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CH-8092Zürich,Switzerland�
raney@inf; cetin@inf;res@student;nagel@inf� .ethz.ch

Submittedto the ������� ERSACongress,Dortmund, 2002

Abstract – In a multi-agenttransportation simulation,eachtraveler is representedindi-

vidually. Sucha simulationconsistsof at leastthefollowing modules:(i) Activity gener-

ation.For eachtravelerin thesimulation, acomplete24-hourday-planis generated,with

eachmajor activity (sleep,eat,work, shop,drink beer),their times,andtheir locations.

(ii) Modal androutechoice.For eachtraveler in thesimulation,themodeof transporta-

tion andtheactualroutesarecomputed.(iii) TheTraffic simulation itself. In thismodule,

thetravelersaremovedthroughthesystem,via thetransportationmodesthey have cho-

sen.(iv) Learningandfeedback.In orderto find solutionswhich areconsistentbetween

themodules,a relaxationtechniqueis used.This techniquehassimilaritiesto day-to-day

humanlearningandcanalsobe interpretedthat way. – Besides,oneneedsinput data,

suchdataof theroadnetwork, or (synthetic) populations. In thefuture, furthermodules

needto beadded,suchasfor housingandlanduse,or for freight traffic.

Using advancedcomputational methods,in particularparallelcomputing, it is now

possible to do this for largemetropolitanareaswith 10 million inhabitantsor more. We

arecurrentlyworkingon sucha simulationof all of Switzerland.Our focusis on a com-

putationally efficient implementationof theagent-basedrepresentation,whichmeansthat

we in fact representeachagentwith an individual setof plansasexplainedabove. We

usea databaseto storethe agent’s strategies, then load theminto the simulation mod-

ulesasrequired,andfeedbackindividualperformancemeasuresinto thedatabase.This

approachallows that additional modulescanbe coupledeasily, andwithout destroying

computationalperformance.
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1 Introduction

Humantransportation hasphysical, engineering,andsocio-economic aspects.This last

aspectmeansthatany simulation of humantransportation systems will includeelements

of adaptation,learning,andindividual planning. In termsof computerization,theseas-

pectscanbemuchbetterdescribedby ruleswhichareappliedto individualentitiesthanby

equationswhichareappliedto aggregatedfields. In consequencearule-basedmulti-agent

simulation is a promisingmethodfor transportation simulations(andfor socio-economic

simulationsin general).By a “multi-agent” simulation we meana microscopic simula-

tion thatmodelsthebehavior of eachtraveler, or agent, within thetransportationsystem

asanindividual,ratherthanaggregatingtheirbehavior in someway. Theseagentsarein-

telligent,which meansthat they have strategic, long-termgoals.They alsohave internal

representationsof theworld aroundthemwhich they useto reachthesegoals.Addingthe

term“rule-based”indicatesthat thebehavior of theagentsis determinedby setsof rules

insteadof equations.Thus,arule-basedmulti-agentsimulationof atransportation system

will applyto eachagentindividually. Suchasimulationdifferssignificantlyfrom amicro-

scopicsimulation of, say, moleculardynamics,becauseunlike molecules,two “traveler”

particles(agents)in identicalsituationswithin a transportationsimulation will in general

makedifferentdecisions.

Suchrule-basedmulti-agentsimulations run well on currentworkstations and they

canbedistributedon parallelcomputersof thetype“networksof coupledworkstations.”

Sincethesesimulationsdo not run efficiently on traditionalsupercomputers(e.g.Cray),

the jump in computational capabilityover the last decadehashada greaterimpacton

theperformanceof multi-agentsimulations thanfor, say, computational fluid-dynamics,

whichalsoworkedwell on traditionalsupercomputers.In practicalterms,thismeansthat

we arenow ableto run microscopic simulationsof largemetropolitanregionswith more

than10mill ion travelers.Thesesimulationsareevenfastenoughto runthemmany times

in sequence,which is necessaryto emulatetheday-to-daydynamicsof humanlearning,

for examplein reactionto congestion.

