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Simplified cellular automaton model for city traffic
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and Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501
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We systematically investigate the effect of blockage sites in a cellular automaton model for traffic flow.
Different scheduling schemes for the blockage sites are considered. None of them returns a linear relationship
between the fraction of ‘‘green’’ time and the throughput. We use this information for a fast implementation of
a simulation of traffic in Dallas.@S1063-651X~98!14506-3#
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I. INTRODUCTION

In today’s crowded world, space and money to bu
transportation systems that can fulfill all demands is of
not available, or it is not desired to spend it on transportat
system infrastructure. The result is congestion: from c
gested urban centers to congested inner-city corridors to
gested railways and congested airports. In conseque
some ‘‘forecasting’’ tool would be desirable. Unfortunate
congestion has the side effect that causal relations bec
much more spread both spatially and temporally@1#. If a
road is crowded, a person may attempt a different route
different mode~spatial spreading!, or she may attempt the
trip at a different time~temporal spreading! or even totally
drop the trip. The result is that planning tools need to c
sider a much wider spatial and temporal context than e
before. Conceptually this means that for such problems
method needs to be ‘‘activity based,’’ i.e., one needs to c
sider the whole process of how people plan transportatio
a daily, or, better, weekly context~see, e.g.,@2#!.

Another effect of being in the congested regime is t
one needs to worry a lot more than before about havin
dynamicallycorrect representation of the transportation s
tem: For example, a peak-period spreading of traffic will n
show up if one models traffic averaged over 24 hours,
many traditional tools do. Thus, we are suddenly faced w
a problem where we need to introduce more dynamical c
rectness into the modeling while at the same time consi
ing much wider temporal and spatial scales than before.

It is fairly obvious that, when faced with a dynamic
problem, a ‘‘microscopic’’ approach, i.e., starting with a d
scription of the smallest particles, is in terms of methodolo
the cleanest one. In transportation science, this curre
means to consider individual travelers rather than, say,
gregated link flows. For example, it is difficult to includ
individual route choice behavior into a simulation that do
not resolve individual drivers. There is also some agreem
that the currently most straightforward method to deal w
microscopic approaches in complicated real-world conte
is computer simulation, as opposed to analytical techniq
Now, when faced with a computationally intensive proble
such as systematic scenario evaluations~see, e.g.,@3–5#!, or

*Electronic address: simonp,kai@lanl.gov
PRE 581063-651X/98/58~2!/1286~10!/$15.00
n
n
-
n-
ce,

e

a

-
er
e
-

in

t
a
-
t
s
h
r-
r-

y
ly
g-

s
nt

ts
s.
,

the simulation of the whole national transportation syst
@6#, a very detailed and realistic microsimulation~see, e.g.,
@7,8#! may be computationally too slow, or too data-intensi
to run.

Alternatives here are simplified models that still captu
the essentials of the dynamics at the transition to the c
gested regime. Since traffic in general is dominated by
bottlenecks in the system, these simulations concentrate
exactly these bottlenecks. The most important bottleneck
urban systems are traffic lights. The natural outcome of
way of thinking are queuing-type models@9–11#. For ve-
hicles that enter the link, one calculates when they co
arrive at the end of the link. When that time is reached in
simulation, they are added to a queue at the end of the l
They leave the queue once they have advanced to its be
ning. The queue may have a limited service rate, which m
els capacity restrictions.

This paper approaches this problem from a slightly diff
ent angle. We use a very simple single-lane microsimulat
to capture at least some of the dynamics that is going on
the link itself ~see also@12#!. This paper will provide a sys-
tematic approach to such a model. Section II will descr
our model, the way capacity restrictions are modeled, w
their behavior is, and what that means for the relation
tween the simulation and reality. In fact, capacity restrictio
are simply modeled by ‘‘impurity sites’’ or temporar
‘‘blockages’’ ~e.g.,@13#!. Section III discusses an implemen
tation and some results for a Dallas study. This is follow
by a short discussion, highlighting the differences betwe
our approach and other ‘‘queuing-type’’ approaches~Sec.
IV !, and a summary.

