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Abstract

The TRANSIMS (TRansportation ANalysis and SIMulation Sys-
tem) project at the Los Alamos National Laboratory attempts
to model all aspects of human behavior related to transportation
in one consistent simulation framework. Input to TRANSIMS
are transportation infrastructure data, demographic data, land-
use data, and knowledge about human decision-making. Output
data are any set of traditional or non-traditional measures of
effectiveness (MOESs) that one could obtain from a second-by-
second knowledge of the transportation system.

The key to TRANSIMS is a completely microscopic simula-
tion of the travelers. Demographic data is disaggregated into
synthetic individuals; these individuals make plans about their
activities (work, sleep, eat, etc.) and how they intend to get
their; finally, a realistic transportation microsimulation executes
all plans simultaneously and thus computes the interactions be-
tween plans, for example resulting in congestion. Iterating be-
tween plans-making and plans-execution (the microsimulation)
simulates day-by-day learning.

This text gives an overview of the current status of TRAN-
SIMS, as well as pointers to detailed studies that have been done
using it.



1 Introduction

In the context of urban planning it would be useful to have a com-
putational tool that evaluates transportation consequences of urban
evolution scenarios. The anticipated urban structure, including antici-
pated demographic data and anticipated transportation infrastructure,
could then be fed into a computer, and the computer would calculate
the resulting traffic. Maybe the tool would even have a virtual reality
component, enabling one to zoom to one’s home and count the number
of passing cars during the rush hour (e.g. Fig. 1). Clearly, such a tool
should include the effects of “induced” traffic, i.e. the observation that
lower congestion levels encourage people to more travel; the tool should
be able to say something about the variability of traffic; and it should
be capable of incorporating new technology, such as telecommuting or
telematics systems.

The problem of induced traffic makes clear that transportation is
not a simple infrastructure problem, where to find a good or optimal
solution to move a given demand, but a problem where individual peo-
ple’s values and preferences play an enormously important role. In
consequence, any quantitative technique needs to be able to represent
aspects of human decision-making. The problem thus becomes as much
a problem of (computational) social science as one of engineering.

The TRANSIMS (TRansportation ANalysis and SIMulation Sys-
tem) project at Los Alamos National Laboratory (TRANSIMS,1999)
is an attempt to build such a tool. The key to the TRANSIMS design
is that it is completely microscopic, which means that it keeps track of
individual travelers throughout its modules. Similarly, elements of the
transportation infrastructure, such as intersections, traffic lights, turn
pockets, etc., are represented microscopically.

In TRANSIMS, each traveler is a computational agent. Agents
make plans about what to do during a day — in order to get from one
activity location to another, agents can, for example, walk, use bicy-
cles, drive cars, or use busses. Eventually, all plans are simultaneously
executed in a micro-simulation of the transportation system.

In principle, this leads to a straightforward simulation approach
(see Fig. 2): Derive synthetic households from demographic data and
locate them on the network; use the demographic information together
with land use information to derive activities (working, sleeping, eating,
shopping, etc.) and activities locations for each household member;
and let agents decide about mode and routing for their transportation.
So far, all these are plans, i.e. intentions of the simulated individuals.



These plans can then all be fed into a realistic transportation micro-
simulation, which can be used as the basis for analysis, such as emissions
calculations.

The advantage of such a microscopic approach is that, at least con-
ceptually, it can be made arbitrarily realistic. This makes it possible to
include dynamic effects such as queue spillover, which are sometimes
hard to represent in traditional methods. It also makes it possible
to include new and perhaps unanticipated technology at a later time.
For example, the whole architecture of ITS (Intelligent Transportation
Systems) can be mirrored by a careful software implementation.

Yet, there are also several disadvantages, some of them being;:

(i) Size of the problem: Metropolitan regions typically consist
of several millions of travelers. Executing a second-by-second trans-
portation micro-simulation on a problem this size within reasonable
computing time is only possible with the use of advanced statistical
and computational techniques.

(ii) Behavioral foundation: We are far from understanding hu-
man behavior. For that reason alone, we are unable to predict the
behavior of individual travelers. However, there seems to be a realistic
chance that the macroscopic (emergent) behavior that is generated by
thousands or ten-thousands of interacting individuals is considerably
more robust than the behavior of an individual agent. This would be
similar to Statistical Physics, where the trajectory of a single particle
is unpredictable, yet, useful macroscopic properties of gases such as
equations of state can still be derived.

