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Abstract

It is now possibleto microsimulatethetraffic of wholemetropolitanareaswith 10 million travelersor more,“micro” meaning
that eachtraveler is resolved individually as a particle. In contrastto physicsor chemistry, theseparticleshave internal
intelligence;for example,they know where they are going. This meansthat a transportationsimulationproject will have,
besidesthe traffic microsimulation,moduleswhich modelthis intelligentbehavior. Themostimportantmodulesarefor route
generationandfor demandgeneration.Demandis generatedby eachindividual in the simulationmakinga plan of activities
such as sleeping,eating, working, shopping, etc. If activities are plannedat different locations,they obviously generate
demandfor transportation.This however is not enough sincethoseplansare influencedby congestion which initially is not
known. This is solved via a relaxationmethod,which meansiteratingbackandforth betweenthe activities/routesgeneration
andthe traffic simulation.
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1. Intr oduction

Carsfinding their way througha streetnetwork re-
semble,say, electrons finding their way through a re-
sistor network. This meansthat one can usemicro-
scopicsimulationmethods, suchascellularautomata
or molecular dynamicssimulations. In order to be as
realistic as possible,one might think that different
kindsof drivers areneeded, suchaspeople with poor
or educated driving skills or peopledriving aggres-
sively or in a calmmanner. But it turns out that,sim-
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ilar to physics,in many casesthis is not necessary; it
is sufficient to introducesomerandomnessinto every
time step(annealedvs. quenchedrandomness).

There is howevera fundamentaldifferencebetween
carsandelectrons: Carstypically have a destination,
which makes the particlesdistinguishable,and any
mathematicalapproachconsiderablymoredifficult. In
consequence,muchprogressin recentyearswasbased
on theuseof computers.Thesesimulationmodelsin-
deedresemble cellularautomataor molecular dynam-
ics,or sometimessmooth particlehydrodynamicssim-
ulations. The particles (vehicles) however carry con-
siderably more intelligence, for example about their
route andtheir final destination.
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2. TRANSIMS

The TRANSIMS (TRansportation ANalysis and
SIMulation System)[1] is a microsimulationproject
for transportation planning developedat Los Alamos
NationalLaboratory. Transportation planning is typi-
cally done for large regional areaswith several mil-
lions of travelers,and it is done with 20-year time
horizons.This hastwo meanings: First, a microsimu-
lation approachneedsto simulatelarge enough areas
fastenough.Second, themethodology needstobeable
to pick up aspectslike inducedtravel, wherepeople
changetheiractivitiesandmaybetheirhomelocations
becauseof changedimpedancesof the transportation
system.Basedon theseissues,TRANSIMS consists
of the following modules (Fig. 1):
– Population generation. Demographicdatais dis-

aggregatedsothatwe obtainindividual households
and individual household members, with certain
characteristics,suchasa streetaddress,carowner-
ship,or household income[2].

– Activities generation. For eachindividual,a setof
activities (home, going shopping, going to work,
etc.) and activity locations for a day is gener-
ated[3,4].

– Modal and route choice. For each individual,
modes androutesaregeneratedthatconnectactiv-
ities at different locations [5].

– Traffic microsimulation. Up to here,all individu-
alshave madeplansabouttheir behavior. Thetraf-
fic microsimulation executesall theseplanssimul-
taneously. In particular, we now obtaintheresultof
interactions betweenthe plans– for example con-
gestion.

In addition, suchanapproachneedsto make themod-
ulesconsistentwith eachother. For example,plansde-
pendon congestion,but congestiondepends on plans.
A widely acceptedmethodto resolvethisis systematic
relaxation [6] – thatis,makepreliminaryplans,runthe
traffic microsimulation,adapttheplans,run thetraffic
microsimulationagain,etc.,until consistency between
modules is reached. The method is in fact similar to
relaxation methods in numericalanalysis.

Thismeansthatthemicrosimulationneedsto berun
morethanonce– in our experience about fifty times
for a relaxation from scratch[7,8]. In consequence,a
computingtimethatmaybeacceptable for asinglerun
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Fig. 1. TRANSIMS design

is no longeracceptablefor sucha relaxationseries–
thusputtinganevenhigherdemand onthetechnology.

