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Abstract

In a multi-agent transportation simulation, each traveler is represented individually. Such a simulation consists of at
least the following modules: (i) Activity generation. (ii) Modal and route choice. (iii) The traffic simulation itself.
(iv) Learning and feedback. In order to find solutions which are consistent between the modules, a relaxation technique
is used. This technique has similarities to day-to-day human learning.

Using advanced computational methods, in particular parallel computing, it is now possible to run such a
system for large metropolitan areas with 10 million inhabitants or more. This paper reports on such a simulation
system for of all of Switzerland. Our focus is on a computationally efficient implementation of the agent-based
representation, which means that in fact each agent is represented with an individual set of plans as explained above.
A database is used to store the agent’s strategies, which are loaded into the simulation modules as required; the
modules then feed back individual performance measures into the database. This approach allows additional modules
to be coupled easily, and without degrading computational performance.

The set-up was tested for Swiss morning peak traffic. Hourly demand matrices were taken from work with
the VISUM assignment package and converted to our needs. Routes were assigned via feedback learning using the
agent data base. In other words, the current implementation uses a car-only versions of the modules (ii), (iii), and (iv).
Resulting flow volumes are compared to the VISUM assignment results, and to field data.
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1 INTRODUCTION

Human transportation has physical, engineering, and socio-economic aspects. This last aspect means that any simula-
tion of human transportation systems has to include elements of adaptation, learning, and individual planning. In terms
of computerization, these aspects can be better described by discrete rules which are applied to individual entities than
by continuous equations which are applied to aggregated fields. In consequence a rule-based multi-agent simulation
is a promising method for transportation simulations (and for socio-economic simulations in general).

By a “multi-agent” simulation we mean a microscopic simulation that models the behavior of each traveler,
or agent, within the transportation system as an individual, rather than aggregating their behavior in some way. These
agents are intelligent, which means that they have strategic, long-term goals. They also have internal representations
of the world around them which they use to reach these goals. Such a simulation differs significantly from a micro-
scopic simulation of, say, molecular dynamics, because unlike molecules, two “traveler” particles (agents) in identical
situations within a transportation simulation will in general make different decisions.

Such rule-based multi-agent simulations run well on current workstations and they can be distributed on
parallel computers of the type “networks of coupled workstations.” Since these simulations do not run efficiently on
traditional supercomputers (e.g. Cray), the jump in computational capability over the last decade has had a greater
impact on the performance of multi-agent simulations than for, say, computational fluid-dynamics, which also worked
well on traditional supercomputers. In practical terms, this means that we are now able to run microscopic simulations
of large metropolitan regions with more than 10 million travelers. The simulations are even fast enough to run them
many times in sequence, which is necessary to emulate the day-to-day dynamics of human learning, for example in
reaction to congestion.

In order to demonstrate this capability and also in order to gain practical experience with such a simula-
tion system, we are currently implementing a 24-hour microscopic transportation simulation of all of Switzerland.
Switzerland has 7.2 million inhabitants. Assuming the national average of 3.6 trips/day (1), an average 40% share of
car, average 1.6 passengers/car, and a share of 30% of car trips under 3 km one obtains about 4.5 mio interzonal trips
within the country. The goal of our study is twofold:

� Investigate the computational challenges and how they can be overcome.

� Investigate what is necessary to make a simulation system realistic enough to be useful for such a scenario,
and how difficult this is.

This paper gives a report on the current status. Section 2 describes the simulation modules and how they were
used for the purposes of this study. Section 3 describes the input data, i.e. the underlying network and the demand
generation. This is followed by Sect. 4, which describes our main results, including a comparison to field data and
to an VISUM assignment result. Sect. 5 describes issues related to computational performance of the parallel micro-
simulation. Sect. 6 describes our experiences with TRANSIMS (TRansportation ANalysis SIMulation System), a
similar modular simulation system. The paper ends with a discussion and a summary.

2 SIMULATION MODULES

Traffic simulations for transportation planning typically consist of the following modules (Fig. 1):

� Population generation. Demographic data is disaggregated so that one obtains individual households and
individual household members, with certain characteristics, such as a street address, car ownership, or house-
hold income (2). – This module is not used for our current investigations but will be used in future.

