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ABSTRACT — New fast transportation micro-simulations make it possible to implement systematic com-

putational feedback between travel demand generation (activities generation), route assignment, and a trans-
portation simulation (network loading) while keeping a microscopic resolution throughout the whole process.

Microscopic means that each agent (traveller) is represented microscopically. This report describes an imple-
mentation of such a computational feedback of micro-simulation results into the activities generation. The

assignment of workplaces to home locations is used as an example. The workplace assignment is done in a
way that the computation self-consistently finds a solution which reflects the trip time distribution from the
census for home-to-work trips. Since the results of this can be expected to be reminiscent of the morning

traffic, our resulting hourly volumes are compared with field data in Portland/Oregon and also with results of
an earlier modelling study done by the Portland Transportation Planning Organization which uses more tradi-

tional methods. We find our results encouraging, especially when taking into account the relative simplicity of
our assumptions.
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1 INTRODUCTION

Several groups are developing simulations which can microscopically simulate whole metropolitan areas in

faster than real time (e.g. DYNAMIT, 2000; MITSIM, 2000; Mahmassani et al, 1995 (DYNASMART); Rick-
ert, 1998 (PAMINA); Gawron, 1998 (LEGO); Rakha and Van Aerde, 1996 (INTEGRATION); Esser, 1998

(OLSIM) ). By “microscopic” we mean that each traveller is individually resolved. Thus, if one can gener-
ate detailed travel plans for each individual, these simulations can execute these plans, while recording for

example where conflicts in the form of congestion delay the plans.

In consequence, it is only a question of time until it will be easy to couple such models with models of

travel demand generation, as has been demanded for many years (e.g. Axhausen, 1990). Such a coupling will
probably include a modal-choice-and-routing module (“router”), and it will do systematic feedback iterations

between all the modules. That is, the results of the micro-simulation will be fed back into the router again and
again until some relaxation with respect to route choice is obtained, and then the result will be fed back into
the activities generation module, which will generate new activities which now take into account the slower

speeds in the network caused by congestion.

In this paper, an early implementation of such a computational feedback of the microsimulation into the ac-
tivities module is demonstrated. In fact, practitioners have often done some version of such a feedback, by
adjusting origin-destination matrices in order to move the volume counts of the assignment model closer to

reality. There are also computational procedures with respect to assignment models (e.g. Metaxatos et al,
1995). What will be done here is use such a computational procedure in connection with an explicit traffic

microsimulation. We will however simplify in several ways: Cars will be used as the only mode, travel from
home to work will be the only demand, and the traffic micro-simulation is rather simplified. The simulation

will be iteratively adjusted towards the census trip time distribution. This is an early step, and we expect much
progress in the near future. In particular, we expect that transportation microsimulation, where each traveller
is individually resolved, will lend itself much better to integration with activity-based demand generation than

the aggregating technique of traditional assignment does. Although the focus of our work was the compuration
integration of dynamic traffic assignment with demand generation, we will compare our results with existing

volume counts in the Portland/Oregon area.

The structure of the paper is as follows: In Sec. 2, the problem is stated, followed by a description of our

approach with respect to demand generation and feedback (Sec. 3). After a discussion of related work (Sec. 4),
the paper moves on to our actual study (Sec. 5) and its results (Sec. 6). The paper is concluded by a discussion

and a summary.

2 PROBLEM STATEMENT

In general, we want to generate “realistic traffic” via computer simulation. Thus, our ultimate research goal

is to have a model which, when applied to today’s situation, will yield today’s traffic, and when applied to



a hypothetical scenario, will yield a meaningful prediction. In our actual implementations, however, we (as
everybody else) make simplifications. We are, however, not interested in optimal solutions of the simpli-

fied problems; our interest is how close to reality we can get with our simplified models and computational
procedures.

We envisage that such a realistic computer simulation will be a combination of population generation, activities
generation, routes assignment, and traffic micro-simulation, coupled via feedback iterations. So what is done
in the following is to pick (simple) versions of these modules, embed them into feedback iterations, and try

this on real world input data. The research question was twofold: (1) What are the computational issues? (2)
How close to reality (or not) does one get with simple assumptions?

The question of the necessary degree of realism in each of these modules is an open problem which will
need further research. That question is not treated in this paper. We do not claim that the degree of realism

(or not) chosen in any of the modules used for our investigation is the correct degree of realism in order to
obtain meaningful results. In particular, we expect that more sophisticated demand generation techniques

(e.g. Bowman, 1998; Doherty and Axhausen, 1998; Arentze et al, 1998) will lead to more realistic results. We
do expect, however, that a systematic inclusion of transportation network impedance, as demonstrated in our

study, will contribute to better and more robust models.