(iii) Consistency problem: The approach outlined above is not
as straightforward as it sounds because the plans depend on ezpecta-
tions about traffic conditions during execution. For example, if a person
expects congestion, he or she may make different plans than when no
congestion is expected. Yet, congestion occurs only when plans interact
during their simultaneous execution. In short, plans depend on con-
gestion, but congestion depends on plans. — This logical deadlock is
not unknown in economic theory and is traditionally overcome by the
assumption of rational agents. Both with and without the assumption
of rationality, this problem of consistency between plans and micro-
simulation makes the computational challenge even bigger.

(iv) Robustness: Any approach to a problem needs to have re-
producibility of the results under a wide enough range of changes, or
otherwise the results are useless for practical purposes.

In the remainder of this paper, we want to give information on how



the basics of such a transportation simulation can look like. Because of
our own experiences, we will focus on the TRANSIMS project; however,
there are other projects in this area (e.g. FVU-NRW, 1999).

2 TRANSIMS Modules

Disaggregation of demographic data — The idea behind the TRAN-
SIMS approach is that it simulates individual travelers. However, the
typically available demographic input data is aggregated over geograph-
ical zones. The synthetic population generation module (Beckman et al,
1996) of TRANSIMS generates instances of stochastic populations. The
synthetic population can include information about household member-
ship, home location, income, vehicle availability, etc.

Generation of individual plans — In TRANSIMS, agents make
plans about their daily behavior. Individual characteristics of the
agents (e.g. income, car ownership) are used together with land use
information to derive activities (working, sleeping, eating, shopping,
etc.) and activity locations for each individual agent. This can for
example be done via complicated activities models with hundreds of
free parameters obtained from the estimation of surveys (e.g. Bowman,
1998), or via simplified “toy” models for research purposes (e.g. Esser
and Nagel, 1999). Such models should include activity location because
that is where the travel demand is derived from.

Activities at different locations need to be connected by transporta-
tion. Synthetic travelers need to select their modes (walk, drive, tran-
sit, etc.), and their routes. Again, the methods can range from simple,
Dijkstra-type fastest-path algorithms (Jacob et al, in press) to sophisti-
cated formal language constrained path problems (Barrett et al, 1997).

The result of the plans generation module is a file, which contains,
for each agent in the simulation, the blueprint for the day, including
all planned activities and their locations, and a detailed description
(including information such as the route or the bus lines) of how she/he
plans to get from one activity to the next.

Micro-simulation — All agents’ plans are executed simultaneously
in a transportation micro-simulation. This is the only place where in-
teractions between agents are actually computed. Micro-simulations,
too, can reach from relatively simple queue models (Simon and Nagel,
1999) to arbitrarily realistic implementations (e.g. Krauss, 1997; MIT-
SIM, 1999); the currently maybe most realistic implementation that
still fulfills the computing requirements is based on a cellular automata



technique for car following and lane changing, enhanced by additional
rules for elements such as signals, unprotected turns, turn pockets and
weaving lanes, etc. (Nagel et al, 1997).

Analysis — Such scenarios can be analyzed in detail in any way one
wishes. Note that, because of the nature of the microscopic approach,
all microscopic variables are still accessible at this stage. For example,
information can be separated out by income of the travelers, by trip
purpose, by age, etc. Since one can run the simulations for different
alternative scenarios regarding the transportation infrastructure, it is
straightforward to for example consider the effects of certain infras-
tructure alternative on certain sub-populations (Beckman et al, 1997;
see Fig. 3). Also, since driving is —at least in principle— realistically
modeled, vehicular emissions can be calculated (Williams et al, 1998).

3 Feedback and re-planning

As stated in the introduction, for recurrent situations such as rush-hour
traffic, the conditions ezpected during plans-making need to be consis-
tent with conditions encountered during the execution of the plans. If
they are not consistent, people are likely to change their plans. For
example, if congestion turns out to be much worse than expected when
the plans were made, people may drop less important destinations from
their trip. That means that a situation where expected conditions are
not consistent with conditions during execution are transient. Since we
are currently interested in “average” (i.e. non-transient) results, such
inconsistency is undesirable.

Yet, when the plans are made for the first time, no information
about the resulting dynamics is available. This is true both for models
and for reality. In our simulations, we currently solve this problem by a
relaxation method, i.e. by iterating between the plans-making modules
and the micro-simulation until expectations during plans making and
conditions during plans execution are consistent (Nagel and Barrett,
1997; Rickert, 1998; Rickert and Nagel, 1998; Esser and Nagel, 1999;
see Fig. 4). ,

One should note here that there are many questions that need to be
answered for such an approach. For example: What are good indicators
of relaxation? Do different initial conditions and/or iteration schemes
lead to different relaxed states (“path dependence”)? If not, can one
speed up the relaxation process? Is reality at all similar to the relaxed
state obtained with this methodology? If not, is there a method that is



closer to how humans behave that yields better results? Some results
concerning these questions can be found in our publications (Rickert,
1998; Rickert and Nagel, 1998; Nagel and Barrett, 1997; Nagel et al,
1998c; Kelly and Nagel and Kelly, 1998). The most important ones are
maybe that (i) we never encountered a situation where the relaxed state
was path dependent, and that (ii) we indeed found relaxation schemes
that were significantly faster than others. Note that stochasticity is
probably very important for (i).