� Activities generation. For each individual, a set of activities (home, going shopping, going to work, etc.)
and activity locations for a day is generated (3, 4). – This module is not used in our current investigations but
will be used in future.

� Modal and route choice. For each individual, the modes are selected and routes are generated that connect
activities at different locations (see Sec. 2.1). The routing should be dynamic in order to adequately model
time-dependent congestion effects.
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� Traffic micro-simulation. Up to here, all individuals have made plans about their behavior. The traffic
micro-simulation executes all those plans simultaneously (see Sec. 2.2). In particular, we now obtain the
result of interactions between the plans – for example congestion.

� Feedback. In addition, such an approach needs to make the modules consistent with each other (Sec. 2.3). For
example, plans depend on congestion, but congestion depends on plans. A widely accepted method to resolve
this is systematic relaxation (5, 6, 7) – that is, make preliminary plans, run the traffic micro-simulation, adapt
the plans, run the traffic micro-simulation again, etc., until consistency between modules is reached. The
method is somewhat similar to the Frank-Wolfe-algorithm in static assignment, or in more general terms to a
standard relaxation technique in numerical analysis.

This modularization has in fact been used for a long time; the main difference to earlier implementations is that it is
now feasible to make all modules completely microscopic, i.e. each traveler is individually represented in all modules.

Since this paper is a status report, not all of the above modules are currently implemented. This paper
discusses results obtained with a version of the simulation system that consists of car-only versions of the router, the
micro-simulation, and the feedback. These modules will be described in more detail in the following sections. It
should be noted that in particular the feedback system is unique in that it explicitely keeps track of many strategies of
each individual traveler. Most simulation systems assume either only one strategy per traveler, or they group travelers
together according to their characteristics, for example by common destination. Since the activity generation module
is currently not used, demand is obtained from traditional origin-destination matrices. This will be further discussed
in conjunction with the scenario, in Sec. 3.

2.1 Routing

Travelers/vehicles need to compute the sequence of links that they are taking through the network. A typical way to
obtain such paths is to use a Dijkstra shortest path algorithm. This algorithm uses as input the network link travel
times plus the starting and ending point of a trip, and generates as output the fastest path.

It is relatively straightforward to make the costs (link travel times) time dependent, meaning that the algorithm
can include the effect that congestion is time-dependent: Trips starting at one time of the day will encounter different
delay patterns than trips starting at another time of the day. Link travel times are fed back from the micro-simulation
in 15-min time bins, and the router finds the fastest route based on these 15-min time bins. Apart from relatively small
and essential technical details, the implementation of such an algorithm is straightforward (8). It is possible to include
public transportation into the routing (9); in our current work, we look at car traffic only.

2.2 Micro-Simulation

Our main micro-simulation is the queue simulation (10, 11). The intent with this simulation is to keep travel-
ers/vehicles microscopic and to have queue spillback, but apart from this to keep the simulation as simple as possible.
This is similar in spirit to traffic simulations based on the smooth particle hydrodynamics approach, such as DYNEMO
(12), DYNAMIT (13), or DYNASMART (14).

In the queue simulation, streets are essentially represented as FIFO (first-in first-out) queues, with the addi-
tional restrictions that (1) vehicles have to remain for a certain time on the link, corresponding to free speed travel
time; and that (2) there is a link storage capacity and once that is exhausted, no more vehicles can enter the link.

A major advantage of the queue simulation, besides its simplicity, is that it can run directly off the data typi-
cally available for transportation planning purposes. This is no longer true for more realistic micro-simulations, which
need, for example, the number of lanes including pocket and weaving lanes, turn connectivities across intersections,
or signal schedules.

2.3 Feedback

As mentioned above, plans (such as routes) and congestion need to be made consistent. This is achieved via a relax-
ation technique (5, 6, 7):

1. Initially, the system generates a set of routes based on free speed travel times.
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2. The new routes are stored in a database, called the “agent database” (15, 16), so that the travelers (“agents”)
may later associate the performance of the route to it, and may choose routes based on performance.

