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Issues of simulation-based route assignment
K. Nagel and M. Rickert

Los Alamos National Laboratory, TSASA, Mail Stop M997, Los
Alamos NM 87544, U.S.A., kai@lanl.gov, rickert@lanl.gov

Abstract

We use an iterative re-planning scheme with simulation feedback to
generate a self-consistent route-set for a given street network and origin-
destination matrix. The iteration process is defined by three parameters.
We found that they have influence on the speed of the relaxation, but not
necessarily on its final state.

1 Introduction

The traditional urban transportation planning process consists of four steps:
trip generation, trip distribution, modal split, and assignment of routes onto
the network. In recent years, more and more work has been invested to consider
the dynamic aspects of these components. However, it has proven very difficult
to define — let alone solve — the dynamic problem analytically (e.g. [1]).

Tterated microsimulations of traffic provide an alternative for the assignment
portion. Several groups (e.g. [2, 3, 4, 5, 6, 7]) have used the iterative approach
of routing — microsimulation — feedback of travel-times to obtain an assignment
(route set) that is — within the accuracy permitted by any implicit or explicit
stochasticity of the model — self-consistent. By self-consistency we mean that the
assumptions about link travel times that are made during the routing period
are consistent with the link travel times that are encountered in the micro-
simulation once all route plans are executed.

All these approaches are conceptually not very different from traditional as-
signment [8] except that the link delay function calculation is replaced by the
microsimulation, which generates link delays from the simulated dynamics of
the system. This has the advantage that the results are —at least in principle—
dynamically more correct than the traditional link delay function, which cannot,
for example, deal with queue build-up.

The currently existing simulation-based methods are simple relaxation meth-
ods. Note that traditional assignment also started out with simple relaxation
methods, which became more sophisticated over time with the accumulation
of knowledge. This indicates that over time researchers will probably be able
to gain more insight into simulation-based assignment. The present paper dis-
cusses, based on simulation results for a Dallas scenario, some of the issues.

2 Context

The context of this paper is the so-called Dallas—Fort Worth case study of the
TRANSIMS project [9]. The purpose of the case study was to show that a
micro-simulation based approach to transportation planning such as promoted
by TRANSIMS will allow analysis that is difficult or impossible with traditional
assignment, such as measures of effectiveness (MOE) by sub-populations (stake-
holder analysis), in a straightforward way. Many accompanying studies such as
Refs. [10, 11, 12, 13, 14, 15] attempt to document the technology leading to and
following up on the case study.

The underlying road network for the study (public transit was not considered)
was a so-called focused network. It contained all links in a 5 miles times 5 miles



study area, but got considerably “thinner” with further distance from the study
area.! The full focused network contained 9864 nodes and 14751 mostly bi-
directional links. The study area contained 2292 nodes and 6124 uni-directional
links with a total length of 2276 lane kilometers — which is considerably larger
than many networks used in other studies. A picture of the network can be
found in Ref. [11], an excerpt is shown in Fig. 2.

The TRANSIMS design specifies to use demographic data as input and to
generate, via synthetic households and synthetic activities, the transportation
demand. The Dallas/Fort Worth case study was based on interim technol-
ogy: parts of the demand generation modules were not yet available. For that
reason, the study uses conventional 24-hour trip tables (production-attraction
matrix, PA matrix) as starting point. The PA matrix was provided by the
regional transportation planning authority (the North Central Council of Gov-
ernment, NCTCOG). The PA matrix roughly is a 24 hour origin-destination
matrix, i.e. the metropolitan area of Dallas/Fort Worth is divided into approx-
imately 800 zones (traffic analysis zones, TAZs), and the number of trips going
from each zone to each other zone in a 24 hour period is given.

For the case study, the first thing that was done was to break down the PA ma-
trix into individual trips [9]. For this, a time-of-day distribution according to
land use in the destination zone was used. For example, traffic going to commer-
cial zones mostly occurs in the morning. Also, starting and ending locations of
trips were specified on the link level. The result was a table of approx. 10 million
trips, all with a starting time, a starting location, and a destination location.
From this table, all trips starting between 5am and 10am (ca. 3 million trips)
were actually used.

Next, an “initial routing” step was done. All 3 million trips were routed ac-
cording to “fastest path in an empty network” (i.e. using free speeds provided
by the transportation authority). All trips that went through the study area
in this step were retained, all other trips were removed. Note that this defines
a base set of trips for all subsequent studies presented in this paper: All trips
thrown out in this step can no longer influence the result of the studies. This
base set contained approx. 300000 trips. It was used to create three different
initial plan-sets which will be discussed later on.

3 The micro-simulation

The above procedure does not only generate a base set of trips, but also an initial
set of routes (called nitial plan-set). These routes are then run through a traffic
micro-simulation, where each individual route plan is executed subject to the
constraints posed by the traffic system (e.g. signals) and by other vehicles. Note
that this implies that the micro-simulation is capable of executing pre-computed
routes — only very few micro-simulations currently have this capability although
their number is growing. It also implies that, in the simulations, drivers do not
have the capability of changing their routing on-line.?