II. A SIMPLIFIED APPROACH

We present a simple simulation model of city traffic, u
ing a combination of stochastic cellular automata~CA! and
stochastic transitions between streets. To represent the
network, we use the usual definition~e.g.,@14#! for links and
nodes: a link is a directed street segment, such as a bid
tional road divided into two links, whereas a node is an
tersection; a link can also be defined by an input node and
output node. Vehicles are moved on a simple single-lane
link, and are transferred from link to link following a simpl
stochastic law based on the link’s capacity.
1286 © 1998 The American Physical Society
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A. Links

Links have different characteristics including lengt
speed limit, number of lanes, maximum capacity, etc. T
length is necessary to adjust the number of sites neede
the discrete approach of the CA. We use the standard re
ence of 7.5 m for the length of one site@14,8,15#. Each site
can be empty, or occupied by a vehicle with an integer
locity vP$0 . . .vmax%. vmax55 gives good agreemen
with field measurements.

Since each link is considered as a one-lane segment
hicles are moved using the rules of Refs.@16,15#. Summa-
rizing the one-lane CA model, the variablegap gives the
number of unoccupied sites in front of a vehicle.pnoise is the
probability with which the vehicle is slowed down by on
unit, andrand is a random number between zero and o
One iteration consists of the following three sequential st
which are applied in parallel to all cars:~1! acceleration of
free vehicles, IF (v,vmax) THEN v5v11; ~2! slowing
down due to other cars, IF (v.gap) THEN v5gap; ~3!
stochastic driver behavior, IF (v.0) AND (rand
,pnoise) THEN v5v21.

B. Stochastic transitions

We introduce various stochastic models to differenti
the existing links within a city, from high capacity segmen
such as freeways to low capacity segments such as arte
If we consider only one-lane links, the stochastic transition
introduced to control the output flow of a link. A high ca
pacity link will produce a high output flow, while a low
capacity link will produce a low output flow.

1. Random traffic light

Let us consider the experiment in Fig. 1, consisting of t
consecutive links separated by a transition probabilityptrans .
The first site of link 1 operates as a generator of vehic
where one vehicle is introduced pern iteration~s!. The flow
measured at the end of the second link versus the numb
iterations is shown in Fig. 2. The transition probability is s
to 0.5 in this example. The flow measured at iterationt is the
number of vehicles that left the second link until that m
ment, divided byt. As a result, the unity of the flow is
vehicle per iteration. Commonly, one iteration is taken
correspond to 1 sec of real time@15,17#; a flow of one ve-
hicle per iteration would thus correspond to one vehicle
second, or 3600 vehicles per hour.@18#

We introduce one vehicle every three iterations at the fi
site of the first link with maximum velocity 5. This is enoug
to assure that the first link will reach a flow of around 0.
vehicles per iteration~1200 veh/h! for a pnoise of 0.5, which
is close to the maximum throughput of such a link in the C
implementation@15#. If the first site is not empty at the in
troducing time step, we do not add a vehicle. The vehic
velocities are updated by the one-lane CA model bef
reaching the intersection. If the vehicle is allowed to

FIG. 1. Schema of the experiment.
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through the intersection by the CA forward rule, we che
the transition probability.

If the generated random number is lower than the pr
ability ptrans , the vehicle keeps its velocity and reaches t
second link. In contrast, if the random number is greater t
ptrans , we place a virtual car in the first site of the seco
link in order to force the vehicle to brake and stop at t
intersection. When the light ‘‘turns green,’’ this virtual car
removed again. Technically: If a car reaches the last fi
sites of a link, it produces a random number. We introdu
the simple algorithm

1. Transition check: IF (rand,ptrans) THEN normal
CA-update ELSE gap5distance from the vehicle to the in
tersection.

This situation is, in principle, well understood. The ‘‘impu
rity site’’ will create a reduced flow that can pass that si
and since flow needs to be conserved along the link, this
the maximum throughput for the link@13,19–22#. Yet, in the
context of the stochastic traffic cellular automaton as u
here, we are only aware of Ref.@23#. That paper implements
a hindrance by setting the maximum velocity of a certa
numberh of consecutive cells to INT(vmax/2), where INT( )
takes the integer value. Different throughputs can then
obtained by using different values forh. That mechanism
seems more suited for modeling capacity reduction in c
struction sites than for modeling capacity reduction by tra
lights. For example, speed and capacity are, in princip
unrelated, so that it does not seem a good idea to mo
capacity via artificial speed limits. Also, sinceh is discrete,
capacity in Ref.@23# can only be changed in coarse-grain
steps, a feature that is undesirable for our purposes.