In orderto demonstratethis capabilityandalsoin orderto gainpracticalexperience

with sucha simulation system, we are currently implementing a 24-hourmicroscopic

transportation simulation of all of Switzerland.Switzerlandhas7.2 mill ion inhabitants.
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Assuming 3 to 3.5 trips perpersonperday, this will resultin about20–25mill ion trips.

This numberincludespedestriantrips (like walking to lunch), trips by public transit,

freight traffic, etc. The numberof car trips on a typical weekdayin Switzerlandis cur-

rentlyabout5 million (seeVrtic (2001)for wherethedatacomesfrom). Thegoalof our

studyis twofold:

	 Investigatethecomputational challengesandhow they canbeovercome.

	 Investigatewhat is necessaryto make a simulation systemrealisticenoughto be

usefulfor suchascenario,andhow difficult this is.

This papergivesa report on the currentstatus. Section2 describesthe simulation

modulesandhow they wereusedfor thepurposesof this study. Section3 describesthe

input data, i.e. the underlyingnetwork and the demandgeneration.Besides“normal”

demand,we alsodescribeonewhere50000travelerstravel from randomstartingpoints

within Switzerlandto theTicino, which is thesouthernpartof Switzerland.We usethis

secondscenarioasaplausibility testfor routingandfeedback.Thisis followedby Sect.4,

whichdescribessomeresultsandSect.5, whichdescribesissuesrelatedto computational

performanceof the parallelmicro-simulation. The paperendswith a discussionanda

summary.

2 Simulation Modules

Traffic simulationsfor transportation planningtypically consistof thefollowing modules

(Fig. 1):

	 Population generation. Demographicdatais disaggregatedso that one obtains

individualhouseholdsandindividualhousehold members,with certaincharacteris-

tics,suchasa streetaddress,carownership,or householdincome(Beckmanet al.,

1996).– This moduleis not usedfor our currentinvestigationsbut will beusedin

future.

	 Activities generation. For eachindividual, a setof activities (home,goingshop-

ping,goingtowork,etc.)andactivity locationsfor adayisgenerated(Vaughnetal.,
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1997;Bowman,1998).– This moduleis not usedin our currentinvestigationsbut

will beusedin future.

	 Modal and route choice. For eachindividual, the modesareselectedandroutes

aregeneratedthatconnectactivitiesat differentlocations(seeSec.2.1).

	 Traffic micro-simulation. Up to here,all individualshave madeplansabouttheir

behavior. Thetraffic micro-simulationexecutesall thoseplanssimultaneously(see

Sec.2.2). In particular, we now obtaintheresultof interactionsbetweentheplans

– for examplecongestion.

	 Feedback. In addition, suchan approachneedsto make the modulesconsistent

with eachother (Sec.2.3). For example,plansdependon congestion, but con-

gestiondependson plans.A widely acceptedmethodto resolve this is systematic

relaxation– thatis, makepreliminaryplans,run thetraffic micro-simulation,adapt

the plans,run the traffic micro-simulation again,etc., until consistency between

modulesis reached.Themethodis somewhatsimilar to theFrank-Wolfe-algorithm

in staticassignment, or in moregeneraltermsto a standardrelaxationtechniquein

numericalanalysis.

Thismodularizationhasin factbeenusedfor a long time; themaindifferenceis thatit is

now feasibletomakeall modulescompletelymicroscopic,i.e.eachtraveleris individually

representedin all modules.
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2.1 Routing

Travelers/vehiclesneedto computethesequenceof links thatthey aretakingthroughthe

network. A typical way to obtainsuchpathsis to usea shortestpathDijkstra algorithm.

This algorithmusesasinput the individual link travel timesplusthestartingandending

pointof a trip, andgeneratesasoutputthefastestpath.

It is relatively straightforward to make the costs(link travel times)time dependent,

meaningthatthealgorithm canincludetheeffect thatcongestionis time-dependent: Trips

startingat onetime of the day will encounterdifferentdelaypatternsthantrips starting

at anothertime of the day. Link travel times are fed back from the micro-simulation

in 15-min time bins, and the routerfinds the fastestroutebasedon these15-min time

bins. Apart from relatively small andessentialtechnicaldetails,the implementationof

suchanalgorithmis straightforward(Jacobet al., 1999). It is possible to includepublic

transportation into the routing(Barrettet al., 1997); in our currentwork, we look at car

traffic only.