The problem for this paper is how to assign workplace locations to workers via using computer simulation. It

is known from data where people live, and it is also known where they work, but one has to match these two
sets of data. The problem is similar to the trip distribution step in the four step process. In the work described

here, this is done via some strongly simplified assumptions. One of these simplifications is to only look at
traffic resulting from people driving from home to work. By this one neglects, for example: delivery trucks,
people returning from night shifts, travelers using alternative modes of transportation, etc. There is also much

more complexity in the afternoon peak than in the morning peak. Again, our investigation is a demonstration
of a computational procedure, not an attempt to obtain the most possible realistic results for a certain field

problem.

Having said that, let us describe our scenario. Our scenario area is Portland in Oregon. Our input data are: (a)

a description of the Portland transportation network; (b) a synthetic population based on Portland demographic
data; (c) a list of workplaces including location and size; (d) the distribution

����������	�

of actually encountered

trip times
	

from home to work by the Portland population; and (e) a distribution of starting times. The
problem for this study was to match workers (who have home locations) and workplaces such that the resulting

traffic yields trip times which, when aggregated, match the census trip times.3

3Since the whole travel of each traveller in our simulation consists of exactly one trip, “trip time” and “travel time” will be used
synonymously.



3 OUR APPROACH

The approach that is maybe closest to our work are the discrete choice models (Ben-Akiva and Lerman, 1985).

As is well known, in that approach the utility ��� of an alternative � is assumed to have a systematic component� � and a random component ��� . Under certain assumptions for the random component this implies that the

probability ��� (called choice function) to select alternative � is

�	��
����� ����� � 
������ ����� �����
�

��

(1)

�	� could for example represent the probability to accept a workplace that is � seconds away. If � is indeed taken

as time, then
� � is negative, and it follows an inverse S-shaped curve which starts at zero, decreases slowly for

small times, decreases faster for medium times, and decreases again slowly for large times (Bowman, 1998).

By this approach, our above location choice problem would be solved by weighting each given workplace
according to time-distance � by ��� and then making a random draw in these probabilities. Clearly, for the

discrete choice approach one needs to know the function
��� � .

In this paper, the “psychological” function
��� � is obtained from “observed” trip time distributions, using new

methods of micro-simulating large geographical regions. The core idea is that an observed trip time distribution���! ��" 

can be decomposed into an accessibility part

�$# � � ��" 

and an acceptance ( 
 choice) function % ��& ��" 


�'�! ��" 
 
 ��# � � ��" 
 % ��& ��" 
(� (2)
�)# � � �*" 


is the number of workplaces at time-distance
"
; % ��& �*" 
 is proportional to the probability that a prospec-

tive worker will accept this trip time. Thus, apart from normalization % ��& is the same as the choice function
in discrete choice theory. Our decomposition allows to separate the network specific accessibility distribution�)# � � �*" 


from the “psychological” trip time acceptance function. In principle, % ��& �*" 
 as found via our relaxation

method should be the same as when obtained via an estimation of a survey when suitably averaged over the
whole population.

Given a micro-simulation of traffic,
�+# � � ��" 


can be derived from the simulation result. For a given home
location (and a given assumed starting time), one can build a tree of time-dependent shortest paths, and every

time one encounters a workplace at time-diestance
"
, one adds that to the count for trip time

"
. The challenge is

that this result depends on the traffic: Given the same geographic distribution of workplaces, these are farther

away in terms of trip time when the network is congested than when it is empty. That is, given the function% ��& �*" 
 , one can obtain the function
�+# � � ��" 


via micro-simulation, i.e.
�,# � � �*" 
 
.-0/1% ��& �2� 
43 �*" 
 , where - is the

micro-simulation which can be seen as a functional operating on the whole function % ��& �5� 
 . The problem then
is to find the macroscopic (i.e., averaged over all trips) function % ��& �5� 
 self-consistently such that, for all travel
times

"
, ���! ���" 
 
6-0/1% ��& �5� 
23 ��" 
 % ��& ��" 
�� (3)

For this, a relaxation technique is used. It starts with a guess for % ��& �*" 
 and from there generates
�)# � ���*" 
 
-0/1% ��&73 ��" 
 via simulation. A new guess for % ��& ��" 
 is then obtained via

%98 �;:=<?>��& ��" 
 
 ���! �*" 
�� � 8 �7># � � �*" 
(� (4)



A fraction % # �*� of all travelers will do their workplace selection again, using the new %�8 : >��&
. -0/ � 3 is generated

again via micro-simulation, and this is done over and over again until a sufficiently self-consistent solution for% ��& �*" 
 is found.

Real census data is used for
���! ��" 


(see “census-100”-curve in Fig. 3; from now on denoted as
� ��������" 


).