3. Cellular automata and queuemodel simulation
of traffi c

Human behavior canbe complex. It is a challenge
throughout projects suchas this one to simplify the
rules of behavior for the computer implementation
andstill obtainusefulresults.Thereis for examplea
considerableamount of work about cellularautomata
models for car traffic [9], which is also the method
usedby TRANSIMS [10].

Defining “useful results”depends on the question.
For TRANSIMS which is designedfor transporta-
tion planning, many importantaspectsdependon link
travel times.Thesein turndepend ondelayscausedby
congestion,andcongestionis causedbydemand being
higher thancapacity. Thus,the problem to be solved
is how to handlethe capacityconstraints of the road
network, suchasmaximum flow on freeways,traffic
lights on arterialsand opposing traffic flows in case
of unprotectedturns. TheCA approachgeneratesthe
correctbehavior from a few basicparameterssuchas
noiseparameter in the accelerationon freeways and
on arterialsor gapacceptance for unprotectedturns.
An evensimpleralternative is a queue model [11,12].
Basically, within this model,eachlink is represented
by a queuewith a freeflow velocity �
	 , a length

�
, a

flow capacity � anda number of lanes 
���������� ; these
values are given by the input files. Freeflow veloc-
ity is thevelocity of traffic whenthetraffic densityis
very low. Freeflow travel time is givenby therelation� 	�� ��� � 	 .

We have two different capacityconstraintsrelated
to eachlink. The flow capacitylimits the number of
vehiclesthatareallowedto leavethelink. Thestorage
capacity, ontheotherhand, controls thenumberof the
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vehiclesthat areallowed to enterthe link. If oneas-
sumesthatthespacea vehicle occupies in congestion
is ��� �! "�$#&% ' m, thenthemaximumnumberof vehicles
that a link can contain is ( �!)+*,�!�-� �/. 
 ���0���!� � �1� �! .
This is thestoragecapacity.

Vehiclesthenmove according to their plansin this
queue simulation.When they entera link, they are
addedat theendof aqueue.Whenall vehiclesin front
of themhave left, thenit is their turn to leave thelink.
The dynamics for the queuemodel is implemented
usingthealgorithm shown in Algorithm 1.Thisis very
similar to a queuing simulationexcept that the links
have thestoragecapacityconstraint.

Algorithm 1 QueueModel Algorithm
for all links do

while the vehicles can still leave in this time stepaccording
to the flow capacity do

look at the first vehicle in the queue.
if the free flow speedarrival time is larger thanthe current
time, then

time is not up for thevehicle yet, continuewith next link
end if
if the destination link doesnot have space,then

continue to the next link.
else

Calculate the expectedarrival time at the endof the next
link using the formula: Arrival Time = Current Time +
length/FreeFlow Speed
Insert the vehicle into the queueof the next link
Remove the vehicle from the queueof the current link

end if
end while

end for

4. Relaxation of plans via iteration

As said above, we perform iterationsbetweenthe
traffic microsimulator andthe routeplanner. The mi-
crosimulator, whether queue-basedor TRANSIMS,
models individual driversasthey interacton theroad-
ways of the traffic network. The route plannerpre-
planseachdriver’s routebefore the microsimulation
runs.

The route planner simply finds the fastestpathfor
eachdriver, from pre-determinedstartinganddestina-
tion points,basedon the known average travel times
(basedontraffic flow aggregatedover15-minuteinter-
vals)of vehicleson eachlink in thenetwork. Only at

the beginning of the iterationseries,this information
does not exist, sinceno vehicleshave beensimulated
yet.So,therouterinitially usesthefree-flow speedsof
thelinks to obtain“naive” travel timesof thelinks for
an emptynetwork. In effect, eachdriver planshis or
her route asif heor shewill never encounter another
vehicle on the road. This means vehicles are likely
to usethe sameroads (the ones with the higher free
speeds),andcauseextremetraffic onthoselinks,while
leaving otherlinks almostcompletelyfreeof traffic.