We have used several micro-simulations for the Dallas study, ranging from ex-
tremely realistic (including, for example, lane changing for plan following, turn
pockets, or pre-timed signal plans) [12] to a simple queue model [17]. The pur-
pose of these studies was to test the robustness of the results against changes of

INote that this “thinning out” of the network was not done in any systematic way and is
explicitly not recommended. It was an ad-hoc solution because more data was not available,
and because of limited computing capabilities.

21t is not that on-line re-routing is incompatible with the technology (see, e.g., [16]), but
it has not generally been implemented and studied.



the micro-simulation. The results of these studies, in one case also in comparison
with field measurements, are published in [15, 14].

In this paper, we are interested in the dynamics of the iterative procedure itself.
For this purpose, we want to concentrate on a single micro-simulation, which has
been used to systematically explore possible relaxation procedures. This micro-
simulation, called PAMINA (PArallel MIcroscopic Network Algorithm), is based
on the so-called cellular automata (CA) technique for traffic flow [18, 19, 20].
There is no necessity for this except the requirement of sufficient computational
speed. PAMINA does not include signal plans, weaving and turn pockets, and
lane changing for plan following. We expect this, though, to make less of a dif-
ference than one might think, due to the integration into the re-routing process.
In particular, PAMINA is significantly more realistic than the link performance
function used in traditional assignment. PAMINA uses the correct number of
lanes, and since vehicles occupy space in a jam, this generates the “link storage
capacity” for queue spill-back. It uses “averaged” signal plans, which generate,
together with the number of lanes, the flow capacities. Thus, in most aspects,
PAMINA is sufficiently realistic so that we can expect the technology to be
representative for other micro-simulations that it could be replaced by. This
intuition is backed up by our comparison studies [15, 14].

The reason to use PAMINA in spite of its somewhat restricted representation
of reality is its superior computing speed. It ran more than 20 times faster then
the TRANSIMS micro-simulation for this study, which was a combined effect
of using faster hardware (the code is much easier to port to different hardware,
thus being able to take advantage of new and faster hardware much sooner), less
realism, and an implementation oriented towards computational speed. Further
information on PAMINA can be found in [21, 22, 13, 16].

4 Feedback iterations and re-planning

The initial plan-set is obviously wrong during heavy traffic because drivers have
not adjusted to the occurrence of congestion. In reality, drivers avoid heavily
congested regions. We model that behavior by using iterative re-planning [23,
1, 24]: The micro-simulation executes the routes, which, as said above, have
starting times between 5am and 10am. After this, the simulation is continued
until noon to let jams dissolve. The travel times of all vehicles on each link
are averaged into bins of duration At and recorded in a feedback data file.
Throughout this study, we use At = 15 minutes.

After the termination of the simulation, the feedback data is used to re-plan
a certain fraction f, of all plans. The plans to be re-routed can be chosen
randomly, or according to additional criteria. Together with all other “old”
plans, they will constitute the route set for the next iteration.

After re-planning, the micro-simulation is run again on the new plan-set, more
drivers are re-routed, etc., until the system is “relaxed”, i.e. no further changes
are observed from one iteration to the next except for fluctuations (all micro-
simulations are stochastic). A typical iteration step takes about 6-8 minutes
for pre-processing, 30-35 minutes for simulation using eight CPUs (250 MHz)
on SUN Enterprise 4000, and 15-20 minutes for re-planning. This means that
a single series of 60 iterations (as we ran many of) takes about 2 1/2 days on
8 CPUs of that machine.



5 Dynamical systems view

5.1 Consistency problem; equilibrium approach

Transportation-related decisions of people depend on what everybody else is do-
ing. For example, decisions about mode choice, route choice, activity scheduling,
etc., depend on congestion, caused by the aggregated behavior of others. From
a conceptual viewpoint, this consistency problem causes a deadlock, since no
agent can start the planning of her activities because she does not know what
everybody else is doing.

In fact, this problem is well-known not only in transportation, but in socio-
economic systems in general. The traditional answer is to assume that every-
body has complete information and is fully “rational”, i.e. that, for some given
utility-function, each individual agent picks the solution that is best for herself.
This means that each individual agent’s decision-making process now is glob-
ally known, and so each individual agent can (in principle) compute everybody
else’s decision-making process conditioned on her own. Now, since everybody
does exactly the same computation, one can replace the individual decision-
making process by a global computation.

This is now a well-defined problem, which can in principle be solved. For ex-
ample, in the typical well-structured 2-player one-shot problems often used in
game theory [25], one can write down all possible behaviors of player 2 as a
reaction of all possible moves of player 1. Since each player can assume that the
other one will make the best possible move, one can compute what each player
will do in any given situation. — In practice though, this turns out to be an
extremely hard problem. For sufficiently complex games, the above exhaustive
approach turns out to be computationally infeasible.

