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Zusammenfassung 

Dieser Text stellt das Projekt “Planning with Virtual Alpine Landscapes and Autonomous 
Agents” (ALPSIM www page, accessed 2003) vor, welches vom Programm “Habitats and 
Landscapes of the Alps” des Schweizer Nationalfond finanziert wird. Das Projekt untersucht, 
inwieweit es möglich ist, Multiagentensimulationen einzusetzen, um landschaftliche 
Veränderungen in Touristengegenden in den Schweizer Alpen zu untersuchen. Das Projekt 
verwendet simulierte Agenten, welche die Landschaft “sehen” und entsprechend auf 
Veränderungen reagieren. Dieser Text beschreibt die allgemeinen Projektziele sowie Aspekte 
der Computerimplementation. 

Schlüsselbegriffe: Multi-Agenten Modell, Planungsevaluation, Auswahl der Wanderrouten 
nach ästhetischen Gesichtspunkten, microscopic simulation, computational aspects, Lernen bei 
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Abstract 

This paper introduces the project “Planning with Virtual Alpine Landscapes and Autonomous 
Agents” (ALPSIM www page, accessed 2003), which is funded by the Swiss National Science 
Foundation program “Habitats and Landscapes of the Alps.” The project explores the 
feasibility of using autonomous agent modeling to evaluate future scenarios in a tourist 
landscape in the Swiss Alps. The project uses simulated people (agents) who “see” the 
landscape as surrogates for real people, in order to test their reactions against the simulated 
scenarios. This paper describes the overall project goals and the computational approach used 
to attain them.  

Keywords: multi-agent model, planning evaluation, aesthetic choice of hiking routes, 
microscopic simulations, computational aspects, learning of agents, visual landscape quality 
assessment, modular software engineering 

 

1. Introduction 

As many planning problems focus on processes that evolve over time in a complex 
environment, it is often difficult to evaluate the long term implications of a planning decision. 
Computer simulations have long been used as a method for evaluating proposed future 
scenarios in planning (TIMMERMANS 2003). However, most simulation efforts in spatial 
planning have focused on large spatial scales (such as at the city and regional levels) and on 
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relatively abstract concepts (such as land use patterns, traffic and economic development), 
while one can argue that the planning decisions that have the most impact on individual 
citizens tend to be either at a relatively small scale or have very local impacts. 

At these small scales (such as the sub-watershed or village), visual elements and the overall 
visual quality of the proposed planning intervention are extremely important. This is 
particularly true with areas dependent on tourism, which are often promoted based on their 
scenic qualities. Aesthetics are hard to quantify and therefore hard to integrate into a computer 
model. Because of the persisting perception that visual quality is too subjective a concept, it 
has largely been ignored in planning models and simulation. This is, in our opinion, a large 
oversight, as there is a whole class of planning problems where aesthetics are important, yet 
visual quality questions are largely left to designers at the individual project scale, with little 
consideration for how individual aesthetic choices combine to impact the larger landscape. 

Our project integrates these aesthetic qualities with other factors such as availability of 
recreational opportunities, congestion and service levels using an agent based approach. We 
focus on their impacts on tourism, in particular summer hikers. Others (GIMBLETT 2002) have 
used agent-based approaches to model tourists, but their focus has been primarily been on 
congestion issues. While congestion is a problem for the busiest and most famous tourism 
areas, it is our contention that the encroachment of development and changes to the 
management of the landscape have the potential for far greater impacts on the attractiveness of 
a given area for tourists. 

 

 

Figure 1: The landscape is a mixture of pasture and coniferous forests, dominated by 
Norway Spruce (Picea abies). The test site is characterized by significant topography and 

is considered ideal for walking and hiking. 
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The specific test site is a valley in the Gstaad-Saanenland region of south-western Switzerland.  
The communities of Schönried and Saanenmöser are at the two ends of the site; their 
economies are highly tourism dependent. While the primary tourism draw to the area used to 
be winter skiing, long term climate change is forcing the community to focus its efforts on 
building up a more diversified tourism economy. This includes capitalizing on its already 
strong reputation for summer hiking. The landscape is a mixture of pasture and coniferous 
forests, dominated by Norway Spruce (Picea abies). The test site is characterized by 
significant topography and is considered ideal for walking and hiking (see Figure 1). The trails 
are very accessible to a wide range of hiking abilities due to the summer operation of one 
chair-lift and two gondolas. In the high season, the area is busy with hikers and walkers who 
easily fill the two main parking lots in Schönried. 

