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Abstract

During the last decades, a lot of progress has been made in understanding the dynam-
ics of traffic flow models. Real world applications of these models require the ability
to model traffic in networks, which has been an important research topic lately. We
focus on the problem of travel demand generation in transportation networks. Our in-
vestigations are based on real world data for the Portland/Oregon area. We present a
microscopic approach for iterative activity assignment exemplarily for home-to-work
trips. It provides a method to generate real-world macroscopic data — in our case it
is the travel time distribution resulting from census data — in a network traffic sim-
ulation under simulation feedback. The underlying assignment is based on a simple
ansatz to split the probability of choosing a workplace in a particular distance into a
term which describes the accessibility of workplaces, and the individuals’ function of
travel time acceptance. In combination with the census data, this approach provides
the macroscopic acceptance function, which turns out to be an exponentially decay-
ing function plus a ’repulsive’ behavior for small travel times. Furthermore, these
investigations demonstrate that iterative activity assignment on a microscopic level
is computationally feasible even for realistically sized transportation systems.

Introduction

Traffic flows in transportation systems are driven by travel demands, which in turn result
from households’ needs and/or desires of participating in activities out of home charac-
terized by activity type (e.g. working, shopping, sleeping), activity location, and activity
time. These patterns are based on individual decision processes, where individuals take
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into consideration which traffic conditions they encountered in the past. For example, they
adjust their shopping time and/or location according to traffic jams which they experienced
the last trips.

There are fundamentally different approaches to reproduce realistic traffic in a laboratory
system. For example, there are online-simulations, where traffic counts are tuned in the
simulation in real time (e.g. [1]). They can be used as data source for intelligent transporta-
tion systems, for example for online routing systems or for dynamic traffic light control.
A completely different approach is to look at long term impacts of travel demands result-
ing from given land use data by generating individual activity schedules and routes. In
this context, the interactions between individual decision processes (regarding activity and
route choice) and resulting traffic flows need to be considered. Without this, it will not be
possible to represent realistic travel demands regardless of the underlying transportation
simulation approach [2, 3, 4].

In this paper, we want to follow Ref. [5] and restrict ourselves to traffic from home to work.
We assume that we know where all working people in a city live, and where all workplaces
are. The problem is thus to match homes with workplaces in a realistic way.

An example of such a solution is the classic “Hitchcock” solution [6], where the workplace
assignment is done in such a way that the overall sum of all travel times is minimized. This
clearly results in much shorter trips than in reality.

The traditional approaches that are closest to what we want to present here are the so-called
discrete choice models [7]. In this approach, the utility V; of an alternative i is assumed to
have a systematic component U; and a random component ¢;. Under certain assumptions
for the random component this implies that the probability p; to select i is

Pi = 5~ opti -

(1)
p; could for example represent the probability to accept a workplace that is ¢ seconds away.
If 7 is indeed taken as time, U; is negative, and it follows an S-shaped curve, being flat
for low i, steeper for medium 4, and flat again for high i [8]. By this approach, our above
location choice problem would be solved by weighting each given workplace in time-distance
1 by p; and then making a random draw in these probabilities.

Clearly, for the discrete choice approach one needs to know the function SU;. Also, once
having obtained this function from, say, a survey, there is still no guarantee that a sim-
ulation based on this will generate realistic travel time distributions. In this paper, we
thus want to present an approach where the “psychological” function SU; can be obtained
from “observed” travel time distributions, using new methods of micro-simulating large
geographical regions. The kernel idea is that an observed travel time distribution pes(t)
can be decomposed into an accessibility part pecess(t) and an acceptance function pepeice(t)
(traditionally called choice function):

DPobs (t) = paccess(t) X pchoice(t) . (2)
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Paccess(t) is the probability that there is a workplace at time-distance ¢; Pepoice(t) is the
probability that a prospective worker will accept this travel time. This decomposition also
allows to separate the network specific distribution pgecess(t) from the travel time acceptance
function, which is supposed to be of more general nature.

Given a micro-simulation of traffic, psccess(t) can be derived from the simulation result.
For a given home location (and a given assumed starting time), one can build a tree of
time-dependent shortest paths, and every time one encounters a workplace, one adds that
to the count for travel time ¢. The challenge is that this result depends on the traffic:
Given the same geographic distribution of workplaces, these are farther away in terms of
travel time when the network is congested than when it is empty. That is, given pepoice(t),
we can obtain p,ecess(t) via micro-simulation, i.e. paccess(t) = G (Penoice(t)), Wwhere G is the
micro-simulation. The problem then is to find the macroscopic (i.e., averaged over all trips)
function pepeice(t) self-consistently such that

Dobs (t) = G(pchoice(t)) X pchoice(t)- (3)

Approach

The approach that we use is a regular relaxation technique. We start with a guess for
Dehoice(t) and from there generate G(pehoice(t)) via simulation. A new guess for pepoice(t) is
obtained via

Pioice () = Dobs (£)/ G (Pihoice (1)) - (4)
A fraction p,. of all travelers will do their workplace selection again, using the new pepoice-

G is generated again via micro-simulation, and this is done over and over again until a
sufficiently self-consistent solution for p.peice(t) is found.

