the first link

is the one closest to the origin location and the last link is the one closest to the destination. Each

link may be a possible activity location. Because of the queue nature of the simulation, parking

can be modeled either at the beginning or at the end of a link; in MATSim the second behavior is

used. In consequence, the last links in routes are traversed entirely, while the first ones are skipped.

The DVRP Optimizer, on the other hand, operates on a directed graph made up of vertices

and directed arcs. The graph structure serves as an abstraction layer constructed over the network
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Figure 1 VRP graph built upon a MATSim network

structure, which is crucial to preserve the independence of both modules. Each vertex represents

one location (which corresponds to a link in MATSim) and each arc is the shortest path (a sequence

of links in the MATSim network) leading from the link represented by the arc’s tail to the link

represented by the arc’s head (see Fig. 1).

Since arc travel times are time-dependent, they are calculated for a given departure or arrival

time by means of shortest path search algorithms available in MATSim (Jacob et al. 1999, Lefebvre

and Balmer 2007). Since MATSim calculates travel time statistics for links for every 15-minute

time period by default, and these statistics are used in the next iteration (i.e. the next simulation)

for shortest paths computations, the 15-minute time bin is also used for computing shortest paths

and associated travel times and costs in the DVRP Optimizer.

Given that it is possible to travel between any two links (locations) in the network, the cor-

responding VRP graph is complete. However, building and storing a complete graph, along with

the all shortest paths for each arc for each time period, may be prohibitively time- and memory-

consuming. For instance, for a small-size network of 1000 links, the complete graph would consist

of 1000 vertices and 999’000 arcs. Furthermore, a 24-hour simulation with the 15-minute shortest

path calculation resolution, would lead to 96 shortest paths per arc, and altogether to 95’904’000.

If one wanted additionally to search paths backwards (i.e. based on arrival times), that number

would even double. Although calculating and storing shortest paths for a real-size network would

pose a real challenge itself, most of the efforts would be wasted since only a tiny fraction of the

calculated data would be later used in the taxi dispatching algorithm. To avoid that inefficiency,

in the default implementation of the graph, both vertex and arc objects are created on demand.
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Moreover, after the creation, arc objects do not contain any shortest path data, since they are

calculated on-the-fly and then cached for possible future re-use. Since travel times change from

iteration to iteration, that cache is flushed at the end of every iteration.

It should be noted that time-dependent travel times calculated for arcs are not exact. One of

the causes is that they are calculated with the 15-minute resolution of the departure time. But

even if the departure time is given precisely, the expected travel times are derived from historical

link travel-time statistics (from the previous MATSim iteration). Since a proportion of agent plans

undergoes modifications between consecutive simulations, traffic changes from iteration to itera-

tion and thus the experienced travel times are not identical with the historical ones. Moreover,

the link travel-time statistics are averaged for each time period (usually 15 minutes) and therefore

also contribute for limited preciseness. As a result, the FIFO property on the level of links is not

preserved on the arc level unless vehicles move along exactly the same path. However, with reason-

ably fine-grained discretization of time (both for arc travel times and link statistic calculations),

validation of the FIFO property should be negligible. Additionally, stochasticity and impreciseness

of travel times is typical in real-world applications, hence one should address this problem while

developing robust algorithms. Therefore, we do not consider small violations of the FIFO property

unacceptable.

2.5. Agents

In MATSim each vehicle is driven by a driver agent. Agents of this type have special functionality

that allows them to be embedded into the queue-based simulation and let them decide where to

drive.7 By default, all agents in MATSim arrange their daily plans during the replanning phase,

before traffic flow simulation starts. During the traffic flow simulation, they just follow their pre-

arranged plans. This behavior limits the agents’ autonomy since they cannot dynamically react to

the current situation. Adaptation is achieved by letting the agents learn from one iteration to the

next, also called day-to-day learning (e.g. Cascetta and Cantarella 1991).

The day-to-day learning simplification was made since it greatly reduces the demand for pro-

cessing power and thus allows for running large-scale simulations with millions of agents. However,

dynamic adaptation to the current state of the simulation is a prerequisite for dispatching taxi-

cabs: Other than for regular commuter traffic, there is no plausible interpretation for a day-to-day

learning approach to taxicab operations. For that reason, instead of having a precomputed plan,

each taxi driver agent follows his/her own schedule that changes dynamically over time (the DVRP

Optimizer domain). Each schedule is a sequence of the following three types of tasks:

7 Besides the driver agents, there are other types available in MATSim, e.g. (public transport) passenger agents



Maciejewski and Nagel: Simulation and dynamic optimization of taxi services in MATSim
10 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

ridingwaiting

Ti
0 Ti

1 Ti
2 Ti

3

Passenger 
plan

Taxi 
schedule

Leg (taxi mode)

Drive
(empty)

Drive
(passenger aboard)

Serve

timeTi
4

entering

Figure 2 A planned taxi leg and the corresponding sequence of taxi tasks

• DriveTask – driving along a given arc (i.e. between two vertices); this task is executed in

MATSim as a leg along the shortest path between the corresponding pair of links for a given

departure or arrival time

• ServeTask – picking-up a passenger at a given vertex; this task is executed in MATSim as an

activity at the corresponding link and of a given duration

• WaitTask – waiting at a given vertex until new request is assigned to the taxicab; this task is

executed in MATSim as an activity at the corresponding link without a given a priori duration8

Concerning the demand side, an agent of any type can choose to travel by taxi – no special

functionality (interface) is required to become a taxi passenger. The mode choice is performed

during the planning phase by assigning a mode to each leg.

A connection between a taxi driver agent and a taxi passenger agent is illustrated in Fig. 2. When

an agent wants to take a taxi, he/she calls it. At this moment (time T 0
i ), the agent is registered

as a customer and his/her request (request i) is assigned to one of the taxis based on the the

dispatching algorithms (see Sec. 3). From this moment on, the customer waits until the taxi arrives

at the pick-up location (time T 2
i ). It may happen that the taxi assigned must first complete other

tasks and then (time T 1
i > T 0

i ) set out for this customer. When the taxi arrives, it waits till the

customer embarks on it; this includes also getting out from the activity location into the street. As

soon as the passenger is picked up (time T 3
i ), the taxi agent drives along the shortest path to the

destination link where the the passenger alights and starts its next activity or leg (time T 4
i ). On

completion of the the task, the taxi driver agent may be dispatched to serve the next request or

may stay and wait. Because of the stochasticity of taxi dispatching and traffic flow, times T 1
i , T

2
i , T

3
i

and T 4
i are subject to change in the course of simulation.

