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Simplified cellular automaton model for city traffic
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We systematically investigate the effect of blockage sites in a cellular automaton model for traffic flow.
Different scheduling schemes for the blockage sites are considered. None of them returns a linear relationship
between the fraction of “green” time and the throughput. We use this information for a fast implementation of
a simulation of traffic in Dallag.S1063-651X98)14506-3

PACS numbe(s): 05.40:+j

[. INTRODUCTION the simulation of the whole national transportation system
[6], a very detailed and realistic microsimulati¢see, e.g.,

In today’s crowded world, space and money to build[7,8]) may be computationally too slow, or too data-intensive
transportation systems that can fulfill all demands is ofterto run.
not available, or it is not desired to spend it on transportation Alternatives here are simplified models that still capture
system infrastructure. The result is congestion: from conthe essentials of the dynamics at the transition to the con-
gested urban centers to congested inner-city corridors to cogrested regime. Since traffic in general is dominated by the
gested railways and congested airports. In consequencBottlenecks in the system, these simulations concentrate on
some “forecasting” tool would be desirable. Unfortunately, exactly these bottlenecks. The most important bottlenecks in
congestion has the side effect that causal relations becomghan systems are traffic lights. The natural outcome of this
much more spread both spatially and tempordlly. If a  \yay of thinking are queuing-type model8—11. For ve-
road is crowded, a person may attempt a different route or ficles that enter the link, one calculates when they could
different mode(spatial spreading or she may attempt the grrive at the end of the link. When that time is reached in the
trip at a different time(temporal spreadingor even totally  gimuylation, they are added to a queue at the end of the link.
drop the trip. The result is that planning tools need to con-They |eave the queue once they have advanced to its begin-
sider a much wider spatial and temporal context than €VeRing. The queue may have a limited service rate, which mod-
before. Conceptually this means that for such problems thg|g capacity restrictions.
method needs to be “activity based,” i.e., one needs to con- This paper approaches this problem from a slightly differ-
sider the whole process of how people plan transportation ignt angle. We use a very simple single-lane microsimulation
a daily, or, better, weekly cpntel(d;ee, e.g.[2]). S to capture at least some of the dynamics that is going on on

Another effect of being in the congested regime is thatne Jink itself (see alsd12]). This paper will provide a sys-
one needs to worry a lot more than before about having gmatic approach to such a model. Section Il will describe
dynamicallycorrect representation of the transportation sysqyr model, the way capacity restrictions are modeled, what
tem: For example, a peak-period spreading of traffic will nothejr pehavior is, and what that means for the relation be-
show up if one models traffic averaged over 24 hours, agyeen the simulation and reality. In fact, capacity restrictions
many traditional tools do. Thus, we are suddenly faced withy o simply modeled by “impurity sites” or temporary
a problem where we need to introduce more dynamical COr“plockages” (e.g.,[13]). Section Il discusses an implemen-
rectness into the modeling while at the same time considefgtion and some results for a Dallas study. This is followed
ing much wider temporal and spatial scales than before. py 4 short discussion, highlighting the differences between

problem, a “microscopic™ approach, i.e., starting with a de- |v/) and a summary.

scription of the smallest particles, is in terms of methodology
the cleanest one. In transportation science, this currently
means to consider individual travelers rather than, say, ag-
gregated link flows. For example, it is difficult to include
individual route choice behavior into a simulation that does We present a simple simulation model of city traffic, us-
not resolve individual drivers. There is also some agreemerihg a combination of stochastic cellular automé&b) and
that the currently most straightforward method to deal withstochastic transitions between streets. To represent the city
microscopic approaches in complicated real-world contextsietwork, we use the usual definitiée.g.,[14]) for links and
is computer simulation, as opposed to analytical techniquesiodes: a link is a directed street segment, such as a bidirec-
Now, when faced with a computationally intensive problem,tional road divided into two links, whereas a node is an in-
such as systematic scenario evaluati(ses, e.g.[3-5]), or  tersection; a link can also be defined by an input node and an
output node. Vehicles are moved on a simple single-lane CA
link, and are transferred from link to link following a simple
*Electronic address: simonp,kai@lanl.gov stochastic law based on the link’s capacity.