People usually give their trip times in minute-bins as the highest resolution. Since our simulation is driven by
one-second time steps we need to smooth the data in order to get a continuous function instead of the minute-

histogram. Many possibilities for smoothing exist; one of them is the beta-distribution approach in Wagner
and Nagel (1999). Here, we encountered problems with that particular fit for small trip times: Since that fit
grows out of zero very quickly, the division

�,�! � �)# � �
had a tendency to result in unrealistically large values

for very small trip times. We therefore used a piecewise linear fit with the following properties: (i) For trip
time zero, it starts at zero. (ii) At trip times 2.5 min, 7.5 min, 12.5 min, etc. every five minutes, the area under

the fitted function corresponds to the number of trips shorter than this time according to the census data.

Obtaining -0/1% ��&73 itself via simulation is by no means trivial. It is now possible to micro-simulate large

metropolitan regions in faster than real time, where “micro”-simulation means that each traveler is repre-
sented individually. The model used here is a simple queuing type traffic flow model described in Simon

and Nagel (1999). However, even if one knows the origins (home locations) and destinations (workplaces),
one still needs to find the routes that each individual takes. This “route assignment” is typically done via

another iterative relaxation, where, with location choice fixed, each individual attempts to find faster routes to
work. Rickert (1998) and Nagel and Barrett (1997) give more detailed information about the route-relaxation
procedure; see also Fig. 1 and its explanation later in the text.

Once %98 �;:=<?>��& ��" 
 
 � ��������" 
 � � 8 �;># � � ��" 
 is given, the workplace assignment procedure works as follows: The work-

ers are assigned in random order. For each employee the time distances
"

for all possible household/workplace
pairs [hw] are calculated, while the home location

�
is fixed and taken directly from the household data for

each employee. Let
"2&��

be the resulting trip time for one particular [hw] and � ��������
 the number of working

opportunities at workplace
�

. Then, an employee in household
�

is assigned to a working opportunity at place�
with probability � &	��
 � ��� ����
 % ��& ��"2&	� 
 � (5)

In addition to work location, home-to-work activity information also includes the times when employees start

their trip to work. These are directly taken from the household data.

The complete approach works as follows:

(1) Synthetic population generation: First a synthetic population was generated based on demographic data
(Beckman et al, 1996). The population data comprises microscopic information on each individual in the

study area like home location, age, income, and family status.

(2) Compute the acceptance function % ��& � 	 
 . This is done as follows:

(2.1) For each worker � , compute the fastest path tree from his/her home location. Compute the resulting



workplace distribution
� � � � ��� 	 
 as a function of trip time

	
.4

(2.2) Average over all these workplace distributions, i.e.

� � � ��	 
�� 
 � � � � � ��� 	�
�� � � 
 �
	;� � 
 �
�
� � � � ��� 	�
 � (6)

where
�

is the number of workers, which is by definition also equal to the number of workplaces.
� � � � 	 
 is

thus equivalent to our earlier
�$# � � ��	 


.

(2.3) Compute the resulting average choice function via

% ��& ��	�
 
 � � � ��� 	 
 � � � � � 	 
�� (7)

In addition, a normalization constant needs to be computed such that

��� % ��& � 	 
 
 	 �
(8)

(3) Assign workplaces. For each worker � do:

(3.1) Compute the congestion-dependent fastest path tree for the worker’s home location.

(3.2) As a result, one has for each workplace the expected trip time
	

. Counting all workplaces at trip time
	

results in the individual accessibility distribution
� # � � � ��� 	 
 .

(3.3) Randomly draw a desired trip time
	�

from the distribution
�$# � � � ��� 	 
 % ��& � 	 
 .

(3.4) Randomly select one of the workplaces which corresponds to
	�

. (There has to be at least one because
of (3.1).)

(4) Route assignment: Once people are assigned to workplaces, the simulation is run several times (5 times

for the simulation runs presented in the paper) while people are allowed to change their routes (fastest routes
under the traffic conditions from the last iteration) as their workplaces remain unchanged.

(5) Then, people are reassigned to workplaces, based on the traffic conditions from the last route iteration.
That is, go back to (2).

This sequence, workplace reassignment followed by several re-routing runs, is repeated until the macroscopic
traffic patterns remain constant (within random fluctuations) in consecutive simulation runs. For this, one looks

at the sum of all people’s trip times in the simulation. The simulation is considered relaxed when this overall
trip time has leveled out.

4In contrast to the routing module, no time-dependence was used here although future implementations should do so.
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Figure 1: Iterative Activity Re-Assignment: Schematic subsequent application of activity generator, router,

and traffic simulator.

Running this on a 250 MHz SUN UltraSparc architecture takes less than one hour computational time for
one iteration including activity generation, route planning, and running the traffic simulator. The 70 iterations
necessary for each series thus take about 4 days of continuous computing time on a single CPU.