A recent study in the area (MÜLLER and LANDES 2001) identified that the biggest attraction for 
summer tourists are the area’s scenic qualities. Hiking and walking is the primary recreational 
activity in the summer months. The focus on views was confirmed by our own study in 2002 
(CAVENS and LANGE 2003), which confirmed that views and landscape variety are the most 
important factors that influence hikers in their choice of hiking routes. 

In addition to the community’s desire to diversify its recreational economy, there are 
landscape policy issues that have the potential to change the desirability of the area for 
summer tourism. These issues include changes to the pattern of the landscape due to changing 
agricultural policy, shifts in forestry practices, closing of the gondolas and/or chairlifts, and 
increased holiday home construction. Any of these changes would have complex 
repercussions for the tourism industry: future scenarios to test the agent model will be selected 
from them.   

 

2. Modeling Approach 

2.1 Overview 

Our approach is to model each tourist individually as an “agent”. The approach is adapted 
from one used in traffic microsimulations. A synthetic population of tourists is created that 
reflect current (and/or projected) visitor demographics. These tourists are given goals and 
expectations that reflect existing literature, on-site studies, and, in some cases where sufficient 
data is not available, are based on experts’ estimates. These expectations are individual, 
meaning that each agent could potentially be given different goals and expectations. 

These agents are given “plans”, and they are introduced into the simulation with no 
“knowledge” of the environment. The agents execute their plans, receiving feedback from the 
environment as they move throughout the landscape. At the end of each run, the agents’ 
actions are compared to their expectations. If the results of a particular plan do not meet their 
expectations, on subsequent runs the agents try different alternatives, learning both from their 
own direct experience, and, depending on the learning model used, from the experiences of 
other agents in the system. 

After numerous runs, the goal is to have a system that, in the case of a status quo scenario, 
reflects observed patterns in the real world. In this case, this could, for example, be the 
observed distribution of hikers across the study site over time. 

A “plan” can refer to an arbitrary period, such as a day or a complete vacation period. As a 
first approximation, a plan is a completely specified “control program” for the agent. It is, 
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however, also possible to change parts of the plan during the run, or to have incomplete plans, 
which are completed as the system goes.   

2.2 Modular Structure 

Any mobility simulation system does not just consist of the mobility simulation itself (which 
controls the physical constraints of the agents in a virtual world; see Sec. 3), but also of 
modules that compute higher level strategies of the agents. In fact, it makes sense to consider 
the physical and the mental world completely separately (Fig. 2). The most important modules 
of the mental layer are:  

• Route Generator. It is not enough to have agents walk around randomly; for realistic 
applications it is necessary to generate plausible routes. In terms of graph language, this 
means that agents need to compute the sequence of links that they are taking through the 
network. A typical way to obtain such paths is to use a Dijkstra best path algorithm. This 
algorithm values individual links based on generalized costs, such as different views or 
different temperature levels. 

• Activity Generator. Being able to compute routes, as the route generator does, only 
makes sense if one knows the destinations for the agents. A new technique in 
transportation research is to generate a (say) day-long chain of activities for each agent, 
and each activity’s specific location. For our hiking simulations, possible activities 
include:  be-at-hotel, visit-a-restaurant, etc. In a hiking simulations, unlike typical travel 
simulations, the travel (= the hike) connecting these activities will generally not be seen 
as a negative but as a positive part of achieving their goals and expectations. As a result, 
for our hiking simulation the route generator module needs to connect the activities in a 
way such that the connecting route reflects the expectations of the agent in terms of 
aesthetics, difficulty, as well as travel time. 

• In the synthetic population generation module, the agents are generated. This includes 
demographic attributes to each agent, such as age, gender, income, etc. In the future, this 
should follow some demographic information about the tourist population in the area of 
interest; at this point, this is entirely random. 

• View Module. This module describes to the system what individual agents “see” as they 
move through the landscape. The agents field-of-view is analyzed, and events are sent to 
the system describing what the agent sees. This module is introduced in section 4.2. 