II. A SIMPLIFIED APPROACH
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FIG. 1. Schema of the experiment. é WI‘
A. Links % 0.15 I i
Links have different characteristics including length, 2
speed limit, number of lanes, maximum capacity, etc. The g oa}f .
length is necessary to adjust the number of sites needed for ¥
the discrete approach of the CA. We use the standard refer- &
ence of 7.5 m for the length of one sjt#4,8,19. Each site 005 | ]
can be empty, or occupied by a vehicle with an integer ve-
locity ve{0...vmag- Umax=5 gives good agreement 0 . ) . ) )
with field measurements. 0 5000 10000 15000 20000 25000 30000
Since each link is considered as a one-lane segment, ve- Time (iteration steps)

hicles are moved using the rules of Ref$6,15. Summa-
rizing the one-lane CA model, the variabg@ap gives the FIG. 2. Flow vs time for a transition probabilitp,ans, Of 0.5.
number of unoccupied sites in front of a vehighgyise is the
probability with which the vehicle is slowed down by one
unit, andrand is a random number between zero and one
One iteration consists of the following three sequential step
which are applied in parallel to all car&l) acceleration of
free vehicles, IF§{<vmaw THENv=v+1; (2) slowing
down due to other cars, Iv(gap) THEN v=gap; (3)
stochastic  driver  behavior, IRkE0) AND (rand
<Pnoised THENv=v—-1.

through the intersection by the CA forward rule, we check
ghe transition probability.

If the generated random number is lower than the prob-
ability py;ans, the vehicle keeps its velocity and reaches the
second link. In contrast, if the random number is greater than
Pirans: We place a virtual car in the first site of the second
link in order to force the vehicle to brake and stop at the
intersection. When the light “turns green,” this virtual car is
removed again. Technically: If a car reaches the last five
sites of a link, it produces a random number. We introduce

We introduce various stochastic models to differentiatethe simple algorithm
the existing links within a city, from high capacity segments 1. Transition check: IF (randpi ., THEN normal
such as freeways to low capacity segments such as arterialSA-update ELSE gapdistance from the vehicle to the in-

If we consider only one-lane links, the stochastic transition igersection.
introduced to control the output flow of a link. A high ca-

pacity link will produce a high output flow, while a low Thjs sjtuation is, in principle, well understood. The “impu-
capacity link will produce a low output flow. rity site” will create a reduced flow that can pass that site,
and since flow needs to be conserved along the link, this sets
the maximum throughput for the lifd.3,19-22. Yet, in the

Let us consider the experiment in Fig. 1, consisting of twocontext of the stochastic traffic cellular automaton as used
consecutive links separated by a transition probalyaljty,s - here, we are only aware of R¢23]. That paper implements
The first site of link 1 operates as a generator of vehiclesa hindrance by setting the maximum velocity of a certain
where one vehicle is introduced periteratior(s). The flow  numberh of consecutive cells to INT,2,¢/2), where INT( )
measured at the end of the second link versus the number tdkes the integer value. Different throughputs can then be
iterations is shown in Fig. 2. The transition probability is setobtained by using different values fér. That mechanism
to 0.5 in this example. The flow measured at iteratigmthe  seems more suited for modeling capacity reduction in con-
number of vehicles that left the second link until that mo- struction sites than for modeling capacity reduction by traffic
ment, divided byt. As a result, the unity of the flow is lights. For example, speed and capacity are, in principle,
vehicle per iteration. Commonly, one iteration is taken tounrelated, so that it does not seem a good idea to model
correspond to 1 sec of real tinjg¢5,17; a flow of one ve- capacity via artificial speed limits. Also, sinteis discrete,
hicle per iteration would thus correspond to one vehicle pecapacity in Ref[23] can only be changed in coarse-grained
second, or 3600 vehicles per ho[8] steps, a feature that is undesirable for our purposes.

