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Abstract. This papergivesanoverview of theuseof CA modesfor transporta-
tion applications.In transportationapplications, the CA dynamicsis embedded
within several other concepts,suchas the fact that the dynamicsunfolds on a
graphinsteadof on flat 2d space,or multi-agentmodeling.The paperalsodis-
cussesthethelimits of theCA technology in traffic.

1 Intr oduction

Cellularautomatamethodshavetheirapplicationsprimarily in areasof spatio-temporal
dynamics.Transportationsimulations,with travelersandvehiclesmoving throughcities,
fall into that category. Therearehowever alsoimportant differencesbetweena “stan-
dard” CA simulationand thoseusedin traffic. Thesedifferencesare that in traffic,
thedynamics is normally considered asunfolding on a graphinsteadof on flat space,
andthat particlesin transportation simulationsarebettercharacterized as“intelligent
agents”.Theseaspectswill bediscussedin Secs.3 and4. This is followedby a discus-
sionof the limits of theCA technology andrelationsto othermethods (Sec.5), anda
shortoutlook on a simulationof “all of Switzerland”(Sec.6). Thepaper is concluded
by asummary.

2 CA rules for traffic

In CA models for traffic, spaceis typically coarse-grainedto thelengtha caroccupies
in a jam (

���������
	���
��������
m), and time typically to one second(which can be

justifiedby reaction-time arguments[1]). Oneof theside-effects of this conventionis
thatspacecanbemeasuredin “cells” andtime in “time steps”,andusuallytheseunits
areassumedimplicitly andthusleft outof theequations.A speedof, say, � ��� , means
that the vehicletravels five cells per time step,or 37.5m/s, or 135 km/h, or approx.
85mph.

Deterministictraffic CA Typical CA for traffic representthe single-lane roadasa 1-
dimensional arrayof cells of length

�
, eachcell eitheremptyor occupied by a single

vehicle.Vehicleshaveinteger velocitiesbetweenzeroand � 
���� . A possibleupdaterule
is [2]

Carfollowing: �
����� �! #"%$'&)(+* ���-, �.* � 
����0/
Movement: 1-����� � 12�3,4�������
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Fig.1. Sequenceof configurationsof CA 184.Linesshow configurationsof asegmentof roadin
second-by-secondtime steps;traffic is from left to right. Integer numbersdenotethe velocities
of thecars.For example,a vehiclewith speed“3” will move threesites(dots)forward.Via this
mechanism,onecanfollow the movementof vehiclesfrom left to right, as indicatedby some
exampletrajectories.TOP:Uncongestedtraffic. BOTTOM: Congestedtraffic.

The first rule describesdeterministic car-following: try to accelerateby onevelocity
unit except whenthegapis too small or whenthemaximum velocity is reached.

(
is

thegap, i.e. thenumberof emptycellsbetweenthevehicle underconsiderationandthe
vehicleahead,and � is measuredin “cells pertimestep”.

This rule is similar to the CA rule 184 in the Wolfram classification[3]; indeed,
for � 
���� �5�

it is identical. This model hassomeimportantfeaturesof traffic, suchas
start-stopwaves,but it is unrealistically“stif f ” in its dynamics.

For this CA, it turnsout that,aftertransientshave diedout, therearetwo regimes,
dependingonthesystem-wide density

�36
(Fig. 1):

– Laminartraffic. All vehicleshavegaps of � 
���� or larger, andspeed� 
���� . Flow in
consequenceis 7 �8� � 
9��� .

– Congestedtraffic. All vehicleshave gaps of � 
���� or smaller. It turns out thattheir
speedis alwaysequalto their gap. This meansthat :;�=< � : ( < �?>A@�BDCFE�G�(IH

.
Sincedensity

�#�J���0KLGM(0H , �ON , this leadsto 7 �!� � �J��PQ�R�
Thetwo regimes meetat

�TSU�5���IK � 
9��� , �ON and 7 S�� � 
���� �0K � 
���� , ��NWV this is also
thepointof maximumflow.