• Agent Databases. The strategy modules so far are capable to generate plans, and the 
mobility simulation is able to store exactly one plan per agent and execute it.  There 
should, however, also be a place where plans and in particular their performance is 
memorized, so that memory can be retrieved later.  
The agent database modules connect all of the modules in the system. For the project 
described in this paper, we envisage multiple agent databases arranged in a hierarchy 
(Fig. 3). More about how these modules find a good strategy and how they learn from 
previous simulation runs can be found in section 4. 

• Viewers are built so that they directly plug into the live system.  The simulation sends 
agents’ positions to the viewer, which allows to look at the scenario from a bird’s eye 
view and observe how the agents move.  It is also possible to send that same data stream 
to a recorder which records it to file, while a player can read the file and send the data 
stream to the viewer exactly the same way it would come from the simulation directly.  
Finally, in order to deal with data conversion issues, it is also possible to pipe the data 
stream from the simulation through the recorder directly to the player and from there to 
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the viewer.   
We have implemented two different viewers.  One displays a 2D view, and is suited for 
situations where a lot of detailed information is needed, for example while debugging 
(Fig. 8). Also, a 3D viewer has been implemented (Fig. 12), as one of our overall project 
goals is to integrate decisions based on visual stimuli. The 3D viewer connects to the 
simulation using the same protocol as the 2D viewer. The user can move independently 
of the agents or can attach the camera viewpoint to a specific agent and see the landscape 
through the eyes of the agent. In order to reduce code duplication, the 3D viewer is 
essentially the same software as the view module described above. 

 

The physical world:
− limits on accel/brake
− excluded volume
− veh−veh interaction
− veh−system interaction
− ped−veh interaction
− etc.
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Figure 2: Physical and strategic (mental) layers of the framework 
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Figure 3: Software structure. Logical modules and the message flows that connect them. 
The cloud is a “broadcast network”, which means that all messages sent to this network 

are distributed to all modules attached. 

 

3. Mobility Simulation 

3.1 Selection of the pedestrian movement model 

As mentioned above, the mobility simulation takes care of the physical aspects of the system, 
such as interaction of the agents with the environment or with each other. Typical simulation 
techniques for such problems are: 

• In microscopic simulations, each particle is represented individually. 
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• In macroscopic or field-based simulations, particles are aggregated into fields. The 
corresponding mathematical models are partial differential equations, which need to be 
discretized for computer implementations. 

• It is possible to combine microscopic and field-based methods, which is sometimes 
called smooth particle hydrodynamics (SPH; GINGOLD and MONAGHAN 1977). In 
SPH, the individuality of each particle is maintained. During each time step, particles are 
aggregated to field quantities such as density, then velocities are computed from these 
densities, and then each individual particle is moved according to these macroscopic 
velocities. 

• As a fourth method, somewhat on the side, exist the queuing simulations from operations 
research. Here, particles move in a networks of queues, where each queue has a service 
rate. Once a particle is served, it moves into the next queue. 

For our simulations, we need to maintain individual particles, since they need to be able to 
make individual decisions, such as route choices, throughout the simulation. This immediately 
rules out field-based methods. We also need a realistic representation of inter-pedestrian 
interactions, which rules out both the queue models and the SPH models. 

For microscopic simulations, there are essentially two techniques: methods based on coupled 
differential equations, and cellular automata (CA) models. In our situation, it is important that 
agents can move in arbitrary directions without artifacts caused by the modeling technique, 
which essentially rules out CA techniques. A generic coupled differential equation model for 
pedestrian movement is the social force model (HELBING et al. 2000) 
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where mi is the mass of the pedestrian and vi its velocity. vi0 is its desired velocity; in 
consequence, the first term on the RHS models exponential approach to that desired velocity, 
with a time constant iτ . The second term on the RHS models pedestrian interaction, and the 
third models interaction of the pedestrian with the environment. 