We introduce one vehicle every three iterations at the first Figures 3—5 demonstrate the formation of traffic jams
site of the first link with maximum velocity 5. This is enough spreading to the beginning of the link, caused by braking of
to assure that the first link will reach a flow of around 0.33vehicles. The beginning of the second link can again be con-
vehicles per iteratiori1200 veh/h for a p,eise Of 0.5, which ~ sidered as a generator of vehicles. Nevertheless, the input
is close to the maximum throughput of such a link in the CAflow to that second link an@,,,,s are not proportional.
implementation 15]. If the first site is not empty at the in- To illustrate this comment, we vary the transition prob-
troducing time step, we do not add a vehicle. The vehicle’sbilities from zero to one. The average flow obtained for
velocities are updated by the one-lane CA model beforeach experiment is presented in Fig. 6. For each data point,
reaching the intersection. If the vehicle is allowed to gothe flow is averaged in the time perigdl5 000,30 000 see

B. Stochastic transitions

1. Random traffic light
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FIG. 3. Space-time diagram for a transition probabilfty,s, FIG. 4. Space-time diagram fq,,,s=0.9.
of 0.5.

_ _ _ second-order corrections are thus negligible. In any case, the
Fig. 2. The m_tersectlon does not fgnction as a perfect gencorresponding flow iSF~ppoisdirans/ (1+ Pyrans) . Using
erator of service rat@yans. If a vehicle leaves the last site p_ ...=0.5 plus that one iteration corresponds to one second
of the first link, this vehicle is not automatically replaced, and converting everything to hourly flowge., multiplying
due to the stochastic third step included in the one-lane CAy 3600, one obtains
model. The plot of Fig. 6 can be divided into three different
parts:

(i) A high transition probability ;,.ns between 0.8 and F[veh/hj~1800
1.0 gives linear results with the output flow. In this scenario,
vehicles do not stop often at the intersection, thus the inter- . - '
section does not work like a stop and start point. See Fig. 4. The functionF shown in '_:'g' 6 fits well to the data mea-

(i) A low transition probability(between 0 and 0)4ives sured for Iow_values op, while for p=0.4 the hypothesis is
results that can be explained by a simple hypothesis. Most dto I.Qnge.r valid. .
the cars stop at the intersection and form a compact traffic (iii) .F_|'gure 3 demonstrates what happe'ns for tr.ansmon
jam, as shown in Fig. 5. There are no important spaces in thi f9b?‘b"'“es between 0.4 and 0.8 at a mlcroscoplc_level.
queue. Assuming that the second to last site of the first link i§/Ithin the queue, holes are generated by the intersection and

always crowded, how many iterations does a vehicle need 8" gnalytical approach becqmes more difficult. Perio_dically,
go through the intersection? If a vehicle is on the last site o €Nicles pass through the intersection without braking and

link 1, the vehicle needs fi,.. iterations on average to stopping, which produces a higher flow compared to the lin-

advance, and then multiplied bygl/,,s to go through the ear relationship illustrated in Fig. 6.
intersection. Viewed from the perspective of the next follow-
ing vehicle, that one needs to waitp}liseX1/Pirans StEPS
until the vehicle ahead is gone, and then another, 14, Many experiments can be conducted using other probabil-
steps to move itself to arrive at the last site. As a result théty distributions for the intersection. The model previously
average number of iterations for a vehicle to advance frondescribed operates like a random traffic light, where the light
the second last site of link 1 to the intersection ip,}{se = becomes green with the probability,,,s, which is also the

+ U(Pnoisddirans) - This could in theory be continued, but it fraction of the time the light is greerfy,een= Prrans- That
would not necessarily get better because one would need tmodel can be considered to be one between two extreme
include the influence of “holes” in the queue; or, more tech- distributions, where in between the extreme cases one can
nically: The approximation is only valid fop;,,ns—0, and  encounter an infinite number of distributions that keep the

ptrans
1+ ptrans .

2. Other traffic lights
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FIG. 7. Different ways to distribute green times.

lowing, we present the same experiments discussed above,
for these two distributions.