Figures 3–5 demonstrate the formation of traffic jam
spreading to the beginning of the link, caused by braking
vehicles. The beginning of the second link can again be c
sidered as a generator of vehicles. Nevertheless, the i
flow to that second link andptrans are not proportional.

To illustrate this comment, we vary the transition pro
abilities from zero to one. The average flow obtained
each experiment is presented in Fig. 6. For each data p
the flow is averaged in the time period~15 000,30 000!, see

FIG. 2. Flow vs time for a transition probability,ptrans , of 0.5.
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1288 PRE 58P. M. SIMON AND K. NAGEL
Fig. 2. The intersection does not function as a perfect g
erator of service rateptrans . If a vehicle leaves the last sit
of the first link, this vehicle is not automatically replace
due to the stochastic third step included in the one-lane
model. The plot of Fig. 6 can be divided into three differe
parts:

~i! A high transition probability (ptrans between 0.8 and
1.0! gives linear results with the output flow. In this scenar
vehicles do not stop often at the intersection, thus the in
section does not work like a stop and start point. See Fig

~ii ! A low transition probability~between 0 and 0.4! gives
results that can be explained by a simple hypothesis. Mos
the cars stop at the intersection and form a compact tra
jam, as shown in Fig. 5. There are no important spaces in
queue. Assuming that the second to last site of the first lin
always crowded, how many iterations does a vehicle nee
go through the intersection? If a vehicle is on the last site
link 1, the vehicle needs 1/pnoise iterations on average to
advance, and then multiplied by 1/ptrans to go through the
intersection. Viewed from the perspective of the next follo
ing vehicle, that one needs to wait 1/pnoise31/ptrans steps
until the vehicle ahead is gone, and then another 1/pnoise
steps to move itself to arrive at the last site. As a result
average number of iterations for a vehicle to advance fr
the second last site of link 1 to the intersection is 1/pnoise
11/(pnoiseptrans). This could in theory be continued, but
would not necessarily get better because one would nee
include the influence of ‘‘holes’’ in the queue; or, more tec
nically: The approximation is only valid forptrans→0, and

FIG. 3. Space-time diagram for a transition probability,ptrans ,
of 0.5.
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second-order corrections are thus negligible. In any case
corresponding flow isF'pnoiseptrans /(11ptrans). Using
pnoise50.5 plus that one iteration corresponds to one sec
and converting everything to hourly flows~i.e., multiplying
by 3600!, one obtains

F@veh/h#'1800
ptrans

11ptrans
.

The functionF shown in Fig. 6 fits well to the data mea
sured for low values ofp, while for p>0.4 the hypothesis is
no longer valid.

~iii ! Figure 3 demonstrates what happens for transit
probabilities between 0.4 and 0.8 at a microscopic lev
Within the queue, holes are generated by the intersection
an analytical approach becomes more difficult. Periodica
vehicles pass through the intersection without braking a
stopping, which produces a higher flow compared to the
ear relationship illustrated in Fig. 6.

2. Other traffic lights

Many experiments can be conducted using other proba
ity distributions for the intersection. The model previous
described operates like a random traffic light, where the li
becomes green with the probabilityptrans , which is also the
fraction of the time the light is green:f green5ptrans . That
model can be considered to be one between two extr
distributions, where in between the extreme cases one
encounter an infinite number of distributions that keep

FIG. 4. Space-time diagram forptrans50.9.
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fraction of a green light of the total time of a traffic cycle th
same.~i! The first distribution is a normal traffic light. Th
green fraction here is straightforward: f green
5Tgreen/(Tgreen1Tred). ~ii ! We call the second model
Dirac traffic light. As we work with discrete systems, th
objective is to set a green light or a red light on only o
time unit, equally spaced on a cycle. The green fraction
f green51/(11Tred) for Tred>1 ~and Tgreen51 by defini-
tion! or 121/(11Tgreen) for Tgreen>1.

