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Abstract

In this work we compare probabilistic traffic models to a gas-liquid system.
A gas-liquid system at low temperatures has two phases, the gaseous phase at
low density and the liquid phase at high density. The transition from gaseous to
liquid happens through phase coexistence, where both gaseous and liquid phase
is found in the system. At high temperatures, these two phases become more
and more similar. Above a critical temperature there is only one phase. At that
temperature there is a critical point where spatial correlations go to infinity.

In terms of traffic models, the gaseous phase corresponds to laminar flow
and the liquid phase corresponds to a jam. Instead of the temperature, the
traffic models have a parameter that determines the amount of randomness. We
analyse the Krauss-model and a slow-to-start version of the Nagel-Schreckenberg
cellular automaton. We show that they have a two phase regime at low noise
values and a one phase regime for high noise. We establish the coexistence curve
that bounds the area of phase coexistence in the density/noise space.



Chapter 1

Introduction

Both from an operations and from a design perspective, the capacity of a road
is an important quantity. Clearly, if demand exceeds capacity, queues will form,
which represent a cost to the driver and thus to the economic system. In addi-
tion, such queues may impact other parts of the system, for example by spilling
back into links used by drivers who are on a path that is not overloaded.

For a variety of reasons, however, capacity is not a deterministic fixed quan-
tity. It is possible that one day a queue forms and the next day not, and this may
even happen in spite of demand being larger on the second day. In consequence,
any definition of capacity needs to take its stochastic nature into account.

For example, one could measure flow in 15-min intervals, say from 6am to
6:15am, from 6:15am to 6:30am, etc. One could then take the daily maximum
of these values, and average the result over many typical workdays.

As an alternative, one could measure flow as a function of density irrespective
of any other state variables. One could then obtain the average flow for each
density interval, and the maximum of these flow-values would represent capacity.

All of these measurements have the property that they result in an expected
value, i.e. in a number that, for a given day, can be exceeded or not be reached.
In consquence, it is useful to develop models of traffic which reflect the stochastic
nature of traffic. Clearly, the stochasticity can come at many different levels:
demand can vary; road conditions can vary; driving behavior can vary; etc.
These different contributions to stochasticity will have different influences, which
need to be debated. In this work, we want to concentrate on road capacity.
We understand that there is active research to eventually include aspects of
stochastic transitions into the Highway Capacity Manual [1].

Traffic models can be distinguished on whether they show one or two phases.
In a 1-phase model, the throughput of a road is uniquely determined by the
traffic density. Jams cannot exist in such a model, any initial jam will “smear
out” and thus eventually go away, even with unchanged traffic conditions.

In a 2-phase model, theory predicts that there can be a hysteretic transition
from laminar flow to a state with jams without a change in density. This means
that, at a given density, traffic can operate in the laminar flow state for long
times, until it will eventually “break down” and a jam emerges. Jams are stable,
they do not just go away as in a 1-phase model.

1-phase and 2-phase models are also known in physics, e.g. the gas-liquid
transition. If a gas is compressed at low temperatures, it will at some point



start to condensate: small droplets of liquid form. When the gas is further com-
pressed, these droplets grow until finally only liquid remains. If we substitute
gas with laminar flow and liquid with jam, the described transition corresponds
to a 2-phase traffic model. If on the other hand the gas is compressed at high
temperature, no droplets form. The gas molecules just get closer and closer to-
gether. This corresponds to a 1-phase model. Thus, the temperature determines
whether the gas-liquid system has one or two phases.

We investigate two probabilistic traffic models: The Krauss-model and a
slow-to-start version of the Nagel-Schreckenberg cellular automaton. These
models have a parameter that defines the amount of randomness or noise. We
show that this parameter corresponds to the temperature in the gas-liquid sys-
tem: With little noise, these models show two phases, whereas with high noise,
they have only one phase.



Chapter 2

Principals of
thermodynamics

Before studying the gas-liquid transition, we need some essential thermody-
namic definitions and theorems. They are stated here without proof. For a
comprehensive discussion see e.g. [7].

We consider an assembly of N molecules restrained in a volume V. Its energy
is E and the entropy S. The volume per molecule is v = V/N and the entropy
per molecule is s = S/N. The pressure P is defined as

ok
P=—-—— 2.1
ov (2.1)
and the temperature T
1 0S

According to this definition, the unit of the temperature is Joule. Usually,
temperature is given in Kelvin. These two measures are related through Boltz-
mann’s constant k:

k'TKelvin = TJoule
k = 1.3806- 10" *J/K

For easier reading of the formulas, we give temperatures in Joule.
The chemical potential u relates the energy of the system to the number of

particles:
OFE
p= (—) (23
ON /sy

where the subscript S,V indicates that the derivative is to be taken at con-
stant entropy and volume. Changes in the chemical potential are related to
temperature and pressure change by

du = sdT + vdP (2.4)



If a system is in equilibrium, the temperature is equal in every part of the
system. The same holds for the pressure and the chemical potential.
The free energy F' is defined as

F=E-TS (2.5)
The free enthalpy @ is
¢=E-TS+ PV
For a system to be in equilibrium, ® must be minimal, i.e.
0E —T46S + P6V >0 (2.6)

It can be shown that this implies

This means that increasing the volume at constant temperature will decrease
the pressure.

The thermodynamic variables such as P, T, i are actually random variables.
Their values usually are so close to their average values' that this is often ne-
glected. Nevertheless, there are small deviations from the average, the variables
fluctuate. If Ry, is the minimal work required to move the system from its
average state to some state with fluctuations, then the probability to find the
system in that state is

w ~ exp (— R;“) (2.8)

laverage values are denoted by a bar overhead, e.g. T



Chapter 3

Phases and phase
coexistence

The state of a homogeneous body in equilibrium is determined by two ther-
modynamic variables, e.g. P,T. However, at given P,T the body may not be
homogeneous but decompose into two homogeneous parts. These parts are in
different states, e.g. they have different densities. These states that can exist
together in equilibrium and touch each other are called phases. When the sys-
tem decomposes into two phases, this is called phase coexistence. If the entire
system is in the gaseous phase, we say that the system is in the gaseous state.
If there is only liquid, we call it the liquid state. A system with both gas and
liquid is in the coexistence state. In this section we first describe the gaseous
and the liquid phase and then consider phase transitions which will lead us to
phase coexistence.

The gaseous phase is found at low density. Distances between particles vary,
but the probability of having two particles close to each other is very small. If
interactions between particles are completely ignored, the gas is called ideal and
satisfies Claperon’s equality:

PV=NT (3.1)

When the gas is compressed, the particles get closer together and interactions
between particles become more important. The real gas deviates more and more
from the idealisation of (3.1). At some point, the gas condensates and becomes
a liquid.

In the liquid phase, the molecules are close together. There is no crystalline
structure as in solids, but the density is similar and in some cases (e.g. in water)
even higher in the liquid than in the solid phase. Because of the fact that the
particles are so close to each other, it is difficult to compress the fluid any further.
A general description such as (3.1) is not possible for the liquid phase, because
the interactions between the particles depend on the molecules constituting the
liquid.