One is, though, not really interested in each players reaction to every possible
move of the other player(s), but mostly in the question if there is a situation
where each player has a certain strategy and no incentive to move away from this
strategy. This is the traditional Nash equilibrium. In transportation, a typical
example is the user equilibrium solution of the static assignment problem [26]:
No driver (or traffic stream) can be better off by switching routes.

Traditional economics has often focused on the computation of such an equilib-
rium — because already that usually is an extremely hard problem. In traffic
assignment, the Nash/user equilibrium solution turns out to be a “robust” solu-
tion in the following way: The Nash equilibrium solution is also the solution of
an equivalent optimization problem, and under certain assumptions, there are
no local minima besides the global minimum. In consequence, all algorithms
that find a local minimum will find the same solution (in terms of the link
flows). In other words: If one defines C : z; — ¢; as an operator that translates
link flows into link costs, and X : {c¢;}; = {z;}; as an operator that translates
link costs into a new assignment with the property that drivers switch to better
routes if they existed in the last iteration, then the user equilibrium is a fix-
point (i.e. X({C(z:)}i) = {=i}:) of the assignment dynamics; many mappings
X will converge to that fixpoint; and there is only one basin of attraction.? This
means that if one finds an algorithm that converges quickly, then the assignment
problem is solved.

It is useful to recall again some of the assumptions that underly the traditional
assignment approach:

3For formal treatments, this needs to be made more precise, see, e.g., [26]. For the purposes
of this paper, which concentrates on intuition and on simulation results, we feel that the above
version is sufficient.



e Agents are complete rational and they have complete information.

e It is possible to calculate link costs ¢; from the flow assignments z; only,
without any further information.

e The only point of interest is the equilibrium point itself. — This point
is important, since it means that any relaxation procedure to reach the
equilibrium point is just a computational trick and does not have to be
rooted in human behavior.

5.2 Adaptive systems approach

It is instructive to look at biological ecosystems for a minute. Here also, the be-
havior of everybody depends on everybody else. For example, an animal should
not eat in an area where predators catch it. Yet, since we assume that animals
are less capable than humans to perform organized planning and reasoning, no-
body ever assumed that animals would pre-compute an optimal solution based
on some utility function. Instead, one formulates the problem as one of co-
evolution, where everybody’s (mostly instinctive) behavior evolves in reaction
to what is going on in the environment, constrained by the rules of genetical
chemistry.

It is indeed this “eco-system” approach that more and more groups are also
taking in transportation simulation and in the simulation of socio-economic
problems in general. The advantage is that one does not have to make assump-
tions about properties of the system that are necessary in order to make the
mathematics work. For example, one can just define rules how agents decide
on switching routes, and let the simulation run. Clearly, for this no link de-
lay function is necessary, since one can extract dynamically correct link delays
directly from the micro-simulation.

5.3 Iterated transportation simulations as dynamical sys-
tems

It is instructive to see such iterated transportation simulations as dynamical
systems rather than as assignment problems. These dynamical systems operate
on two time-scales, which should not be confused:

e The simulationg generates a traffic dynamics that depends on the time-
of-day. For example, a possible output of such a micro-simulation may be
link delays as a function of when vehicles enter the link.

e The iterations generate “periods” of the game, often called “days” because,
in some sense, one watches a day-to-day evolution of the co-evolution prob-
lem where everybody adapts their decision based on what everybody else
does (or did in the past). This day-to-day evolution provides a mapping
into itself. For example, route plans get executed by the micro-simulation,
and based on this, a new set of route plans is generated.

It is the second process (the process of iterations) that we relate to in this paper.

Let us introduce some terminology. If one looks at the evolution of the system
as a function of time-of-day, it can for example be described as a trajectory
in Zf;l fi dimensions, where N is the number of particles (vehicles, travellers,
“agents”) and f; is the number of their degrees of freedom (position, speed,
...) of the ith particle (Fig. 1). The trajectory of this system is thus an object



with 14+ Zf\il fi dimensions, where the additional dimension is the time-of-day
dimension. If the iterations would reach a fixpoint, then the trajectory of the
system at iteration n + 1 would exactly lie on top of the trajectory at iteration
n. Thus, if one wants to include the dynamics of the transportation system in
the description, one needs to look at mappings in this (1+ Zf;l fi)-dimensional
space.

If one recalls static traffic assignment algorithms, they indeed do something
similar: Route plans are mapped, via the link cost functions, into new route
plans, and the iteration stops once the route plans do not change any more.

However, in iterated simulations we do not have the knowledge from the static
assignment any more. So, the questions now are, for example: Does the iterative
process converge, or does it, say, go into some kind of periodic or possibly chaotic
attractor? If it converges, what does that mean? Can we show some uniqueness
of the converged result, or are there multiple “basins of attraction”?