Oncethemicrosimulation hasrun for thefirst time,
we take the travel times experiencedby vehicleson
the links for each15-minute time interval and feed
thembackinto therouter, whichgeneratesanother set
of plans.The routerdoesnot re-plan all the drivers,
becausethiswouldcausethemall toswitchto thesame
new alternatives while ignoring the roadspreviously
congested.Instead,it chooses10% of the drivers at
random, andgivesthemnew plansbasedon the new
data.The completesetof plans (90% old, 10% new)
is given to themicrosimulator again, andthe cycle is
repeateduntil theplans“relax” to a realisticscenario,
where nobody cangainany advantageby choosing a
new plan.

5. Gotthard Scenario

We usethe so-calledGotthard Scenarioto testour
simulations for plausibility . In this scenario, we sim-
ulatethe traffic resultingfrom 50,000 vehicleswhich
startbetween6 a.m.and7 a.m.all over Switzerland
andwhichall wantto travel to Lugano,which is in the
Ticino, the Italian-speakingpartof Switzerlandsouth
of theAlps. In order for thevehiclesto getthere,most
of them have to crossthe Alps. Thereare however
not many ways to do this, resulting in traffic jams,
mostnotablyat theGotthardtunnel.Thisscenariohas
someresemblance with real-world vacationtraffic in
Switzerland.

Fig. 2 shows a typical result.We comparethe 15-
minuteaggregateddensity of thelinks in thesimulated
roadnetwork, which is calculatedfor a given link by
dividing thenumber of vehiclesseenon that link in a
15-minute time interval by the lengthof the link (in
meters)andthe number of traffic lanesthe link con-
tains.In all of thefigures,thenetwork is drawn asthe
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setof small,connectedline segments,re-creatingthe
roadwaysasmight beseenfrom anaerialor satellite
view of thecountry. Thelane-wisedensityvaluesare
plotted for eachlink as a 3-dimensionalbox super-
imposedon the2-dimensionalnetwork, with thebase
of a box lying on top of its corresponding link in the
network, andthe height above the “ground” set rela-
tive to the valueof the density. Thus, larger density
valuesaredrawn as taller boxes,andsmallervalues
with shorterboxes. (The “camera” angleof the fig-
ureswaschosento emphasizetheheight of theboxes
in the southernregion of Switzerland,whereall the
“interesting” datacomesfrom. This causesthe “up”
directionto be slantedto the left.) Longer links nat-
urally have longerboxes thanshorterlinks. Also, the
boxes arecolor-coded,with smallervaluestending to-
wardsgreen, middle valuestending towardsyellow,
and larger values tendingtowards red. In short, the
higher the density (the taller/redder the boxes), the
morevehicles therewere on the link during the 15-
minute time period being illustrated.Higher densi-
ties imply higher vehicular flow, up to a certainpoint
(probablytheyellow boxes),but any boxesthatareor-
angeor red generally indicatea congested(jammed)
link. All timesgiven in thefiguresareat theendof a
15-minutemeasurement interval. Thus,figure2 illus-
tratesthedensitycalculatedfrom vehiclecountstaken
between7:45and8:00a.m.

Qualitatively, the overall results of both simula-
tions are similar. Congestion occurs in the expected
placesin both simulations. The TRANSIMS simula-
tion movesvehicles moreslowly in general, asis ev-
idencedby the TRANSIMS simulationjams lagging
behind their Queuesimulationcounterparts,and the
fact that the TRANSIMS simulation requires more
simulatedtime to allow all of its vehicles to arrive at
their destination.

Fig. 3 gives similar information in a different for-
mat.Plottedis, for eachlink of thenetwork, theflow
between7 a.m.and8 a.m.of the TRANSIMS simu-
lation on the x-axis vs. the flow of the Queue simu-
lation on the y-axis. Again, it is clearthat the results
arestronglycorrelated,but therearealsolargediffer-
ences.

At this point, it seemshardto gobeyond thesegen-
eral remarks without field datato compare with. Our
next stepwill bethesimulationof traffic on a normal
workday in Switzerland. For theseresults,it will then

Fig. 2. Snapshots at 8:00 a.m. Top:From TRANSIMS, Bot-
tom:From QueueModel.

bepossibleto make comparisonsto field data,which
will allow furtherconclusionsregardingthevalidity of
our resultsandfurtherimprovements.For suchresults
for a scenarioin Portland/Oregon, see[13].