Stochastic traffic CA (STCA) Onecanaddnoiseto the CA modelby adding a ran-
domization term[4]:

Carfollowing: � ���YXZ �8 #"%$3& ���-, �.*L( � * ��[]\L^ /
Randomization: �
����� �`_  ba�c-& � ���dXZ Pe�.*�f / with probability g3h� ��� XZ else

Moving: 1-����� � 1T�',4�������i
and

i , � referto theactualtime-stepsof thesimulation;
i , �j denotesanintermediate

resultusedduring thecomputation.
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Fig.2. StochasticCA. LEFT: Jamout of nowhereleadingto congestedtraffic. RIGHT: One-
lanefundamentaldiagramasobtainedwith thestandardcellularautomatamodelfor traffic usingk�l)mLnporqWs4t=u v ; from [6].

With probability g'h , a vehicleendsup beingslower thancalculateddeterministi-
cally. This parameter simultaneously models effects of (i) speedfluctuations at free
driving, (ii) over-reactionsat braking andcar-following, and(iii) randomnessduring
accelerationperiods.

Thismakesthedynamicsof themodel significantlymorerealistic(Fig.2). g9h.w <Mx B �f0���
is a standardchoicefor theoretical work (e.g.[5]); gyh.w <Mx B �zf2� {

is morerealistic
with respectto theresultingvaluefor maximum flow (capacity), seeFig. 2 (right) [6].

Slow-to-start(s2s)rules/velocity-dependentrandomization (VDR) Realtraffic hasa
stronghysteresiseffect nearmaximum flow: Whencomingfrom low densities,traffic
stayslaminarand fast up to a certaindensity

� j . Above that, traffic “breaks down”
into start-stoptraffic. Whenlowering the densityagain,however, it doesnot become
laminaragainuntil

�}|~� � , whichis significantlysmallerthan
� j , upto 30%[7,8]. This

effectcanbeincludedinto theaboverulesby makingaccelerationoutof stoppedtraffic
weaker thanaccelerationat all otherspeeds,for example by makingtheprobability g h
in theSTCA velocity-dependent: If g h K � ��f�N�� g h K ��� �ON , thenthespeedreduction
through therandomizationstepis more oftenapplied to vehicleswith speedzerothan
to othervehicles.Suchrulesarecalled“slow-to-start”rules[9,10].

Time-orientedCA (TOCA) A modificationto maketheSTCAmorerealisticis theso-
calledtime-orientedCA (TOCA) [11]. Themotivationis to introducea higher amount
of elasticity in the car following, that is, vehicles shouldaccelerateanddecelerateat
largerdistancesto thevehicle aheadthanin theSTCA,andresortto emergency braking
only if they gettoo close.Therule setis easierto write in algorithmic notation,where�}� � �U, � meansthatthevariable� is increasedby oneat this line of theprogram.For
the TOCA velocity update,the following operations needto be donein sequence for
eachcar:

1. if (
(�� �A�)�)� ) then,with probability g � S : ��� �8 �"p$�& ��, �.* � 
9��� / V

2. �}� �8 �"%$3& � *L( /



3. if (
(�| �A�)� � ) then,with probability g�� S : �}� �! �a=cT& � Pe�.*�f / �

Typical valuesfor thefreeparameters are
K g � S * g � S * ��� Nd��K�f2� �2*�f2� �2*��.�%�ON

. TheTOCA
generatesmorerealistic fundamentaldiagramsthan the original STCA, in particular
whenusedin conjunctionwith lane-changingrulesonmulti-lane streets.

Dependenceon the velocity of the car ahead The above rulesusegapaloneasthe
controlled variable. More sophisticatedruleswill usemorevariables, for example the
first derivative of the gap,which is the velocity difference.The ideais that if the car
aheadis faster, then this addsto one’s effective gap and one may drive fasterthan
withoutthis.In theCA context, thechallengeis to retainacollision-freeparallelupdate.
Ref.[12] achievedthisby going through thevelocity updatetwice,wherein thesecond
round any majorvelocitychangesof thevehicle aheadwereincluded.Ref. [13] instead
also looked at the gapof the vehicle ahead.The idea hereis that, if we know both
thespeedandthegap of thevehicle ahead, andwe make assumptionsabout thedriver
behavior of the vehicle ahead,then we can compute bounds on the behavior of the
vehicleaheadin thenext timestep.