Depending on the current time τ each request may be in one of four possible states. The sequence

of states defining a request’s life cycle is as follows:

8 In the present implementation, no taxi roaming is supported; an idle taxi waits at the destination location of the
last served customer or at the home taxi rank.
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• unplanned – submitted but not scheduled yet

• planned – scheduled by the DVRP Optimizer, τ ∈ [T 0
i , T

1
i )

• started – the taxi is on the way to the customer9 or the customer is already aboard, τ ∈ [T 1
i , T

4
i )

• performed – the customer has been delivered at the destination location, τ ≥ T 4
i

3. Taxi dispatching algorithms
3.1. Off-line taxi dispatching problem

In the off-line version of the taxi dispatching problem all data are known a priori and are not

subject to any changes.

Let N = {1, . . . , n} be a set of requests. Each request i ∈N is submitted at time si (≡ T 0
i , see

Fig. 2) and has a pickup location pi and a delivery location di. Let M = {1, . . . ,m} be a set of

vehicles. Each vehicle k ∈M is available at its origin location (= depot) ok from time ak onwards.

It is assumed that a vehicle never returns to its depot and therefore its time window is open-ended.

Assuming that τ denotes the instant when the optimization is carried out, the input data must

satisfy the following constraints in order to qualify as an off-line problem:

• si ≤ τ,∀i∈N – all the requests are known a priori

• ak ≥ τ,∀k ∈M – all the vehicles are available from time τ at the earliest.

Concerning the travel times, let tOki(t), k ∈M,i ∈N be a time-dependent travel time from vehi-

cle origin location ok to customer pickup location pi, a function of departure time t. The time-

dependent travel time from customer delivery location di to customer pickup location pj is defined

as tij(t), i ∈N,j ∈N , where t denotes departure time. Serving request i means spending constant

time tP at pickup location pi (time necessary for the customer to enter a taxi) and then moving

from this location to destination location di. The travel time of this trip is defined as ti(t), i ∈N ,

a function of departure time t.

Let V = {1, . . . ,m,m+ 1, . . . ,m+ n} be the set of vertices, representing both vehicles (vehicles

1, . . . ,m as nodes 1, . . . ,m) and requests (requests 1, . . . , n as nodes m+1, . . . ,m+n). The analyzed

taxi dispatching problem may be formulated as an off-line assignment problem, i.e. without con-

sidering the dynamics of the system, where the goal consists in finding cycles over a set of vertices

V . The problem involves two types of variables. The first one are binary variables xuv, u∈ V, v ∈ V ,

indicating whether vertex v is the direct successor of vertex u in one of the cycles. The whole set

of binary variables determines the cycles involving all vertices. Each cycle must contain at least

one vertex representing a vehicle (vertices 1, . . . ,m). A cycle is converted into routes by removing

arcs that lead to vehicles in a given cycle, thus each ‘vehicle’ vertex is the beginning of a route.

9 since no vehicle diversion (reassignment to a different customer) is implemented in the current version, once a vehicle
sets out for the customer, the corresponding request is treated as started
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As a result, each route starts with a ‘vehicle’ vertex and then goes through a series of ‘customer’

vertices without returning to the the origin position. Variables xk,m+i, k ∈M,i∈N indicate which

customer i is the first to be served by vehicle k. Variables xm+i,m+j, i ∈N,j ∈N specify whether

request j is to be served directly after i (by the same vehicle). The second group of variables,

wi, i ∈N , defines the pickup time of customer i (the moment the pickup starts), which adds the

time-dimension into routes.

The taxi dispatching problem may be stated as:

min
∑
i∈N

(wi− si)2 (1)

subject to

∑
u∈V

xuv = 1 ∀v ∈ V, (2)

∑
v∈V

xuv = 1 ∀u∈ V, (3)

xuv ∈ {0,1} ∀u∈ V,∀v ∈ V, (4)

(wi− ak− tOki(ak)) ·xk,m+i = 0 ∀k ∈M,∀i∈N, (5)

[wj −wi− tP + ti(wi + tP)− tij(wi + tP + ti(wi + tP))] ·xm+i,m+j = 0 ∀i∈N,∀j ∈N. (6)

The objective (1) is to minimize the total sum of squares of waiting times for taxi. The square

function is used to favor earlier requests over later ones in order to prevent keeping some customers

unserved for longer time, which makes the assignment fairer and closer to the real dispatching

strategies. The first three groups of constraints, i.e. (2)–(4), ensure that variables xuv, u∈ V, v ∈ V

represent an assignment, i.e. a bijective function. The last two constraint groups are related with

the time feasibility of the solution. Constraints (5) ensure that if request i is the first to be served

by vehicle k then the vehicle will set out for this request as soon as the vehicle is ready (ak) and

will reach the customer after travel time tOki(ak). Constraints (6) determine pickup times wi and wj

of two directly subsequent requests i and j (xij = 1). The period between time wi and wj consists

of the following events (see Fig. 2):

1. arriving at customer i origin location oi at time wi (≡ T 2
i )

2. departing from location oi at time wi + tP (≡ T 3
i )
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3. arriving at customer i destination location di at time wi + tP + ti(wi + tP) (≡ T 4
i ); the taxi

instantly departs towards customer j (≡ T 1
j )

4. arriving at customer j origin location oj at time wj = wi + tP + ti(wi + tP) + tij(wi + tP +

ti(wi + tP)) (≡ T 2
j )

Since there are no time windows for requests and the goal is to serve customers as soon as possible,

no waiting strategies are necessary and therefore constraints (5)–(6) are equalities. Additionally,

these constraints prevents creation of cycles without ‘vehicle’ vertices.

3.2. On-line taxi dispatching problem

The off-line problem formulated in the previous section finds optimal routes when all information is

constant and known a priori and when the system behaves in a deterministic way. However, this is

not the case in real life where taxi dispatching is a stochastic dynamic process, where both demand

and supply change over time. Firstly, new requests may be submitted at any time, and often, only

limited assumptions can be made about future demand (e.g. time and space distributions of new

requests). Secondly, since only historical approximates of travel times are known, trips may last

longer or shorter than expected due to the changes in traffic flow, interaction with a customer (e.g.

during the pickup) and the limited precision of the estimates.