2.2 Micro-Simulation

Our mainmicro-simulation is thequeuesimulation(Gawron, 1998;CetinandNagel,in

preparation).Theintentwith thissimulationis to keeptravelers/vehiclesmicroscopicand

to have queuespillback,but apartfrom this to keepthesimulationassimple aspossible.

This is similar in spirit to traffic simulationsbasedon thesmooth particlehydrodynamics

approach,suchas DYNEMO (Schwerdtfeger, 1987), DYNAMIT (its.mit.edu),or DY-

NASMART (Mahmassaniet al., 1995).

In thequeuesimulation,streetsareessentiallyrepresentedasFIFO (first-in first-out)

queues,with theadditionalrestrictionsthat(1) vehicleshave to remainfor a certaintime

on the link, correspondingto free speedtravel time; andthat (2) thereis a link storage

capacityandoncethatis exhausted,nomorevehiclescanenterthelink.

A major advantageof the queuesimulation, besidesits simplicity, is that it canrun

directly off the datatypically availablefor transportationplanning purposes.This is no

longer true for more realistic micro-simulation, which need,for example,the number

of lanesincluding pocket andweaving lanes,turn connectivitiesacrossintersections,or

signalschedules.
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2.3 Feedback

As mentionedabove, plans(suchasroutes)andcongestionneedto bemadeconsistent.

This is achievedvia a relaxationtechnique(Kaufmanet al., 1991;Nagel,1994/95;Bot-

tom,2000):

1. Initially, thesystemgeneratesasetof routesbasedon freespeedtravel times.

2. The new routesarestoredin a database,called the “agentdatabase”(Raney and

Nagel,2002),so that the travelers(“agents”)may laterassociatethe performance

of therouteto it, andmaychooseroutesbasedonperformance.

3. Thetraffic simulation is runwith theseroutes.

4. Eachagentmeasurestheperformanceof his/herroutebasedon theoutcomeof the

simulation. “Performance”at presentmeansthetotal travel time of theentiretrip,

with lower travel timesmeaningbetterperformance.This informationis storedfor

all theagentsin theagentdatabase,alongwith theroutethatwasused.

5. 10% of the populationrequestsnew routesfrom the router, which basesthemon

the updatedlink travel timesfrom the last traffic simulation. The new routesare

thenstoredin theagentdatabase.

6. Travelerswho did not requestnew routeschoosea previously tried routefrom the

agentdatabaseby comparingperformancevaluesfor thedifferentroutes.Specifi-

cally, they useamultinomial logit model


�������������
for the probability 
�� to selectroute � , where � � is the correspondingmemorized

travel time. � wassetheuristicallyto ����� ��!�" sec# to obtaina fractionof about10%

non-optimal users.

7. Thiscycle (i.e. steps(3) through(6)) is run for 50 times;earlierinvestigationshave

shown thatthis is morethanenoughto reachrelaxation(Rickert,1998).

Note that this implies that routesarefixedduringthe traffic simulationandcanonly

bechangedbetweeniterations.Work is underway to improve this situation, i.e. to allow

online re-planning(Gloor,2001).
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3 Input Data and Scenarios

Theinputdataconsistsof two parts:thestreetnetwork, andthedemand.

3.1 The Street Network

Thestreetnetwork that is usedwasoriginally developedfor theSwissregionalplanning

authority(Bundesamtfür Raumentwicklung).It hassincebeenmodifiedby Vrtic at the

IVT, andagainby us. The network hasthe fairly typical numberof 10572 nodesand

28622links. Also fairly typical,themajorattributesontheselinksaretype,length,speed,

andcapacity. As pointedoutabove,this is enoughinformationfor thequeuesimulation.