3. Normal traffic light

) . We first repeat the same experiment described in Fig. 1
FIG. 5. Space-time diagram f@;ans=0.2. with a normal traffic light at the intersection. The dissolution
of a queue as the light turns periodically green is shown in
fraction of a green light of the total time of a traffic cycle the Fig. 8. This phenomenon does not provide an easy analytical
same.(i) The first distribution is a normal traffic light. The solution. For each green fractidg, .., ranging from 0 to 1,
green fraction here is straightforward: fy.e., the input flow of the second link is measured and is illus-
=Tgreen! (Tgreent Tred). (i) We call the second model a trated in Fig. 9. This relationship is almost linear. Even for
Dirac traffic light. As we work with discrete systems, the high values of the green fraction, vehicles still have to stop
objective is to set a green light or a red light on only oneoccasionally, which decreases the output flow. Figure 10,
time unit, equally spaced on a cycle. The green fraction igvhen compared to the space-time diagram produced by the
fagreen=1/(1+ Treq) for Treq=1 (and Tyreen=1 by defini- rgndom traffic light for the same value 6fcen (Fig. 4),
tion) or 1—1/(1+ Tgreen) fOr Tyreer=1. displays a lack of fluidity.
All three distributions are illustrated in Fig. 7. In the fol-

4. Dirac traffic light

1200 T T T The Dirac traffic light generates the highest flow for a
output flow . . . . .
1190*x ——--p#* given fg.cen in the experiment of Fig. 1. The space-time
1000 F 1800°X/(14x) gt~ diagram performed with a green time fraction & cen
£ =0.5 is given as an example. In this case, the Dirac traffic
5 so0f | light is successively green and red. Figure 11 shows less
2 compact traffic jams at the end of the first link than the other
§ ‘,:ff"' space-time diagrams for the same fraction of green time.
£ 600 |- e 1 This is still due to the vehicles that pass through the inter-
2 section at maximum velocity without braking. The analytic
§ 400 | ;’,’/ . explanation for this is the fact that the parallel update of the
CA tends to generate states where particles are followed by
200 | i holes, sometimes called “particle-hole attractiof4].
The output flow of link 1 for any value ofyeenis much
o a .' ' . higher than t_h_e two f_Iow_s measured _previo_usly for the two
0 02 04 06 08 1 other probability distributions. There is no linear relation at

any position on this diagram. The space-time diagrams plot-
ted for afy cen=0.16 andf .o~ 0.9 exhibit more fluidity
FIG. 6. Flow vs transition probabilityp;,ans- for the output traffic(Figs. 12—14.

Transition probability
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FIG. 8. Space-time diagram for normal traffic lighty,cen

=0.5.

DALLAS

A. Implementation

Space

Time

FIG. 10. Space-time diagram for normal traffic lighyeen
=0.9.

intersection. The vehicle generates a random number that
allows it to drive through the intersection or not.
We apply this model to the Dallas—Fort Worth area. The

The normal traffic light model is the most linear model context is the so-called Dallas-Fort Worth case sti#i25]
simulated in this paper. On the other hand, setting a traffigvhich has been done as part of theansivs (TRansporta-
light at each intersection would cost some computation timdion ANalysis and SIMulation Systenproject[2]. TRANSIMS
and coding overhead. The random traffic light presents th&ises individual route plans for each individual traveler. A
advantage to be checked only when a vehicle reaches tH@ute plan consists of a starting time, a starting location, a list

1200
1000
3 800
<
(2]
o
2 600
[34
2
3 400
w
200
0

FIG. 9. Flow vs fraction of green timég, .., for normal traffic

light.

outp‘ut flow
90

T .
]

v

0.2

04 0.6
Fraction of green time

0.8

of links the vehicle intends to follow, and an ending location.
A microsimulation in theTRANSIMS project such as the one
described here is thus faced with the task to move these
vehicles according to these specifications.

One immediately observes that one somehow has to cor-
rect for the fact that we are only using single-lane roads, that
is, our links will usually not be able to carry the prescribed
number of vehicles. We solve that problem by using a sub-
sample of the plans. The size of that sub-sample is obtained
as follows: (i) pnoise=0.5 results in a maximum throughput
of a link of approximately 1200 veh/ffusing pians=1). (ii)

We search for the link with the highest capacity in the area
we want to simulate. In our case, this was a four lane free-
way with a capacity of 7800 veh/Hiii) We thus need to
sub-sample the population by a factor of 1200/7800154,

i.e., a route plan from the full plan-set is going to be used
with a probability of 0.154(iv) Links which have a lower
capacity than 7800 veh/h take this fact into account by using
a value ofpyans @ccording to Fig. 6, i.e., if the value of the
road isC, then the valu€0.154 is used on thg axis to find

the correct value opy, 4,5 ON thex axis.
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OFEI>G. 11. Space-time diagram for Dirac traffic lightycen FIG. 12. Space-time diagram for Dirac traffic lightgeen
=0 =0.16.