The specific mathematical form of the interaction term does not seem to be critical for our 
applications as long as it decays fast enough. Fast decay is important in order to cut off the 
interaction at relatively short distances. This is important for efficient computing, but it is also 
plausible with respect to the real world: Other pedestrians at, say, a distance of several 
hundred meters will not affect a pedestrian, even if those other pedestrians are at a very high 
density.  We use an exponential force decay of  
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which seems to work well in practice. fij is the force contribution of agent j to agent i; ri is the 
position of agent i. Alternative more sophisticated formations are described by HELBING et al. 
(2000). For the environmental forces, fiW, the same mathematical form as for the pedestrian-
pedestrian interaction is used. 
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3.2 Path following 

The main problem with existing pedestrian models for our purposes is that they do not work 
when confronted with such large areas as are necessary to cover a complete hiking area: 
Covering an area of (  area (necessary to allow hikes of length 25km in all directions 

from a central starting point) with cells of (  results in 1010 cells, which needs at least 
40 GByte of memory. This makes the straightforward application of a technique based on cells 
impossible. Models based on continuous coordinates have the similar problem that all objects 
need to be represented, and again a straightforward implementation goes beyond available 
computer memory. All models have the problem that long-distance path following has never 
been looked at, at least not to our knowledge. 

2)50km
2)25.0 m

We introduced (MAURON 2002; GLOOR and NAGEL 2002) a model that uses only sparse 
information which fits into computer memory, runs efficiently on our scenarios, and has 
agents follow paths without major artifacts. This model will be described in the following. 

For our simulation, we need to assume that the geometry is given by a graph (network) of 
hiking path plus some terrain features, and that the desired velocity of the hiker is consistent 
with this graph. The maybe first implementation that comes to mind is as follows: 

• Make the desired velocity point directly to the next way-point: 
 where ri is the hiker’s current position, R is the position of 

the next way-point, and vi0 is the magnitude of the desired velocity. Once a way-point is 
reached, R is moved to the next way-point. 

|,|/)(00
iiii v rRrRv −−=

• Set the environmental force field to zero on the path, and such that it pushes the hiker 
back onto the path outside.  

However, this approach has the disadvantage that, close to a way-point, agents are artificially 
pulled toward that way-point even if that does not make sense (see Fig. 4). This could be 
avoided by switching to the next way-point before actually reaching this way-point, but then 
without special measures pedestrians may not be able to execute a switchback, because the 
next way-point may pull them back on the current segment. Also, the approach quite in 
general does not work once curved segments are allowed between way-points. 

We developed a more specialized approach (MAURON 2002; GLOOR and NAGEL 2002), in 
which this artifacts do not exist. Our model uses a path-oriented coordinate system (see Fig. 5) 
for the computation of the desired velocity. It also uses a so-called path-force, which pulls the 
agents back on the path when he moves away from its center (e.g. due to interaction with other 
agents or obstacles). Figure 6 demonstrates that the new approach keeps the pedestrians on 
their side of the path even in the vicinity of way-points. 
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Figure 4: Traces of hikers in the naive model, where they are all pulled toward the same 
way-point. Note how the trajectories focus near the way-point, and diverge before and 

after. The width of the path remains unchanged. 

 

Figure 5: Path-oriented coordinate system for the computation of the desired velocity 
and the path forces. The light arrows show the desired velocity, which drives the agent 

forward along the path. The dark arrows show the path force. 
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Figure 6: Traces of pedestrians walking in the same direction according to our model. 
Note that they stay on their side of the path, even at a bend. 

 

3.3 Computational aspects 

It was argued earlier that a cellular automata representation of space did not seem appropriate 
for our purposes, because of problems with off-axis movement. Instead, we use a continuous 
representation of space. However, some aspects of our simulation, like the calculation of 
forces that affect the agent, depend on the spatial location of the agent. These forces are 
relatively expensive to calculate, since one needs to enumerate through all possible objects 
that could influence a given location. 

Yet, since those forces do not depend on time, they can be pre-computed before the simulation 
starts. In order for this to be successful, some coarse-graining of space is necessary. For this, 
we use cells of size 25cm x 25cm, and assume that all time-independent forces are constant 
inside a cell. The resulting force field (Fig. 7) becomes non-continuous in space, but this is not 
a problem in practice since this only influences the acceleration of pedestrians. That is, the 
acceleration contribution from the environmental forces can jump from one time step to the 
next, but since time is not continuous, this is not noticeable. 