3.2 The “Gotthard” Scenario

In orderto testourset-up,wegeneratedasetof 50000tripsgoingto thesamedestination.

Having all trips going to the samedestination allows us to checkthe plausibility of the

feedbacksinceall traffic jams on all usedroutesto the destination should dissolve in

parallel. In this scenario,we simulate the traffic resulting from 50000 vehicleswhich

startbetween6amand7amall over Switzerlandandwhich all go to Lugano,which is

in theTicino, theItalian-speakingpartof Switzerlandsouthof theAlps. In orderfor the

vehiclesto get there,mostof themhave to crosstheAlps. Therearehowever not many

waysto do this, resulting in traffic jams,mostnotablyin thecorridorleadingtowardsthe

Gotthardpass. This scenariohassomeresemblancewith real-world vacationtraffic in

Switzerland.

3.3 The “Switzerland” Scenario

For a realisticsimulation of all of Switzerland,thestartingpoint for demandgeneration

is a 24-hourorigin-destinationmatrix, againfrom theSwissregionalplanningauthority

(Bundesamtfür Raumentwicklung). For thismatrix,theregionisdividedinto3066zones.

Eachmatrixentrydescribesthenumberof trips from onezoneto anotherduringatypical

24-hourworkday; trips within zonesarenot includedin the data. The original 24-hour

matrix wasconvertedinto 24one-hourlymatricesusinga threestepheuristicwhichuses

departuretime probabilitiesandfield datavolume counts.Thesematricesarethencon-
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vertedto individual (disaggregated) trips usinganotherheuristic. Thefinal resultis that

for eachentryin theorigin-destinationmatrixwehaveatrip whichstartsin thegiventime

slice,with origin anddestination links in thecorrectgeographicalarea.More detailscan

befoundin Voellmyet al. (forthcoming).

In the long run, it is intendedto move to activity-baseddemandgeneration.Then,

asexplainedabove onewould startfrom a syntheticpopulation,andfor eachpopulation

member, onewouldgeneratethechainof activities for thewhole24-hourperiod.

4 Results

Figure2 shows anexampleof how the feedbackmechanismworks in theGotthardsce-

nario. Thefigureshows two “snapshots”of thevehiclelocationswithin thequeue-based

micro-simulation at 9:00 AM. The first imagein the figure is a snapshotof the initial

(zeroth)iterationof thesimulation,andthesecondis thesimulationafter50 iterationsvia

theagentdatabasefeedbacksystemdescribedin Sect.2.3.

Initially thetravelerschooserouteswithout any knowledgeof thedemand(causedby

theothertravelers),sothey all usethefastestlinks, andtendto selectverysimilar routes,

which composea subsetof available routes. However, by driving on the samelinks,

they causecongestionandthoselinks becomeslower thanthe next-fastestlinks which

weren’t selected.Thus,alternaterouteswhich weremarginally slower thanthe fastest

routebecome,in hindsight, preferredto the routestaken. By allowing sometravelers

to selectnew routesusingthenew informationaboutthenetwork, andothersto choose

previously tried routes,we allow themto learnaboutthedemandon thenetwork caused

by oneanother.

After 50 iterationsbetweentherouteselectionandthemicro-simulation, thetravelers

have learnedwhat everyoneelseis doing, andhave chosenroutesaccordingly. Now a

morecompletesetof the available routesis chosen,andoverall the travelersarrive to

theirdestinationearlierthanin theinitial iteration.Comparingtheusageof theroads,one

canseethat in the49th iteration,thequeuesareshorteroverall, andat thesametime in

thesimulation, travelersare,onaverage,closerto theirdestination.