Since demand and supply are subject to random change, the general approach to deal with

such a dynamic system should update schedules in response to every change. This can be done by

means of re-optimization procedures that consider all the requests (within a given time horizon)

or fast heuristics focused on small updates of the existing solution rather than constructing a new

one from scratch. Usually, re-optimization procedures give solutions of higher quality compared

to the local update heuristics, however, when it comes to the real-world applications, where high

responsiveness is crucial, broad re-optimization may be prohibitively time consuming. In this paper,

three different strategies (from simpler but faster to more sophisticated but slower) are proposed

and their performance is investigated by means of simulation in MATSim.

Another important factor that implies the use of fast heuristic methods is that unlike the the-

oretical vehicle routing problem where costs (e.g. times or distances) are given in the form of a

matrix, dispatching a fleet of taxis in an urban network requires them to be determined on the fly

by means of shortest path search procedures. However, this causes the problem to scale not only

with the number of customers n and vehicles m, but also with the size of the road network, i.e.

the larger the network is, the more computationally expensive the search procedure is; Dijkstra’s

algorithm, for instance, finds the shortest path in is O(|N |2). Given that the on-line optimization

must be time efficient and give results almost instantly, it cannot search shortest paths extensively,

which poses additional challenge.



Maciejewski and Nagel: Simulation and dynamic optimization of taxi services in MATSim
14 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

As it was stated, in the dynamic taxi fleet dispatching problem one has to deal with a dynamic and

stochastic demand and supply, and a dynamic optimization strategy reacts to changes, represented

as events, that occur over time. In the case of the taxi dispatching problem, there are several

different types of events that an optimization strategy may react to. In the most simplistic approach,

the optimization algorithm (either a re-optimization or update) is triggered when a new request

is submitted (event E0
i at time T 0

i , see Fig. 2). This would suffice if the demand for taxi was

the only source of stochasticity, which is often valid in theoretical problems but not in the real

world. Taking the stochasticity of the order execution process into account, which is justified in

typical situations (e.g. stochastic travel times), the dynamic optimization strategy should monitor

the order execution statuses and call the optimization algorithm if there are differences between

the expected and the actual state. In the simplest case, the algorithm may be triggered just after

completion of a request (E4
i ) . But to be more precise and to react as early as possible to unexpected

changes, the algorithm could be triggered also after a taxi arrives at the pickup location (E2
i ) or

even after departing from the pickup location (E3
i ). In the most extreme version, the movement of

each taxi vehicle may be monitored in order to anticipate possible delays or speed-ups.

In the present investigation, it was assumed that the pickup duration is constant (tP) and that

vehicles are not monitored on-line (which is typical for taxi services) and therefore no vehicle

diversion is possible. In consequence, the implemented strategies react always to events E0
i and

E4
i , and additionally, they may react to events E2

i .

3.3. On-line dispatching strategies

3.3.1. Dynamic to static VRP data conversion Since on-line optimization procedures

must be time efficient, algorithms designed for traditional off-line global optimization, performing

a broad search of the solution space, are usually not well-suited. Hence fast local optimum search

methods, or even just local update methods, have to be used instead. Provided that these methods

are fast enough, they produce correct assignments in time that is small or even negligible compared

to the dynamics of the ongoing process. This enables them to respond to each event in the interim,

before the next one arrives. In case of high frequency of new event arrivals, one may consider

grouping them in small packages.

Provided that the dynamic optimization algorithm responds almost instantly to events, we can

assume that they operate on static data in a similar way as the static algorithms do. Therefore

prior to the optimization, all data describing requests, vehicles, travel times etc. have to be pre-

processed to form the input data for the optimization procedure, as if it was a snapshot taken at

the present time, τ . This can be done by the following steps:
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1. Depending on the dispatching policy, a set of requests N may be created of either unplanned

and planned requests (which means that planned requests can be rescheduled), or only the

unplanned requests (once a request has been planned it cannot be rescheduled), or any subset of

these sets.

2. A set of vehicles M is made up of all or only selected taxicabs. Their parameters have to be

updated to be consistent with the current state of the dispatching process. If vehicle k is idle at

time τ , it means that the cab is available from time ak = τ on, and its origin location ok is equal to

the destination location of the last served request or, if the taxi has not performed any task yet, its

depot location. Otherwise, when the taxi is not idle, first the currently being served request must

be finished and then, in case of policies that do not reschedule requests, all other already scheduled

ones must be served before the vehicle may serve additional requests. Therefore, time availability

ak is set to the expected end time of the last request already scheduled for vehicle k (ak ≥ τ) and

origin location ok is set to the destination location of that request.

3. Set V is defined as a concatenation of vehicle and request indices.

4. Time-dependent travel times tOki(t), k ∈M,i ∈N from vehicle k origin location to customer

i pickup location have to be updated. The same must be done with time-dependent travel times

tij(t), i ∈N,j ∈N from customer i delivery location to customer j pickup location and for time-

dependent travel times ti(t), i∈N between customer i pickup and delivery locations.

3.3.2. Strategies As it was stated earlier, customers perform only immediate taxi calls, and

then wait for a taxi to come; minimization of the total waiting time is the optimization goal.

Only submitted request are visible, i.e. ∀i ∈N,si ≤ τ . To assure fairness of the dispatching pro-

cess, all taxi requests i ∈ N are prioritized according to their submission time si, and therefore

scheduled based on the first-come, first-served (FCFS) policy. Three different strategies, namely

no-scheduling, one-time scheduling and re-scheduling, were implemented.

No-scheduling strategy (NOS) In this strategy, instead of producing a valid schedule, the opti-

mization algorithm assigns the highest priority task to the nearest (according to a given measure;

see 3.3.3) idle taxi, while the rest of queued request are pending assignment. In other words, set

N consists only of the first request from the FIFO queue and set M consists only of vehicles that

are idle. The strategy reacts to the following events:

• E0
i – submission of request i – the nearest vehicle among the idle ones is dispatched to this

request; if no vehicle is available at that time, the request is queued in the FIFO queue

• E4
i – completion of request i – the vehicle that served this request is dispatched to the first

request in the FIFO queue; otherwise, the vehicle becomes idle
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This quite simplistic strategy imitates the way orders are assigned to taxis in a typical taxi com-

pany. The advantage of this approach is its low demand for computational power – it just requires

executing a shortest path search algorithm and choosing the closest idle taxi. Moreover, this strat-

egy does not require travel times to be known since it does not build schedules; one can apply

any distance measure to find the nearest idle taxi, which is another good point. The drawback is

that its performance deteriorates as the number of idle taxis decreases. In such situations, a taxi

located on the opposite side of a city may be dispatched to serve a request, because all the taxis

located near to the customer are busy.