All three distributions are illustrated in Fig. 7. In the fo

FIG. 5. Space-time diagram forptrans50.2.

FIG. 6. Flow vs transition probability,ptrans .
is

lowing, we present the same experiments discussed ab
for these two distributions.

3. Normal traffic light

We first repeat the same experiment described in Fig
with a normal traffic light at the intersection. The dissolutio
of a queue as the light turns periodically green is shown
Fig. 8. This phenomenon does not provide an easy analy
solution. For each green fractionf green ranging from 0 to 1,
the input flow of the second link is measured and is illu
trated in Fig. 9. This relationship is almost linear. Even f
high values of the green fraction, vehicles still have to s
occasionally, which decreases the output flow. Figure
when compared to the space-time diagram produced by
random traffic light for the same value off green ~Fig. 4!,
displays a lack of fluidity.

4. Dirac traffic light

The Dirac traffic light generates the highest flow for
given f green in the experiment of Fig. 1. The space-tim
diagram performed with a green time fraction off green
50.5 is given as an example. In this case, the Dirac tra
light is successively green and red. Figure 11 shows
compact traffic jams at the end of the first link than the oth
space-time diagrams for the same fraction of green tim
This is still due to the vehicles that pass through the int
section at maximum velocity without braking. The analy
explanation for this is the fact that the parallel update of
CA tends to generate states where particles are followed
holes, sometimes called ‘‘particle-hole attraction’’@24#.

The output flow of link 1 for any value off green is much
higher than the two flows measured previously for the t
other probability distributions. There is no linear relation
any position on this diagram. The space-time diagrams p
ted for a f green50.16 andf green50.9 exhibit more fluidity
for the output traffic~Figs. 12–14!.

FIG. 7. Different ways to distribute green times.
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III. DALLAS

A. Implementation

The normal traffic light model is the most linear mod
simulated in this paper. On the other hand, setting a tra
light at each intersection would cost some computation t
and coding overhead. The random traffic light presents
advantage to be checked only when a vehicle reaches

FIG. 8. Space-time diagram for normal traffic light,f green

50.5.

FIG. 9. Flow vs fraction of green time,f green, for normal traffic
light.
c
e
e
he

intersection. The vehicle generates a random number
allows it to drive through the intersection or not.

We apply this model to the Dallas–Fort Worth area. T
context is the so-called Dallas-Fort Worth case study@4,25#
which has been done as part of theTRANSIMS ~TRansporta-
tion ANalysis and SIMulation System! project@2#. TRANSIMS

uses individual route plans for each individual traveler.
route plan consists of a starting time, a starting location, a
of links the vehicle intends to follow, and an ending locatio
A microsimulation in theTRANSIMS project such as the on
described here is thus faced with the task to move th
vehicles according to these specifications.

One immediately observes that one somehow has to
rect for the fact that we are only using single-lane roads, t
is, our links will usually not be able to carry the prescrib
number of vehicles. We solve that problem by using a s
sample of the plans. The size of that sub-sample is obta
as follows:~i! pnoise50.5 results in a maximum throughpu
of a link of approximately 1200 veh/h~usingptrans51). ~ii !
We search for the link with the highest capacity in the a
we want to simulate. In our case, this was a four lane fr
way with a capacity of 7800 veh/h.~iii ! We thus need to
sub-sample the population by a factor of 1200/7800'0.154,
i.e., a route plan from the full plan-set is going to be us
with a probability of 0.154.~iv! Links which have a lower
capacity than 7800 veh/h take this fact into account by us
a value ofptrans according to Fig. 6, i.e., if the value of th
road isC, then the valueC0.154 is used on they axis to find
the correct value ofptrans on thex axis.