3. The traffic simulation is run with these routes.

4. Each agent measures the performance of his/her route based on the outcome of the simulation. “Performance”
at present means the total travel time of the entire trip, with lower travel times meaning better performance.
This information is stored for all the agents in the agent database, along with the route that was used.

5. 10% of the population requests new routes from the router, which bases them on the updated link travel times
from the last traffic simulation. The new routes are then stored in the agent database.

6. Travelers who did not request new routes choose a previously tried route from the agent database by compar-
ing performance values for the different routes. Specifically, they use a multinomial logit model

���������
	��
�

for the probability ��� to select route � , where � � is the corresponding memorized travel time. � was set
heuristically to �
��������� sec � to obtain a fraction of about 10% non-optimal users.

7. This cycle (i.e. steps (3) through (6)) is run for 50 times; earlier investigations have shown that this is more
than enough to reach relaxation (17).

The result is similar to a Stochastic User Equilibrium (SUE), but it is not the same. The main difference is that in an
SUE, the agents use a logit model with an externally specified noise parameter to select between options of different
performance, while in our system additional noise comes from the simulation, i.e. from the fluctuations between
iterations.

In fact, relaxation itself, in Item [7.], is not well defined in a mathematical sense. The intended meaning is
that, in the average, a relaxed system should not show any further development or drift. Since the system is stochastic
at many levels, the only way in which this could be mathematically achieved is in terms of a steady-state density.
If the system were Markovian, then the convergence to a steady-state density would immediately follow; the system
is however not Markovian because it can potentially enlarge its phase space at each iteration by finding new routes.
Alternatively, one could include all possible routes into the phase space definition. This system would be Markovian,
but 50 iterations would be by far too few to explore the phase space, let alone generating a steady state density.
Similarly, this enlarged system is ergodic in the sense of Cantarella and Cascetta (18), but that notion is not useful
for the relatively small number of iterations that we use. More precisely: Even systems that are formally ergodic can
remain in limited regions of the phase space for very long duration, certainly for much longer than for 50 iterations
(e.g. 19).

A related issue is the selection of the replanning fraction. A replanning fraction of 10%, as in Item [5.], is a
heuristic number that works well in practice. The important limiting considerations are: (i) Adaptation in this system
works by travelers finding improved solutions for the current situation. These new solutions will only then work better
than previous ones when the system behaves similar from one iteration to the next. This implies that the fraction of
the population changing its behavior should not be too large. In fact, for some simpler and deterministic systems one
can show that an infinitesimal best reply dynamics leads the system to a Nash Equilibrium (20). One could expect that
the situation for our system here is similar, although no formal proof is available. (ii) On the other hand, when the
replanning fraction becomes too small, then the relaxation process becomes too slow. For example, with a replanning
fraction of 1%, one will need at least 100 iterations until each traveler has obtained a new route once, and that will
probably not be enough.

Other methods, in particular the method of successive averages (MSA, see, e.g., Sheffi (21)) could be tried,
although MSA has a reputation, justified from a theoretical perspective, to display rather slow convergence. In addition,
some translation of MSA to a stochastic process would be necessary. For example, a traveler’s potentially mixed
strategy should be an average best response against the traffic pattern, and this is not necessarily the same as a best
response against the average traffic pattern. It is not immediately clear how to achieve an average best response without
a lot of averaging over many iterations (many more than 50).

In practice, however, Rickert (17) has looked at the sum of all travel times as an indicator for relaxation,
and has found that a system which was similar to ours did not display any further drift after about 25 iterations. This
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observation was confirmed by visual inspection of the traffic patterns. Bottom (7) has done a much more exhaustive
investigation into the same topic, with a similar result.

Note that all the above arguments imply that routes are fixed during the traffic simulation and can only be
changed between iterations. Work is under way to improve this situation, i.e. to allow online re-planning (22). –
Further investigation of relaxation and learning issues is planned.

3 INPUT DATA AND SCENARIOS

The input data consists of two parts: the street network, and the demand.