4 RELATED WORK

The topic of this paper is a computational procedure of how to systematically feed back the results of a dy-
namic traffic assignment (DTA) to demand generation. In principle, any route assignment could be used
instead of ours. However, since our work are steps towards a completely microscopic simulation approach,

we are primarily interested in simulation-based route assignment and network loading. For this, one needs
traffic flow simulations where one is able to follow each vehicle individually. Some simulations which fulfill

this requirement besides the queue simulation used in the paper are: PAMINA (Rickert, 1998); the TRAN-
SIMS main micro-simulation (TRANSIMS, 1992); LEGO (Gawron, 1996); INTEGRATION (Rakha and Van

Aerde, 1996); DYNASMART (Mahmassani et al, 1995); PARAMICS (1996); MITSIM (Yang, 1997); DY-
NAMIT (2000); DYNEMO (Schwertfeger, 1987) or VISSIM (2000). Out of these, probably only LEGO,
DYNASMART, DYNEMO, and DYNAMIT are fast enough to run iteration series such as ours on a single

CPU. Within these four, LEGO is based on a queue model very similar to ours, while the other three use
macroscopic equations for the movement of the vehicles.

In terms of re-routing during the route iterations, we use a standard time-dependent fastest path Dijkstra (see,
e.g., Jacob et al, in press) based on 15-min link trip time averages. However, for this paper only a fraction of

the population is re-planned. A widely used alternative is to re-plan 100% of the population in each iteration
but to use a discrete choice approach approach to spread travelers across different routes (Cascetta and Papola,

1998; Bottom, 2000). Besides different theoretical properties, these approaches also have different computing
complexities. The time complexity of our approach for the routing is � � % ���������
	 


, where
�

is the number

of travelers, % is the re-planning fraction (usually 10% in this paper), and
��������	

is the complexity of the
Dijkstra algorithm where

�
is the number of edges and

	
the number of nodes. Note that this is independent

of the time resolution. The approaches which re-plan everybody usually exploit the fact that, for any given



starting location, one obtains the complete shortest path calculation for all destinations with the same worst
case complexity as the calculation for just one destination. One thus obtains � ��� ��� 	 
�� ������� 	 


, where�
is the number of possible starting points (traditionally zones) and

� ��� 	 

is some function that increases

with increasing time resolution (decreasing
� 	

) (Chabini, 1998). Since in our work each link is a potential
starting point, this translates into � ��� ��� 	 
 ��� ����� 	 


. In this paper, where
�	�	
���

,
� �	�����������

, and% 
 � � 	
, the two approaches are about equivalent. For street networks with higher resolution,

�
grows while�

remains constant, making our approach grow more slowly in time complexity.

Also the workplace assignment is an old problem. An example of such a matching is the classic “Hitchcock”
solution (Sheffi, 1985), where the workplace assignment is done in such a way that the overall sum of all

trip times is minimized. This clearly results in much shorter trips than in reality. Axhausen (1990) suggests
to couple demand generation, route assignment, and traffic simulation, although he puts more emphasis on

on-trip learning than in the implementation presented here. Several groups such as the groups of Ben-Akiva or
Mahmassani are actively working on this as extensions of their ITS projects. We are not aware of any results

of these attempts yet. There are also earlier versions of the work presented in this paper (Wagner and Nagel,
1999, Esser and Nagel, 1999).

5 EXPERIMENTAL SETUP AND SIMULATION RESULTS

The study described in this paper was carried out as part of the TRANSIMS project (TRANSIMS, 1992),

which was at that time aimed at simulating the whole city of Portland microscopically (i.e., with resolution
down to single individuals) under consideration of activity generation, modal choice and route planning, and

transportation dynamics. The simulations described in this paper were run on a road network consisting of
8,564 nodes and 20,024 links representing a subset of the real network.

Traffic counts for validation are available for 495 links comprising flow data for the morning peak from 7:15am
to 8:15am. Data are available for the years 1992 and 1994. Data for 1992 is used for those links for which no

1994 data are available (68 links); for all other links, the counts of 1994 are used.

The data were collected using pneumatic road tubes and averaged over two or three weekdays; mostly on

Tuesdays, Wednesdays, and Thursdays outside of holiday periods and while school was in session. The counts
are not seasonally adjusted. Axle adjustment factors are applied to account for trucks, which are not explicitely

counted. The accuracy of the counts is considered to be � ��� � ��� (Bill Stein, Portland Metro, personal
communication).

Another set of data available are the results of assignment runs by Portland Metro. These runs use their own
demand generation, and the EMME/2 assignment algorithm (Babin, 1982). Note that “EMME/2” results in

this paper will refer to results of that particular study by Portland Metro including its demand generation.

One problem with our census based assignment approach is that trip times are overestimated for at least two



reasons:

(1) First, when people are asked for the time they spend for their trip to work they usually report the total door

to door time including the time to get to the car or park the car. On top of that, people tend to overestimate the
time they spend driving especially in stop-and-go traffic (K. Lawton, personal communication).

(2) Second, the road network used for our simulation does not cover most minor streets. That means the time
people spend on these roads should be taken out of the distribution.