Pre-computing the values for all cells in a hiking region of, say, 50km x 50km, does not fit into 
regular computer memory. To avoid this problem, we implemented two methods: lazy 
initialization, and disk caching. By lazy initialization, we mean that the values are computed 
only when an agent really needs them, also knows as Virtual Proxy Pattern (GAMMA et al., 
2001, pp. 207–217). In practice, the simulation area is divided into blocks of size 200m x 
200m. Every time an agent enters one of these blocks, the values for all cells inside that block 
are computed. Since hiking paths cross only a small fraction of those blocks, the cell values 
for many blocks in our hiking area will never be calculated. 
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In addition, the cell values, once computed, are stored on disk (disk caching). Every time 
when an agent encounters a block for which the cell values are not in memory, the simulation 
first checks if they are maybe on disk. Computation of the cell values is only started when 
those values are not found on disk. In consequence, a simulation started for the first time will 
run more slowly, because the disk cache is not yet filled. 

If the simulation runs out of memory, then blocks which are no longer needed, i.e. which have 
not been crossed by an agent for a long time, are unloaded from memory. If they are needed 
again, they are just re-loaded from disk. This corresponds to the Least Recently Used (LRU) 
Page Replacement Algorithm described by TANENBAUM (2001, pp. 218–222). 

An additional advantage of the blocks, well known from molecular dynamics simulations, is 
that one can use them to cut off the short-range interaction between the pedestrians. Agents, 
which are not in the same or one of the eight adjacent blocks, are ignored. This implies that 
there needs to be some data structure where agents are registered to the block. Agents that 
move from one block to another need to unregister in the first block and register in the next 
one. In this way, an agent searching for its neighbors only needs to go through the registered 
agents in the relevant blocks. This brings the computation complexity from O(N2) down to 
O(NM), where N is the number of all agents in the simulation, and M is the number of agents 
in a single block. M is a reasonably small number when compared to the number N of all 
agents in a real-world scenario. 

For a testing scenario, of size 12km x 15km, we would need approx.  cells or 4500 
blocks, resulting in 9 GByte memory requirement. The result of the lazy initialization together 
with the caching mechanism is that 50 Byte are enough for the scenario shown in Fig. 11. The 
computational speed for that simulation, with 500 hikers, was about 100 times faster than real 
time. 

9109.2 ×

 

Figure 7: The hybrid simulation technique. The forces (arrows) are valid for the whole 
cell; a pedestrian’s trajectory (dots) can follow arbitrary positions. 
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4. Mental Layer and Learning 

4.1 How learning works (Mental modules and their interaction) 

Every agent is created individually and treated microscopically. This means that we can assign 
demographical data to every agent. An agent knows, for example, its age, its physical fitness 
etc. Also it has an expectation of what it wants to experience, and what it likes most. This can 
be static, taken from the demographical data, or based on previous visits to this (or even 
another) hiking area. 

Initially, every agent starts with a plan that, in its opinion, fulfills its expectations. For 
example, if the period of interest is a day, then such an initial plan might refer to a specific 
hike. To do this, the agent chooses activity locations it wants to visit, like hotel, peak of 
mountain, restaurant etc. 

This chain of activity locations is then handed over to the routing module, which calculates the 
routes between activities according to the information available. This information can be static 
and global, like shortest path information based on the street network graph. Also information 
that is local to the agents memory and might be uncertain can be used. 

The mobility simulation then executes the routes. The agent experiences the environment and 
sends its perception as events (see later) to the other modules.  

From here on, the system enters the replanning or learning loop. The idea, as mentioned 
before, is that the agents go through the same period (e.g. day) over and over again. During 
these iterations, they try to accumulate additional information, and to improve their plan. 

The two critical questions are (1) how to accumulate, store, and classify that information, and 
(2) how to come up with new plans. Both questions are related to (artificial) intelligence, and 
we are certainly far away from answering them in their entirety. Nevertheless, our system 
contains the following elements which makes it able to learn: 

• As one can see in Fig. 3, there are “agent databases” associated with each level of the 
planning hierarchy (e.g. activities, routes). The task of these agent databases is to store 
plans and to accord scores to them. That is, every time an agent comes up with a new 
plan, that plan is added to the repertoire of plans. In addition, the agent databases listen 
to the events emitted by the mobility simulation, and use these events to calculate a score 
for each plan once it has completed. If an agent database module assigns a bad score to a 
simulated hike, it tries to avoid its elements in future hikes. If it gets good feedback, 
however, it will try to reuse the elements of a hike, and combine these into a new hike, 
which will be simulated and scored again. 