We now try to describe the gas-liquid transition. Such a description cannot
be numerically precise, but it should describe the transition qualitatively correct.
Furthermore, it should be correct for the extreme cases: For low density gases it
should become Claperon’s equality (3.1) and for high density it should show the



Figure 3.1: Isotherms of Van der Waal’s equality. “Higher” isotherms corre-
spond to higher temperature.

limited compressibility of liquids. Van der Waal’s equality has these properties.
It is

P=—"_ = (3:2)

a and b are parameters.

Fig. 3.1 shows some isotherms (curves of constant temperature). Observe
that the slope can become positive (e.g. in the curve A-B), i.e. (%)T > 0.
This violates the equilibrium condition (2.7), thus that state cannot exist in
nature. Instead, some part of the system is in the gaseous phase and the rest
in the liquid phase (phase coexistence). Connecting the points A and B for all
isotherms, we find the spinodal curve of Fig. 3.2. Within it, the system cannot
be homogeneous.

Let the system be composed of two parts, part 1 is in the gaseous phase and
part 2 in the liquid phase. For this phase coexistence to be stable, temperature,
pressure and chemical potential must be equal in both parts:

T, =T,
P =P
p1 = p2

With Fig. 3.1 in mind, the first equality says that 1 and 2 are on the same
isotherm. The second condition implies that 1 and 2 can be connected by a
horizontal line. Thus, phase coexistence must happen in a larger area than A-
B. The heights of the line 1-2 is defined by the third condition, which can be
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Figure 3.2: Coexistence curve and spinodal curve in the P — V diagram.

written as ff dp = 0. If we integrate along the isotherm, we get with (2.4)

2
/ VdP =0
1

This means that the two shaded areas must have the same size. Connecting
the points 1 and 2 for all isotherms, we find the coexistence curve of Fig. 3.2.
Crossing this curve corresponds to a first order phase transition.

For high temperatures, there is no phase transition. It is not possible to
distinguish between gas and liquid. There is only one phase, which we call the
high temperature phase.

To summarise this section, consider a gas that is slowly compressed at low
temperature (see Figure 3.3). The molecules get closer together and the pressure
increases. At some point, small droplets of liquid emerge. Further compressing
the gas will not increase the pressure, instead the droplets grow until there is
only liquid. Now the pressure increases very quickly when further decreasing
the volume.

In a P-T diagram, the area of phase coexistence is only a curve given by
w1 (P,T) = pa(P,t). This line may end in a critical point. This point is also
found in the P-V diagram where the curve for the liquid=-gas transition (con-
taining 1) and the curve for the gas=liquid transition (containing 2) meet. In
this point (%)T = 0. We analyse the critical point in the next section.
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Figure 3.3: Schematic representation of the gas-liquid phase transition in one
dimension



Chapter 4

The critical point

We have seen that at the critical point

(20 =0 w

we now investigate the equilibrium condition (2.6) for this case. For T' = const
we have

0E + P§V >0

We expand JE for small §V. The first term (—) oV

(2.1)) cancels away. For the second term we have 1 (
according to (4.1). Thus,

1 (0?P 34 0P 4
must be satisfied for every dV. This requires that

8’P o3P
i = —_— < .
(o7), =0 (o77), <° 42

Let n = N/V be the particle density. The critical point is at T = T,
P = P.; and n = n.,. For the distance to the critical point let

—P§V (by definition
)y =3 (80 =0

t=T — T, p=P— P, N="n-—"Ncr

In these variables, condition (4.1) and (4.2) are

)= (a8).=0 (&)
_— :07 _ :07 P 20, fort=0
(6‘17 ¢ on? ), o),

Using these conditions, the dependence of the pressure from the temperature
and the density close to the critical point is

p = bt + 2atn + 4Bn? (4.3)



with constants a, b and B > 0. For ¢t > 0 all states of a homogeneous body are
stable (there is no phase separation), thus according to (2.7) (0p/dn), > 0 for
all , which requires that a > 0. The isotherms of (4.3) are analogous to those
from Van der Waal’s equality.

Thus far, we considered the density n (and also T' and P) to be constant
in a homogeneous system. This of course is only an approximation, in reality
there are always small fluctuations. They are measured by

An = An(r) =n(r) — 7 (4.4)

where n is the average or global density and the vector r the position in the
system!. Note that An = An.

We are interested in the spatial correlation of the density, i.e. in questions
like “If there is high density at ry, how big is the probability that the density
at rg is also high?”. The correlation function is

G(r) = E[An(r1)An(rz)], r=r1 —r2 (4.5)

We now approximate G(r) close to the critical point for large r. For this we
need (2.8) (w ~ exp(—Rmin/T)) where we use Rpyin = AF. Thus we first
approximate AF for small An and then analyse w for different wavelengths of
An. The result is equation (4.15), so if you are not interested in the derivation,
you can continue reading there.

When the density fluctuates locally, the energy of the entire system fluctu-
ates?:

AFo = / (F — F)av (4.6)

F here is the free energy per volume. AFi, depends on An, for which we will
expand it at constant temperature:

_ (OF 1 (0°F )

The first term cancels when integrating, because the total number of particles
is constant. Analyse the second term: Because F' refers to a volume and not
the number of particles, (0F/dn); = p. . Then,

O’F\ _ (ow\ _1[oP
on2), \on); n\on),
the second equality follows from (2.4), which becomes du = vdP for T=const.
For T < T¢,, the system is inhomogeneous and F' depends on the gradient of
An and higher directional derivatives. Terms of the form f(n)0n/dz; become a

surface effect when integrating over the volume, in which we are not interested.

. 2 2
The same is true for the terms const - =22—. Thus, only the terms n 22—
Bziawj ? 6.70,'3.’1)]'

In(r) actually is the density of some area around r. This area must be large enough that
quantum mechanical effects can be ignored.

2We consider an open system, i.e. it can exchange energy with the environment. For an
isolated system, the total energy is constant and cannot fluctuate

10



and %% have to be considered. Integration over the volume transforms the
i J

former into the latter. Putting all of the above together, we get for (4.6)

AF,o = / {2; (g—Z)t (An)* +g (%)2} dv (4.8)

We now perform a Fourier expansion on Amn:

An = Z Anye’™®
k

1 .
Any = v / Ane~ &gy

Since An is real, An_y is the conjugate complex of Any. We get

|4
AFtOt = 5 ; |Ank|2¢(k) (49)
b(k) = - (@> +2gk? = 2 (at + 6Bn?) + 2gk? (4.10)
nee \OnJ, cr

To get the last equality, (4.3) was inserted.
We now insert this into (2.8) with Rpyin = AFie and get

w ~ exp (— A?‘“) =] exp (—;\Ankﬁqﬁ(k)) (4.11)

k>0

Thus, the fluctuations for different wavelengths are statistically independent.
Their variance is
T
E[ng|’] = —— 4.12
'l = oo (412)

With this result we return to the correlation function, which can be written
as

G(r) = E[jm|’e™] (4.13)
k

Approximating the sum by an integral and assuming three dimensional space
yields

s VdBk
G) = [ Bl o (4.14
The integral evaluates to®
Ter r
G(r)= 87ng7' exp (_r_) (4.15)

3use the general formula (without proof)

/ eikr d3k e—ﬁr

€2 4+ k2 (2m)3 ~ Aar

11



with the correlation radius

[ GNcr
=, /= 4.1
e at + Bij? (4.16)

This is the grand result of this chapter. At the critical density (7 = 0) the
correlation radius grows as

re ~ t71/?

which diverges at the critical temperature, where
G(r) ~r!