The amounts of those times can however not be estimated without further information. To get an idea whether
a trip time distribution which is shifted to lower trip times yields more realistic results, two different workplace

assignment iterations were done: One with the original census distribution, and another with all desired travel
times reduced to � ��� of the original value. In the following we refer to these runs as run sim-100 and sim-80,

respectively.

In Fig. 2 the total trip time is plotted for both series, sim-100 and sim-80. Each simulation run refers to

running the queue simulation for the morning (from 4am till 12pm). After every 5 iterations in which people
are rerouted only, people are assigned to new workplaces. This can be seen as a sudden, normally upward jump

of the total trip time in the plot. The reason for the jump is that it takes some reroute iterations to adjust the
routes to the changes in the trip demand pattern. We ran 20 route iterations after the last workplace assignment
to make sure that the routes are actually relaxed.

As expected, the total trip times are lower for sim-80 (Fig. 2). Yet, it is striking that a decrease in desired trip

times by

 ���

results in actual trip times which are about
�����

lower. The reason will be explained in the next
paragraph.

By looking at the trip time distributions in the simulation (Fig. 3), it can be seen that the resulting distribution
for sim-80 is closer to the corresponding census distribution than it is for sim-100. Even after assignment and

route relaxation, there are still a lot of unrealistically high trip times for sim-100. This results from the fact that
the overall traffic demand is more than the network can carry, leading to a lot of congestion. It is well known
that large fluctuations occur when transportation systems are operated with demands that exceed capacities

(Kelly, 1997; Nagel and Rasmussen, 1994). Actually, detailed investigation shows that in each simulation run
different people account for the very high trip times, which underlines the influence of large fluctuations. Also

for sim-80, the distribution resulting from the simulation does not perfectly match the corresponding modified
census distribution. Nevertheless, the effect of large fluctuations due to congestion is smaller than for sim-100.

These erratic occurrences of large trip times are also the reason why the reduction of the desired trip times
by 20% leads to a decrease in actual trip times by 50%: In sim-100, the system is simply not capable to find
a solution that is able to match the demand, and thus has too few contributions at trip times around 500 secs

while it has too many contributions at trip times above 3000 secs.

As mentioned above, we do not claim that the � ��� census trip time distribution leads to a realistic repre-
sentation of the real traffic flows in the study area. The idea is just to check the assumption that a reduced



distribution leads to more realistic traffic flow patterns. The comparison with the field data is topic of the
following section.

6 COMPARISON TO FIELD DATA AND TO EMME/2 STUDY RESULTS

First, the field count data is compared with the results of our simulation runs directly for every link. For

comparison, the results of the “EMME/2 study” are also shown. Fig. 4 shows the typical scatterplots, with field
data on the x-axis and simulation results for the same links on the y-axis. Note that both axes are logarithmic.

The first observation is that the plots look remarkably similar in structure. All three studies give relatively
unbiased results for high flows, and underestimate low volumes. In addition, there are a few data points where

simulation and reality are rather far apart.

At closer inspection, one notes that EMME/2 is somewhat overestimating high volumes, whereas our simula-

tions are underestimating them. This is confirmed by bias calculations (see below). Such an effect is consistent
with what one would expect: The Portland Metro assignment model for the presented results does not have a

flow cutoff at capacity, so that it is possible to actually put more flow on a link than that link has capacity. This
happens in particular at bottlenecks on short links in an otherwise relatively uncongested area.5 The queue

model traffic simulation tends to behave in the opposite way. If demand is higher than capacity, the queue
spills back. Once this queue reaches another intersection, that intersection will normally be blocked for all

directions, not just for the direction into the congested link. This is a consequence of the fact that the queue
model neglects multi-lane effects at intersections. This means, for instance, that a car waiting for a chance to
make a left turn blocks all following cars on this link. This tends to cause unrealistically large spill backs.

When one compares sim-80 to sim-100, the flows for sim-80 are closer to the field data for high volumes,
and farther away for medium volumes. It is striking that demand reduction by as much as 20% changes the

resulting flows so little. This adds to the conjecture that measured flows in a network depend as much on the
network structure as on the demand structure.

For more detailed information, one can look at links in different classes regarding field data and direction
(Table 1). For each class � we calculated the mean absolute and relative bias, i.e.� #�� ��� � 
 � 	 � � � 
 �

�
��� � �	� � 
 
 �
	 � � � 
�
(�

�
� � � �

�
� �� and

�  ������ � 
 � #�� ��� � � � � � � � (9)

the mean deviation from the field data, i.e.� #�� ��� � 
 � 	 � � � 
 �
��� � � �	� � � and

�  ������ � 
 � #�� ��� ��� � � � � � (10)

5This really depends on the cost function which is used. Most cost functions set link speed � to a very low number (but not to
zero) at high volumes. Since link costs are proportional to ����� , where � link length, one has that congested links do not contribute
much to the cost of a route as long as these links are short and rare. In consequence, much too high volumes can be assigned to such
links.



and the root mean square deviation from the field data, i.e.