One-time-scheduling strategy (OTS) This strategy updates the existing schedule by appending

a new request to the list of requests already assigned to the nearest vehicle. Similarly to the first

strategy, set N is also of size 1. The difference is that this strategy considers all vehicles (both idle

or busy) and to do that it has to build schedules, which in turn, requires the knowledge of travel

times. After executing the strategy, all requests are planned, hence the schedule is valid. Since the

process of taxi dispatching is monitored, when any divergence between the plan and its execution

is detected, the schedule timeline is updated, however requests are not rescheduled/reassigned. The

strategy acts in the following way:

• E0
i – submission of request i – the request is appended to the schedule of the nearest vehicle

(can be idle or busy)

• E2
i and E4

i – arrival at the pickup and delivery location of request i – if the vehicle serving

request i is ahead of/behind time (T 2
i 6= τ or T 4

i 6= τ , respectively), the schedule timing is updated

(i.e. values T 1
j , T

2
j , T

3
j and T 4

j representing all the subsequent events); the assignments remain

unchanged

This strategy considers all the available vehicles, not only the idle ones, which broadens the choice

of taxis and thus increases the chances of finding a better assignment compared to the first strategy.

However, the weak point here is the permanence of assignments. If a vehicle is seriously delayed

at a given point in time, none of the awaiting orders can be re-assigned to another vehicle. In such

situations only the timing information is updated, which may prevent assigning new orders to this

delayed vehicle. As a result, it may happen that this strategy would perform poorly, however it

most cases, it is expected to outperform the first one.

Re-scheduling strategy (RES) This strategy is an enhanced version of the previous one. The

difference is that schedules are always re-computed in response to any registered delays or speed-

ups, and therefore, requests may be re-assigned to another taxi if that other taxi is currently the

nearest one. The strategy is defined as follows:

• E0
i – submission of request i – the request is appended to the schedule of the nearest vehicle

(can be idle or busy)
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• E2
i and E4

i – arrival at the pickup and delivery location of request i – if the vehicle serving

request i is ahead of/behind time (T 2
i 6= τ or T 4

i 6= τ , respectively), the schedule is re-calculated;

the assignments are subject to change

In this third strategy the scheduling algorithm is run in two modes. On the arrival of a new request,

the scheduling works in exactly the same way as in case the OTS strategy. This means that there

is only one request to schedule (|N | = 1) and the request is assigned to one of the taxis as the

last request in the schedule. However, the operation of the algorithm is different in the second

mode when responding to observed delays or speed-up. In this case the schedule is cleared and

all requests are re-scheduled. Theoretically, |N | may be considered to be equal to the number of

the received orders that remain unserved.10 In practice, however, |N |= 1 as all these requests are

processed separately one-by-one according the FCFS policy, as if the were re-submitted in the

same order as they originally arrived. The RES strategy overcomes the weaknesses of the previous

ones – it creates a schedule (unlike the NOS strategy) and the request-to-taxi assignments are not

permanent (in contrast to the OTS strategy). Thus it seems most efficient but at the same time

most computationally expensive.

Note that being attached at the end of the schedule does not mean that the customer will be

served later than all the previously scheduled vehicles. The FCFS property holds only within a

single taxi, i.e. the order in which customers are served by a given taxi is equal to the order in which

they were submitted. However, this cannot be assured for requests assigned to different vehicles.

Thus FCFS should stand for first-come-first-scheduled rather than first-come-first-served.

3.3.3. Distance measures There are many possible ways of measuring distances between

vehicles and customers that can be applied for finding the nearest vehicle:

• Straight line (SL) — offers the lowest precision, however, it is very popular with taxi companies;

it is also fast since it does not require running the shortest path search11

• Travel distance (TD) — the shortest-distance path; if all links are permanently open (avail-

able), the shortest-distance path is constant over a day

• Fixed travel time (FT) — the shortest-time path based on fixed speed data, e.g. free speed

travel times or 24-hour average link travel times (the latter option was used for the experiments);

if all links are permanently open (available), the path is constant over a day

• Dynamic travel time (DT) — the shortest-time path computed for a given moment in time;

based on, for example, the 15-minute link travel time statistics to reflect the daily changes in traffic,

which guarantees the highest precision of finding the vehicle closest in time.

10 When a taxi heads towards a given request, this request is considered as being served.

11 The straight-line distance is used only for choosing a taxi, then the chosen taxi is routed along the shortest-distance
path.
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Since the MATSim simulation uses the queue-based traffic flow model, locations of vehicles and

request are known within the accuracy of a single link. All paths are calculated according to the

shortest path search algorithms available in MATSim, as described in Sec. 2.4, whereas for the

straight-line distance the middle points of links are taken into account. As the first two measures

do not give any information on the travel time, they cannot be used for building schedules and

hence are applicable only to the first strategy (Tab. 1).

Table 1 Distance measure applicability

Strategy Straight line Travel distance Travel time Travel time

(fixed) (dynamic)

No-scheduling + + + +
One-time-scheduling − − + +

Re-scheduling − − + +

4. Simulation scenario and performance metrics

The computational analysis was carried out for Mielec, a city in south-eastern Poland, with a

population of over 60’000 inhabitants. The scenario was derived from a macroscopic model of

private transport in Mielec for the afternoon 1-hour peak, created originally in PTV VISUM,12

and used as a small-size test instance in several studies, (e.g. Piatkowski and Maciejewski 2013 (in

press). The network model consists of 214 nodes and over 610 links of three types, namely main,

bulk and local roads. Besides the urban network, external roads were modeled to allow for inbound,

outbound and transit traffic. The whole study area was divided into 13 zones, each one assumed to

have homogeneous land use. Nine of them represent city districts, while the rest – external areas

(sources and destinations of the non-intra-urban traffic).

In the original model, the transport demand was represented as an OD matrix, which contained

over 8’800 trips within the 1-hour afternoon peak. Based on that OD matrix, 14 OD matrices were

artificially generated to cover the period between 6:00 am and 8:00 pm. Because of the lack of

data, it was assumed that the morning traffic is the opposite of the afternoon traffic and that the

non-peak-hour OD matrices are a proportion of the closer peak hour OD matrix. In the end, the

generated demand consists of over 42’000 private transport trips that represent a hypothetical case

of day traffic, including both the morning and afternoon rush-hour traffic.