This result is due to L. D. Landau and the theory is called Landau-theory or
mean-field theory. A more general theory is based on critical exponents. There

G(r) ~ r= (=240 e <_L) (4.17)

Tc
e ~ [tV (4.18)

d is the dimension of the space (usually 3). The critical exponents are ¢ and
v (in the Landau theory ¢ = 0 and v = 1/2). If ¢ is not integral, the system at
t = 0is a fractal.

Close to the critical point there are long range correlations. Long temporal
correlations are associated with them. Thus, if a system close to the critical
point is quenched away from equilibrium, it will take very long for the system
to return to equilibrium. This is known as critical slowing down.

12



Chapter 5

Metastability

In the area between the coexistence curve and the spinodal curve, there is phase
coexistence although on the Van der Waal’s curve, the equilibrium condition
(g—l‘j) + < 01is not violated. In fact the homogeneous solution is also possible. It
corresponds to a local minimum of the energy, the global minimum is attained
for phase coexistence. The homogeneous state is metastable.

Consider a homogeneous system in the metastable area. The transition into
phase coexistence happens when fluctuations form small areas of the new phase,
so called nuclei. These nuclei can grow until the equilibrium-ratio between the
two phases is attained. We now compute the probability that a nucleus emerges
and then analyse how it grows.

According to equation (2.8) the probability w of the emergence of a nucleus
is proportional to exp(—Rmin/T'), where Ry, is the minimal work required to
form the nucleus. Since temperature and chemical potential are equal in the
two phases, this work is given by the change in the thermodynamic potential
Q = —PV. Let the nucleus have volume V' and pressure P’'. Prior to nucleation
the volume of the metastable phase is v+ V' and the potential Q = —P(V +V").
After nucleation the surface s between the two phases has to be considered. In
general, the work dR to generate an infinitesimal surface of area ds is

dR = ads

where « is the coefficient of the surface tension. With this formula the potential
is @ = —PV — P'V' + as. Without gravity, the nucleus will be a sphere. If
the radius is r, we have V' = 4/37r® and s = 4wr2. For the nucleus to be in
equilibrium with the metastable phase, the radius must satisfy (without proof)

2
P —-P

Te =

finally we get the minimal work to create a nucleus of this radius:

167a?®

Rmin = 3(PI — P)2

If the system is only “slightly metastable”, i.e. P’ close to P, Ry, becomes
large and it may take very long until a random fluctuation pushes the system
into phase coexistence.

13



For nuclei with arbitrary radius r, Rpy, is (without proof)

8rr3a
3re

Ruyin = — +4ma’a (5.1)
This function has a maximum at r = r.. For r < r, it is energetically better
for r to decrease. The nucleus will shrink and finally disappear. For r > r. the
nucleus can grow.

For small r, (5.1) can be approximated by

4
Rpyin = %arf —4ra(r —re)?

and we get the following probability distribution for the emergence of nuclei:

fo(r) = fo(re) exp (MTQ(T - rc)z) (5.2)
fo(re) = const - exp (— 47;0;2) (5.3)

It can be shown that the number of “surviving” nuclei (i.e. nuclei that grow
above 7¢) per time-unit and volume is proportional to fo(r¢)-

With the development of the new phase, the original phase becomes more
stable (the state moves towards the coexistence curve) and the radius 7. in-
creases. Eventually, hardly any new nuclei are created. Furthermore, the al-
ready existing small nuclei start to dissolve again. Only the big nuclei continue
to grow until in the end there is only one nucleus left. This process is called
coagulation. One finds that the average radius of a nucleus grows proportional
to t1/3, whereas the number of nuclei is proportional to 1/t.

14



Chapter 6

Krauss-model

We now move from thermodynamics to traffic models. Assume you are driving
on a long, straight road. You know how fast you are (vy), you see how fast the
car in front of you is (v;) and how far away it is (g). The gap is g = Az — I,
where Az is the front-buffer-to-front-buffer distance, and [, is the space the
car occupies in a tight jam (=~ 7.5m). For simplicity, the unit of the space
coordinates is set to the I, such that [, = 1. Based on vy, v; and g you decide
whether to accelerate or to brake. You may see more things, such as in the rear
view mirror the car behind you. Usually you do not care too much, as he is
responsible not to crash into you, even if you brake as hard as you can. This
imposes a maximal speed (vsage) for each driver, at which she can still drive
safely. The other major restriction for your travelling speed — apart from the
power of your engine — is the speed limit (vpayx)-

A microscopic traffic model is an algorithm describing the driver. The goal
is not to give an optimal driving strategy, because a human behind the wheel
does not drive optimal. The rules of the model are very simple; the complexity
comes from the interactions of the cars.

Describing a driver is much easier when the time is discretized (¢t = to, t1, .. .).
At time t;, each car computes a speed it will drive until ¢;41. All cars do this
computation at the same time, which is known as parallel update. Drivers can-
not react to events between t; and ¢;1. This models the human reaction time,
which is about one second. This time becomes the unit of time and t; = 1.

Let a be the acceleration rate of a car. An optimal driver would drive with
Vdes = MIN(VUmax, Vsafe, V+a), where v is the current speed. Human imperfections
can be modelled by subtracting from vges a random number between zero and
ae (but preventing driving backwards). € is a free parameter.

In the computation of vg,ge a third parameter b is introduced. In the limit
of € = 0, b is the braking capability. For a derivation of the formula see for
example [2]. The whole algorithm is

Usafe = U1 + %;j_l)vl (6.1)
Udes = min(vmax; Usafe, Uf + a) (62)
r €g [0,1] (uniformly distributed) (6.3)
v} = max(0, vges — rac) (6.4)

15



This model was developed by Stefan Krauss [6], we call it the Krauss-model.
The deterministic limit € = 0 of the Krauss model has been proven to be free of
crashes. Even for € > 0, as was used for our studies, we never observed vehicles
getting closer than their minimum distance. Note that all cars have the same
parameters a, b and €. It is not possible to have different car types like personal
cars and trucks on the same road.

When simulating a traffic model on a computer, you are restricted to roads
of finite length L. The question arises what to do at the start and end of the
road. The common answer is to bend the road into a closed ring, which results
in periodic boundary conditions. Let N be the number of cars on the road. The

(global) density p then is
L

P=N (6.5)

Let us summarise the parameters: From the Krauss-model, we have a,b, ¢
and vy, Furthermore there is L and p for a total of six parameters. This is
too much for us to handle, so we will fix some parameters to standard values,
namely:

Umax = 3
a=0.2
b=10.6

L we do not fix, but we are interested in the limit L — oo. This leaves us with
€ and p as free parameters.