4 Credibility of results

In order for model results to be useful, they need to be credible. But
how can credibility be established? In principle, one should apply the
model to a wide range of forecasting scenarios, and build trust over time
by demonstrating to which extent the forecasts turn out to be correct.
Yet, this approach is made difficult for planning applications because
of 20-year forecasting horizons and also because of the stochasticity of
the problem.

Because of the 20-year problem, people generally resort to “forecast-
ing” today’s traffic using the same input data they would have for a
20-year forecast (see Nagel et al, 1998a, for such a study in the TRAN-
SIMS context). Even then, the stochasticity problem remains, meaning
that one would have to generate a distribution of scenarios and compare
them against a distribution of field measurements.

If one finds that the model forecasts deviate from the field mea-
surements, it becomes important to find out the reason for this. The
straightforward way to resolve this — to test each individual module
of the model package — is again difficult for transportation planning
applications since field data for sufficiently controlled situations is hard
to obtain. What is thus necessary is to replace modules by other ones
and check if results get better or worse.

We have done exactly these studies for the microsimulation module
of TRANSIMS (Nagel et al, 1998¢c, Nagel et al, 1998a). The overall
result was that changing the micro-simulation did not lead to huge
changes in the results. This indicates that, in first order, deviations
from reality were probably not caused by the details of the micro-
simulation technology, but rather by the demand generation or by the
routing. Near-term research in this area should therefore probably
focus on the latter.



5 Computing

The current computing requirements for TRANSIMS reach from signif-
icant to enormous. For example, a so-called queue model microsimula-
tion (Simon and Nagel, 1999) on the 20 000 link network that Portland
(Oregon) uses for EMME/2 studies runs more than 30 times faster than
real time on a single Pentium CPU, even with 70000 vehicles simul-
taneously in the simulation. Running from 4am to noon would thus
take 15 minutes of computer time. However, it is necessary to run
this at least 50 times until a solution is reached where both routes and
activities are sufficiently relaxed (Esser and Nagel, 1999). Neglecting
computer time for re-planning, this results in a computer time of more
than 12 hours — feasible, but still significant.

Now, when using a more realistic simulation (the TRANSIMS micro-
simulation) and a more complete network of 200000 links, the comput-
ing speed drops to four times faster than real time even on a super-
computer with 256 CPUs (Nagel et al, 1998b). If one is interested
in a 24-hour period, running the 50 iterations would now take more
than 12 days of continuous computing, and remember — this was on a
supercomputer.

In conclusion, although it is now possible to run transportation
microsimulations of enormously large problems, the computing aspects
are still challenging and demand a knowledgeable use of the available
technology.

6 Summary

An agent-based simulation approach to transportation is possible with
current technology, although it is still a significant computational chal-
lenge, especially when one strives for a realistic representation of the
outside world. It is possible to break up the problem into modules for
“population generation”, “activities plans generation”, “transportation
plans generation”, “micro-simulation, and “analysis”. The computa-
tional challenge stems from the necessity to simulate realistic second-
by-second driving of metropolitan regions with many millions of travel-
ers. It is made even harder by the fact that the micro-simulation needs
to be run many times so that the plans from the plans generation mod-
ules can relax towards “consistency” with the micro-simulation.
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Figure 1: Zoomed-in snapshot of a micro-simulation run.
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Figure 2: Modules of an agent-based simulation approach to trans-

portation.
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Figure 3: Example output of a case study. The curves show an average
speed in a study area as a function of time. Clearly, speeds start
out high, then drop during the rush period, and recover afterwards.
Different lines denote results for different transportation infrastructures
that were compared in the study. From Beckman et al, 1997.
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route 1

workplace A
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Figure 4: Example of re-planning. The traveler first drives to work-
place A via route 1. Eventually, he/she decides to switch to a suppos-
edly better route 2. Again later, he/she decides that this results still
in too much driving time, and moves to a different workplace B closer
to home. The street network shows Portland/Oregon. The example is
taken from an actual feedback series (Esser and Nagel, 1999).
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