We use real census data for pyys(t) (Fig. 1). People usually give their travel times in minute-
bins as the highest resolution. Since our simulation is driven by one-second time steps we
need to smooth the data in order to get a continuous function instead of the minute-
histogram. Many possibilities for smoothing exist; one of them is the beta-distribution
approach in Ref. [5]. We encountered problems with that particular fit in our approach for
small travel times: Since that fit grows out of zero very quickly, the division peps/Paccess had
a tendency to result in unrealistically large values for very small travel times. We therefore
used a piecewise linear fit with the following properties: (i) For travel time zero, it starts at
zero. (ii) At travel times 2.5 min, 7.5 min, 12.5 min, etc. every five minutes, the area under
the fitted function corresponds to the number of trips shorter than this time according to
the census data.

Obtaining G (Pehoice(t)) itself is by no means trivial. It is now possible to micro-simulate
large metropolitan regions in faster than real time, where “micro”-simulation means that
each traveler is represented individually. We use a simplified queuing type traffic flow model



described in [9]. However, even if one new the true origins (home locations) and destinations
(workplaces), one would still need to find the routes that each individual takes. This “route
assignment” is typically done via another iterative relaxation, where, with location choice
fixed, each individual attempts to find faster routes to work. At this point we refer to
[10, 11] for detailed information about the route-relaxation procedure; see also Fig. 2 and
its explanation later in the text.

Once pitl (1) = Dobs(t) /G (PY0ice (1)) i given, the workplace assignment procedure works as

follows: The workers are assigned in random order. For each employee the distances ¢ for all
possible household /workplace pairs [hw/ are calculated, while the home location A is fixed
and taken directly from the household data for each employee. Let ¢, be the resulting
travel time for one particular /hw/ and n,,(w) the number of working opportunities at
workplace w. Then, an employee in household A is assigned to a working opportunity at
place w with probability

Phw ~ nwo(w)pchoice(thw)- (5)

In addition to work location, home-to-work activity information also includes the times
when employees start their trip to work. These are also directly taken from the household
data.

For the iteration runs presented in the next section we have used a parallel implementation
of the router module and a non-parallel implementation of the microscopic traffic simulator
and the activity generator. Running this on a 250 MHz SUN UltraSparc architecture takes
less than one hour computational time for one complete iteration run including activity
generation, route planning and running the traffic simulator.

lterative feedback experiment

Study area

Our investigations were are part of ongoing research efforts within the TRANSIMS (TRans-
portation ANalysis and SIMulation System) project at the Los Alamos National Labora-
tory. A reduced street network of Portland with 8,564 nodes and 20,024 links, where each
link represents one driving direction between two nodes, serves as testing field. For this
area a synthetic population of 1,415,900 individuals was generated based on a census from
1990 using an algorithm described in [12]. The resulting household data contains very
detailed information (e.g. number of persons, employees, children and cars per household).
As mentioned in the introduction, we focus on home to work activities. Thus, only people
who work out from home are considered in the following; these account for about 520, 000
individuals in the synthetic population. Following the purpose of having a minimum model
we neglect more detailed individual information (e.g. age, employees’ salaries); we do not
distinguish different types of employees. In addition to the household data, we use detailed



land use data to extract locations and sizes (i.e. number of employees) of companies. For
our simulations we make the assumption that all employees work within the study area,
since there is no land use and household data available for the surrounding areas. This also
means that workplaces can only be found up to a maximum distance. We will refer to this
finite size effect later when we discuss the workplace distribution.

Simulation results

Fig. 2 shows how we run the iterative feedback in our experiment: Starting out with a
fixed synthetic population, we assign people to workplaces, generate the routes as shortest
paths, and run the simulation with these routes from 4am till 12pm. After this, we reroute
people four times, while home-work relations are kept constant. Then, workplaces are re-
assigned and so on. During the workplace re-assignment, each individual is re-assigned
with probability p,, = 0.3 to avoid over-reactions.

To understand the dynamics of the feedback on a macroscopic scale we first look at the
overall travel time (i.e. the sum of all individuals travel times). Fig. 3 shows the total travel
time versus the simulation run index (i.e. a sequence of iterative re-assignment according
to Fig. 2).