The traffic simulation was carried out in MATSim using the standard iterative approach (see

Sec. 2.1). The simulation process converged within 20 iterations. Fig. 3 shows a snapshot of traffic

flow simulation in the 20th iteration (dots represent agents; dark grey dots indicate agents stuck

12 http://vision-traffic.ptvgroup.com/en-uk/products/ptv-visum/

http://vision-traffic.ptvgroup.com/en-uk/products/ptv-visum/
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in congestion.) Fig. 4 shows the resulting daily pattern. From the graph together with knowledge

about the network size (no long trips) one can conjecture that there is some congestion, but it is

not very strong. This is confirmed by the snapshot (Fig. 4). Besides having a somewhat realistic

demand structure, the scenario also demonstrates that our approach is able to read and process

realistic network and demand files.

Figure 3 Traffic flow simulation in Mielec at 5:00 pm (iteration 20)

The testing scenarios consisted in running a special (21st) iteration of MATSim simulation, based

on the results of the last (20th) regular iteration (agents’ plans and link travel time statistics). This

additional iteration of simulation begins with a specific re-planning phase, where all plans remain

the same with the exception for the the transport mode – the mode of a given fraction of trips is

changed from car to taxi. The probability of shifting to the taxi mode is uniform, regardless of the

time, location or purpose of the trip. Next, the traffic simulation phase takes place; the taxi demand

is served according to the principles described in Sec. 2.5. In the last phase of the iteration, besides
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Figure 4 Vehicle departures and arrivals (per 5 minutes), and number of vehicles en route

the typical agent plan scoring, a detailed evaluation of the taxi service performance is carried out.

This evaluation is used later for the comparison purposes.

The performance of the proposed optimization strategies was tested against different variants

(called experiments) of the Mielec scenario. In order to take into consideration different demand-

supply relations, the taxi demand was modeled as 3, 5 or 7% of the private intra-urban transport

demand (917, 1528 and 2175 orders, respectively), and the taxi fleet size varied from 50 to 100 taxis.

Tab. 2 shows demand-to-supply ratios, defined as n/m, in different simulation experiments. Since

the fleet size was constant over the entire simulation and the taxi demand peak coincided with the

private transport demand peak, the rush hours were the most challenging for taxi dispatching.

Table 2 The
demand-to-supply ratio in

different simulation experiments

Fleet Taxi demand [%]
size 3% 5% 7%

50 18.34 30.56 43.5
100 9.17 15.28 21.75
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Different measures of performance were examined during the simulation studies. From the taxi

customers’ point of view the most important indicators are:

• average passenger waiting time, TW =
∑

i∈N
T2
i −T

0
i

n

• maximum passenger waiting time, Tmax
W = maxi∈N(T 2

i −T 0
i )

• average delivery (i.e. occupied) trip time, TD =
∑

i∈N
T4
i −T

3
i

n

• average passenger-waiting-time-to-taxi-leg-time ratio, RW =
∑

i∈N
T2
i −T

0
i

(T4
i −T

0
i )n

On the other hand, taxi service provider’s performance may be assessed based on the following

statistics:

• average pickup (i.e. empty) trip time, TP =
∑

i∈N
T2
i −T

1
i

n

• average pickup-to-all-trips-time ratio, RP =
∑

i∈N
T2
i −T

1
i

((T2
i −T

1
i )+(T4

i −T
3
i ))n

• average non-idle-to-total-time ratio (14-hour simulation), RNI =
∑

i∈N
T4
i −T

1
i

m·14·3600[s]

In all cases, the lower the indicator values the better. The customers’ and company’s performance

measures are often conflicting. For instance, a taxi company might be interested in deferring the

service of an order until there are taxis close to the pickup location; this, however, results in

higher passenger waiting times, and ultimately, may end in shifting to a different taxi company or

even transport mode. For the evaluation purposes, it was assumed that TW is the most important

indicator of quality of service, whereas TP constitutes the major contribution to the company’s

operating costs, and RNI reflects the overall efficiency of resource (taxicab) utilization. To provide

more accurate statistics, all the indicators are averages – each experiment was carried out 20 times

for all possible strategy–distance pairs, each time with a different random number sequence.

5. Simulation results

Tab. 3 presents the results obtained for low n/m levels (i.e. experiment 3%:100 ). In all cases, taxis

are idle for almost 90% of time (1−RNI). Except for the traffic peak period, the OTS and RES

strategies behave almost as the NOS strategy as only few taxicabs are busy. Using the dynamic

travel time estimates, on average, all strategies (NOS, OTS, RES) perform similarly with a slight

advantage of NOS. The main difference lies in Tmax
W , which points out that the prioritization of

orders in OTS is not as effective as in the other strategies. This is caused by the fact that OTS

cannot reassign already scheduled orders. In consequence, when compared to RES, it is more likely

that some old requests, assigned to delayed taxis, are served later than newer requests.

The use of less accurate (i.e. fixed) travel times deteriorates the performance of both scheduling

strategies (i.e. OTS and RES), especially in terms of TW . Analysing TP and TD one can notice an

improvement in the quality of routes when the dynamic travel times are used, while the straight-line

distance measure performs worst.



Maciejewski and Nagel: Simulation and dynamic optimization of taxi services in MATSim
22 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

Table 3 Results for experiment 3%:100

Strategy Distance
TW Tmax

W TD RW TP RP RNI

[h:mm:ss] [h:mm:ss] [h:mm:ss] [%] [h:mm:ss] [%] [%]

NOS SL 0:01:46 0:11:56 0:06:33 17.1% 0:01:46 21.2% 11.3%
NOS TD 0:01:34 0:09:58 0:06:33 15.5% 0:01:34 19.3% 11.1%
NOS FT 0:01:34 0:13:34 0:06:30 15.6% 0:01:34 19.5% 11.0%
NOS DT 0:01:30 0:09:31 0:06:19 15.3% 0:01:30 19.2% 10.7%
OTS FT 0:01:45 0:15:54 0:06:28 17.2% 0:01:34 19.6% 11.0%
OTS DT 0:01:33 0:15:03 0:06:19 15.8% 0:01:29 19.1% 10.7%
RES FT 0:01:44 0:14:43 0:06:29 17.0% 0:01:34 19.5% 11.0%
RES DT 0:01:33 0:10:48 0:06:19 15.8% 0:01:30 19.1% 10.7%

To conclude, the differences between most of the results are not significant. One can notice that

in the case of low demand-to-supply ratio, the use of simple strategies (like NOS) is justified. Also,

the choice of distance measure has a bigger impact on the outcomes than the choice of the strategy.