6. Computational issues

As mentioned above,computationalspeedis anim-
portantaspectof thiswork. A metropolitan region can
consistof 10 million or moreinhabitants;andin con-
trast to molecular dynamics (MD) simulations,traf-
fic “particles” ( � travelers, vehicles) have consider-
ablymoreinternalintelligencethanMD particles.This
internal intelligencetranslatesinto rule-based code,
which doesnot vectorize but runs well on modern
workstationarchitectures.This makes traffic simula-
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Fig. 3. Link-by-l ink comparison of flows from 7 a.m. to 8 a.m.
between TRANSIMS and the Queuesimulation for the Gotthard
Scenario.

tions ideally suited for clustersof PCs, also called
Beowulf clusters.We usedomain decomposition,that
is, eachCPU obtains a patchof the geographicalre-
gion. Information and vehiclesbetweenthe patches
areexchangedvia messagepassingusingMPI (Mes-
sagePassingInterface).

Fig. 4 shows computing speed predictions for
TRANSIMS as a function of the number of CPUs.
The real time ratio (RTR) is the factor the simula-
tion runs fasterthan reality; and RTR of 10 means
for example that 10 hours of traffic canbe simulated
during 1 hour of computer time. The curves refer
to a network of the city of Portland(Oregon) with
20,000 links (i.e. a number of links similar to our
Switzerlandnetwork, but all of themmuchshorter).

As indicatedin thefigure,thedifferentlinesreferto
differentcomputingarchitectures.Thethick line refers
to a Beowulf clusterconsistingof 500MHz Pentium
CPUsconnectedvia standard 100Mbit switchedEth-
ernet.Theblackdotsshow actualcomputational speed
measurementson the samearchitecture. Oneclearly
seesthat up to about 32 CPUsthe Beowulf architec-
ture is fairly efficient for this problem sizeandcom-
putingspeedsmore than50 timesfasterthanrealtime
can be reached. One also seesthe typical “leveling
out” of the curve for highernumbers of CPUs.The
impedimentto higher computationalspeedhereis the
latency of Ethernet, in contrastto many othersimula-
tions,whereit is thebandwidth.
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Fig. 4. Computational speedfor TRANSIMS. The “di p” in the
measuredvaluesat 24 CPUsis due to the fact that 24 CPUsare
connected to a single Ethernet switch, which in turn is connected
to another switch to gain accessto further CPUs.

The“short-dashed”line shows whatwould happen
if one dispensedwith the switch in the Ethernet. In
fact, for large numbersof CPUsthe Ethernet switch
becomesa major part of the costof sucha cluster–
alternatively oneusesa switchwithout enough band-
width which would result in a curve betweenthe red
andtheblue.

The “long-dashed”line refers to running the same
problem on the ASCI Blue Mountainsupercomputer
which is essentiallya clusterof 200MHz SGI Origin
computingnodescoupledviaahigh-performancelow-
latency communication network. Due to the smaller
CPU speed,the curve startsat a lower position, and
only with more than 64 CPUs the useof the much
more expensive supercomputerpaysoff.

Finally, thedottedline refersto a problemsizeten
timeslarger running again on a Pentiumclusterwith
100 Mbit switchedEthernet. This problem size cor-
responds approximately to our simulationsof all of
Switzerland. Hereoneseesthetypical “scale-up”phe-
nomenon of parallel computing, where one can in-
creasetheproblem sizewithout decreaseof computa-
tionalspeedaslongasonecanaddCPUsaccordingly.

The computational speedpredictions are done by
adding up the times incurred by computing, latency,
node bandwidth restrictions,andnetwork bandwidth
restrictions. For moreinformation,see[14].
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7. Summary

Large-scalemicroscopictraffic simulationpackages
for transportation planning consist of at least four
modules: synthetic population generation, activities
generation(demandgeneration),routeplanner, andthe
traffic microsimulationitself. Thesemodulesneedto
beconsistent;for example,expectationsabout conges-
tion in therouteplannerneedto beconsistentwith ac-
tually encounteredcongestionin thetraffic microsim-
ulation.Thisis achieved by usingarelaxationmethod.

Dueto thelargeproblemsize( 46587 – 495;: “particles”
times 495�< time stepstimes ' 5 iterations),thecomput-
ing demands are high. The use of Beowulf parallel
computersis aneffectiveyetaffordableway to handle
thesedemands.
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