16



Chapter 7

Analogy to the gas-liquid
system

We claim that the Krauss-model behaves similar to the gas-liquid system con-
sidered in section 3. A jam corresponds to the liquid phase and laminar flow is
analogous to the gaseous phase. The parameter € plays the role of the temper-
ature (the higher €, the higher the temperature). For the density the analogy is
trivial.

We show that for medium ¢, the Krauss-model displays a two phase regime:
At low density there is only laminar flow, the system is in the laminar state. At
high density there is only one big jam (the jammed state). In between, there
is phase coexistence, i.e. there are both parts of laminar flow and jams (the
coexistence state). For high e, there is only one phase (the high temperature
phase). We will establish the coexistence curve, which separates these states.
We also find a critical point, where spatial correlations become very large. The
existence of a metastable area limited by the spinodal is likely, but beyond the
scope of this work.

17



Chapter 8

Pictures

Before analysing the Krauss-model numerically, it is instructive to look at the
space-time plots in Fig. 8.1. Space-time plots are pictures of the time evolution
of the system. In Fig. 8.1, vehicles drive to the right and time goes down. Each
row of pixels is a “snapshot” of the state of the road. In principle, one can
reconstruct the trajectory of a particular car by connecting the corresponding
pixels. At the displayed resolution this is however close to impossible and it
is mostly the larger scale traffic jam structure that one observes. Traffic jams
move against the direction of driving.
Four qualitatively different types of pictures can be identified:

e The laminar state for (¢ = 0.6,p = 0.25): All cars drive at high speed.
The available space is shared evenly among the cars. The traffic is very
homogeneous.

e The mixed state for (e = 0.6,p = 0.50), (¢ = 1.0,p = 0.25) and (¢ =
1.0, p = 0.50): The slow cars are all together in one big jam. On the rest
of the road, the cars drive at high speed. The traffic is very inhomogeneous.

e The jammed state for (¢ = 0.6,p = 0.85), (¢ = 1.0,p = 0.85) and (¢ =
1.4, p = 0.85): The density is so high that not a single car can drive fast.
As in the laminar state, the traffic is very homogeneous.

e The single phase at high temperature for (¢ = 1.4,p = 0.50) and (e =
1.8,p = 0.50): Many small jams are distributed over the whole system.
There is neither a larger area of free flow, nor a major jam. The traffic is
homogeneous.

(e = 1.8,p = 0.85) belongs to the high temperature phase, although it looks
exactly like the jammed state. At very small densities, the high temperature
phase looks like the laminar phase. The difference is that the transition between
these two extremes is smooth. If you start from the laminar looking state and
increase density, nothing “special” will happen. When the density approaches
one, you are surprised to be watching a jammed looking state.

(e = 1.4,p = 0.25) is harder to classify. It probably belongs to the mixed
state.

18



Note that “homogeneous” here means “homogeneous on large scales”. What
this means is that there is a spatial measurement length £ above which all density
measurements return the same value.!

I More precisely, the fluctuations from one measurement to the next are the same as in the
laminar or the jammed state.

19
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Chapter 9
Defining a jam

In the discussion of Fig. 8.1 we used the word jam, which has a clear intuitive
meaning. Giving a precise definition however is all but easy. In the literature,
there are multiple definitions:

e “A connected structure of vehicles, travelling at a velocity below a given
threshold vgnres Will be called a jam, if this structure contains at least one
stopped vehicle.” ([6], p.38)

e “ .. a car is considered to be jammed, if more than half of the n nearest
neighbours (including the car itself) have got a velocity below vinres.” ([6],
p-60)

We use the following, very simple definition: A jam is a sequence of maximal
length of cars driving with speed less or equal vinres- The cars between two
neighbouring jams are in laminar flow.

This definition will not always correspond to our natural understanding of
the word jam. Thus, whether a car is jammed or not according to this definition
is just a starting point and not the final answer.

We still need a value for vinres- Ideally, the distribution of the car speeds is
bimodal with one peak close to zero corresponding to the jammed cars, and a
second peak close to vmax, representing the cars in the laminar phase. Between
these peaks should be a region of little probability, where vyhes can be placed.
This is indeed true for the parameters used in Fig. 9.1. We set v¢hres = ””5‘“ =
1.5.
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Chapter 10

Initial condition and
relaxation

For most parameters of the Krauss model, there is a unique equilibrium state,
which the system will attain after a finite time telax, N0 matter how it was
started. However, deciding when the equilibrium is reached is not trivial (run-
ning the simulation for ¢ — oo clearly is not an option).

Let r; be the state of the road at time ¢ and f(r;) some property of the
road(e.g. the number of jams). To find trelax, we use the following idea: For
small ¢, E[f(r:)] will depend on the initial condition. With increasing time,
E[f(rs)] converges towards the equilibrium value. Assume the convergence is
from above. Now we need another initial condition that approaches the equi-
librium value from below. Once these two sequences are close enough together,
the equilibrium value is found. Unfortunately, it cannot be guaranteed that the
value thus obtained really is the equilibrium value.

We use the following two initial conditions:

e laminar: The cars are positioned equidistant over the road with speed
Zero.

e jammed: all cars are cramped together in a big jam without any gap.
Their speed is zero.

Figure 10.1 shows space-time plots of systems started with the laminar initial
condition. The jammed (p = 0.85) and the laminar (e = 0.6, p = 0.25) systems
are almost immeadeately relaxed, at least the pictures look identical to those of
the relaxed systems in 8.1. In the pictures for (e = 1.0,p = 0.5), (e = 1.4,p =
0.5), (e =1.4,p = 0.25), (e = 1.8, p = 0.25) one observes coagulation: the system
evolves from many small jams to few large jams. (¢ = 1.6,p = 0.25) shows a
nasty specialty of the Krauss model . The system builds structures that resembel
jams but have much lower density. These structures are highly unstable, they
can either develop into real jams or disappear again. (e = 0.6, p = 0.50) is still
far away from its equilibrium.

Figure 10.2 shows systems started with the jammed initial condition. For
€ < 1, the jam is stable. From the upstream end small holes enter the jam.
They reduce the density of the jam but do not break it into two. If € > 1, the
jam is not stable. It frays on the downstream end.
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For a concrete implementation, a function f must be specified, furthermore
the expected value must somehow be approximated. The latter can be done by
running a number of simulations with different random seed in parallel. All sim-
ulations run for say 100’000 time-stepsand then evaluate f. The expected value
is approximated by the average of these values. To save time, the simulations
can be distributed over multiple machines.

The authors did not pursue this approach, in part to avoid interprocess
communication. Instead we averaged f over some time interval (but with only
one simulation):

99

E[f(ry)] ~ 1—(1)0 > f(t - 5000i)
i=0

This is less accurate, because the configuration of the road at time 5000: is not
independent of the configuration at time 5000(; — 1).

As function f we first used the number of jams on the road (see Fig. 10).
Since both initial conditions start with v = 0, the criterion finds one large jam.
Vehicles then accelerate, but because of interaction will form small jams. For
that reason, the laminar start leads to many jams very quickly. From then
on, the number of jams goes down, because jams coagulate. In contrast, when
starting with a large single jam, than that jam remains the only one in the
system for large times. In Fig. 10, we see that for e = 1.0, the system eventually
goes to a state where it has, in the average, about 1.8 jams. In contrast, with
e = 1.5, the system converges to an average of more than 20 jams. Also, the
figure shows that the system goes to those long-run states no matter how it
starts.