Significantly different results were obtained for the medium n/m experiments, like 7%:100

(Tab. 4). With higher demand the number of idle taxis is significantly reduced to slightly more

than 70% on average (and much lower values during the peaks). In this experiment, the advantage

of the NOS strategy over the others, in terms of quality of service (TW and RW), is clearly visible,

which may be surprising at first. On the other hand, all cost indicators (TP,RP and RNI) are better

when using the letter strategies. This is caused by the fact that the arrival time estimator for

on-going trips is biased. The end time of a started pickup trip, for instance, is estimated as:

T̂ 4
i (τ) =max(T 3

i + ti(T
3
i ), τ) ∀i∈N,∀τ ∈ [T 3

i , T
4
i ). (7)

Suppose that the trip starts at T 3
i = 0 and is expected to end at T̂ 4

i (0) = 100. If the taxi is still

en route at time τ = 98, it is more likely that the trip will end later than at 100, whereas the

estimator will still predict the same value, i.e. T̂ 4
i (98) = 100. Moreover, if the taxi is still en route

at time τ = 105, the estimator will predict the trip to end at this very moment, i.e. T̂ 4
i (105) = 105,

which is actually very unlikely. As one can see, T̂ 4
i (τ) for τ ∈ (T 3

i , T
4
i ) is underestimated, and hence,

the schedule timings are are usually too optimistic. As a result, the OTS and RES strategies give

preference to non-idle vehicles, which results in shorter pickup trips, but at the cost of longer taxi

awaiting. It is also worth pointing out that like in the first experiment, the RES strategy gives 30%

lower Tmax
W , compared to OTS, when the dynamic travel times are used.

Analysing the influence of the distance measures used, again one can notice the dynamic travel

times produce the best performance. The use of the averaged travel times is even less effective

compared to calculating shortest-distance paths.

Similar relations between individual strategy–distance cases were also observed for other experi-

ments, like 3%:50 (Tab. 5). The main difference between them lies in RNI, as there are 21.8 requests
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Table 4 Results for experiment 7%:100

Strategy Distance
TW Tmax

W TD RW TP RP RNI

[h:mm:ss] [h:mm:ss] [h:mm:ss] [%] [h:mm:ss] [%] [%]

NOS SL 0:02:09 0:18:35 0:06:39 19.9% 0:02:09 24.4% 28.0%
NOS TD 0:02:01 0:15:13 0:06:39 18.9% 0:02:01 23.2% 27.6%
NOS FT 0:02:09 0:18:56 0:06:43 19.8% 0:02:09 24.3% 28.1%
NOS DT 0:01:57 0:14:03 0:06:30 18.7% 0:01:57 23.1% 27.0%
OTS FT 0:02:59 0:27:02 0:06:39 25.6% 0:01:52 21.9% 27.2%
OTS DT 0:02:21 0:21:27 0:06:27 21.8% 0:01:47 21.7% 26.5%
RES FT 0:03:00 0:27:39 0:06:38 25.8% 0:01:53 22.1% 27.3%
RES DT 0:02:21 0:14:12 0:06:28 21.8% 0:01:47 21.7% 26.5%

per taxi in the former experiment and only 18.3 in the latter. However, the general conclusion is

that with the growing demand-to-supply ratio, the choice of optimization strategy is decisive. The

use of the biased estimator for the arrival time of on-going trips significantly deteriorates the the

performance of more sophisticated strategies. When the estimations are based on less inaccurate

(averaged) travel times, the outcomes even worsen.

Table 5 Results for experiment 3%:50

Strategy Distance
TW Tmax

W TD RW TP RP RNI

[h:mm:ss] [h:mm:ss] [h:mm:ss] [%] [h:mm:ss] [%] [%]

NOS SL 0:02:17 0:13:52 0:06:34 21.0% 0:02:17 25.8% 23.7%
NOS TD 0:02:05 0:11:35 0:06:33 19.6% 0:02:05 24.1% 23.2%
NOS FT 0:02:14 0:15:05 0:06:31 20.8% 0:02:14 25.5% 23.5%
NOS DT 0:02:01 0:10:25 0:06:19 19.5% 0:02:01 24.2% 22.6%
OTS FT 0:02:36 0:20:38 0:06:29 23.4% 0:02:09 24.9% 23.2%
OTS DT 0:02:06 0:20:26 0:06:18 20.1% 0:01:55 23.3% 22.3%
RES FT 0:02:37 0:18:00 0:06:29 23.6% 0:02:09 25.0% 23.2%
RES DT 0:02:06 0:12:43 0:06:18 20.2% 0:01:55 23.4% 22.3%

The computations run for the high demand-to-supply ratios (7%:50 ; Tab. 6) illustrate the oper-

ation of the designed strategies under heavy load, when RNI exceeds 60% and there is a shortage

of taxis during the morning and afternoon rush hours; TP� TW proves that there are longer peri-

ods where no taxi is dispatched for awaiting customers. In such circumstances, the NOS strategy

behaves randomly – when no vehicle has been idle, it assigns an order to the first taxi that com-

pletes its tasks. A more detailed inspection of TP and TW shows that the scheduling strategies

dispatches a taxi 8–9 minutes after the request (TW − TP), while for the NOS it takes around

15–16 minutes, on average. This proves that far from optimal, often random, dispatching decisions

increase the overload of taxis (larger TP), which makes the shortage of taxis even more acute.

Interestingly, TD is the only indicator that improved compared to the previous experiments, and

is particularly smaller for the NOS strategy. This is, however, a side effect of much larger TW, i.e.
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Table 6 Results for experiment 7%:50

Strategy Distance
TW Tmax

W TD RW TP RP RNI

[h:mm:ss] [h:mm:ss] [h:mm:ss] [%] [h:mm:ss] [%] [%]

NOS SL 0:20:03 1:05:42 0:06:06 71.2% 0:04:06 40.1% 63.2%
NOS TD 0:19:44 1:06:27 0:06:07 70.9% 0:04:03 39.8% 62.9%
NOS FT 0:20:16 1:06:02 0:06:07 71.4% 0:04:04 40.0% 63.1%
NOS DT 0:18:31 1:02:42 0:05:59 69.9% 0:03:51 39.1% 61.3%
OTS FT 0:11:30 0:51:22 0:06:15 58.2% 0:02:26 28.0% 55.3%
OTS DT 0:10:13 0:45:18 0:06:06 55.8% 0:02:22 27.9% 54.1%
RES FT 0:11:24 0:48:15 0:06:15 58.0% 0:02:25 27.9% 55.3%
RES DT 0:10:10 0:43:51 0:06:06 55.7% 0:02:21 27.8% 54.1%

the passenger pickups are delayed, sometimes up to an hour (Tmax
W ), and therefore, the taxi peak is

shifted beyond the traffic rush hour, which results in shorter travel times. Another observation is

that unlike the previous experiments, Tmax
W is much bigger for the NOS strategy, and the difference

between the OTS and RES strategies is reduced. Moreover, the relative differences between TW

and Tmax
W are smaller than in the previous experiments. This can be accounted for by the relatively

short period of the highest traffic (only one hour both in the morning and afternoon) – after one

hour traffic decreases and it becomes easier to reach the waiting passengers.