3.1 The Street Network

The street network that is used was originally developed for the Swiss regional planning authority (Bundesamt für
Raumentwicklung), and covered Switzerland. It was extended with the major European transit corridors for a railway-
related study (23). The network supposedly contains the status for 1999, but contains at least one major error (a
high capacity tunnel in Zürich is missing). Our initial simulations resulted in traffic gridlock in Zürich, which was
also reflected in the VISUM assignment displaying V/C ratios significantly above 100%. A manual comparison
with a higher resolution network of Zürich led to the conclusion that capacity in Zürich was in general significantly
underestimated; in consequence, we manually increased the corresponding road capacity for transit corridors through
Zürich in our network. We can only speculate what led to these network errors; Sec. 7 discusses our plans of how to
improve the situation.

After our modifications, the network has the fairly typical number of 10 564 nodes and 28 622 links. Also
fairly typical, the major attributes on these links are type, length, speed, and capacity. As pointed out above, this is
enough information for the queue simulation.

3.2 The “Gotthard” Scenario

In order to test our set-up, we generated a set of 50 000 trips going to the same destination. Having all trips going
to the same destination allows us to check the plausibility of the feedback since all traffic jams on all used routes
to the destination should dissolve in parallel. In this scenario, we simulate the traffic resulting from 50 000 vehicles
which start between 6am and 7am all over Switzerland and which all go to Lugano, which is in the Ticino, the Italian-
speaking part of Switzerland south of the Alps. In order for the vehicles to get there, most of them have to cross
the Alps. There are however not many ways to do this, resulting in traffic jams, most notably in the corridor leading
towards the Gotthard pass. This scenario has some resemblance with real-world vacation traffic in Switzerland.

3.3 The “Switzerland” Scenario

Our starting point for demand generation for the full Switzerland scenario are 24-hour origin-destination matrices
from the Swiss regional planning authority (Bundesamt für Raumentwicklung). Eventually, we intend to move on to
activity-based demand generation.

The original 24-hour matrix is converted into 24 one-hour matrixes using a three step heuristic. The first
step employs departure time probabilities by population size of origin zone, population size of destination zone and
network distance. These are calculated using the 1994 Swiss National Travel Survey (24). The resulting 24 initial
matrices are then corrected (calibrated) against available hourly counts using the OD-matrix estimation module of
VISUM (25). Hourly counts are available from the counting stations on the national motorway system. Finally, the
hourly matrices are rescaled so that the totals over 24 hours match the original 24h matrix.

VISUM assignment of the matrices shows that the patterns of congestion over time are realistic and consistent
with the known patterns. The Zürich congestion problem, mentioned above, is contained in the assignment, but did
not show up at this higher level view; see Sec. 7 for some discussion of this. A more detailed verification of these
results was not possible so far, but is planned.

These hourly matrices are then disaggretated into individual trips. That is, we generate individual trips such
that summing up the trips would again result in the given OD matrix. The starting time for each trip is randomly
selected between the starting and the ending time of the validity of the OD matrix.
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The OD matrices assume traffic analysis zones (TAZs) while in our simulations trips start on links. We
convert traffic analysis zones to links by the following heuristic:

� The geographic location of the zone is found via the geographical coordinate of its centroid given by the data
base.

� A circle with radius 3 km is drawn around the centroid.

� Each link starting within this circle is now a possible starting link for the trips. One of these links is randomly
selected and the trip start or end is assigned.

This leads to a list of approximately 5 million trips, or about 1 million trips between 6am and 9am. Since the
origin-destination matrices are given on an hourly basis, these trips reflect the daily dynamics. Intra-zonal trips are not
included in those matrices, as by tradition.

4 RESULTS

Figure 2 shows an example of how the feedback mechanism works in the Gotthard scenario. The figure shows two
“snapshots” of the vehicle locations within the queue-based micro-simulation at 9:00 AM. The first image in the figure
is a snapshot of the initial (zeroth) iteration of the simulation, and the second is the simulation after 50 iterations via
the agent database feedback system described in Sect. 2.3.