The problem gets confounded when the mappings are stochastic. Here, even if
the dynamics is driven towards a fix point, the stochasticity will make the system
jump around that fixpoint. At best, one can thus reach a time-independent
density in phase space, i.e. for any given volume in phase space, the probability
to be hit in the next iteration is constant in time. This would correspond to a
stationary Markov process.

As long as that phase space density is Gaussian distributed, one could at least
still use concepts like “the average behavior of the system”. Unfortunately,
there is no reason to believe that the outcomes will be Gaussian; for example,
in our simulations we have found distinctively non-Gaussian fluctuations [11].

Then, we can also have a situation where the deterministic equivalent of the
stochastic system is on a periodic or possibly chaotic attractor. In that case,
at best one could hope to find time-independent phase space densities when
averaging over enough iterations.

And last, we could have multiple basins of attraction of the iteration process,
leading to solutions that depend on the initial conditions, on adaptation rules,
and/or on random events.

6 The different studies

Clearly, there are many ways how one can execute the details of the iterative
procedure. Optimally, some theory would be available in order to guide the
selection of the most appropriate procedure for a problem at hand. Since we
are currently short of a theory, we have instead performed many relaxation
series with different set-ups in order to highlight some of the issues and in order
to find reasonably fast methods for relaxation.

6.1 Different re-planner algorithms

We have used two different implementations of the re-planner. Let us call them
RP1 and RP2. RP1 is the re-planner that was used for the Dallas/Fort Worth
case study [9]. RP2 is a faster and less memory-consuming version that has been
implemented since then. RP1 and RP2 are written according to the same speci-
fications: they compute fastest paths based on 15-minute averages of link travel
times using a time-dependent implementation of the Dijkstra algorithm [11, 27].
Time-dependence is accounted for in the following way: The micro-simulation
reports the average link travel time of all vehicles leaving the link between, say,
8:00 and 8:15. RP2 then uses this link travel time for all Dijkstra calculations



that enter the link during the same time period. RP1 uses this link travel time
for all Dijkstra calculations that enter the link between 7:45 and 8:00 (thus “an-
ticipating” congestion build-up). Clearly, both algorithms are somewhat sloppy
here; newer implementations of our algorithm deal with this in a more precise
way by actually calculating when, in the average, the vehicles had entered the
link. Both RP1 and RP2 were tested and no significant differences were seen.

6.2 Different initial plansets

Although all iteration series use the same trip table, the initial plan-set could
be re-computed. The plan-sets used were:

e Use free speed link travel times as link costs. Called FS.

e Use the geometrical lengths of links as link costs. Called SP for “shortest
paths”.

e Start with an empty route set in which all routes were initially de-activated.
In this case, “replanning” a trip means: If the trip is touched for the first
time, “activate” and route it. Once a trip is activated, it remains acti-
vated throughout the series. — The reason for this route set is to see if one
can reach relaxation faster when loading the network incrementally with
more traffic from iteration to iteration instead of all at once. Called VD
for void.

e The initial plan-set used for the simulation of the TRANSIMS case-study
(see [9]), called CAS.

6.3 Re-planning fraction

Choosing the re-planning fraction f, is a trade-off between computational speed
and stability of the iterative process. Large fractions allow fast re-planning of
all routes in the initial route-set. As we will see, one prerequisite of relaxation
is that most of the routes have been re-planned at least once. As the iteration
proceeds, however, large fractions have the clear disadvantage of moving routes
back and forth between similar alternatives (see, e.g., [11]).

6.4 Route selection

Having set a re-planning fraction f. does not yet define which subset of the
previous route set is to be rerouted. One can easily imagine a selection according
to one or more criteria, i.e. (i) selecting routes traversing a certain area of
interest (or congestion), (ii) characteristics of the driver, (iii) planned or actual
travel-time, (iv) last re-planning of the route. In this paper, we concentrated
on a small number of studies:

e Pick a fraction of routes randomly, independent of their age (“RND”).

e Use scheduled re-planning fractions and pick randomly (“SCD”). More
specifically, use the fractions (in this order) 3*20%, 3*10%, 3*5%, and
1*2% for run 2 and an additional 2% for run 1. See also Tab. 1.

e Use a probability linearly increasing with the age of a route (“AGE”).



e The N routes are split into two groups: those routes that have never
been re-planned yet, and those that have been re-planned at least once.
For n iterations, we replan N/n plans of the first group, and an additional
fraction of f, of the second group. (“RDC”, for “reduce” since the number
of not re-planned routes is forcibly reduced).

RND and AGE eventually lead to a stationary age distribution f(a) which can
be analytically predicted. If p(a) is the probability for a route of age a to be
re-planned, the following equation has to hold:

fla+Aa) = f(a) —p(a)f(a)Aa,

where Aa = 1 for our case.