Figure3 shows anotherview of thenetwork afterabout50 iterationswith thequeue-

basedmicro-simulationfor theGotthardscenario.Thefiguresshow the15-minuteaggre-
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Figure2: Exampleof relaxationdueto feedback.TOP:Iteration0 at 9:00– all travelers

assumethenetwork is empty. BOTTOM: Iteration49at9:00– travelerstakemorevaried

routesto try to avoid oneanother.

gateddensityof the links in thesimulatedroadnetwork, which is calculatedfor a given

link by dividing thenumberof vehiclesseenon thatlink in a 15-minutetime interval by

thelengthof thelink (in meters)andthenumberof traffic lanesthelink contains.In all of

thefigures,thenetwork is drawn asthesetof small,connectedline segments,re-creating

theroadwaysasmight beseenfrom anaerialor satelliteview of thecountry. The lane-

wisedensityvaluesareplottedfor eachlink asa3-dimensional boxsuper-imposedonthe

2-dimensionalnetwork,with thebaseof aboxlying ontopof its correspondinglink in the

network, andtheheightabove the“ground” setrelative to thevalueof thedensity. Thus,
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larger densityvaluesaredrawn as taller boxes,andsmallervalueswith shorterboxes.

Longerlinks naturallyhave longerboxesthanshorterlinks. Also, theboxesareshaded,

with smallervalueshaving lighter shadesof gray, andlargervalueshaving darker shades

of gray. In short,the higherthe density(the taller/darker the boxes),the morevehicles

therewereonthelink duringthe15-minutetimeperiodbeingillustrated.Higherdensities

imply highervehicularflow, upto acertainpoint(thedark-grayboxes),but any boxesthat

areblackindicateacongested(jammed)link. All timesgivenin thefiguresareat theend

of the15-minute measurementinterval. TheGotthardtunnelis indicatedby a circle; the

destination in Luganois indicatedby anarrow.

Figure4 shows a resultof theSwitzerlandscenarioduringmorningrush-hour. This

figure is after50 iterationsof thequeuemicro-simulation,usingtheagentdatabase.We

usedas input the origin-destination matricesdescribedin Sect.3.3, but only the three

one-hourmatricesbetween6:00AM and9:00AM. This meansany travelersbeginning

their trips outsidethis region of time werenot modeled.As onewould expect,thereis

moretraffic nearthecities thanin thecountry. Jams,arenearlyexclusively found in or

nearZurich (nearthetop). This is barelyvisible in Fig. 4, but canbeverifiedby zooming

in (possiblewith the electronicversionof this paper).As of now, it is unclearif this is

a consequenceof a higher imbalancebetweensupplyanddemandthan in otherSwiss

cities,or aconsequenceof aspecialsensitivity of thequeuesimulationto largecongested

networks.

Fig.5 showsacomparisonbetweenthesimulationoutputof Fig.4 andfield datataken

at countingstationsthroughoutSwitzerland(seeSec.3.3 andBundesamtf ür Strassen,

2000). Thedottedlinesoutline a region wherethesimulationdatafalls within 50%and

200%of the field data. We considerthis an acceptibleregion at this stagesinceresults

from traditional staticassignmentsthatweareawareof arenobetterthanthis (Esserand

Nagel,2001). Only few simulation resultsareoutsidethis region; investigationof these

points is pending.

5 Computational Issues

A metropolitan region canconsistof 10 million or moreinhabitantswhich causescon-

siderabledemandson computational performance.This is madeworseby therelaxation
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Figure3: Snapshotsat 7:00AM, 8:00AM, and9:00AM of GotthardScenario.Thecircle

shows the traffic jam beforetheGotthard tunnel. Thearrow indicatesthedestination of

all vehicles.

iterations. And in contrastto simulationsin thenaturalsciences,traffic particles( : trav-

elers,vehicles)have internalintelligence.As pointedout in theintroduction, this internal

intelligencetranslatesinto rule-basedcode,whichdoesnot runwell on traditionalsuper-
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Figure5: Simulationvs. field data. The x-axis shows the hourly countsfrom the field

data;they-axisshows throughput on thecorrespondinglink from thesimulation. “7-8”

and“8-9” referto thecorresondinghoursduringthemorning rushhour.
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computers(e.g.Cray) but runswell on modernworkstationarchitectures.This makes

traffic simulationsideallysuitedfor clustersof PCs,alsocalledBeowulf clusters.Weuse

domaindecomposition, that is, eachCPU obtainsa patch(“domain”) of the geograph-

ical region. Informationandvehiclesbetweenthe domains areexchangedvia message

passingusingMPI (MessagePassingInterface,www-unix.mcs.anl.gov/mpi).