A more precise calibration is more complicated than this€aves parking unrealistically disturbs the traffic flow, ve-
because it also depends on the interplay between route plaficles from the parking locations are only inserted ifax

ning and route execution. This is beyond the scope of thi§'tes b_ackwards from the_ parking _Iocat|on are empty. If the
space is not free, the car is placed in a queue, waiting to enter

r; further lications on th ' re in preparati ) N oo .
paper; further publications on the subject are in preparat Or‘{he simulation in one of the following iterations.
A snapshot of such a simulation with the model described
in this paper can be found in Fig. 15. The denser square area
In this section, we want to give some examples of howin the center represents the study area, where all streets in-
this simulation is going to be used. These examples will be&luding local streets were represented in the data base. For
given in the context of theraNsiMSs Dallas—Fort Worth this example, the streets outside that area were also simu-
case study. That case study used as input a street network igf€d. Dots denote individual vehicles. In this plot, most of
the Dallas—Fort Worth area, containing 24662 uni-the traffic is on the freeways, as is realistic. Also, one notes

directional links and 9864 nodes, and information on all tripsthat for lower capacity road, traffic is mostly queued up to-
in this area during a 24 hour periogpprox. 10 million wards the end, as one would expect from the dynamics of the

trips). The study focused on a busy<® mile area north of model. Yet, this is really not too unrealistic since also in
downtown Dallas. and on the time between 5 am and 10 arT{_eality traffic through minor roads tends to queue up at the
This still involved 300 000 trips. As mentioned above, mi- en(_jrsﬁe space-time diaaram of five consecutive links is
crosimulations in th@rRANSIMS project are route-plan driven. P g

. hown in Fig. 16. These links are a part of an east-west
Thus, for each of these 300 000 trips, route plans were C84rterial located in the north of the study area. The figure

culated. The fact that drivers adjust to congestion caused by, s nicely how queues build up at the end of links due to
other drivers was taken into account by iterating severajyq capacity restrictions.

times between the route planning and the microsimulation. ag a further example, we present the travel time versus

For further information, see Reff25-27. departure time for each vehic(€ig. 17). This figure shows
One important specification missing in the above descripthat even such a simple simulation as the one described in

tion of the microsimulation is how vehicles enter and leavethijs paper can, given a realistic trip demand input, display

the simulation. TRANSIMS specifies parking locations alongthe higher travel times during the rush hour.

links, which represent all parking opportunities that can be In general, a main advantage of doing a microscopic

reached from this link. In order to prevent that the traffic thatsimulation(i.e., representing individual travelers, besides

B. Simulation results
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IV. DISCUSSION

In the Introduction we argued that, because of congestion,
tools with a better representation of thdgnamicsof trans-
portation systems are needed. This requirement can, at least
in principle, be fulfilled by a microscopic approach, micro-
scopic meaning here that each vehicle and each traveler are
individually resolved. Because of the complicatedness of the
real world, analytical approaches here seem hopeless so one
resorts to simulation.

On the other hand, we have also argued that, again be-

FIG. 13. Space-time diagram for Dirac traffic lightyeen  cause of congestion, one needs to consider much larger tem-
=0.9. poral and spatial scales than ever before. This, together with
the requirement of a microscopic resolution, leads to a con-
proaches, that one can extract information that relates to i siderable comput_at_ipna_l challenge._ln o_rc_ier to meet this chal-
dividuals. For example, one can extract accessibility infor-€"g€, one possibility is to use simplified models for the
mation for certain areas, and one can differentiate thidransportation system dynamics that still have a microscopic
information by demographic characteristics, say, income ofesolution. Yet, these simplifications come at a price because
race. Accessibility deals with questions such as how difficul§ome aspects of reality will be represented with a reduced
it is to reach, say, workplaces from a certain residential aredidelity. It is an important research problem to understand the
how this depends on car ownership, etc. This becomes irfonsequencesf these simplifications. Note, though, that this
creasingly important in societies that undertake significanguestion needs to be answered on the level of the transpor-
efforts to target public money and effort to certain demo-tation planning questions that our model is meant for, and it
graphic groups. As another example, one could find out fronis far from clear how certain microscopic simplifications af-
the simulation who is waiting before a bottleneck, wherefect that macroscopic behavior that is important for those
these persons come from and go to, &adain what their  questions.
demographic characteristics are. Building a public transit As a result, it seems necessary to us to attempt to under-
system to relieve the bottleneck will only be successful if itstand the advantages and problems of several different sim-
is actually an alternative for the people waiting at the bottlejified microscopic models from both the microscopic and
neck. macroscopic perspectives. As discussed in the Introduction,