For p(a) = fr, this can be solved exactly by
frnd(a) = fr(l - fr)a-

For a general solution, one can take the limit Ag — 0 and then integrate the
equation, leading to

fla,p(...)) = o pla)da

For example, for the linear age selection we use p(a) = C; a and f(0) = f,, and
we obtain a normal distribution

flin(a) — fre_1/201 a?

as an approximation to our discrete case. Note that the “tail” for large a is
much thinner here, as desired. Fig. 6 depicts fi;,(a) and frnq(a), Fig. 7 depicts
the resulting age distributions.

The age distribution of RDC is a mainly linearly decreasing function overlaid
by a very shallow exponential decrease. “transims” yields a step-wise linear
distribution also overlaid with a shallow exponential decrease. In both cases it
does not make sense to speak of a stationary distribution.

Details about the iteration parameters can be found in Tabs. 1 and 2.

7 Results

7.1 Relaxation

Fig. 3 shows the number of vehicles in the study-area for run 4 with 110 it-
erations. After an initial phase in which routes are so poorly distributed that
the whole systems grid-locks (see horizontal lines), it eventually improves and
approaches a state with very small fluctuations.

7.2 Uniqueness

We first want to look at uniqueness (see Fig. 4).

As stated above, the question is if the relaxed answer may depend on the particu-
lar initial condition and the particular re-planning mechanism that was selected.
Fig. 4 depicts the accumulated travel-time of all vehicles (“vehicle time trav-
eled”, VTIT) plotted against the iteration number. All relaxation series seem
to relax towards the same average VIT. Although this is certainly far from
a mathematical or even computational proof, it is at least consistent with the



assumption that there was only one large basin of attraction for the iterated
simulations that we did.

This gets backed up by looking at the traffic patterns in the relaxed states
(not shown) that always displayed similar structures. Furthermore, even when
using different micro-simulations in the same re-planning structure, the traffic
patterns came out comparable [15].

This is good news, or at least no indication of bad news. If iterated micro-
simulations would turn out to have several basins of attraction, computational
studies for analysis and forecasting would become much more cumbersome.

7.3 Stochastic fluctuations

Since our simulations are stochastic, they will result in different traffic patterns
even when fed with exactly the same plan-set. In other words: Re-running any
of the iterations with a different random seed will generate different traffic. In
plots like Fig. 4, such fluctuations are visible on top of the changes that happen
due to the re-planning. Clearly, even when the simulations relax towards the
same average VTT, they display fluctuations from day to day even when no
route re-planning takes place. This makes the application of “deterministic”
relaxation criteria impossible, since with stochastic simulations one can at best
obtain a constant probability density in phase space.

Sometimes, fluctuations can be fairly significant. In the TRANSIMS micro-
simulation, one such example of this has been documented [28]. This indicates
that the results of our simulations may display non-Gaussian distributions even
of aggregated variables. Fig. 5 contains a schematic example. Having non-
Gaussian distributions means that one needs to interpret averaged numbers
with much more care.

7.4 The rate of relaxation

From a practical point of view, we are interested in reaching the relaxed state
as quickly as possible. (This assumes that we consider the relaxed state as the
solution of our question — see Sec. 9 (Discussion) for more remarks on this.)

Yet, from a theoretical point of view, the iteration procedure is actually best
justified for small re-planning fractions. The reason is that we assume people
to attempt to make improvements. But this only works if the traffic pattern
encountered in the next iteration is similar to the last iteration, since this is
where the link delay information comes from. As soon as this assumption does
not hold any more, it is not clear where any of the iterated algorithms will go. In
fact, in Fig. 4 (also see Figs. 9 and 8), runs 1 and 11 are examples for runs where
the re-planning fraction may already be too high since they display significant
jumps opposite the direction of relaxation which are larger than pure noise.

In Fig. 4, the algorithms clearly relax with different rates. Runs 4 and 5 are
done with values of f,. = 0.01, i.e. only 1% of the whole plan-set is re-planned
in each iteration. This fulfills the requirement of slow changes from iteration to
iteration best, but it is also very slow. The main impediment to faster relaxation
is, especially near the end, the decrease in plans that have never been re-planned
is too slow. At the n-th iteration, the fraction of plans that have never been
re-planned is
FneveT(n) = (]- - fT)n .

At the 100th iteration, we have Fcyer = 0.37, i.e. more than one third of all
trips is still routed according to the initial plan-set.



This observation led to the use of so-called age-dependent re-planning, that
is, the probability of a plan to be selected for re-planning is a function of the
number of iterations a since it was last re-planned. For example, run 11 was
done with

preplan(a) =Ci-a )

where (] is a constant only dependent on the asymptotic re-planning fraction

).

In addition, since we want a high re-planning fraction for the first iterations,
we set the initial age of all plans to 60. This results in a re-planning fraction of
approximately 0.25 for the initial re-planning. After 10 iterations the effective
fraction has almost decayed to the asymptotic fraction of f,. = 0.05 (see Fig. 6).