����� � 
 
 � 	 � � � 
 �
�
��� � � � � 
 � � <�� � and � � 
 ����� ��� � � � � � (11)

Links were classified by visual inspection into links leading towards the Portland downtown area, and all other
links. The tables show that our simulations are underestimating the flows on the “other” links more than they
are underestimating the flows on the links towards downtown. Visual inspection of the simulations reveals that

this is probably a result of too much demand (and thus congestion) for traffic away from the downtown area.
This is what one would expect from our simplifications: We are assuming a spatially homogeneous trip time

distribution; yet, one would expect that people who live downtown moved there because they have a higher
dislike of long trip times than the average population.

Regarding the size classes, sim-100 systematically underestimates volumes except for class 1 ( 	 
����
). Sim-

80 underestimates less for class 6 ( 
 	 �����
), underestimates more for all intermediate classes, and is nearly

unbiased for class 1. The interpretation of this is that in sim-100, traffic on the major roads is so congested that
the routes are pushed onto the smaller streets. The EMME/2 studies, in contrast, systematically over-estimate

volumes. Similar to our results, the ratio of traffic on small vs traffic on large roads is too high. Quite possibly,
the fastest path search that is used in both approaches makes simulated travelers accept complicated detours

on minor streets more easily than in the real world.

Last, one should also remember that the estimated error of the field counts is assumed to be no better than
� 	 � � 
����

. We will come back to this point in the discussion.

In summary, one can say the following: Our simulations are far enough progressed to allow tentative com-

parisons to real world volume counts. The simulations done for this investigation lead to traffic flows with
volumes that are somewhat low when compared to reality. Due to the complexity of the approach, there can

be many reasons for this, and the systematic analysis of these effects should be the subject of future research.

7 DISCUSSION

The purpose of this study was to couple a simple demand generation method with route assignment and trans-
portation micro-simulation via a computational feedback procedure. We wanted to explore in how far such an

approach is feasible, and then out of scientific curiosity and as a benchmark we compared the results with real
world data and with existing EMME/2 study results for the same problem. What can one learn from this?

First, it is now indeed both methodologically and computationally possible to systematically couple demand
generation, route selection, and transportation micro-simulation. Again, this does not automatically mean that

this is always the best method; however, it can and thus should be explored as one of many alternatives. Also
note again that practitioners have always done some version of this feedback: If an assignment did not generate

plausible flows, it was common practice to adjust the trip matrix (K. Cervenka, personal communication). The



class n mean bias mean err RMS err

total 495 -195 (-20%) 342 (36%) 611 (63%)

to-downtown 142 -166 (-15%) 313 (29%) 473 (44%)

other 353 -207 (-23%) 354 (39%) 658 (72%)

	 
����
104 46 (32%) 129 (90%) 186 (130%)
���� � �����
126 -51 (-14%) 184 (50%) 226 (61%)� ��� �������
87 -96 (-15%) 226 (37%) 278 (45%)

����� � 	 �����
44 -184 (-21%) 285 (33%) 367 (43%)	 ����� � 	 �����
62 -274 (-23%) 382 (32%) 512 (43%)


 	 � ���
71 -855 (-25%) 1068 (31%) 1428 (41%)

class n mean bias mean err RMS err

total 495 -209 (-22%) 344 (36%) 556 (58%)

to-downtown 142 -191 (-18%) 366 (34%) 575 (53%)
other 353 -216 (-24%) 335 (37%) 548 (60%)

	 
����
104 2 (1%) 117 (82%) 167 (116%)
���� � �����
126 -83 (-23%) 200 (54%) 241 (65%)� ��� �������
87 -171 (-28%) 263 (43%) 307 (50%)

����� � 	 �����
44 -212 (-25%) 291 (34%) 370 (43%)	 ����� � 	 �����
62 -308 (-26%) 388 (32%) 510 (42%)


 	 � ���
71 -684 (-20%) 1011 (29%) 1249 (36%)

class n mean bias mean err RMS err

total 495 83 (9%) 275 (29%) 413 (43%)

to-downtown 142 215 (20%) 318 (29%) 476 (44%)

other 353 30 (3%) 258 (28%) 385 (42%)

	 
����
104 84 (59%) 146 (102%) 259 (181%)
���� � �����
126 71 (19%) 199 (54%) 263 (71%)����� ����� �
87 57 (9%) 212 (34%) 297 (48%)

����� � 	 �����
44 106 (12%) 314 (36%) 376 (44%)	 ����� � 	 � ���
62 147 (12%) 364 (30%) 473 (39%)


 	 �����
71 73 (2%) 574 (16%) 757 (22%)

Table 1: TOP: sim-100. MIDDLE: sim-80. BOTTOM: EMME/2 study.

main differences thus are that we do it systematically and computerized, and that we use a micro-simulation

instead of a static assignment. — The second result is that for the morning peak, extremely simple assumptions
yield results which are comparable to results of an EMME/2 study.