Initially the travelers choose routes without any knowledge of the demand (caused by the other travelers),
so they all use the fastest links, and tend to select very similar routes, which compose a subset of available routes.
However, by driving on the same links, they cause congestion and those links become slower than the next-fastest
links which were not selected. Thus, alternate routes which were marginally slower than the fastest route become, in
hindsight, preferred to the routes taken. By allowing some travelers to select new routes using the new information
about the network, and others to choose previously tried routes, we allow them to learn about the demand on the
network caused by one another.

After 50 iterations between the route selection and the micro-simulation, the travelers have learned what
everyone else is doing, and have chosen routes accordingly. Now a more complete set of the available routes is
chosen, and overall the travelers arrive to their destination earlier than in the initial iteration. Comparing the usage of
the roads, one can see that in the 49th iteration, the queues are shorter overall, and at the same time in the simulation,
travelers are, on average, closer to their destination.

Figure 3 shows a result of the Switzerland scenario during morning rush-hour. This figure is after 50 iterations
of the queue micro-simulation, using the agent database. We used as input the origin-destination matrices described
in Sect. 3.3, but only the three one-hour matrices between 6:00 AM and 9:00 AM. This means any travelers beginning
their trips outside this region of time were not modeled. As one would expect, there is more traffic near the cities than
in the country. Jams are nearly exclusively found in or near Zurich (near the top). This is barely visible in Fig. 3,
but can be verified by zooming in (possible with the electronic version of this paper, on the TRB CD-ROM or at
sim.inf.ethz.ch/papers/ch). As of now, it is unclear if this is a consequence of a higher imbalance between supply and
demand than in other Swiss cities, or a consequence of a special sensitivity of the queue simulation to large congested
networks.

Figure 4 shows a comparison between the simulation output of Fig. 3 and field data taken at counting stations
throughout Switzerland (see Sec. 3.3 and 26). The dotted lines, drawn above and below the central diagonal line,
outline a region where the simulation data falls within 50% and 200% of the field data. We consider this an acceptable
region at this stage since results from traditional assignment models that we are aware of are no better than this
(Fig. 4(b); see also (27)).

Figure 4(b) shows a comparison between the traffic volumes obtained by IVT using VISUM assignment
against the same field data. Visually one would conclude that the simulation results are at least as good as the VISUM
assignment results. Table 1 confirms this quantitatively. Mean absolute bias is ����� ����� �
	 ����
���� , mean absolute error is
��� �
� ����� ��	 ����
�� � � , mean relative bias is � ����� ����� �
	 ����
�� � ���
	 ����
���� , mean relative error is ��� ��� ����� ��	 ����
�� � ���
	 ����
���� , where
��� � means that the values are averaged over all links where field results are available.

For example, the “mean relative bias” numbers mean that the simulation underestimates flows by about 5%,
whereas the VISUM assignment overestimates them by 16%. The average relative error between the field measurement
and the simulation is 25%, between the VISUM assignment and reality 30%. These numbers state that the simulation



Raney,Cetin,Völlmy,Vrtic,Axhausen,Nagel 6

result is better than the VISUM assignment result; also, the simulation results are better than what we obtained with
a recent (somewhat similar) simulation study in Portland/Oregon (27); conversely, the assignment values in Portland
were better than the ones obtained here.

What makes our result even stronger is the following aspect: The OD matrices were actually modified by a
VISUM module to make the assignment result match the counts data as well as possible. These OD matrices were
then fed into the simulation, without further adaptation. It is suprising that even under these conditions, which seem
very advantageous for the VISUM assignment, the simulation generates a smaller mean error.

5 COMPUTATIONAL ISSUES

Computational issues are discussed in detail in two separate papers (11, 16). The two main results from those investi-
gations are:

� Using a Pentium cluster with 64 CPUs and Myrinet communication, the queue simulation on the 6-9 scenario
runs nearly 200 times faster than real time. Although demand stops coming in at 9am, traffic is simulated
until noon, which results in about 4 min of computing time for the queue simulation.

� The feedback algorithm, including re-routing and agent database operations, takes roughly 45 min. This is
clearly the bottleneck of the current approach; better implementations are under investigation.

In summary, an iteration using our current implementation takes less than one hour. Running fifty iterations thus takes
about two days.