A comparison of different distance measures shows similar relations as in experiment 7%:100,

i.e. the dynamic travel times perform best and the shortest-distance measure is slightly better than

the remaining two.

To sum up, the NOS strategy does not anticipate the future state of the system and makes

very myopic decisions that are good only at the current time τ . In the overloaded taxi dispatching

system this deteriorates its performance in the long term.

Relations between the demand-to-supply ratio and selected indicators are presented in Figs. 5

to 7. In order to provide a clear picture, overlapping curves were aggregated according to the

following scheme:

• NOS-non-DT – the NOS strategy and all distance measures except for the dynamic times

(DT)

• NOS-DT – the NOS strategy and the DT distance measure

• w/S-FT – both schedule-oriented strategies (i.e. OTS and RES) and the fixed time (FT)

distance measure

• w/S-DT – both schedule-oriented strategies and the DT measure

Furthermore, separate curves were plotted for the taxi fleet size of 50 (n/m equals 18.34, 30.56

and 43.5) and of 100 (where n/m equals 9.17, 15.28 and 21.75). Looking at Fig. 5, one can notice

the influence of knowing the accurate travel times on the quality of service at low n/m (NOS-DT

and w/S-DT vs. NOS-non-DT and w/S-DT ). At medium range of the ratio of n/m (particularly
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Figure 5 Average passenger waiting time TW at different demand-supply ratios (logarithmic scale)
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Figure 6 Average pickup trip time TP at different demand-supply ratios

in experiment 7%:100 ), due to the use of the biased arrival time estimator for on-going trips, both

scheduling algorithms result in higher TW; especially the use of the imprecise travel time estimates
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(FT) seriously deteriorates scheduling. However, as n/m increases further and the taxi system gets

overloaded, the situations turns exactly the opposite. In such cases, the use of scheduling (regardless

of the distance measure chosen) is superior to the NOS approach. The logarithmic plot is, in fact,

somewhat hiding the success of the scheduling strategies: For the highest load, the advantage is

nearly a factor of two, reducing the average waiting times from about 18.5 minutes to about 10.2

minutes (for DT).

Looking from the taxi company’s perspective, a different picture emerges. Although the main

motivation of using the scheduling strategies is reduction of passenger waiting times, they have a

beneficial side effect of reducing the operating costs. Both with DT or FT, both strategies yield

lower TP (Fig. 6), and the difference widens with the increasing ratio of n/m. This can be explained

as follows. If a non-idle vehicle is closer (in time) to a given customer by an amount of time t > 0

than an idle vehicle, the pickup trip duration of the non-idle is shorter at least by t.
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Figure 7 Average non-idle-to-total-time ratio RNI at different demand-supply ratios

With lower TP and comparable TD (as the origins and destinations of taxi trips are fixed), the

OTS and RES strategies achieve lower values of RNI (Fig. 7), which indicates that, on average,

they have more idle taxis on their disposal. Additionally, both strategies take busy cabs into

consideration, so there is a wider choice of vehicles for dispatching to new customers, and thus the

dearth of taxis during the high peak is shorter and less acute.
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6. Discussion

Pickup trip times The average pickup trip time, TP, essentially depends on the average distance

of the taxicab when it is assigned to the customer. If we assume that midle taxis are distributed

homogeneously over the service area A, then each idle taxi serves an area a=A/midle. Assuming

homogeneous conditions, the average pickup distance, and thus the average pickup trip time, is

proportional to the square root of this:

TP ∼
(

A

midle

)1/2

. (8)

This leads to the following consequences:

• Fig. 6 shows that having 100 taxicabs for 7% of the population leads to better pickup trip

times than 50 taxicabs for 3% of the population in spite of the fact that the supply-to-demand

ratio in the first case is actually worse. This is due to the fact that, with 100 taxis, the chance that

an idle taxi is close by is larger than with 50 taxis. This effect is, albeit to a lesser extent, also

reflected in the passenger waiting times (Fig. 5).

• For high loads, the pickup trip time eventually levels out.

Without scheduling (= NOS), the next available taxi is matched with the first customer in the

queue, irrespective of the distance, and because of midle = 1, Eq. (8) immediately leads to TP ∼A1/2:

The average pickup trip time levels out at the average time necessary to connect two randomly

selected points in the city.

With scheduling: Let us define `(k),∀k ∈K as the last customer assigned to taxi k, according to

the current schedule. Therefore, taxi k has final destination d`(k) at the current end of its schedule,

and will reach that destination at time T 4
`(k). The taxi that will be assigned the next request j, at

location pj, is the one that minimizes t`(k),j +T 4
`(k). Assuming that the T 4

`(k) are independently and

identically distributed with a mean µ, this becomes

min
k∈M

t`(k),j +µ+ ε`(k) ,

where the constant µ is irrelevant for the optimization, and the expectation value of ε`(k) is zero.13

The expectation value E(mink∈M t`(k),j + ε`(k)) is clearly smaller than E(t`(k),j), and since the latter

is the average pickup time without scheduling, the expectation value for TP with scheduling is

smaller than without scheduling.

Thus, the simulations confirm the tendencies of Eq. (8), without providing enough material to

accept or reject the specific mathematical form.

13 The problem is curiously similar to location choice in random utility models (Ben-Akiva and Lerman 1985, Horni
et al. 2012), where person i selects a location j that maximizes −tij + εj and thus minimizes tij − εj .
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These considerations also clarify that under high loads another strategy is possible: Every taxi

that becomes available just picks the closest waiting customer, irrespective of the customer’s posi-

tion in the queue. This would make the average TP ever smaller for ever larger loads, and would

thus increase the capacity (rate with which passengers are served) of the system. It would, however,

be considered unfair. Since, however, as we will also reconfirm below, a load above the capacity

of the system has drastic consequences for the waiting time, it may make sense to consider such

strategies anyway, e.g. for exceptional situations.