Once trelax is determined, one is interested in the equilibrium value of some
property g: E[g(rt,.,...)]- To check that trelax (which was determined using f) is
large enough, one computes E[g(r,.,.,)] once using only systems with laminar
initial condition and once using only systems with jammed initial condition. If
the results are substantially different (which has to be decided by inspection)
trelax Was too small. The success of this test gives confidence into the computed
value; the way t.e1ax Was attained or its value are irrelevant for the correctness.
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Figure 10.1: Space-time plots for systems started with the laminar initial con-

dition. Otherwise the systems are equal to those of Fig. 8.1.
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dition. Otherwise the systems are equal to those of Fig. 8.1.
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Chapter 11

Number of jams

In this section we investigate the number of jams in a system in equilibrium.
Figure 11.1 shows this number as a function of the density p and the noise e.
The length of the road L is held constant at 4’000.

For € < 1 there no jam for small density, corresponding to the laminar phase.
At high density there is exactly one jam spanning the entire system. This is the
jammed state. In between, there are very few jams, but more than one. This
might be the coexistence state, but the gas-liquid model says that all nuclei
of the new phase coagulate and in the there is one compact liquid phase and
one gaseous phase. The Krauss-model has multiple jams, this is not due to
relaxation problems. One explanation has to do with the interface between the
downstream end of a jam and the following laminar flow: In that area, the
cars are the faster the farther away from the jam they are (the longer they are
already accelerating). But the speed increases not monotonously, so the this
area can become a sequence of small jams and laminar flows.

If € is slightly larger than one, the big jam is still quite compact but there
are also some small jams on the road. The latter are not stable; small jams con-
stantly emerge, exist for some time and then dissolve again. If € is substantially
larger than one, the big jam disappears and there is only a number of very jams.

For € close to two, the number of jams decreases again. With so much noise,
cars only seldom drive faster than vghres- Anyway, with Figure 8.1 in mind,
a partitioning of the road in jammed and laminar parts is artificial. High €
corresponds to the high temperature phase of the gas-liquid model, where there
is neither gas nor liquid.

At high densities, there are also less jams. Of course these jams are larger,
the total number of jammed cars increases monotonously with p. Only a small
part of the road is in laminar flow and laminar flow is needed to split a jam in
two. Note the asymmetrie at € & 1.6: If there is only a small number of jammed
cars, these disperse over the entire road forming many jams. If there is only a
small number of fast moving cars, these tend to stay together resulting in few
jams.

The number of jams depends on the system size. However, if the system has
only one jam at L = 4000, one expects to find only one (though bigger) jam
also as L goes to infinity. Those systems that have multiple jams at L = 4000
should have even more jams when L increases. We conjecture that the average
size of a jam is independent of the system size. Since the number of jammed
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Figure 11.1: Number of jams as a function of the density p and the noise e.
L = 4000

cars grows linearly with L, the number of jams also has to be proportional to
L.

The computer simulation results are shown in Figure 11.2. At e = 1.5,p =
0.3, our conjecture seems to hold, the measured points are very close to the
straight line

number of jams = 0.021- N + 1

Keep in mind that Figure 11.2 has logarithmic axis, so a straight line does not
appear straight. For ¢ = 1.0,p = 0.3 we have already discussed one reason
why there can be more than one jam and thus the average is bigger than one.
Our explanation is an interface effect, and we would expect the interface (and
therefore also the number of jams) to be independent of the system size. The
plot however shows that the number of jams increases with L for L > 1000.
Thus, apart from the interface effect, the noise can collaborate and form mini-
jams within the laminar flow. A human observer probably would not consider
these as real jams, but our simple definition does.

The number of jams gives some good indication to the location of the coex-
istence curve. But for high € it is not applicable. A new measure is needed.
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Chapter 12

Distribution of the lengths
of the laminar structures

In this section we look at the lengths of the laminar structures, i.e. the distances
between the jams. Figure 12.1 shows the histograms for the same parameters
as the pictures of Figure 8.1.

A system in the laminar state gives a histogram one bar at length L and
heights one. This means that such a road almost always has one laminar struc-
ture covering the entire road. There is also a low peak at small sizes, it is caused
by the mini-jams mentioned earlier. The other extreme is the jammed state.
There the histogram is empty. The road contains only one jam and no laminar
flow.

In the mixed state at moderate noise (¢ < 1) there is one bar of height one
at about L — N. The peak at small length is caused by the interface effect
and the mini-jams discussed in section 11. It is a measurement problem and
not a special feature of the model. At higher noise values, the peak at L — N
disappears. There is no big jam here, it is broken up into many small jams.

For high € (close to two) and low density, we find many small laminar struc-
tures. At higher densities, the cars can no longer accelerate above vghres and
there is no laminar structure. We mention again that a distinction between lam-
inar and jammed in the high temperature phase is artificial and the application
of our definition is misleading.

The histogram for e — 1.4, p = 0.25 has a special form: Laminar structures of
any length are possible. Small one are more likely than large one and reduction
of the expected number of structures resembles a power law:

number of laminar structures of length I ~ [¢

This gives a straight line with slope a on a log-log plot. The parameters € —
1.4, p = 0.25 are close to the critical point, which we will investigate in section
15.
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Chapter 13

Density variance

The distribution of the lengths of the laminar structure investigated in the
previous section contains a lot of information. But since it is a distribution
and not a scalar value, it cannot be displayed in a 3d plot as a function of rho
and e. To find the coexistence curve, such a plot would help. Furthermore, all
measures considered so far depend on the definition of a jam. Such a definition
and specially the choice of vynres is very arbitrary. It is preferable to have
results that are independent of how a jam is defined. The density variance
introduced in this section is such a measure. It should distinguish homogeneous
from inhomogeneous traffic.

As already discussed earlier, it should be noted that some states that are
called “homogeneous” in this paper may appear inhomogeneous to an observer.
An example for this is Fig. 8.1 bottom right. As said before, these states are
“homogeneous on large scales”, which is the important criterion here. Essen-
tially, this means that for system size L — oo and measurement interval £ — oo
(but £ <« L), all density measurements will eventually return the same value.
This will not be the case for “mixed” states.

The density variance is defined as follows: Partition the road into segments
of length [ (for simplicity let I divide L without remainder). For each segment
the local density p; can be computed as the number of cars in that segment
divided by [. The density variance is the variance of the local density:

1 L/l
Varlp] = 777 (i) ~ Elpi)? (13.1)

where E[] is the expected value, which in our case is the same as the systemwide
density. Note that since the density lies within [0, 1], the variance cannot exceed
1/4.