An important task would be to separate the influences of the different modules. In addition to the input
data, there are four computational modules involved in this study: demand generation, routing, traffic flow
simulation, and feedback mechanism. All of these can contribute to variations in the volumes. A systematic



study would vary or switch these modules one by one and establish the effect on the volumes. This was beyond
the scope of this investigation; the following paragraphs will discuss some of the issues.

NETWORK DATA: We have used the same network input data as the EMME/2 studies. Errors here should,
to a certain extent, show up similarly with both approaches. It seems that at the level of current accuracy, there

are no major errors in these files. That belief is reinforced by the fact that Portland Metro has been using these
files for many years.

DEMAND GENERATION INPUT DATA: The data used here was: household locations, workplace loca-
tions, and distributions of start times and trip times. The accuracy of these is unkown. With regard to trip

times, it was already discussed earlier that the trip times from the census most probably over-estimate times on
our network, for two reasons: (1) Travelers intuitively report the time from door to door, not the time actually
on the road. (2) Since many local streets are missing in our network, the time spent in our network should be

smaller than the complete time on the road. Indeed, reducing all trip times to 80% (“sim-80”) in our study
did not lead to significant changes in volumes and even led to higher (and more realistic) volumes on the

major streets, adding to the assumption that reported trip times are probably too high. Also, just looking at
home-to-work trips is a simplification. Any traffic besides home-to-work trips is neglected, such as deliveries,

people returning from night shifts, shopping, leisure, etc. All these will be indispensable in order to understand
24-hour traffic patterns.

VOLUME COUNT DATA: There is a slight inconsistency between the input data and the volume count data:
Input relies on the census, which is from 1990, while the volume counts are from 1992 and 1994. In fact, the

average change (mean bias; see above for definition) of traffic flows from 1992 to 1994 is � 4%. A bigger
challenge is the variability of the data. Fig. 5 shows, where available, the counts from 1992 against the counts
from 1994. There is strong variability of the counts, and the average absolute difference (mean error, see above

for definition) is in fact 31%.6 This indicates that in future two things need to be done: (1) Field data need
to include a measure of variability; and (2) the corresponding variability measure needs to be obtained from

simulations.

ROUTING: This study assumes fastest path routing. Most probably, this is only an approximation of what real

people do. In fact, both our simulation results and the model results from the Portland Metro study over-state
traffic on minor streets, indicating that the simulated travelers are more willing to accept complicated detours

than real world travelers. Also, at the moment no other mode of transportation is included. For the Portland
case, this should for example lead to an over-estimation of car traffic between downtown locations.

TRAFFIC FLOW SIMULATION (also called network loading): As discussed earlier, our traffic flow simu-
lation (the queue model) underestimates volumes. In contrast, traditional assignment network loading usually

over-estimates volumes (depending on the cost function).

A heuristic possibility for progress would be to design a traffic flow simulation with a behavior somewhere in
6This number is larger than one would expect from Fig. 5. The reason is that many high volume streets were not counted in both

years, thus leading to a smaller mean, which leads to a larger relative error.



between our queue model and the traditional assignment network loading. A more systematic approach would
be to use a more realistic micro-simulation in order to exactly pin-point the deficiencies. In that context, it

would be interesting to also look at link speeds in order to decide whether low counts are caused by low traffic
or by congestion. This data is easy to extract from the simulations, but it typically does not exist for the field.
ITS technology will have a significant impact here.

FEEDBACK: Our feedback method performs slow adaptation based on the previous iteration, similar to ficti-
tious play in game theory. While the result of such an approach is not exactly a Nash Equilibrium, it is assumed

to be close.7 Two aspects need to be considered separately:

� Convergence/uniqueness: If one sees the second-by-second trajectory of the micro-simulation as a point
in state space, then the iterations are mappings from that state space into itself (e.g. Bottom, 2000). The
way our iterations are set up, they describe a Markov-process in that state space, which means that the

iterations eventually reach a steady state with a corresponding steady state density in state space (e.g.
Cantarella and Cascetta, 1995). Little is known about the characteristics of this steady state density

distribution, for example if it is unique, or how many iterations one would need to be reasonably close
to ergodicity. In practice, it seems that route iterations behave in a similar way as traditional steady state

assignment, that is, they normally yield, within Gaussian fluctuations, unique results for the traffic on
the link level (e.g. Bottom, personal communication; Nagel et al, 1999). We are not aware of results of

how this extends to feedback iterations into the trip distribution as considered in this paper.