Table1 shows computing speedfor the queuesimulation run on threehoursof the

Gotthardscenariodescribedin Sect.3.2.Thetablelistselapsedtime(or wall clock time),

real-timeratio, andspeedupfor the samesimulation run on differentnumbersof CPUs

usinga standard100Mbit Ethernetinterfacebetweenthecomputers.Thereal-timeratio

(RTR) is how muchfasterthanreality the simulation is. A RTR of 100meansthatone

simulates100secondsof the traffic scenarioin onesecondof wall clock time. Speedup

andRTR arerelated,in that speedupcomparesthe wall clock time of a multiple-CPU

simulation with thatof thesingle-CPUsimulation,whereasRTR is comparingrunning

time to the simulatedtime. The simulation scalesfairly well for this scenariosizeand

thiscomputingarchitectureupto about64CPUs.Above80CPUs,performancedoesnot

increasefurther.

Thebottleneckto fastercomputingspeedsis thelatency of theEthernetinterface(Rick-

ert andNagel,2001;NagelandRickert, 2001),which is about0.5–1msecpermessage.

Sincewe have in theaveragesix neighborsper domainmeaningsix messagesendsper

timestep,running100timesfasterthanrealtimemeansthatbetween"<;>= msec?@�A"�"B?C!D:
"<;E� secand � msec ?F�G"�"H?I!J:K"L;M! secpersecondcorrespondingto between30%and

60%of thecomputing timeis usedupby messagepassing.As usual,onecouldrunlarger

scenariosat thesamecomputationalspeedwhenusingmoreCPUs.However, runningthe

samescenariosfasterby addingmoreCPUsdemandsa low latency communication net-

work, suchasMyrinet, or asupercomputer. Fig.6 comparestheactualexperimentalRTR

betweenthesimulation run over a 100Mbit Ethernetinterface,anda Myrinet interface,

with all elsebeingequal. SinceMyrinet hasa lower latency thanEthernet,the perfor-

manceis indeedincreasedasexpected.Systematiccomputational speedpredictionsfor

differenttypesof computerarchitecturescanbe found in Rickert andNagel(2001)and

NagelandRickert (2001).
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Numberof Processors TimeElapsed RealTimeRatio Speedup

1 552 20 1.00

4 272.7 40 2.02

8 179 60 3.08

16 124 87 4.45

32 82.4 131 6.70

48 74.4 145 7.42

64 65 166 8.49

80 58.4 185 9.45

96 55.6 194 9.93

108 58.2 186 9.48

125 59.2 182 9.32

Table1: Computational performanceof the queuemicro-simulationon a Beowulf Pen-

tium cluster. Thefirst columnindicatesthenumberof processorsused.Thesecondcol-

umngivesthenumberof secondstaken to run thefirst 3 hoursof theGotthardscenario

(iteration49). Thethird columngivestherealtimeratio(RTR), whichis how muchfaster

thanreality thesimulationis. A RTR of 100meansthatonesimulates100secondsof the

traffic scenarioin onesecondof wall clock time. Thefourth columnis thespeedup,the

ratioof theexecution timeof thesimulation to thatof asingle-processorexecution.

6 Discussion and Future Plans

Thispaperdescribesonepossible implementationof a large-scaleagent-basedsimulation

packagefor regionalplanning. As wasrepeatedlypointedout, theapproachis modular

andextensible. In order to test the modularity, replacingoneor moremodulesby al-

ternative onesis desirable. In the following, this is discussedon a module-by-module

basis.