In each workplace assignment step, worker are assigned to workplaces in a way that their
expected travel times match the census travel time distribution. Roughly spoken, this
means all individuals try do drive an average travel time, which remains constant for all
iteration steps, while they face different traffic flow patterns in the network (represented
by link travel times). For example, the initial workplace assignment generates too much
travel demand, since it is based on the assumption of free speed link travel times. In other
words, since initially each driver assumes that the network is empty, the initial workplace
assignment generates trips with long geographical distances in order to reproduce the census
data. The result of this is a lot of congestion occurring in the first simulation runs, so that
in the first workplace re-assignment, individuals are assigned to shorter spatial home-to-
work distances to keep the same average travel time. Once individuals are re-assigned,
the origin-destination relation for the re-assigned trips and, by this, for the travel demand
structure in the network is changed. It takes again some route re-planning steps to adjust
routes to the new travel demand structure. In Figs. 4 and 5, snapshots of the simulation
are shown for the first and the final simulation run, respectively. The links are colored
according to the quotient of average speed and free flow speed; red represents low average
speed values. These snapshots show that the overall travel demand is indeed decreased
by the re-assignment procedure.

The dynamics of this iterative feedback loop is driven by the probability to find a working
opportunity in a given travel time distance. For that reason, it is worth to have a look at
the workplace distribution pgecess(t). Fig. 6 (Top) shows this distribution exemplarily for
different activity iteration steps. The initial distribution based on the empty free speed



network is linear for travel times up to about 900sec. This can be easily understood
by considering that the circumference of a circle is proportional to the radius and the
workplaces are pretty much homogeneously distributed. For larger travel times, the chance
to find workplaces decreases because of the finite size of the study are.

The distributions for later iterations also start out linearly but with a smaller slope, because
the average speed on the links is lower than free speed. In addition, the slope fluctuates
considerably for those assignments that are based on simulation feedback (i.e. all except
the initial assignment). This is due to inhomogeneities with regard to travel times due to
capacity constraints in the street network. For example, consider an individual that lives
in an area that is connected to the rest of the network only via streets where capacities are
exceeded, while within this area no congestion occurs. For this individual, the distribution
Paccess (t) increases steeply for travel time distances within this area. However, once he/she
tries to reach workplaces outside this area, it encounters the capacity bottlenecks and has
to travel much longer, so there are not many workplaces available at these particular travel
times. For this reason, this individual’s distribution increases more slowly or even decreases
until the first workplace outside the “entrapped area” can be reached. Combinations of
configurations like this can lead to plateaus or even local minima in the overall distribution;
they reflect typical sizes and distances of isolated (regarding street capacities) regions in
the network.

Note that these distributions just reflect the state of the network in the different iterations.
Iteration 0 assumes that the network is empty, and thus puts all workplaces within short
reach. As a result, iteration 1 is overly congested, and available workplaces are shifted to
large times. For all subsequent iterations, traffic gets less and less, which means that the
distributions shift back to lower travel times.

Once the working opportunity distribution has been generated based on the last simulation
feedback, the travel time acceptance is calculated according to Eq. (4). In Fig. 6 (Middle),
the travel time acceptance is shown for different activity iterations.

First, note that in the initial assignment, one clearly sees the effect of the finite problem
size: In our empty and finite network, there are simply not enough opportunities for long
trips, and the algorithm compensates by putting a really high probability on these few long
trips.

After the first workplace re-assignment (“Assignment 1”), the agents prefer much shorter
trips. Since, as we know, assignment 1 is an over-reaction to the initial guess, subsequent
assignments allow again for somewhat longer trips. Note that the travel time acceptance for
workplace assignment number 7 has again the characteristic that long trips are seemingly
much preferred — again, the reason for this is that our finite network does not offer enough
opportunities for long trips and the algorithm compensates for that. In reality, working
opportunities can be found even for much larger travel times under consideration of work-
places in neighbored cities. Two other arguments should be noted in this context, too:
(i) People seem to be more indifferent for long travel times than for medium-length travel



times [8]. This certainly would not explain why long trip times should be more preferred
than medium-duration trip times, but it would make plausible why there could be a smaller
slope in the acceptance function for higher travel times. (ii) It is widely believed that the
census over-reports travel times; see below. — All these arguments together mean that there
is a variety of possible sources of errors for travel times above an hour (3600 min).

At the other end of the travel times, we also obtain lower preferences for very short travel
times (below 5 min = 300 sec). This may indicate that people prefer living in a certain
minimum distance to their workplace; maybe simply caused by the fact that people would
walk really short distances, thus increasing a driving time of for example one minute to a
walking time of five minutes. On the other hand, it may also have something to do with
the way we smooth our data for short travel times; see Sec. .

Restricting ourselves to the “plausible” range of travel times 400sec < t < 2000sec, the
function pepeice(t) can be approximated

pchoice(t) ~ eXp(at)- (6)

Fitting pepoice to 6 yields the following values for a:

Re-Assignment, Q
1 (—0.0007 £ 0.0003)
5 (—0.0009 + 0.0003)
7 (—0.0010 £ 0.0003)

Note, and this is really important, that the functional form of the exponential comes out
of the simulations; it is not invested anywhere in the approach. Thus, what we obtain is
another justification of ansatz (1), this time not obtained via arguing on the psychological
level (as discrete choice theory does), but via making peoples’ preferences consistent with
their reported travel times in a given transportation network.