6 EXPERIENCES WITH TRANSIMS (VERSION 1.0)

Before programming our own modules as explained above, we attempted to use TRANSIMS. The TRANSIMS version
that we used is numbered 1.0 and was made available in fall 1999. Our experiences were as follows:

Porting TRANSIMS to our own computational environment was straightforward. Using our own input files
was relatively straightforward, but hindered by the fact that errors in input files – such as a forgotten tab – caused the
simulation to crash without a meaningful error message. In consequence, one had to find the cause of the problem via
manual trial and error.

Computational speed of the microsimulation without tuning was ten times faster than real time for our Swiss
network with 28 622 links; with tuning it was about 65 times faster than real time. Both values refer to a Beowulf
clusters with 32 Pentium CPUs with 800 MHz, and 100 Mbit Ethernet. The latter performance value is about half the
theoretical limit, which is given by Ethernet latency (28, 11).

A major problem was (and is) the availability and conversion of digitally available input data that meets
TRANSIMS’s needs. As is typical, our input files come from static assignment, and thus contain as link attributes
length, free speed, and capacity. The number of lanes can be inferred from the street category and capacity, but
information such as intersection prioritization, signal phases, or lane connectivity, were missing. A typical problem is
of the type that two one-lane streets, connecting into a two-lane street, will both connect into the same lane, leading
to much reduced capacity and thus spurious bottlenecks when compared to reality or to static assignment. According
to recent information (Lamba, at PriceWaterhouseCoopers, personal communcation), such conversion tools exist for
newer versions of TRANSIMS. Also, PTV (25) reports similar conversion tools from VISUM to VISSIM.

Using routing and feedback was essentially straightforward, except for the fact that the results of the Gotthard
scenario never were plausible: Contrary to expectation, the different queues leading to the single destination never
came close to equilibration (Fig. 5). It was finally discovered that there was a bug in the way link travel time feedback
was handled: the link travel time reporting allocated the times to the wrong links. More technically, indices were
shifted by one in the process, and so travel times for the � th link in the file were assigned to the ��� � st link in the
router. Personal communication with the TRANSIMS team resulted in the information that there were more bugs in
the router both in version 1.0 and in version 1.1. Version 3.0 now available (www.transims.net) has not been evaluated
in the context of this study.
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7 DISCUSSION AND FUTURE PLANS

7.1 Modules

This paper describes one possible implementation of a large-scale agent-based simulation package for regional plan-
ning. As was repeatedly pointed out, the approach is modular and extensible. In order to test the modularity, replacing
one or more modules by alternative ones is desirable. In the following, this is discussed on a module-by-module basis.

Traffic Micro-Simulation The queue simulation has its limitations, for example with respect to complicated in-
tersections, inhomogeneous vehicle fleets, queue dissolution, interaction between different modes of transportation,
etc. These limitations will be difficult or impossible to remove within the method of the queue simulation approach.
Therefore it seems desirable to move beyond the queue simulation to a more realistic traffic simulation. Besides being
more realistic, this simulation should fulfil the following criteria in order to be consistent with our approach: It should
be able to process travelers with individual plans; and it should be computationally fast. There are currently few traffic
simulations which fulfill these criteria simultaneously. The TRANSIMS microsimulation is one of them. As discussed
above, with the emergence of useful network conversion tools, this may become a viable option. Note that including
the micro-simulation into our set-up would still be different from using the full TRANSIMS suite.

Router Our current router computes car-only fastest paths, without regard for alternative cost functions (such as
monetary cost, familiarity, scenic beauty, etc.), and without regard for alternative modes. Again, an option would be
to use the multi-modal TRANSIMS router as a single module within our set-up. This will, as discussed above, depend
on functionality.

Yet, having the fastest path, even if multi-modal, does not solve all problems. In practice, people often do
not use the fastest path, or there are stochastic influences, or the path depends on which part of a network they know
(mental map). Maybe somewhat unexpectedly, it is rather difficult to construct non-optimal solutions to the routing
problem (e.g. 29).

Activity generation The above results use traditional origin-destination tables for demand generation. We intend
to move our investigations to activity-based demand generation. One method will be based on discrete choice theory,
one on genetic algorithms.