What this value picks up is how much each individual measurement segment
of length ¢ deviates, in terms of its density, from the average density. Assume
a system consisting of jammed and laminar traffic. If there is a jam in one
segment, then the segment’s density will be much higher than the average den-
sity. Conversely, if there is only laminar traffic in a segment, then the segment’s
density will be much lower than the average density. Var[p;] takes the average
over the square of these deviations.
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Fig. 13.1 shows this value as a function of the global density p and the noise
parameter €. Look at it for fixed ¢, say € = 1. One sees that at densities up to
p =~ 0.2, the value of Var[p] is close to zero, indicating a homogeneous state,
which is in this case the laminar state. Similarly, for densities above p = 0.8,
Var|[p;] is again close to zero, indicating another homogeneous state, which is in
this case the jammed state. In between, for 0.2 < p < 0.8, the value of Var[p]
is significantly larger than zero, indicating a mixed state.

Now slowly increase e. We see that the laminar regime ends at smaller
and smaller densities, while the jammed regime starts at smaller and smaller
densities. The former says that the higher the noise, the less stable the laminar
flow and traffic breaks down at lower densities. The latter means that for large
€, the jammed phase has many relatively small holes, which reduce the density,
but do not break the jam. At € ~ 1.7, the mixed phase completely goes away;
for larger €, we do not pick up any inhomogeneity at any density, which is
also true for the high temperature phase in the gas-liquid model. Note that
close to the transition the system still looks like it possesses different phases
These structures do however exist on small scales only; when averaging over
larger segments, then all segments contain exactly the same density. A segment
length of £ = 62.5, as used in the figure, is already sufficient.

The maximum of the density variance is at p ~ 0.5,¢ =~ 1. This can be
explained as follows: € = 1 produces a sharp separation of the jam (high density)
and the laminar structure (low density). With p = 0.5 it turns out that these two
phases have the same length, thus Var[p;] is maximal. Increasing (decreasing)
p will increase (decrease) the length of the jam and therefore in both cases
decreases Var[p;].

The elliptical shape with its diagonal axis for € > 1 can be explained by the
dependence of the outflow of a jam on e: Consider the last car in a jam (on the
downstream side). It has speed zero and enough gap to accelerate, S0 vges in
(6.3) is a. The probability that the car starts moving in the next time-step is
(see (6.4))

1 fore<1

13.2
1/e fore>1 (13.2)

P(v}' >0) = P(1 > re) ={

The higher € (for € > 1), the lower is this probability and the lower is the density
of the laminar flow after a jam. If the laminar structures have lower density, the
jams occupy more space. One needs to reduce the density in order to go back
to the state where they occupy equal space.

For € < 0.5 traffic becomes homogeneous at any density. With so little noise,
the density of the outflow of a jam is equal to the maximal density of free flowing
traffic. Under these conditions, no stable jams can exist (see [6], section 5.6.3).
The gas-liquid model shows no homogeneous state at low temperature, this is a
special feature of the Krauss model.

If we cut Figure 13.1 at € = 0.5, the isothermes look very similar to the
coexistence curve of Figure 3.2. They are also in accordance with the coexistence
curve one might deduce from Figure 11.1. In the next section we consider a last
measure from which the coexistence curve can be derived.
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Chapter 14

Density of jams and
laminar structures

The density of a jam is the number of cars in it divided by the length of the
jam. If there is no jam, the density is set to zero. The density of a laminar
structure is analogous. The measured densities are plotted in Figure 14.1. Note
that these measurements depend on the definition of a jam.

The plot for the jams shows density zero at low p and e. This is the laminar
state without jams. When jams first appear, the density has a very steep slope.
In the area of phase coexistance, the density of a jam is independent of the
global density p, exactly as it is for the density of the liquid phase in phase
coexistance. The increase of p produces larger jams, but not denser ones. Only
at high p (in the jammed state) does the density increase. For € > 1 the area of
constant (with regard to p) jam density ends for smaller and smaller p, when €
increases. These ends lie on the coexistence curve. For very high e the area of
constant jam density disappears, as it should in the high temperature phase.

The plot for the density of the laminar structure has the same properties:
Consider a cut for constant, but not too high € (e.g. € = 1) and sweep p from
zero to one. First the density of the laminar structure increases (the laminar
state), then remains constant (phase coexistence) and finally drops very quickly
and remains zero (in the jammed state without laminar structures). The start
of the constant laminar structure density moves to the left for increasing noise.
The quality of the data does not allow to say much for high e. As already
mentioned, this is because in the high temperature phase a separation of jam
and laminar flow is problematic.

36



1.8

16

1.4

noise

1.2

0.8

0.6

Il Il
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
density

18

1.6

14

noise

1.2

0.8

0.6

L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
density

Figure 14.1: TOP: Isolines for the average density of a jam. Leftmost isoline is
0.1, rightmost 0.9. L = 4000. BOTTOM: Isolines for the average density of a
laminar structure. Topmost isoline is 0.03, bottommost 0.21 (in steps of 0.03).
L = 4000

37



Chapter 15

The critical point

In the previous chapters we showed that the Krauss-model has a two phase
regime for medium noise values and a one phase regime at high noise values.
The approximate location of the phase coexistence curve was also derived. From
section 4 we know that at the top of the phase coexistence curve, where (%)T =
0, there is a critical point. In this chapter, we investigate whether the Krauss
model has a critical point and where it would be.

First, a criterion is needed which tells us whether a given point (in the p, e-
plane) is close to the critical point or not'. A central property of the critical
point are the long range correlations. Recall equation (4.18):

G(r) ~ r~ (@720 L exp <_L)

Tc

re ~ [t77
where G(r) is the spatial density correlation defined in (4.5):
G(r) = E[An(r1)An(rz)], r=r1 —r2

We do not measure G(r), but a property that behaves similar, namely the dis-
tribution of the lengths of the laminar structures, which was already considered
in section 12.

To see this, observe that if n(ry) is high, there is probably a jam at r;. On
the other hand, if n(ry) is small, 1 is part of a laminar structure. Thus, if G(r)
is high, then the probability is high that there is laminar flow at ry given that
at ry is laminar flow. It is also likely that a single laminar structure covers r;
and ry. So we find that

G(r) ~ expected number of lam. str. with length greater or equal r (15.1)

At the critical point and for r > 1, this function should be a straight line
in the log-log plot. Slightly away from the critical point, it is a straight line up
to some r (where exp(—r/r.) gets substantially smaller than one) and then the
tail quickly falls to zero. The later this happens, the closer the point is to the
critical point. Do not confuse the straight line for small r in all plots with a

! Computer simulations cannot determine the location of the critical piont exactly, which
would mean with infinite precision.

38



power law. The function is constant there because there is no laminar structure
with lenght smaller than about ten.

Even at the critical point, the number of laminar structures with length
greater er equal r will become zero for some r because the measured system has
finite length. To be precise, the critical point only exists for systems of infinite
size. The larger the simulated system, the better can the critical point of the
infinite system be approximated.

From Figure 13.1, we expect the critical close to € = 1.6,p = 0.2. We
simulate a number of points close to that guess and apply the above criterion.
Since the coexistence curve is asymmetric (it “leans to the left”) the tested
points with higher € have smaller p. Figure 15.1 and 15.2 show the number of
laminar structures with greater or equal r as a funtion of r. A data points at
r can be derived from a histogram of Figure 12.1 by adding the heights of all
bars to the right of r.