Last, we check (Fig. 6 (Bottom)) if the simulated travel time distribution is indeed consis-
tent with the travel time distribution from the census. We see that with higher iteration
numbers, the simulated distribution indeed approaches the census distribution, except for
too many high travel times. This is somewhat surprising, since in this case one would expect
that the acceptance function pepeice for “assignment 7” would result in lower weights for
long trip times than it actually does. Presumably, the generated travel demands exceed the
network capacity in a unrealistic way, and this causes large fluctuations in the travel times
of individual travelers [13, 14]. This would mean that always some travelers get caught
in some heavy traffic, but it is never the same travelers nor the same links, and thus the
algorithm in its current form cannot respond to it properly. It is indeed believed that the
census overestimates travel times [15]. The explanation for this is that people report the
time they allocate for the trip, which includes getting ready and walking to the garage, not
just the time they are on the road. Also, the simulation model may underestimate network



throughput, for example since local streets are missing, and because of the simplifications
of the queue model. Resolving this would thus not just mean a precise evaluation (and
possible improvement) of our current iteration procedure; it would also involve to calibrate
the relation between transportation demand and transportation network throughput. This
is beyond the scope of this paper.

Discussion

During the re-assignment iterations we keep household locations fixed and changed working
locations. This may be realistic for some people, but for other people it might be proper
to argue that instead of looking for a workplace in feasible distance, people move closer
to workplaces. In our case, the decision was made by the data that was available: Our
demographic information is coupled to household locations, and thus the task is to match
people and workplaces given the data, not to develop a behaviorally entirely plausible model
of what people actually do. Future work will hopefully be able to enhance the behavioral
aspect of this work.

Looking at the worker/workplace relations resulting from the stochastic assignment, it
is necessary to be aware that different microscopic configurations can lead to the same
macroscopic travel time distribution. So far, the assignment procedure is entirely driven
by overall workplace availability regardless of detailed information As next step to a more
detailed approach it is conceivable to impose additional constraints (e.g. regarding salary)
on the assignment procedure. For this, the population as well as the set of available
workplaces would be divided into different categories and the stochastic assignment would
be applied to each category separately.

Our investigations are confined to home-to-work trips. The underlying dynamics is also
applicable for other activity types as far as travel time distributions for those trips are
available. Presumably, the acceptance behavior is activity dependent. For example, people
accept usually expect longer travel times for their trips to work than for shopping [8]. Tt
would be interesting to see whether the exponential decay in travel time acceptance still
holds for other activity types i.e. whether this would only effect the acceptance coefficient
a in Eq. 6.

Regarding the iteration sequence, it is possible to combine workplace-assignment and route-
planning instead from separating it strictly; i.e. there would be a chance for each individual
to change the workplace location in every arbitrary iteration in combination with route-
planning. So far, we picked individuals to be re-routed/assigned entirely randomly. It may
be possible to speed up the relaxation process by concentrating on “critical” individuals,
i.e. individuals that are furthest away from any satisfying choice. For example, one could
concentrate on agents where the expected travel time is much different from the travel time
experienced in the simulation. In this context, it is also necessary to check in what way



the underlying re-routing/assigning algorithm effects the final traffic state after relaxation.
Questions related to this are topic of current research.

Summary

We presented an iterative activity assignment approach exemplarily for home-to-work trips.
The approach allows to systematically generate macroscopic data — for our investigations
this was the census travel time distribution — from a transportation simulation. Instead of
making any assumptions about the individuals’ travel time acceptance behavior, we extract
the acceptance function out of the census travel time distribution and the simulation set-
up. For this, we decompose the probability of choosing a workplace in a given distance
into two terms: The distribution of workplaces in the network, and the macroscopic travel
time acceptance function. It turns out that this acceptance behavior can be well described
by an exponentially decaying function, which is consistent with other approaches. The fact
that the studies were carried out for the real Portland/Oregon road network shows that
iterative activity assignment is feasible for realistically sized systems.
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Figure 1: Work trip travel time distribution for home-to-work trips in the Portland study
area (Source: Portland Census 1990).

Act. Gen.

Router

Simulator

Time —pp

Figure 2: Iterative Activity Re-Assignment: Schematic subsequent application of activity
generator, router, and traffic simulator.
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Figure 3: Total travel time in the simulation.
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Figure 4: Simulation snapshot at 9am for simulation run 1. Red roads are congested (speed

less than 20% of free speed).
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Figure 5: Simulation snapshot at 9am for simulation run 70. Much fewer roads are con-

gested than in Fig. 4.
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