the model presented in this paper falls into a class of models
C. Computational performance that use “simplified link dynamics’[9—12. In the most ex-

We present a performance diagram in F|g 18’ where Wéreme case, vehicles are moved direCtly to the end of the link
introduce the RTR versus the simulation time. The RTR iswhere they wait in a queue until they can leave the link. The
the ratio of the real time on the simulation time. This ex-waiting conditions in the queue can be, for example, time
ample of simulation was executed on a SUN UltraSparc CPonstraints (vehicle needs a certain amount of time to
with 250 MHz where approximately 46 000 plans weretraverse the link capacity constraintgvehicles can only
simulated in the whole Dallas—Fort Worth area. Figure 18eave at certain raje and space constraints at destination
shows a ratio of 23 in the middle of the rush period, but onlinks (destination links may be full Note that, in a more
average the ratio is around 28. This clearly shows that simurealistic microsimulation, all these numbers woulddemer-
lations like the one described here have enough computatedby the simulated dynamics instead of being included as
tional speed for thorough investigations of large scale trafficcalibration parameters. Also note that some aspects of the
problems. dynamics irrevocably get lost in the simplified models even

having a more realistic dynamics than many traditional ap
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FIG. 15. Snapshot of the case
study area at 7:00 am.

with the best of all possible calibrations. Examples of this arghroughput of a link of cellular automata models for traffic
the effects of signal phasing, of turn pockets, or of laneflow and particle movement studies. We have systematically
changing. All of these are certainly important on a moretested the effects of three different blockage schemes, where
microscopic problem scalésuch as traffic “operations;  one was the usual random draw, one was a regular traffic
but it is unclear how important they are on the scale of transtight with long red and green times, and one was what we
portation planning. And also remember that using a highlycalled a “Dirac” traffic light because it had 1-sec spikes of

realistic model sometimes is not an option, for example, bepne color. In general, there is no linear relation between the
cause of computational restrictions or data collection restric-

tions. In such cases, knowing the different limitations of dif-
ferent simplified models becomes crucial in order to select -...
the best one for a given question, or decide that the question
cannot be answered with the available technology.

The model in this paper also uses capacity constraints at.. ..
the end of the linkthese are th@ ;s Or fgreenParameterns
but it attempts to capture some of the link dynamics, such as -
speed limits, limited “storing” capacity on jammed links, or
backtraveling “holes” in jammed situations, directly. For
this, it uses a one-lane representation of the traffic dynamics, ...
which is somewhere between a simple queue representation
and a realistic multilane implementation. Since a one-lane ::-
representation cannot carry the full throughput of a multilane ::
road, this implies a subsampling of the population, i.e., only
a certain fraction of all travelers is used in the simulation.

We have stressed several times in this paper that micro- ;.
scopic evaluations of different models are not enough; they -
need to be evaluated in the context of transportation planning
guestions. For the current model, such evaluations are under
way, but are beyond the scope of this paper. A paper that :
compares the performance of the microsimulation presented -}
in this paper with two other microsimulations and with field
measurements in Dalld3exas is close to completiof27];
further work using data from Portlan@®regon is in prepa-
ration.

V. SUMMARY ) ) ] ]
FIG. 16. Space-time plot of a particular lir(Beltline Rd., an

“Blockage” sites, i.e., sites that move particles or ve- east-west arterial in the northern part of the afeam 7:00 to 7:05
hicles only a fraction of the time, reduce the maximumam (left), 7:30 to 7:35 an(middle), and 8:00 to 8:05 anfright).
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fraction of green time and the throughput. The Dirac traffic
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