Traffic breakdown An interestingtopic is the transitionfrom laminar to congested
traffic. For the deterministic model,thingsareclear:The laminarregime is whenall
vehiclesmove at full speed;the congestedregime is whenat leastonevehiclein the
systemdoesnot move at full speed.Deterministic modelscanalsodisplaybi-stability,
i.e. densityrangeswhereboth the laminarandthecongestedphasearestable.This is
for example thecasewith deterministicslow-to-startmodels[14]. Thischaracterization
is thesameasfor deterministic fluid-dynamicalmodels [15].

For stochasticmodels,thingsarelessclearsinceeven in the laminarregime there
maybeslow vehicles,theirslownesscausedby randomfluctuations.Often,theanalogy
to a gas/liquid transitionis used,meaningthat traffic jamsaredroplets of the liquid
phaseinterdispersedin thegaseous phaseof laminartraffic. However, thequestionof a
phasetransitionin stochasticmodelshasnotbeencompletelysettled[16–18].Themain
problem seemsto be that questions of meta-stabilityandof phaseseparation arenot
treatedseparately, althoughthey shouldbe,asourown recentinvestigationsshow [19].

Lane changing Lanechanging is implemented asan additionalsub-timestepbefore
the velocity update.Lanechanging consistsof two parts:the reasonto changelanes,
andthesafetycriterion. Thefirst onecanbecausedby slow carsahead,or by thedesire
to bein thecorrect lanefor a turn at theendof a link. Thesafetycriterionmeansthat
thereshouldbeenough emptyspacearound a vehiclewhich changeslanes.A simple
symmetricimplementationof theseprinciplesis:

– Reasonto changelanes(incentive criterion):
(�� � .AND.

( w ��(Q*
where

(
is

the standardgap,and
( w is the gapaheadon the otherlane.The rule means that

a reasonto change lanesis given whenthegapon thecurrent laneinhibits speed
andwhenthegapontheotherlaneis larger. – This is a simplesymmetric criterion
basedongaps,morecomplicatedand/or asymmetric criteriaarepossible[20].

– Safetycriterion:
( w���� .AND.

(��L� w � � �D� w * wheretheindex
�L� w refersto thevehicle

comingfrom from behind on theotherlane.This safetycriterion is fulfilled if the



gapon theotherlaneis larger thanthecurrentvelocity, andthebackwardsgapon
theotherlaneis larger thantheoncomingvehicle’s velocity.
Thesafetycriterionis in factimportantin order to maintainlaminartraffic [21], an
aspectthatshouldnotbeforgottenif onehasspentconsiderableeffort in designing
rulesfor stablelaminarhighflow traffic onsinglelanes[9].

3 Dynamicson a graph

A big differencebetweentypicalCA models andthoseusedfor transportationapplica-
tionsis thatthelattertypically operateonagraph. A graphconsistsof nodesandlinks.
Nodesfor transportationapplications have ID-numbersandgeographicalcoordinates.
Links connect two nodes,andthey have attributessuchasspeedlimit or number of
lanes.Obviously, nodescorrespondto intersectionsandlinks to the roadsconnecting
them.

Traffic onlinks canberepresentedthrough 2darrays,with onedimensionbeingthe
lengthandtheotheronebeingthenumberof lanes,andusingthedriving modelsfrom
Sec.2. Theonly addition is to include lanechangesfor planfollowing, which formsan
additional incentive to changelanesasdiscussedin Sec.2. Theremainingpartsof the
driving logic concernthemselves with intersections.