2 2
C, = Wgr exp (ﬂf

7.5 Fraction of trips that have been re-planned at least
once

From the above, we note that the fraction of trips that have been re-planned
at least once makes up a significant part of the relaxation progress. In order
to monitor this effect more closely, Fig. 8 displays the VIT as function of the
fraction that has been re-planned at least once. The curves of the different
schemes end up closer together, but not so convincingly. To a certain extent,
this is not unexpected: After a trip has been re-planned once, it also plays a
role if it has been re-planned another time etc.

7.6 Accumulated re-planning fraction

As a compromise, Fig. 9 displays the VIT as a function of the accumulated
re-planning fraction. This is simply the average number of times each trip has
been re-planned. This plot clearly shows a much better data collapse. In this
plot, one also sees that small re-planning fractions lead —in some sense— to a
cleaner procedure: Series that use large re-planning fractions, most notably
runs 1 and 11, display zigzagging trajectories.

8 Nested spatial resolutions

As described in Sec. 2, for the Dallas case study TRANSIMS used a spatially
nested approach: (i) Trips were generated across the whole Dallas/Fort Worth
region with its roughly 3 million inhabitants. (ii) A subset of these trips was
generated by routing all these trips using free speeds but only retaining those
that went through a five miles times five miles study area. (iii) This reduced
trip table was the basis for the route assignment, yet the route re-planning was
still done on the full network.

This nesting of the dynamical representation was done because of resource limi-
tations: At the time of the study, we did not have the network data to simulate
all of Dallas (the network for the planner, used in steps (ii) and (iii), did not
have enough traffic flow capacity to run realistic simulations on it). For that
same reason, nesting is done in many areas of quantitative science, and it also
causes problems everywhere. Let us state a simple example to illustrate the
problem: Assume we have a link (say, of a freeway), and we want to represent

10



part of it by a precise micro-simulation, yet for pieces of out far away from the
location of interest we want to use a less realistic model. Clearly, one of the two
model representations will have a higher capacity. (It is practically impossible
to match two simulations to ezactly the same capacity.) Thus, depending on
which model has the higher capacity, jams will form either to the entry of the
study area, or at the exit. Such jams are completely spurious and artifacts of
the method, yet they are clearly phenomena that a modeler has to deal with.

We will see a variant of exactly the same problem (the matching of capacities)
later in this section. Before that, we want to turn to a simpler problem: That
of loss of plans due to circumventing the study area.

8.1 Loss of plans and mean field correction

When one looks at the re-planning mechanism, what we actually do is to record
delays inside the simulated study area, and to pretend that the rest of the
network remains at free speeds. Since we compute routes on the complete
planner network which includes major arterials and freeways outside the study
area, this will have the effect that routes “around” the study area will look
faster to the router than routes through the study area.? In consequence, the
method will “push” plans out of the study area. The effect of this can be seen
for runs 11 and 13 in Fig. 10, which shows the number of plans going through
the study area. As long as traffic is not relaxed, congestion is strong, and more
and more vehicles are indeed “pushed out” of the simulated area.

It is intuitively clear what one could do to prevent this effect: Measure the
average delay caused by congestion inside the study area, and assume that the
average delay outside the study area is the same (“mean field approximation”).
This is indeed what was done with run 14 in which a correction factor was
computed as average over the increase of travel-times of all links inside the
study-area weighed by the lengths of the respective links. This factor was used
to increase the travel-time on links outside the area accordingly. Fig. 11 shows
the time-dependency of this factor which reaches values up to 400 for early
iterations.

Yet, this lets us notice another nesting of our dynamics, which is this time on the
temporal scale. Making all of the study area slow simply makes some trips so
slow that they do not get to the study until very late.> In some sense, now trips
do not get squeezed out spatially any more, but the system reacts by squeezing
them out temporally. — Later in the iterations, when congestion is lower, most
of them come back in.

Yet, the whole procedure has a side effect: Since overall traffic in the study area
increases, the system is much closer to break-downs, which result in suddenly
much higher travel times. This can be seen in Fig. 12, where the number
of actually executed plans fluctuates much more for run 14 with congestion
correction outside the study area than for run 11. — As a compromise, another
approach was tried in run 15 for which we used the square-root of the correction
factor and not the factor itself. This run still yields a higher number of executed

plans than those without correction, yet does not generate any grid-lock anymore
(see [16]).

40ne could have reduced origins and destinations of the trip table to the study area, not
leaving the router this flexibility. But this would have forced routes to certain entry and exit
links into and out of the study area, thus also limiting the amount of possible adaptation to
congestion.

5All trips that start before 10am were retained, no matter where they started, even when
far away from the study area. Slow link speeds everywhere will make the planner assume that
they get to the study area late, and will insert them at an accordingly late time.
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8.2 Impedance mismatches (“queue feedback”)

The next problem we want to look at is somewhat curious. It came to light when
looking at traffic in the study area after 10am: Instead of slowly dwindling down,
it remained constant at a low level for a long time. The reason for this were
queues at the entrance points into the study area (see Fig. 13). Note that the
effect of waiting there is not fed back into the planner, for the following reason:

e Even if this queue is long, its outflow is at best at capacity, which means
that the first link inside the study area will be reported as “fast”.

e The link where the queue theoretically sits on is outside the study area
and thus not simulated and no delays are reported.