• Also the route generator module listens to the stream of events. However, rather than 
scoring complete plans, it constructs a graph-based mental map of the spatial 
environment. From the times when agents enter and leave links, the router learns how 
long it takes for an agent to walk along each link in the network. Also, the router 
cumulates all the other events that occur on every link. Using these values for each link 
in the network, the router is able to return the best route for each agent, based on its 
expectation and demographic data. For example, a physically fit person might prefer a 
route that is steeper, while a physically less fit person might get a route that includes 
more possibilities to rest. 
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• Similarly, the activity generation module takes the stream of events and generates 
another mental map, this time not based on a graph. In this mental map, it stores possible 
locations for activities, and their corresponding attributes. 

• It is possible to make the mental layer module dynamic. In this case, it observes the 
agent on its path through the virtual environment. As soon as it detects an option that 
might yield a better score that the current plan, e.g. using a shorter path, or entering a 
restaurant, it notifies the agent in the simulation. Using this mechanism, agents are able 
to react to unpredicted changes in the environment, like weather changes or congestion. 

It should be noted that the distinctions between these modules are not sharp. For example, an 
agent database may run out of memory if it memorizes as separate entities plans that differ 
only in small details; in that case, the agent database might have to start to build a mental map 
of the world in which case it becomes similar to the activity generation module as described 
above. 

As said before, these aspects of the simulation concern the modeling of human intelligence, 
which is an unsolved (and maybe unsolvable) problem. Yet, one should recognize that for our 
simulations it is not necessary to model individual people correctly, but it is sufficient to 
obtain correct distributions of behavior. Our approach should be considered as a first step into 
that direction. 

4.2 Modeling the Visual Landscape 

As modeling agents’ reaction to the visual qualities of the landscape is a key part of our 
project, it is necessary to model what the individual agent “sees” and interpret how what the 
agent sees reflects their expectations. This concerns the “scores” as mentioned above, which 
are necessary both for the agent database and for the mental maps. 

There have been many attempts to model visual quality using GIS-based approaches. These 
approaches have distilled the overall ‘attractiveness’ of a particular place (usually modeled as 
a raster cell) into a single numerical factor, based on available GIS data. These analyses tend 
to be highly specific to a particular question (such as appropriateness for camping; MEITNER 
and DANIEL 1997), and while useful for classifying huge areas of seldom visited land, their 
coarseness makes them less than appropriate for modeling smaller scale landscapes such as 
our test case. In particular, the fact that the existing models assign values to specific places, 
rather than on sequential experiences, mean that they are not able to easily model concepts 
such as “landscape variety”, which, as mentioned above, was identified as one of the key 
points in attracting tourists in the Swiss Alps. 

Rather than using a single visual quality model, our approach has been to give the agents the 
ability to “see” the landscape, and integrate their visual experience into the factors that are 
evaluated by the agent database modules. This allows us to model sequences of views, and 
provides a lot of flexibility in terms of exploring the importance of various visual parameters. 

The view module exploits the capabilities of modern 3D graphics hardware to quickly perform 
visibility calculation. Using a similar technique as that described by BISHOP et al. (2001), 
objects are rendered in perspective using false colors. These colors are assigned based either 
on unique objects or on logical groupings (such as stands of trees). As the agents move 
through the landscape, the scene is rendered from the viewpoint of each individual agent. The 
rendering process produces a color image and a depth buffer, which is a natural byproduct of 
the rendering process used in current graphics hardware and describes how far away an object 



A PEDESTRIAN SIMULATION FOR VERY LARGE SCALE APPLICATIONS                                       179 

is from the viewpoint. As these visibility calculations are performed on specialized hardware, 
the process is able to scale well to complex scenes with little effort from the user perspectives. 

While the process is considerably faster than other visibility approaches, it is not quick enough 
for our purposes. At a frame rate of 15+ frames per second, it quickly becomes the bottleneck 
for the entire simulation system. 