FIG. 10. Space-time diagram for normal traffic light,f green

50.9.
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A more precise calibration is more complicated than t
because it also depends on the interplay between route p
ning and route execution. This is beyond the scope of
paper; further publications on the subject are in preparat

B. Simulation results

In this section, we want to give some examples of h
this simulation is going to be used. These examples will
given in the context of theTRANSIMS Dallas–Fort Worth
case study. That case study used as input a street netwo
the Dallas–Fort Worth area, containing 24662 u
directional links and 9864 nodes, and information on all tr
in this area during a 24 hour period~approx. 10 million
trips!. The study focused on a busy 535 mile area north of
downtown Dallas, and on the time between 5 am and 10
This still involved 300 000 trips. As mentioned above, m
crosimulations in theTRANSIMS project are route-plan driven
Thus, for each of these 300 000 trips, route plans were
culated. The fact that drivers adjust to congestion cause
other drivers was taken into account by iterating seve
times between the route planning and the microsimulat
For further information, see Refs.@25–27#.

One important specification missing in the above desc
tion of the microsimulation is how vehicles enter and lea
the simulation. TRANSIMS specifies parking locations alo
links, which represent all parking opportunities that can
reached from this link. In order to prevent that the traffic th

FIG. 11. Space-time diagram for Dirac traffic light,f green

50.5.
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leaves parking unrealistically disturbs the traffic flow, v
hicles from the parking locations are only inserted ifvmax
sites backwards from the parking location are empty. If
space is not free, the car is placed in a queue, waiting to e
the simulation in one of the following iterations.

A snapshot of such a simulation with the model describ
in this paper can be found in Fig. 15. The denser square
in the center represents the study area, where all street
cluding local streets were represented in the data base.
this example, the streets outside that area were also s
lated. Dots denote individual vehicles. In this plot, most
the traffic is on the freeways, as is realistic. Also, one no
that for lower capacity road, traffic is mostly queued up
wards the end, as one would expect from the dynamics of
model. Yet, this is really not too unrealistic since also
reality traffic through minor roads tends to queue up at
ends.

The space-time diagram of five consecutive links
shown in Fig. 16. These links are a part of an east-w
arterial located in the north of the study area. The figu
shows nicely how queues build up at the end of links due
the capacity restrictions.

As a further example, we present the travel time ver
departure time for each vehicle~Fig. 17!. This figure shows
that even such a simple simulation as the one describe
this paper can, given a realistic trip demand input, disp
the higher travel times during the rush hour.

In general, a main advantage of doing a microsco
simulation~i.e., representing individual travelers! is, besides

FIG. 12. Space-time diagram for Dirac traffic light,f green

50.16.
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1292 PRE 58P. M. SIMON AND K. NAGEL
having a more realistic dynamics than many traditional
proaches, that one can extract information that relates to
dividuals. For example, one can extract accessibility inf
mation for certain areas, and one can differentiate
information by demographic characteristics, say, income
race. Accessibility deals with questions such as how diffic
it is to reach, say, workplaces from a certain residential a
how this depends on car ownership, etc. This becomes
creasingly important in societies that undertake signific
efforts to target public money and effort to certain dem
graphic groups. As another example, one could find out fr
the simulation who is waiting before a bottleneck, whe
these persons come from and go to, and~again! what their
demographic characteristics are. Building a public tran
system to relieve the bottleneck will only be successful i
is actually an alternative for the people waiting at the bot
neck.

C. Computational performance

We present a performance diagram in Fig. 18, where
introduce the RTR versus the simulation time. The RTR
the ratio of the real time on the simulation time. This e
ample of simulation was executed on a SUN UltraSparc C
with 250 MHz where approximately 46 000 plans we
simulated in the whole Dallas–Fort Worth area. Figure
shows a ratio of 23 in the middle of the rush period, but
average the ratio is around 28. This clearly shows that si
lations like the one described here have enough comp
tional speed for thorough investigations of large scale tra
problems.

FIG. 13. Space-time diagram for Dirac traffic light,f green

50.9.
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IV. DISCUSSION

In the Introduction we argued that, because of congest
tools with a better representation of thedynamicsof trans-
portation systems are needed. This requirement can, at
in principle, be fulfilled by a microscopic approach, micr
scopic meaning here that each vehicle and each travele
individually resolved. Because of the complicatedness of
real world, analytical approaches here seem hopeless so
resorts to simulation.