A fair amount of Swiss traffic is cross-border traffic, either with origin or destination in Switzerland, or
completely traversing the country. Also, freight traffic would not be included in a first version of activity-based
demand generation, which would concentrate on people. It is planned to include all these effects by conventional
origin-destination matrices, i.e. via some “background” traffic that will be able to adjust routes (and maybe starting
times) but will not be elastic in terms of number of trips.

Feedback The use of the agent database in the feedback mechanism works well, but needs tuning. Both computa-
tional speed and the learning behavior of the system are an issue. The computational speed issues are addressed via a
combimation of database performance tuning and consolidating the current script-based approach into one program.
The methodological questions will be addressed via an examination of established learning methods (such as best
reply or reinforcement learning).

Another shortcoming of the current method is that replanning can happen only over night. Work is under
way to improve this situation via an online coupling between modules, which will allow within-day replanning (22).
We explicitly want to avoid coupling the modules via standard subroutine/library calls, since this both violates the
modular approach idea and efficiency considerations for parallel computing.

Even with day-to-day replanning only, many problems remain. It was pointed out in this paper that the use of
an agent data-base, i.e. the memorization of more than one strategy for each agent, solves some conceptual problems.
However, even if one assumes that one is capable to generate a set of plausible strategies, the question becomes which
of those to select. The standard logit approach of � ��� � 	�� � , where

� � is the utility of option � , has, as is well known,
the so-called IID property (“independence from irrelevant alternatives”). IID essentially means that strategies should
not be related. As an extreme example, assume that the agent-database contains three strategies for an agent, two of
which are nearly the same. IID says that each strategy will be selected with a probability of 1/3, while it would be
plausible that the nearly identical strategies are selected with a probability of 1/4 each, and the third, truly different
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strategy with a probability of 1/2. Alternatives to standard multinomial logit are C-logit or pathsize logit, which
remove some of these problems (30).

7.2 Other

It was mentioned above that there was a serious gridlock problem within the city of Zurich. This was attributed to
generally too low network capacities. Unfortunately, this intuition is difficult to check. It is clear that, with the input
data that was at our disposal, there was a mismatch between demand and network capacity. Also, the same method
worked everywhere else in Switzerland. We can only think of three reasons: (i) there was a demand overestimation in
the OD cells for Zurich; (ii) there was a capacity underestimation in the network data; (iii) our queue micro-simulation
is overly sensitive to gridlock and this problem shows up only for large congested networks. Unfortunately, there is no
other similarly large metropolitan region inside Switzerland; the metropolitan regions of Lugano, Geneva, and Basel
extend across the border and therefore cannot be simulated realistically with our available demand data.

It should be noted that simulations with hard capacity and storage constraints are generically much more
sensitive to capacity mismatches than static assignment. In static assignment, an overloaded link (with volume higher
than capacity) will just be unattractive for the routing, but it will forward the requested steady state flow nevertheless.
In a simulation with hard constraints, a queue will form upstream of such a bottleneck, and it will spill back into the
rest of the system.

Our plan to solve this problem and to also advance towards more microscopic representation is to include
a higher resolution network for the region around Zurich. This network will have considerably more links, possibly
leading to a higher network capacity because of the addition of secondary capacity. That network should be a lot more
reliable in terms of realism and thus eliminate one of the sources of errors. In addition, adding other choices into the
model (mode, destination, activity pattern) should also dampen the adverse effects of demand-capacity mismatch.

Finally, it is necessary to point out the necessity of regression testing and “trusted components”. The bug
in the TRANSIMS feedback setup was found after rather a lot of manual work, and it was only found because of
the specific testing set-up. In many “normal” scenarios, such as our 6-9 scenario, there is a good chance that the
problem would have gone unnoticed for a much longer time. The major concern is however that a problem may get
fixed, but then, with further changes, some new problem may appear. It is therefore desirable, albeit awkward, to
consider systematic regression testing in the community of large scale microscopic simulation. Regression testing
means systematic test suites which are run every time the software is changed, and which ensure that previously
working functionality is not degraded by later changes in the code. Trusted components means that possibly certain
pieces of a software, maybe after a formal proof of their correctness, should be completely removed from further
changes – all improvements then need to be done via transparent object-oriented interfaces. It is unclear if one can
reconcile such an approach with the desire for flexibility in a research environment.