Intersections An easyway to dealwith intersectionsis to treatintersections as“black
boxes” without internal dynamics. In this case,theprioritization is handled whenvehi-
clesareaboutto enterthe intersection. Therearetwo important cases:turningmove-
mentswhich are “protected” by traffic signals,andunprotectedturns.Thesewill be
discuseedin thefollowing.

Protectedturnsarestraightforward, sincethe signal scheduleis assumedto take
careof possibleconflicts.If vehiclescanbrake to zerospeedin onetime step(as is
assumedin mostCA modelsfor traffic), thena yellow phaseis not needed. Theonly
othercondition for a vehicleto move through an intersectionis that thereneeds to be
spaceon theoutgoing link.

Unprotectedturns (yield, stop,merging, etc.) aremore advanced. In general, for
eachturningmovementa list of conflicting lanesneedsto beavailable,which is nor-
mally generated via pre-processingandis part of the network coding. A vehicle that
wantsto go through an intersectionchecks for eachconflicting laneif thereis a con-
flicting vehicle,andonly if thereis none andif in addition theoutgoing link hasspace,
thenthevehiclecanmove.

Therulesfor conflictinglanesarenormally treatedin termsof gapacceptance,very
similar to thesafetycriterion in lanechanging. For example, onecandemand that for
eachinterfering lane,a conflictingvehicleneedsto beat least � E � cellsaway, where� is a smallnumber, and � is thespeedof theconflicting vehicle.If thesimulationhas
a time stepof 1 sec,then � correspondsto the time gapof the conflicting vehiclein
seconds.In reality, this time gapis of theorderof 5 sec;in CA-basedsimulations,we
found that3 secyieldsmorerealisticdynamics.



Unexpectedsideeffectsand calibration/validation Sometimes,an arbitrary rule, as
plausibleasit maybe,canhaveunexpectedsideeffects.For example,

(}� � E � means
thatwith � ��f

thegapstill needsto be larger thanor equalto one.In contrast,with( ��� E � theturnwill beacceptedwhenthegapiszeroandtheconflictingvehicle is not
moving. Theresultingdifferencesin fundamentaldiagrams (seeFig. 3) areenormous.
Thelatterturnsout to model“zip-lock” dynamics,which is in factthedesiredbehavior
under congestedconditions.

In protected turnsduring thegreenphaseaswell asfor unprotectedturnswhichhave
thepriority (suchasa freeway link connectingto another freeway link at theposition
of an off-ramp), carehasto be taken that free traffic flows unobstructedthrough the
connection.This means,for example, that for CA logic with � 
9��� ���

, up to � 
9���
cellsof theoutgoing link needto beconsidered.

Carehasalsoto betakenwhendifferent incominglinks competefor spaceon the
sameoutgoinglink. Althoughin principletheprioritizationgivenby traffic rulesshould
takecareof this,in practicesuchconflictscanrarelybecompletelyavoided,for example
becauseof smallnetwork coding errors. In orderto have a robustimplementation,it is
thusdesirablethatvehicles reserve cellswherethey intendto go.

This canagainleadto unexpectedeffects.For example, we noticedabove that the
condition

( ��� E � is very different from
(�� � E � under congestedconditions.In

TRANSIMS,however, it turnsout that thereis in factno differenceat all betweenthe
two rules.Why is that?Theansweris that in TRANSIMS,vehicleswith velocity zero
on themainroadreservespaceon theoutgoing link on theassumptionthatthey might
accelerateto speedone.In consequence,vehiclesfrom theminor roadcannot move to
thatsamespace,even if it turnsout that thevehicleon themajorroaddoesnot move
afterall.

In orderto find outaboutsuchunexpectedeffects,driving logic shouldbesystemat-
ically tested.In fact,thereshould bestandardizedtestcasesthateachmicro-simulation
shoulddo andwhich shouldbepublicly available,e.g.on theinternet.A minimumset
of testswouldconsistof thefundamentaldiagrams for 1-lane,2-lane, and3-lanetraffic
(suchasFig.2 right),andfor all unprotectedmerging movements(suchasFig.3).Such
testsshould bedonewith theproductionversionof thecodesothatdifferencesbetween
the specificationandthe actualimplementationcould be detected. Thesetestsshould
beavailableasaneasy-to-configure runof thesoftwarepackage,andtheresultsshould
beavailableon theInternet.