On the other hand, we have also argued that, again
cause of congestion, one needs to consider much larger
poral and spatial scales than ever before. This, together
the requirement of a microscopic resolution, leads to a c
siderable computational challenge. In order to meet this c
lenge, one possibility is to use simplified models for t
transportation system dynamics that still have a microsco
resolution. Yet, these simplifications come at a price beca
some aspects of reality will be represented with a redu
fidelity. It is an important research problem to understand
consequencesof these simplifications. Note, though, that th
question needs to be answered on the level of the trans
tation planning questions that our model is meant for, an
is far from clear how certain microscopic simplifications a
fect that macroscopic behavior that is important for tho
questions.

As a result, it seems necessary to us to attempt to un
stand the advantages and problems of several different
plified microscopic models from both the microscopic a
macroscopic perspectives. As discussed in the Introduct
the model presented in this paper falls into a class of mod
that use ‘‘simplified link dynamics’’@9–12#. In the most ex-
treme case, vehicles are moved directly to the end of the
where they wait in a queue until they can leave the link. T
waiting conditions in the queue can be, for example, ti
constraints ~vehicle needs a certain amount of time
traverse the link!, capacity constraints~vehicles can only
leave at certain rate!, and space constraints at destinati
links ~destination links may be full!. Note that, in a more
realistic microsimulation, all these numbers would begener-
atedby the simulated dynamics instead of being included
calibration parameters. Also note that some aspects of
dynamics irrevocably get lost in the simplified models ev

FIG. 14. Flow vsf green.
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FIG. 15. Snapshot of the cas
study area at 7:00 am.
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with the best of all possible calibrations. Examples of this
the effects of signal phasing, of turn pockets, or of la
changing. All of these are certainly important on a mo
microscopic problem scale~such as traffic ‘‘operations’’!,
but it is unclear how important they are on the scale of tra
portation planning. And also remember that using a hig
realistic model sometimes is not an option, for example,
cause of computational restrictions or data collection rest
tions. In such cases, knowing the different limitations of d
ferent simplified models becomes crucial in order to se
the best one for a given question, or decide that the ques
cannot be answered with the available technology.

The model in this paper also uses capacity constraint
the end of the link~these are theptrans or f green parameters!,
but it attempts to capture some of the link dynamics, such
speed limits, limited ‘‘storing’’ capacity on jammed links, o
backtraveling ‘‘holes’’ in jammed situations, directly. Fo
this, it uses a one-lane representation of the traffic dynam
which is somewhere between a simple queue represent
and a realistic multilane implementation. Since a one-la
representation cannot carry the full throughput of a multila
road, this implies a subsampling of the population, i.e., o
a certain fraction of all travelers is used in the simulation

We have stressed several times in this paper that mi
scopic evaluations of different models are not enough; t
need to be evaluated in the context of transportation plann
questions. For the current model, such evaluations are u
way, but are beyond the scope of this paper. A paper
compares the performance of the microsimulation prese
in this paper with two other microsimulations and with fie
measurements in Dallas~Texas! is close to completion@27#;
further work using data from Portland~Oregon! is in prepa-
ration.

V. SUMMARY

‘‘Blockage’’ sites, i.e., sites that move particles or v
hicles only a fraction of the time, reduce the maximu
e
e

-
y
-
-

t
on

at

s

s,
ion
e
e
y

o-
y
g
er
at
ed

throughput of a link of cellular automata models for traffi
flow and particle movement studies. We have systematic
tested the effects of three different blockage schemes, w
one was the usual random draw, one was a regular tra
light with long red and green times, and one was what
called a ‘‘Dirac’’ traffic light because it had 1-sec spikes
one color. In general, there is no linear relation between

FIG. 16. Space-time plot of a particular link~Beltline Rd., an
east-west arterial in the northern part of the area! from 7:00 to 7:05
am ~left!, 7:30 to 7:35 am~middle!, and 8:00 to 8:05 am~right!.
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fraction of green time and the throughput. The Dirac traf
light returned the highest throughput; the explanation for t
is the ‘‘particle-hole’’ attraction that can be found in the typ
of cellular automaton that was used. Since none of the tim
schemes returns a totally linear relation, we used the ran
scheme in an implementation of traffic in Dallas. We show
some exemplary results of this implementation.

FIG. 17. Travel times vs departure time.
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FIG. 18. Real time ratio.
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