We are exploring two different approaches to eliminate this bottleneck: 

• pre-rendering the landscape using a grid of viewpoints. At each viewpoint, a series of 
view slices (each comprising a view angle of 15 degrees) is computed and analyzed. 
During the simulation, the nearest viewpoint to a given agent is selected, and these slices 
are reassembled to reflect the view direction of the agent. 

• distributing the view modules across a cluster of rendering machines, with each one 
being responsible for a subset of the agents. 

Both of these approaches offer considerable opportunity for speed improvement, and both are 
facilitated by the modular structure and communication strategies of the entire simulation 
system. It is very easy to swap the module that calculates the views for every agent at every 
time step with the pre-rendered implementation. 

 

5. Communication between the modules 

5.1 Introduction 

Traditional implementations of transportation planning software, even when microscopic, are 
monolithic software packages – e.g. PAMINA (RICKERT 1998), EMME/2 (BABIN et al. 1982), 
or VISSIM (PTV www page, accessed 2003). By this we do not dispute that these packages 
may use advanced modular software engineering techniques; we are rather referring to the user 
view, which is that one has to start one executable on one CPU and then all functionality is 
available from there. The disadvantage of that approach is twofold: 

• All the different modules add up in terms of memory and CPU consumption, limiting the 
size of the problem. 

• Although the approach is helpful when starting as one software project, it is not 
amenable to the coupling of different software modules, developed by different teams on 
possible/different operating systems. 

A first step to overcome these problems is to make all modules completely stand-alone, and to 
couple them via files. Such an approach is for example used by TRANSIMS (TRANSIMS 
www page, accessed 2003). The two disadvantages of that approach are: 

• The computational performance is limited by the file I/O performance. 

• Modules typically need to be run sequentially. Each module needs to be run until 
completion before starting the next module. The system is unable to learn and adapt 
within a single module run. For example, the routing module can only be run before or 
after the mobility simulation. This implies that agents cannot change their routes while 
the mobility simulation is running. 
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The approach taking in this project is to couple the modules by messages rather than via files. 
In this way, each module can run on a different computer using different CPU and memory 
resources. It is even possible (as is with file-based interfaces) to make the modules themselves 
distributed; for example, we have mobility simulations (for traffic) which run on parallel 
Myrinet-equipped clusters of workstations. 

It is clear that this now allows real-time interaction between the modules: for example, if an 
agent is blocked in congestion, the mental layer modules can react to this new situation and 
submit new routes or activities during a simulation run. 

As our system is made up of many different module types and is designed to scale up to very 
large simulations, it is important to carefully consider how the modules communicate with 
each other. On simulations with tens of millions of agents, issues such as bandwidth usage, 
packet loss, and latency become increasingly important. As a result, we use different network 
protocols and implementations tailored to specific requirements of inter-module 
communication. 

Our general design goals are to: 

• Keep it simple. If someone develops a new module, it should be simple to implement the 
functions needed to communicate to other modules. 

• Only use function libraries that are standard in every Linux distribution. 

• Make it possible to port a module to another platform, for example a viewer to Windows 
or a simulation to a vector computer. 

• Facilitate attaching existing modules from other simulation systems to our framework 
(e.g. by using a simple wrapper function). 

5.2 Events 

On their way from the starting location (e.g. hotel) to their individual destination (e.g. 
restaurant, peak of mountain), a pedestrian encounters different situations which she/he might 
enjoy more or less. As mentioned earlier, these perceptions are, as “events”, sent to the 
decision-making modules, which record those events and are now able to decide how much an 
pedestrian enjoyed his trip. Typical events are spatial (“How many mountains can I see from 
here?”) or computed directly by the simulation (“How many agents are near me?”). 

The mental modules listen to all those events.  Depending on their different functionalities, 
they extract different types of information from them, as described in Sec. 4.1.  