Thesimplestversionof theTRANSIMS driving logic consistsin factof the rules
describedabove.Most discussedvariations,suchasdifferent gapacceptanceat unpro-
tectedturns,or differentg�h.w <Mx B , canbechangedby global parameters.

The“roundabout” solution An elegantsolutionto many of theseconflictsis theuseof
small roundabouts at intersections [22]. Theadvantageof roundabouts is thatthehigh
complexity of interfering lanesof standardintersectionsis decomposedinto smaller
sub-units, wherein eachsub-unit only the conflict betweenthe roundabout and the
incoming laneneeds to beresolved.

Alternative implementation of graph dynamics Theabove descriptionassumesthata
streetnetwork is givenasa graph. It wasalreadysaidthat this yieldsrealisticdescrip-
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Fig.3. Differentyield rules.LEFT: Vehiclesacceptturn if ���Q '¡ . RIGHT: Vehiclesacceptturn
if ��¢� 3¡ . Notethelargedifferencein thecongestedregime.

tion atlinks,but maybecomeproblematicatnodes.ThesoftwarepackageVISSIM [23]
thereforedispenseswith nodesandconnectslinks via asecondtypeof links,calledcon-
nectors.Suchconnectorsstartsomewhere on a link andendsomewhereon a (usually
different) link. Thereis no needthat they startat beginningsor endsof links. Any ve-
hicle which encountersanoutgoing connector somewhereon thelink candecideto go
there,or to continueonthelink. However, avehicle needto selectoneof theconnectors
eventually, sincethereis nowhereto goonce thevehiclereachestheendof thelink.

Similarly, incoming traffic is modeledvia connectorswhich endsomewhere on the
link, not necessarilyat its beginning. There needto be ruleswhich resolve conflicts
betweenincomingvehiclesandvehicleswhicharealreadyona link.

As aradicallydifferent approach,it is possibleto dispensewith thegraph dynamics
completely. Thewhole transportationsystemthenis overlayedby a CA grid structure,
andvehiclesalwaysmove within cells. The typical artifactswith off-axis movement
arecompensatedfor by smoothing techniques.CITY-TRAFFIC [24] seemsto beusing
this technology; we usea similar approachfor thesimulationof touristshiking in the
Alps [25].

4 Moving particles and moving agents

Thereis a starkdifference betweentypical physics particlehopping models and the
transportation models: in transportation,the particlesare intelligent agents, meaning
that they have individual andpotentiallycomplex rulesof how they reactto theenvi-
ronment.This meansthat in implementationssomepointerto thesecomplicatedrule
structuresneeds to bemaintainedwhentheparticlesmove.This immediately excludes
theuseof singlebit coding, sincethesepointers typically occupy 32 or even64 bits of
memory.

In consequence,a simpletypicalvehicle grid in a transportationlooksasfollows

class veh {
int ID ;
double Speed ;



...
};
veh* Road[200]; // memory allocation for 200 pointers

which meansthatRoad consistsof 200pointers pointing to vehicles.Memoryfor the
pointers is immediately allocated;memoryfor thevehicles is only allocatedwhenit is
used.For example,whenthecodedecidesto putavehicleinto cell number ii , thecode
fragmentmaylook as

Road[ii] = new veh ; // memory allocation for vehicle
Road[ii]-> ID = SomeID ;
Road[ii]-> Speed = 0. ;

Movementis still done in a relatively standard way:

speed = int(Road [ii]-> Speed) ;
Road[ii+speed ] = Road[ii] ;
Road[ii] = NULL ;

Thebigadvantageof thisis thatall informationbelonging to thevehicleis alwaysbeing
movedwith it.