8 SUMMARY

In terms of travelers and trips, a simulation of all of Switzerland, with about 10 million travelers (including freight tran-
sit), is comparable to a simulation of a large metropolitan area, such as London or Los Angeles. It is also comparable
in size to a molecular dynamics simulation, except that travelers have considerably more “internal intelligence” than
molecules, leading to complicated rule-based instead of relatively simple equation-based code. Such multi-agent sim-
ulations do not run well on traditional vectorizing supercomputers (e.g. Cray) but run well on distributed workstations,
meaning that the computing capabilities for such simulations have virtually exploded over the last decade.

This paper describes the status of ongoing work of an implementation of all of Switzerland in such a sim-
ulation. The whole simulation package consists of many modules, including the micro-simulation itself, the route
planner, and the feedback supervisor which models day-to-day learning. A single destination scenario is used to verify
the plausibility of the replanning set-up. A result of a morning peak-hour simulation of all of Switzerland is shown, in-
cluding comparisons to field data from automatic counting stations. These results are shown to be better than VISUM
assignment model results when compared to the same field data. This is in fact somewhat surprising, since the OD
matrices were adapted by a VISUM module to make the assignment result match the counts data as well as possible.

However, the really big advantage of the multi-agent approach is that it is theoretically justified even under
dynamic and congested conditions, and for that reason is extensible even under those condtions. This makes it possible
to integrate aspects such as dynamic activity-based demand generation into the framework. Our expectation is that



Raney,Cetin,Völlmy,Vrtic,Axhausen,Nagel 9

this new technology will allow the introduction of many important aspects, such as time-dependent elastic demand or
analysis of multi-functional land-use patterns, into the methodology while maintaining or even improving the level of
realism.
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FIGURE 1: TRANSIMS Modules
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FIGURE 2: Example of Relaxation Due to Feedback. TOP: Iteration 0 at 9:00 – all travelers assume the network
is empty. BOTTOM: Iteration 49 at 9:00 – travelers take more varied routes to try to avoid one another. Red (dark
gray in b/w version) indicates jams, green (dark gray in b/w version) indicates free-flowing traffic, and gray indicates
empty roads.



Raney,Cetin,Völlmy,Vrtic,Axhausen,Nagel 14

N

08:00it.50

FIGURE 3: Snapshot of Switzerland at 8:00 AM. From the queue micro-simulation, iteration 50.
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FIGURE 4: Comparison to Field Data. (a) Simulation vs. field data for the 50th iteration. The x-axis shows the
hourly counts between 7am and 8am from the field data; the y-axis shows throughput on the corresponding link from
the simulation. (b) VISUM assignment vs. field data. The x-axis is the same as (a); the y-axis shows the volume
obtained from the assignment model.
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FIGURE 5: TRANSIMS Results for the Gotthard Scenario. TOP: Initial iteration. BOTTOM: After 50 itera-
tions. This should be compared to Fig. 2. The visible differences between the TRANSIMS simulation and our queue
simulation in the initial simulation based on the same plans are small (TOP in both figures), indicating that the micro-
simulations generate similar traffic patterns. However, the bottom figures are rather different; traffic in Fig. 2 spreads
out much more across the network. Further analysis of the pattern shows that Fig. 2 contains the better pattern in
the sense that travel times between different routes are much more equilibrated. As described in the text, the reason
why TRANSIMS (Version 1.0) fails at this scenario is because of a bug in how the router reads link travel times. The
different shades of green (color version) or gray are due to the different internal representation of driving dynamics
between the TRANSIMS micro-simulation and the queue simulation, and are not important at this level.
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TABLE 1: Bias and Error of Simulation and VISUM Results Compared to Field Data
Simulation VISUM

Mean Abs. Bias: � 64.60 � 99.02
Mean Rel. Bias: � 5.26% � 16.26%
Mean Abs. Error: 263.21 308.83
Mean Rel. Error: 25.38% 30.42%