Traffic Micr o-Simulation The queuesimulation hasits limitations,for examplewith

respectto complicatedintersections,inhomogeneousvehiclefleets,queuedissolution,in-

teractionbetweendifferentmodesof transportation,etc.Theselimitationswill bedifficult

or impossibleto remove within themethodof thequeuesimulation approach.Therefore
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tium clusterusingEthernetandMyrinet network interfaces.

it seemsdesirableto move beyond the queuesimulation to a morerealistictraffic sim-

ulation. Besidesbeingmorerealistic,this simulation shouldfulfil the following criteria

in order to be consistentwith our approach:It shouldbe ableto processtravelerswith

individual plans;and it shouldbe computationally fast. Therearecurrently few traffic

simulationswhich fulfill thesecriteriasimultaneously. TheTRANSIMS microsimulation

is oneof them(transims.tsasa.lanl.gov; www.transims.net).We attemptedto useit in the

pastyears,and indeedsomepreliminary resultswere basedon it (Raney et al., 2002;

Voellmy et al., forthcoming). We however stoppedusingit becauseit turnedout to be

ratherdifficult to obtain the necessaryinput data,most importantly laneconnectivities

acrossintersectionsandsignalplans. Thereareautomatic generationmethodsfor these

attributesfrom staticassignmentnetworks,andweintendto evaluatethose.Nevertheless,

someaspectswill takequitesometimeandconsiderablemanualwork.

Router Our currentroutercomputescar-only fastestpaths,without regardfor alterna-

tive costfunctions(suchasmonetarycost,familiarity, scenicbeauty, etc.),andwithout

regardfor alternativemodes.Testswith themulti-modalTRANSIMS routerwereunsuc-

cessful,becauseof at leastoneseriousbug. (This refersto the routerof TRANSIMS-
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1.0 from fall 1999. Earlier TRANSIMS resultswerebasedon a differentrouter. Later

versions of TRANSIMS supposedlywill have that problemfixed, but arecurrentlynot

available.) Someof our work investigateshow individualizedpartial knowledge of the

roadnetwork (mentalmap)influencesroutechoice.

Activity generation The above resultsusetraditionalorigin-destination tablesfor de-

mandgeneration.We intendto moveour investigationsto activity-baseddemandgenera-

tion. Onemethodwill bebasedondiscretechoicetheory, oneongeneticalgorithms.

Feedback The useof the agentdatabasein the feedbackmechanismworks well, but

needstuning. Both computationalspeedandthe learningbehavior of thesystemarean

issue.Thecomputational speedissuesareaddressedvia a combimationof databaseper-

formancetuningandconsolidating the currentscript-basedapproachinto oneprogram.

Themethodologicalquestionswill beaddressedvia anexamination of establishedlearn-

ing methods(suchasbestreplyor reinforcementlearning).

In addition, a grave shortcoming or thecurrentmethodis thatreplanningcanhappen

only over night. Work is underway to improve this situation via an online coupling

betweenmodules,which will allow within-dayreplanning(Gloor,2001).We explicitely

want to avoid couplingthemodulesvia standardsubroutine/library calls,sincethis both

violatesthemodularapproachideaandefficiency considerations for parallelcomputing.

7 Summary

In termsof travelersandtrips,a simulation of all of Switzerland,with morethan10 mil-

lion trips, is comparableto a simulation of a large metropolitan area,suchasLondon

or Los Angeles. It is alsocomparablein size to a moleculardynamicssimulation, ex-

ceptthattravelershaveconsiderablymore“internal intelligence”thanmolecules,leading

to complicatedrule-basedinsteadof relatively simpleequation-basedcode.Suchmulti-

agentsimulationsdo not run well on traditionalvectorizingsupercomputers(e.g.Cray)

but runwell ondistributedworkstations,meaningthatthecomputingcapabilitiesfor such

simulationshavevirtually explodedover thelastdecade.

Thispaperdescribesthestatusof ongoingworkof animplementationof all of Switzer-
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land in sucha simulation. Thewholesimulation packageconsistsof many modules,in-

cludingthemicro-simulationitself, therouteplanner, andthefeedbacksupervisorwhich

modelsday-to-daylearning.A single destination scenariois usedto verify theplausibil-

ity of thereplanningset-up.A preliminary resultof a simulation of all of Switzerlandis

shown, including comparisonsto field datafrom automatic countingstations. Although

considerableprogresshasbeenmade,muchwork is still to bedone.
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