As stated in the introduction to this section, this is a typical albeit extreme case
of “impedance mismatch”. Links outside the study area do not have capacity
constraints and so the planner can put arbitrarily many trips on it. And when
these trips enter the study area, the study area links simply operate at capacity,
which results in a reporting of (nearly) free speeds.

An intuitive way out is to add the waiting time just outside the study area to
the link travel time for the first link in the study area. This is illustrated in
Fig. 14. In this way, the router now recognizes that this is a slow route, and
re-routes travelers through other options. Fig. 13 shows the result: no more
pending vehicles towards the end of the simulation in run 13.

8.3 Remarks

It may seem that some of the artifacts of using a study area may have been
preventable. Yet, there was a reason why we willingly accepted to “lose” trips
through this mechanism. This reason was our intuition that, for the Dallas
case study, we had slightly more trips than the network could handle. This
intuition came from the simulation experiments, and it could have been due
to an underestimation of capacity (i.e. a calibration problem with the micro-
simulation), or due to an overestimation of demand, or due to both. Remarks
from the Dallas MPO indicate that overestimation of demand may be part of the
problem [29]. Thus, we deliberately accepted to have an adaptive mechanism
that dealt with reducing demand, instead of having an external mechanism
prescribed by the analyst.

At this point, it is important to note that a micro-simulation technology, such
as presented here, is considerably more sensitive to overestimations of demand
than traditional assignment models were. The reason is that, in a traditional
assignment model, a link being above capacity just is a number, whereas in a
dynamical micro-simulation it causes queues, which eventually spill back into
other routes, and may cause grid-lock of the whole system. Thus, a precise
matching between demand and network capacity will become one of the main
challenge of micro-simulation based modeling, which indicates that the modeling
of the demand needs to become part of the iterative process (see, e.g., [30, 31]).

9 Discussion

In spite of the above results, we are far away from a consistent understand-
ing of the iterative micro-simulation procedure, especially for stochastic micro-
simulations. In this section, we want to discuss some additional observations.
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9.1 Behavioral justification

It is important to discuss the justification for the computational procedure.

First, traditional assignment assumes complete rationality for all travelers, i.e.,
each traveler chooses the or a fastest route. Most currently used simulation-
based assignment methods do something similar, although when the simulations
are stochastic most methods do not guarantee that drivers actually converge to
routes with shortest expected travel times.

Second, all “relaxation” or “equilibrium” approaches assume that one is inter-
ested in the relaxed state, and it thus does not matter how the computation
gets there. Yet, there is no reason to believe that actual transportation systems
are in this relaxed state. It may very well be that real people stop switching
routes once they have a “reasonable” solution, or that the system itself changes
too often (for example because of construction sites).

This means that we need to develop methods to measure how close the real
system is to relaxation (see, e.g., [10]), and we also need to think about the
behavioral justification of our computational procedure. If the transients of the
relaxation process turn out to be important, much more care needs to be applied
to the modeling of the day-to-day decision-making of the travelers than when
only the relaxed result matters.

Another problem comes from the fact that we use stochastic micro-simulations.
With deterministic network loading procedures (e.g. traditional link travel time
functions, deterministic micro-simulations (i.e. [3, 7]), other network loading
procedures (i.e. [?, ?]), one can obtain a clean definition of the equilibrium fix-
point: If no traveler wants to switch routes, the situation is stable, because the
iterations will display exactly the same behavior in the next iteration. However,
for a stochastic simulation the same is no longer true. Even is a situation where
nobody wants to switch routes based on the last iteration, the next iteration can
be, due to stochasticity, different enough so that some travelers now want to
switch routes. After some thinking, one recognizes that this implies that travel-
ers may want to use conditional strategies, something like “if the freeway looks
congested on the over-pass, I will stay on the arterial”. And clearly, conditional
strategies are not included in the current iterative re-planning framework. Two
possibilities immediately come up: (i) Allow for conditional strategies in the
routing part. (ii) Allow for on-line route changes during the simulation. While
both approaches seem feasible, they have their drawbacks: Conditional strate-
gies would necessitate much more intelligence on the side of the router than is
currently implemented in most projects. And on-line re-routing, albeit possible
to implement (i.e. [32]), is conceptually difficult since it needs a framework that
is very different from the iterative re-planning framework.