Clearly, many improvementsto theabove arepossibleor even recommended, such
asusingvectors insteadof arrays,making cleandefinitions of constantssuchas“200”,
makingIDs constant,explicitely defining constructorsanddestructors,etc.

Thecurrently mostimportantapplication of theagenttechnology in transportation
simulationsis that agentsknow wherethey are going. More precisely, it is possible
to give eachagentits full route, for example consistingof a sequenceof nodes. A
relatedbut different areaof researchis to generatethosestrategic decisionsfor the
agents.All thisresultsin additionalcomputationalmoduleswhicharepartof acomplete
transportationsimulationpackage (e.g.[26]).

5 Limits of the CA technologyand relationsto other methods

More realistic representationsA standardproblemwith CA methods is thatthey may
bedifficult to calibrateagainstrealisticvalues.Takefor example theSTCAasdescribed
above in Sec.2. The lengthof a cell is straightforward: this needs to be the spacea
vehicleoccupiesin a jam in theaverage.Thetime stepis traditionally takenas1 sec,
which is justified by reactiontime arguments[27]. This implies that speedscomein
increments of 7.5 m/s; 5 cells per second

�
37.5 m/s

�
135 km/h is a convenient

maximum speed.The remaining free parameter, gyh
w <Mx B , is now selectedsuchthat the
maximum flow comesout at 2000 veh/sec;this resultsin gWh.w <%x B �£f0��{ . Lanechanging
rulescanbe calibratedsimilarly, andcaneven reproducethe densityinversion which
happensonGermanfreeways whenthey arecloseto capacity[28].

Sofarsogood. Theproblemsstartif for somereasontheabove is notgood enough.
For example,theexisting speedclassesarenot fine enough to resolve a differencebe-
tweena 55mph anda 50mph speedlimit, a common occurence in theU.S.Similarly,
although the fundamentaldiagramcomesout plausibly, acceleration of vehiclesturns
out to betoohigh,which is a problemfor emissionscalculations.

And it is difficult to resolve thoseproblemsvia a clever choiceof the probabilitygTh.w <%x B . For example, increasingg�h.w <%x B leadsto lower acceleration(which is desired),



but alsoto lowerthroughput (whichis notdesired).A possiblewayoutis to have gdh.w <Mx B
dependenton thevelocity: A small g�h.w <Mx B at low velocitiestogether with a large g�h.w <Mx B
at high velocitiesleavesthefundamentaldiagram nearlyunchangedwhile leading to a
muchlower average acceleration. However, unfortunatelysuchmeasures alsochange
the fluctuations of the system– for example, sucha reducedaccelerationwill leadto
a muchwider spreadof thetimesthatvehiclesneedto acceleratefrom 0 to full speed.
Also notethatin slow-to-startmodels, themodificationsof g h.w <%x B areexactly theother
wayround.

As analternative, it would bepossibleto make theresolutionof thecellsfiner, for
example to introducecells of length3.75 m andmake vehiclesoccupy two cells. It
is unclearif this would be worthwhile; it would certainlybeslower thanthestandard
methodbecausetwice thenumber of cellsneedsto betreated.

A possiblemethodthat seemsto work well in many casesin practicearehybrid
simulations.Here,oneleavesthecellularstructureintact,but allowsfor offsetsof parti-
clesagainstthecellularstructure.Fordirectional traffic, it seemsthatonecanultimately
completely dispensewith thegridandwork with amethodthatstill hasa1 sectimeres-
olutionbut a continuousresolutionin space[27]. Thereasonwhy this worksfor traffic
is that it is computationally relatively cheapto keeptrackof neighborssincea link is
essentiallyone-dimensional. For higher-dimensional simulations,keepingsomecellu-
lar structureis normally advantagousfor that taskalone– seefor example theparallel
codefor molecular dynamicswhich turnedout to alsohandletheproblemof neighbor
findingveryefficiently.