For € = 1.8, no power-law is visible, at least no over a reasonabley big
interval. The critical point must be at lower noise. For ¢ = 1.7 only p = 0.05
looks promising. The power-law holds with some accuracy for r € [100, 1000].
€ = 1.6,p = 10 looks even better. Also € = 1.5,p = 15 cannot be ignored.
Observe how the density of these guesses decreases with increasing €. This was
expected, as also the coexistence cureve “leans to the left”.

To get a better extimate of the critical point, the system size has to be
increased. This is done for the plots in Figure 15.3 and 15.3, where L = 32'000.
The displayed function is the same. The best looking are (¢ = 1.6,p = 0.10)
and (e = 1.5,p = 0.20). In Figure 15.5 we extimate the slope of the straight
line for these paramters, which is the value —(d — 2+ (). d = 1 as the road
is one-dimensional. For (¢ = 1.6,p = 0.10), ¢ ~ 1.95 approximates the data
points in the interval [200,3000]. For (e = 1.5, p = 0.16) one gets with ¢ =~ 1.9
an approximation in [80, 3000].

The data presented in this chapter shows that the Krauss model has an
area where spatial correlations become large. It is not clear whether there is a
critical point or not. Even if a critical point is present, it could be that { =0,
so the Krauss-model would not be fractal. One way to attack this problem is
to simulate more systems with different road lengths, some considerably larger
than L = 32'000. With this data one can try to extrapolate the behaviour for
L — oo. This is beyond the scope of this work.
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Figure 15.2: continued
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Chapter 16

The slow-to-start model

In the previous chapters, we have analysed the Krauss-model and its similarities
with the gas-liquid transition. Compared with other microscopic traffic models,
the Krauss-model is relatively complicated. Just understanding what the com-
putation of the safe velocity in (6.2) really does is hard. Then, the model has
three parameters (a, b and €) and macroscopic effects always depend on more
than one of them. For example, the acceleration depends on both a and €. In
this chapter, we apply the same type of analysis done for the Krauss-model to
a simpler cellular traffic model.

A cellular traffic model is a microscopic traffic model that, apart from time,
also discretises space. The road becomes a sequence of cells, eqch of which is
either occupied by one car or empty. The speed of a car is the number of cells
it advances per time-step, and therefore also discrete. The length of a cell is
the space a car occupies in a tight jam (= 7.5m), thus the unit of length is the
same as in the Krauss-model.
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Chapter 17

The Nagel-Schreckenberg
model

Probably the simplest and best understood cellular traffic model is the Nagel-
Schreckenberg (NaSchr) model [3]. Cars can accelerate with one cell per square
time-step, i.e. the acceleration rate is one. The braking capability is not lim-
ited!, thus the maximal safe velocity is the number of free cells ahead, i.e.
Usafe = g- Randomization is done by reducing the desired velocity by one with
probability 1/2. The complete algorithm is

Usafe = 9 (17.1)
Udes = MiN(Umax, Usafe, Vf + 1) (17.2)
r €r {0,1} with probability 1/2 each (17.3)
v} = max(0,vges — 1) (17.4)

As in the Krauss-model, updates are done in parallel. Unfortunately, the
NaSchr-model does not show phase transition [?]. A change of the random-
ization (17.4) suffices to change this.

1Due to discretization, the deceleration rate cannot exceed Umax
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Chapter 18

The VDR-model

To get stable jams between laminar flow, a force is needed that “pulls the jam
together”. The upstream end of a jam is usually stable without additional
forces. On the downstream end, the last car of the jam should be reluctant to
accelerate. This is known as slow-to-start. It can also be observed in real traffic:
When starting after a stop at a traffic light, one tends to leave a longer gap (in
seconds, i.e. relative to the speed) than in a dense but easy flowing traffic.
Slow-to-start can be implemented by velocity dependent randomization (VDR):

the noise term subtracted from the desired velocity depends on the speed of the
car. To get slow-to-start, the noise must be higher if the car is stopped. We use

0 with probability 1/2 .
. . ifvy=0
1 with probability 1/2
r=
0 w%th probab%l%ty D ifo; >0
1 with probability 1 — p

instead of (17.4). pis a parameter. For p = 1/2, the NaSchr-model is recovered.
For p > 1/2 the model is no longer slow-to-start. We only consider values for p
in [0,1/2].

This algorithm can be implemented as a lookup-table. The table has an
entry for every possible speed vy and gap g of a car, which gives the speed in
the next timestep. Since the model is not deterministic, the entry must list
every possible speed v;{ along with a probability. Entries for g > vmax are not
needed. They are the same as for g = vnax, because already there the gap is
large enough that the car can drive at full speed. Table 18.1 shows this table
for vmax = 3.

At this point we want to mention that the parameter € in the Krauss-model
also produces a slow-to-start effect. The higher €, the stronger the effect. We
have seen this in the discussion of equation (13.2). For € < 0.5 the slow-to-start
effect disappears and the Krauss-model no longer has a phase transition.
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speed

0 1 2 3
0|0 0 0 0
1 0 «1/2 0 «p 0 0 «p

1 «1/2 1 «1-—p 1 «—1— 1 «1—p
9 0 «1/2 1 «p 1 1 «p

1 «1/2 2 «1-p 2 «—1— 2 «1—p
5 {0 «1/2 {1 «p {2 “p

1 «1/2 2 «1l-p 3 «1-p 3 «1l—p

Table 18.1: Lookup table for the S2S model with vpax = 3.
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Chapter 19

measurements

If we use vyax = 3 as in the Krauss-model, there are only four different possible
speeds. For a definition of jams based on a velocity threshold, such a small
number of speeds is problematic. We use vmax = 5 for all simulations of the S2S
model. A jammed car then has speed either zero, one or two.

Figure 19.1 gives some typical space-time plots. (p = 0.1,p = 0.1) is in
the laminar state, (p = 0.3,p = 0.9) is the jammed state. In between — (p =
0.1,p = 0.5) and (p = 0.3,p = 0.5) — there is phase coexistence. The Nagel-
Schreckenberg model at p = 0.5 shows the high temperature phase.

Figure 19.2 shows the same systems, but this time immeadeately after they
are initialized with the laminar initial condition. Since the space is discrete,
it is not possible to put all cars exactly equidistant. At p = 0.5, one observes
coagulation. For p = 0.1 and p < 0.3, the cars accelerate without forming a
jam.

Finally, Figure 19.3 shows the relaxation after the jammed initial condition.
At p = 0.1, the jams are stable!. At p = 0.5, the jams at the downstream end.

Figure 19.4 shows the number of jams as a function of p and p. p < 0.2
produces one stable, big jam. For p > 0.2 the jam becomes instable and breaks
into multiple smaller jams. At high densities, no car can drive fast, thus a single
jam covers the entire road. The higher the noise, the less density is necessary
to jam the entire road. Finally, we find a laminar structure and no jams for
p<0.2and p<0.1.