Waiting time Fig. 5 implies that there is a low and a high load regime.

In the high load regime, the demand rate d is larger than the supply rate s for some periods.

Ignoring the spatial aspects of the problem, the expected total overload waiting time depends both

on the extent and the duration of the overload:

T overload
W ∼

∫ t1

t0

(d(t)− s)dt , (9)

where t0 is the time when the overload starts, and t1 is the time when the backlog has been served.

Let us look, inspired by Fig. 4, at a queueing system with large demand rate d > s for some

period τ , and some smaller demand rate d′ < s for all other times. One can state the following:

• At time τ , the queued excess demand is (d− s) · τ .

• After the high load period is over, the excess demand is dissolved with rate s−d′. The necessary

time for this is

τ ′ =
(d− s) · τ
s− d′

. (10)

• Inserting these considerations into Eq. (9) first leads to

T overload
W =

1

2
[(d− s) · τ ] (τ + τ ′) ,

which is due to the linear nature both of the queue build-up and the queue dissolution. Inserting

Eq. (10) then leads to

=
1

2
[(d− s) · τ ]

(
τ +

(d− s) · τ
s− d′

)
∼ d2 .

• Thus, the average waiting time per customer would scale, to leading order, as ∼ d.

This would imply, in the overload regime, that average waiting times grow linearly in the demand.

Fig. 5, however, rather implies that they grow exponentially in the demand. Fig. 8 provides an even

cleaner indication of an exponential law: The figure shows the average waiting minus the average

pickup times and thus, in fact, that part of the waiting time that is due to the overload. That is,

the simulations imply that there is something going on that is more damaging to performance than

the simple model from above implies. At this point, we are unable to say what this could be, but

it confirms the necessity of real world simulations.
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Figure 8 Average dispatching delay time, TW −TP, at different demand-supply ratios (logarithmic scale)

The low load regime can be understood as a queueing system. In a queueing system, the

average waiting time depends on how close the system is to capacity. If d is the demand rate and

s is the supply rate, then the average waiting time behaves as

TW ∼
d/s

s− d
.

That is, average waiting times increase with increasing d. The divergence for d→ s is, however,

not realized in our system, because the high load regime is only active for limited amounts of time,

and thus the argument explained earlier leading to TW ∼ d will hold.

Biased estimation The problem of the biased travel time estimation will be addressed in future

work by adding vehicle monitoring. Since MATSim uses the queue model, the current position of a

taxi can be known within the accuracy of a single link. Such precision is sufficient for more accurate

prediction of the arrival times, but also for diverting taxis from their current destination. With those

enhancements, the RES strategy should outperform the others regardless of the demand-supply

relation.

Knowledge of the delivery location Each taxi request specifies both the pickup and delivery

locations. In reality, the destinations are not always available to the dispatcher. Both scheduling

strategies, i.e. OTS and RES, could be adapted to this restriction by shortening the time horizon of

a vehicle’s schedule to the next pickup event; the time horizon is shifted forward after a passenger
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enters the vehicle and the destination becomes known. As a result, new requests that cannot be

scheduled are queued. This modification brings the scheduling strategies closer to the NOS strategy

that does not use the delivery location information and queues new requests when no vehicle is

idle. One may expect that this modification would lead to performance losses.

Threshold for re-scheduling Another issue related to the scheduling strategies, particularly to

RES, is finding the threshold value of a vehicle’s deviation from its schedule for triggering the

rescheduling. At present, even a delay or speedup of 1 second invokes the re-optimization. In real

life, a 30-second delay may be a good cause for updating the timing of schedules, but rebuilding

them from scratch even with a one second deviation seems unjustified.

Call-ahead requests Currently, the integrated system supports only immediate request. Although

the DVRP Optimizer can handle advance requests, the present implementation of MATSim does

not provide functionality for calling ahead – taxis are called after finishing an activity. From the

passenger’s perspective, the lack of advance requests results in longer waiting times. However, on

typical days the waiting times are relatively small, while during high-load periods, taxi pre-ordering

is often disabled by the operators. Nevertheless, the call-ahead functionality will be addressed in

the future.

7. Conclusions

The paper focuses on the two following issues. Firstly, it presents the integration of a microscopic,

behavior-based traffic simulation (MATSim) and a dynamic vehicle routing optimizer (DVRP Opti-

mizer). The integrated system serves as a tool for detailed simulation and evaluation of dynamic

taxi services as one of several different transport means, all embedded into a realistic environment.

The main part of the paper thus deals with the problem of designing on-line taxi dispatching

strategies. Three strategies, combined with various distance measures, are implemented within the

integrated system and evaluated on the scenario of the Polish city of Mielec. The three strategies

are:

• no-schedule (NOS): every new customer is assigned to the nearest idle taxi. If no idle taxi is

available, the next idle taxi is assigned to it (no matter of its position).

• one-time schedule (OTS): every new customer is assigned to the taxi which is predicted to be

first with the customer after all already assigned trips are served.

• re-schedule (RES): In addition to OTS, the schedule is re-computed every time a passenger is

dropped off when the drop-off time is different from the prediction

The results reveal interesting relationships between the level of the taxi demand-to-supply ratio

and the performance of the strategies. At a low ratio, the NOS strategy performs minimally better

than the other two strategies. The difference at first increases as the ratio grows, which is caused by
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the use of a biased arrival time estimator for on-going trips. However, the scheduling strategies OTS

and in particular RES become much better than no scheduling at a high demand-to-supply ratio.

The inability to predict the availability of taxis, even in the short term, significantly deteriorates

the performance of NOS. The computational experiments also confirm that the quality of the

distance measure may significantly improve the taxi service.

The created system may serve as a simulation-based optimization platform for benchmarking

different vehicle-routing-related problems. The DVRP Optimizer constitutes a flexible framework

where various optimization algorithms may be plugged into, and tested against diverse realistic

scenarios simulated in MATSim. Similar platforms are widely applied in other areas, i.e. robosoccer

(Kim 1997), rescue robot competitions (Takahashi et al. 2002), or energy trading simulations

(Ketter et al. 2012, Bichler and Ketter 2010, Collins et al. 2010). In consequence, this would allow

for obtaining more objective and comparable results.

Importantly, the approach provides quantitative numbers. Given a scenario where the demand

and the vehicular travel times in the network are calibrated, one could work on calibrating the

present approach towards the operating characteristics of a taxicab company. This will be the

subject of future work.
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