(Even) lessrealistic representationsAnotherproblem with microscopicsimulations
often is that the necessaryinput datais not available.For example, for a CA-based
traffic microsimulation one would needat least the number of lanesand someidea
about thesignalschedules.Most transportationnetwork databases,in particularif they
wereput togetherfor transportation planning, only containeachlink’s capacity. It is
difficult to construct CA links sothatthey matchagivencapacity. Theonly wayseems
to beaheuristicapproach,by selectingtheright numberof links andthento restrictthe
flow on the link for example by a (fake) traffic light. Still, this leavesmany questions
open. For example, signalsphasesneedto be coordinatedso that not two important
incoming links try to feedinto thesameoutgoing link at thesametime. Furthermore,
from theabove it is notclearwhich incoming lanefeeds into whichoutgoing lane(lane
connectivities).

In consequence,therearesituationswherea CA representation is still too realistic,
anda simplerrepresentationis useful.A possibilityto do this is thequeue model. This
is essentiallya queuing model with addedqueue spillback.Links arecharacterizedby
freespeedtravel time,flow capacity, andstoragecapacity. Vehiclescanenterlinks only
whenthe storagecapacityis not exhausted.Vehicleswhich entera link needthe free
speedtravel time to arrive at the otherendof the link, wherethey will be added to
a queue. Vehiclesin that queueare moved accrossthe intersectionaccording to the
capacityconstraint,andaccording to availability of spaceon thenext link.

This describesonly themostessentialingredients;careneedsto betakento obtain
fair intersectionsandfor parallelization[29]. Also, thereareclearlyunrealisticaspects
of the queuemodel,suchasthe fact that openingsat the downstream endof the link



areimmediatelytransmittedto theupstreamend. Thishasfor exampletheconsequence
that queueresolutionlooks somewhat unrealistic:queuesbreakup alongtheir whole
lengthsimultaneously, insteadof from the downstream end.Nevertheless,the queue
simulationis anexcellent startingpoint for large scaletransportationsimulations.

6 A simulation of all of Switzerland

One of the current main goals in our group is a simulationof “all of Switzerland”.
By this we meana microscopic24h simulationof a typical workday of all traffic in
Switzerland.Fig. 4 contains anearlyresultof this.

Thenetwork that is usedwasoriginally developedfor theSwissregional planning
authority (Bundesamtfür Raumentwicklung), andhassincebeenmodifiedby Vrtic at
the IVT and by us. The network hasthe fairly typical number of 10572 nodes and
28622 links. Also fairly typical, the major attributeson theselinks are type, length,
speed,andcapacity.

Demand is obtainedfrom a24-hourorigin-destinationmatrixwith 3066zones,also
from the Bundesamt für Raumentwicklung. This matrix is convertedto 24 separate
hourly matricesby a several-stepheuristic. In the long run, it is intended to move to
activity-baseddemandgeneration. Then,as explained above onewould start from a
syntheticpopulation,andfor eachpopulationmember, onewouldgeneratethechainof
activities for thewhole24-hourperiod.

Routesareobtained via iterationsbetweensimulationandtime-dependent fastest
pathrouting.ThesimulationbehindFig.4 is thequeuesimulationasdescribedin Sec.5.

7 Summary

This paper hasoutlinedthemostimportantelementsof CA usein transportationappli-
cations.BesidesthestandardCA rulesof “traffic on a link”, theimportant aspectsare,
thatthedynamicsunfolds on a graphinsteadof on flat space,andthattheparticlesare
intelligent.Bothaspectsmakesimulationpackagesconsiderablymorecomplicated, the
first sinceintersections needto bemodeled; thesecondsincethe“intelligence” of the
travelers(routechoice,destinationchoice, activity generation,etc.)needsto be mod-
eled.Finally, thelimits of theCA technology werediscussed.Theselimits exist in two
directions: (1) Thedriving logic of theCA rulesmaynotberealisticenough, andmak-
ing it more realisticmay be computationallyasexpensive asmoving to coupledmap
lattices(discretetime,contiuousstatespace).(2) Theavailablerealworld datamaynot
bedetailedenough to feeda realisticCA-basedmicro-simulation.
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