The density variance is shown in Figure ?7?. For p < 0.2 and medium
densities, traffic is very inhomogeneous due to phase coexistence. In contrast
to the Krauss-model, the laminar and the jammed state are almost not present.
For p — 0, there cannot be a jam. But already at p = 0.1 jams begin to form.
Similarly, for p — 1, no car can be in laminar flow, but fast cars appear when p
is only slightly less than one. The jams thus must be very dense. In the Krauss
model each car in a jam can leave a small gap to the next car, resulting in jams
with densities . In the S2S model, cars cannot leave small gaps, they are either
tight together or have a distance of one. It seems that such empty cells in a jam
tend to merge and form small laminar structures.

For p > 0.2, traffic becomes more and more homogeneous at all densities.
The Nagel-Schreckenberg model at p = 0.5 is almost completely homogeneous.

lthe fact that for p = 0.1 the jam disappears does not mean that a jam is in principle
instable
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It has only a single phase, namely the high temperature phase. The isolines at
p > 0.2 are slightly elliptic with a diagonal axis, similar to the Krauss-model,
but far less . For the Krauss-model we explained this by the dependence of the
acceleration (and thus of the density of the laminar structure) on €. In the S2S
model, p does not influence the acceleration, because for a stopped car the noise
is locked to 1/2.

Figure 19.6 top showing the density of jams confirms what was said in the
discussion of Figure 19.5. For p < 0.2, that density of the jams is very high
(> 0.9). Further, in the entire coexistence phase this density is independent of
the global density p. This is also true for the density of the laminar structures
(Figure 19.6 bottom). That density is also fairly independent of p.

Now have a look at the distribution of the lengths of the laminar structures
(Figure ??. (p = 0.1,p = 0.1) is the laminar state. A single laminar structure
covers the entire road. (p = 0.1,p = 0.5) and (p = 0.1,p = 0.9) show the
coexistence state. There is always a laminar structure of length about L — N.
The small laminar structures are the result of a not perfectly stable interface at
the downstream end of the jams. At (p = 0.5, p = 0.9) the system is completely
jammed. At (p = 0.3,p = 0.9) the road is still jammed, but there are a few
faster cars.

All measurements indicate that the S2S model has a two phase regime for low
noise values and a one phase regime at high p. Compared to the Krauss-model,
there are three differences:

e The Krauss-model has a second single phase regime for ¢ < 0.5. In the
S2S model, the two phases remain when p — 0.

e The laminar state and the jammed state almost disappear for small p
values, there is mostly phase coexistence. The Krauss model in the two
phase regime, shows the laminar and the jammed state over a relatively
large intervals of p values. This is because there is a significant amount of
noise in the entire two phase regime. For € — 0, the Krauss-model is in the
single phase regime and there are anyway no jams or laminar structures.

e As already explained, the coexistence curve of the Krauss-model “leans”
far more to the left.
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M- oix

p=0.1,p=0.1 p=0.1, p=0.5

Figure 19.1: Space-time plots for different parameters of the S2S model. Space
is horizontal; time increases downward; each line is a snapshot; vehicles move
from left to right; fast cars are green, slow cars red. Displayed are 500 time-steps
for a road of length L = 500. The systems have run for some time before the
pictures were taken, they are in equilibrium.

51



p=01,p=0.1 p=0.1, p=0.5 p=0.1, p=0.9

Figure 19.2: Space-time plots for systems started with the laminar initial con-
dition. Otherwise the systems are equal to those of Fig. 19.1.
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p=01,p=0.1 p=0.1, p=0.5 p=0.1, p=0.9

Figure 19.3: Space-time plots for systems started with the jammed initial con-
dition. Otherwise the systems are equal to those of Fig. 19.1.
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Figure 19.4: Number of jams as a of the density p and the noise p. L = 4000
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Figure 19.5: 3d-plot and isolines of the density variance. The outermost isoline
is Var[p;] = 0.01, the innermost Var[p;] = 0.09. L = 4000 and ! = 62.5
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Figure 19.6: TOP: Isolines for the average density of a jam. Leftmost isoline is
0.1, rightmost 0.9. L = 4000. BOTTOM: Isolines for the average density of a
laminar structure. Topmost isoline is 0.03, bottommost 0.21 (in steps of 0.03).
L = 4000
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Figure 19.7: Histograms of the lengths of the laminar structures. L = 4000 for
all plots. The heights of a bar is the expected number of laminar structures
with length in the interval corresponding to the width of the bar. Plots are in
log-log-scale.
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Chapter 20

Computational issues

A standart Pentium IIT 7T00MHz processor can compute about 2.5 million car
updates per second. Whether the Krauss-model or S2S is simulated does not
change much. A system with 1000 cars takes about a million time steps to reach
equilibrium. That value depends on the other parameters. Larger systems take
longer to relax. In order to get good (averaged) data, one needs to simulate
about 10 systems. Remember that you also average over time, as explained
in section 10. Thus, getting the data for one point in the noise/density plane
takes about one hour. The plot in Figure 13.1 contains about 400 points, which
would take about two weeks to compute on a single processor. The good news
is that different points in the noise/density plane can be computed in parallel
on multiple CPUs.
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Chapter 21

Discussion

There is no general agreement if measurements show 1-phase/l-state or 2-
phase/3-state traffic (or possibly even three phases [5]). There is some evidence
for hysteresis in Germany [4], manifesting itself in transitions from high to lower
flow values at the same density. Hysteresis, which was also found earlier [§], is
a strong indication for a 2-phase model. However, even in Germany, most mea-
surements indicate highly variable traffic at intermediate densities, which does
not correspond to any clear-cut picture.

In this context, one should note that a 1-phase model which is close to a 2-
phase model would also display highly variable traffic at intermediate densities,
although it would be homogeneous at large scales as discussed in Sec. ??7. This
variability is however a property of stochastic models only and for that reason
it is not well integrated into current theory development. A precise investi-
gation of these relations is beyond the scope of this paper. It seems however
impossible to us to clarify the question if traffic displays several phases or not
— and therefore, if breakdown probability should be entered into the Highway
Capacity Manual or not — without having understood how different phases are
generated by stochastic models. The present work fills exactly this gap.
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Chapter 22

Summary

This paper shows, via numerical evidence, that a specific stochastic car following
model can either display 1-phase/1-state or 2-phase/3-state traffic, depending
on the noise parameter. With 2-phase parameters, the two phases are laminar
and jammed, which also corresponds to two of the three states. Those states
are homogeneous. The third state, at intermediate densities, is a coexistence
or mixed state, consisting of sections with jammed and sections with laminar
traffic.

The transition to a 1-phase/1-state model happens via the densities of the
laminar and of the jammed phase approaching each other until they become the
same. Beyond this point, there is only one homogeneous phase of traffic. In
the gas-liquid model, this point is a critical point. Spatial correlations grow to
infinity and the system can become fractale. Whether the Krauss-model also
has a critical point could not be answered.

In our view, it is important to understand this possibility of stochastic mod-
els to be in different regimes if one considers to enter discussions of traffic
breakdown probabilities into the Highway Capacity Manual. If traffic is best
described by a 1-phase model, then there is, in our view, no theoretical justifi-
cation for such probabilities. If, however, traffic is best described by a 2-phase
model, then the 2-phase model could even give theoretical predictions for break-
down probabilities. A discussion of breakdown probabilities in 2-phase models
can be found in Ref. [?].
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