9.2 Relaxation criteria

In Sec. 7, we mostly used the sum of all travel times (vehicle time traveled, VI'T)
as an indicator for relaxation; relaxation was defined as VI'T no longer changing
except for stochastic fluctuations from one iteration to the next. Although this
is certainly valid as a criterion, it is also not very satisfying, since it is not
related to any aggregated quantity that is directly related to the process. For
example, it might be useful to plot the average improvement per re-routing event
- relaxation would then be indicated by this quantity going towards zero in the
average. Such tests need to be left to future work [33]; however, the results
from [10] mentioned above give some information.
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9.3 Nested dynamics, adaptive systems and artifacts

As explained in Sec. 8, using a reduced-size study area causes a plethora of
problems. It is worth noticing that adaptive systems in general have a tendency
to exploit artifacts of the representation rather than adapt according to the real-
istic part of the dynamics. Thus, the general recommendation has to be that, in
transportation science, we should avoid nested representations of the dynamics
as much as possible until we have a better understanding of the modules and
their interactions.

10 Conclusion

Transportation micro-simulations are replacing the traditional link delay func-
tion approach to traffic assignment. This makes it possible to represent the
dynamics considerably more truthful to reality. Yet, the scientific foundation of
the assignment process needs to be built again with these new methods. System-
atic simulation experiments are a powerful tool here since they allow systematic
exploration of the space of the possible dynamics yet is less restricted towards
realism than traditional mathematics.

For a Dallas scenario coming from a realistic case study, we have performed
many series of the assignment process, always using the same fast but reason-
ably realistic micro-simulation, but varying different parameters that define the
assignment process. We showed that there is no indication that different paths
towards relaxation can yield different results, which is good news. However,
in most other aspects, using stochastic micro-simulations instead of link delay
functions in the network loading is currently considerably more challenging, for
example in terms of necessary computer time and because of non-Gaussian fluc-
tuations. Nevertheless, we presented computational evidence that the trick to
fast relaxation in a first order method is to allow the whole population to ad-
just routes at least twice, and to do this in as few actual iterations as possible.
However, if one attempts to reach this in too few iterations, i.e. by allowing
too many people to readjust routes from one iteration to another, the traffic
situation in the last iteration is no longer representative for the traffic situation
in the next iteration, and one gets oscillations instead of relaxation.

The Dallas scenario was run with a nested multi-scale approach, with a simu-
lated five miles times five miles study area that was actually micro-simulated,
and a much larger “focused” network that was used for routing. We highlighted
problems and solutions of this approach, which indicates that a considerably
better understanding of the procedure will be necessary before such a multi-
scale approach can be reliably used for decision-making. Yet, a micro-simulation
based approach to traffic assignment even with much larger systems would be
possible with our software; the main restriction for Dallas was the availability
of the data, not the computation. Clearly, the technology for the extended use
of micro-simulation in transportation is there, and the work to understand the
dynamics of these large interacting systems has just started.
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Figure 1: Schematic representation of the mapping generated by the feedback
iterations. Traffic evolution as a function of time-of-day can be represented
as a trajectory in a high dimensional phase space. Iterations can be seen as
mappings of this trajectory into a new one.
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Figure 2: Partial view of the planning area. The simulation area can be recog-
nized by the denser network at the center of the picture.

| run |1 2 445 7 8 10 11 12
init. route-set | CAS CAS FS VD SP FS FS FS
iterations 11 10 110 60 60 20 + 20 60 60
fraction f, SCD SCD 1% 5% 5% abs.5%+rel.1% 5% 5%
selection RND RND RND AGE AGE RDC AGE RND

Table 1: Parameter combinations of iteration runs. Note that for runs 1
and 2 the re-planning fractions were individually given (“scheduled”) for each
iteration.
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run | 13/16 14 15 17|

route-set FS FS FS FS
iterations 60 80 80 60
fraction f, 0.05 0.06 0.05 0.05
selection AGE AGE AGE RND
mean-field correction | - lin. sqrt -
queue feedback yes - - yes

VTT until 10:00 AM [sec]

Table 2:
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Figure 3: Number of vehicles in the study-area for run 4
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Figure 4: Relaxation of the iteration process.
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Figure 5: Schematic distribution of VI'T (vehicle time traveled).
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Figure 6: Effective re-planning fraction for the selection schemes RND and AGE.
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Figure 7: Age distributions for selection schemes RND and AGE after 60 itera-
tions. Note that even with a re-planning fraction of f, = 0.05 for run 11, there
is still a fraction of 4.5% (see isolated point) that has been re-planned.
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Figure 10: Vehicles routed through study-area: since the travel-time on links
outside the study-area are not influenced by the feedback, the router starts to
move routes outside the study-area.
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Figure 11: Mean-field feedback: the correction factor shows by what factor the
travel-times inside the study-area have increased with respect to the free-flow
case.
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Figure 12: Mean-field feedback: routed and executed plans. In run 14 the
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Figure 13: Vehicles pending at 11:57AM: insufficient feedback for feeding links
into the study-area results in queue build-up and thus in a continuous flow of
“late-comers”. In run 13 the waiting time in queues is fed back which eliminates
pending vehicles at the end of the simulation.
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a feeding link.
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