� Human behavior: It is well-known that convergence results are used only because they are scientifically
well-defined, not because they are realistic. When comparing to field data, one should keep in mind that

it is unclear how close real systems are to the converged result.

INHOMOGENEITIES: One aspect already mentioned earlier in the text but that should be stressed again
is that our method unrealistically assumes homogeneity of all aspects of the scenario except for traffic. For
example, it is assumed that the behavioral function % ��& is the same for everybody, and that one can obtain it

by averaging both the trip times and the accessibility over the whole population and the whole region. This
is clearly a simplifying assumption — for example, one might expect that people living downtown have a

stronger dislike of long trip times than the average population.

Another inhomogeneity in the Portland situation stems from the fact that the part of the metro region which

is north of the Columbia river, so-called Clark County, is part of the State of Washington, while the rest of
Portland is part of the State of Oregon. Many Oregon workers choose to live in Clark County for the lower

property taxes and cheaper large-lot housing (an effect of differences in land use policy), despite the congested
commute and Oregon income tax. Oregon has one of the highest personal income taxes of the U.S. States,

while Washington does not have a State tax on personal income. Oregon personal income tax is also paid by
non-Oregon residents as long as they work in Oregon. Thus, there is a substantial tax incentive for those who
live in Clark County to also work there. This, however, is often not possible due to a low jobs-housing ratio

7For certain –much simpler– systems, one can show that many plausible iteration schemes converge towards the same state
(Hofbauer and Sigmund, 1998).



in Clark County. All this results in a relatively high split between peak and non-peak direction volumes on the
Columbia River bridges. Sales tax is the opposite: There is no sales tax in Oregon while sales taxes in Clark

county average 8%. In consequence, retail activity in Clark County is somewhat suppressed by residents’
proximity to tax-free shopping in Oregon. For example, there is a major big-box retail area on the Oregon
side of the I-5 bridge that owes its existence to the sales tax disparity. (Bill Stein, Portland Metro, personal

communication)

This should result in less traffic northbound into Clark county in the morning peak in reality than in our model.

This is easy to check since there are only two bridges across the Columbia river. Indeed, with sim-80 we obtain
7473 veh/hour northbound as opposed to 4650 in the field, while southbound the numbers are comparable:

10052 and 9740, respectively. Sim-100 numbers are lower than sim-80 numbers, due to congestion in the
model, but have the same tendency.

8 SUMMARY

We have implemented a computational feedback between demand generation and traffic simulation in a real
world setting in Portland/Oregon. This was done via a double relaxation loop: an inner loop for relaxation
of the route assignment with fixed demand, and an outer loop for relaxation of the demand. Typically, about

70 runs of the traffic micro-simulation are necessary for one relaxed result. We have used data from Port-
land/Oregon.

For simplicity, we have concentrated on assigning workplaces to workers (whose home locations were given).
The challenge was to perform this workplace assignment self-consistently such that the resulting trip times

correspond to the trip time distribution given via census data.

Our results demonstrate that with current computational technology and simple models, it is possible to do such

studies while retaining microscopic resolution throughout the whole computation. Microscopic resolution here
means that each of the about 500 000 travelers and each vehicle are represented individually in each step of

the method. Our simulations were run on single CPU workstations; one relaxation series typically took about
four days of computer time.

Because of the many simplifications, we did not expect our results to be a good model of reality. Nevertheless,
in order to provide a benchmark we compared our results to real world morning peak volume counts from

the Portland/Oregon area, and we included into the comparison results of an older study by Portland Metro
using different methods. These results are summarized in Fig. 4. It is encouraging that one gets so close

with so relatively little investment in terms of input data. In fact, input data consists of nothing more but
the EMME/2 street network information, some population characteristics from the census (home locations of

workers; overall trip time distribution for home-to-work trips; overall trip starting time distribution), and the
locations of workplaces. The methodology uses a relaxation algorithm of workplace assignment, a fastest-path
routing, and a queuing micro-simulation. Our study demonstrates that such a microscopic approach is both



computationally and methodologically feasible even on modest computing hardware.
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Figure 2: Total trip time in the simulation during the iterative assignment with the original census trip time
distribution (sim-100) and the census distribution with trip times reduced to � ��� (sim-80).
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Figure 3: Trip time distributions in the queuing simulation at the 70th iteration in comparison to the 100% and

the � ��� census trip time distribution. Only completed trips contribute to the distribution.
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Figure 4: Scatterplot of simulated data (y-axis) vs. field data (x-axis). TOP: sim-100. CENTER: sim-80.
BOTTOM: EMME/2-study. It is remarkable that reducing the desired trip times by 20% (top to middle) does

not seem to change very much at all.
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Figure 5: Variability of field data. For some measurement locations, count data were available both for 1994
and 1992. For those locations, the 1992 value is plotted against the 1994 value. A better understanding of field

data variability will be necessary for further progress.