It is important to note that the task of the simulation of the physical system is simply to send 
out events about what happens; all interpretation is left to the mental modules. In contrast to 
most other simulations in the area of mobility research, the simulation itself does not perform 
any kind of data aggregation. For example, link travel times are not aggregated into time bins, 
but instead link entry and link exit events are communicated every time they happen. If some 
external module, e.g. the router, wants to construct aggregated link travel times from this 
information, it is up to that module to perform the necessary aggregation. Other modules, 
however, may need different information, for example specific progress reports for individual 
agents, which they can extract from the same stream of events. This would no longer possible 
if the simulation had aggregated the link entry/exit information into link travel times. 
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Despite this relatively clean separation – the mobility simulation computes “events”, all 
interpretation is left to mental modules – there are conceptual and computational limits to this 
approach. For example, reporting everything that an agent sees in every given time step would 
be computationally too slow to be useful. In consequence, some filtering has to take place “at 
the source” (i.e. in the simulation), which corresponds to some kind of preprocessing similar 
to what real people’s brains do. This is once more related to human intelligence, which is not 
well understood. However, also once more it is possible to pragmatically make progress. For 
example, it is possible to report only a random fraction of the object that the agent “sees”, or it 
is possible to delegate the analysis of the views to a separate module (Sec. 4.2). Calibration 
and validation of these approaches will be interesting future projects. 

 

Figure 8: Agents hiking from a hotel to the top of a mountain. They report what they see 
during the hike. These events are rendered in different colors here; green, for example, 

means that the agents enjoyed a forest. 
 

5.3 Possible Protocols 

This section discusses different possible implementation techniques for the messages. For 
some of the more promising technologies, the technological limitations are discussed, and they 
are measured in practice with our particular application in mind. 

 

Existing Message Passing Tools. When a single module is distributed across multiple 
computational nodes, one often uses MPI (Message Passing Interface; MPI www page, 
accessed 2003) or PVM (Parallel Virtual Machine; PVM www page, accessed 2003). For 
example, our traffic simulation module (not described in this paper) is distributed to 64 hosts 
or more. It is also possible to use MPI for the communication between the modules, as 
described in this paper. That approach has, however, the disadvantage that one is bound to the 
relatively inflexible options that MPI offers. For example, options to add or remove modules 
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have only recently been added to the MPI standard, and multicast (see below) is not possible 
at all. 

Reliable Data Streams. TCP (Transmission Control Protocol) is a connection based, reliable 
IP (Internet Packet) protocol. Initially, a connection from the sender to the receiver must be 
opened. With this connection, both sides can send their messages as the connection is 
symmetric. TCP guarantees that the messages arrive in correct order, without errors. The main 
disadvantage of TCP is that a connection must be opened for every host pair. If one side closes 
the connection (due to a program crash or a system reboot), the other side has to reopen the 
connection. This requires close attention from the programmer to handle all cases in a large 
system gracefully. 

    

Figure 9: UDP packets sent at different rates using 100 Mbit/s (left) and 1 Gbit/s (right) 
networks, plotted as sent vs.  received messages. Some packets are lost in the network, 
but most of them are lost in the overflowing buffers of the NICs. Each UDP packet can 

carry one event from the mobility simulation, e.g. a new position of an agent. 

 

Unreliable Data Packets. UDP offers, in comparison to TCP, no control for packet loss. UDP 
can be used to transmit single packets, but there is no guarantee that the sent packets will 
arrive. This is not always a disadvantage when compared to TCP’s overhead for arrival 
checking. A message that arrives, however, is guaranteed to be error free, since the Ethernet 
layer includes a checksum.   
The amount of packet loss is strongly dependent on the overall number of packets in the 
network. In state-of-the-art networks, which today are often 1 Gbit Ethernet, there is hardly 
any packet loss in the network itself. Losses occur mainly in the sending and receiving 
network cards, due to overflowing buffers. This is the case, for example, if the CPU is busy so 
that it cannot read the packets from the buffer in time. The more packets that are sent, the 
higher the chance that one is lost.   
With Gbit Ethernet communication, up to 160.000 packets can be sent per second without any 
losses (Fig. 9, right). This means that we are able to distribute that many events per second 
from the simulation to other modules. Since the mobility simulation runs more than 100 times 
faster than wallclock-time, this results in 1.600 events per simulated second. This is not that 
much, however, if you keep in mind that there are 500 or more agents in the simulation which 
report their perception.   
On a cluster with 100 Mbit Ethernet communication, the number drops to 100.000 packets per 
second, resulting in 1.000 events per simulated seconds. It is at this point unclear why the 
difference in bandwidth is not a factor of 10, as the difference between 100 Mbit and 1 Gbit 
would imply.   
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There are situations in which there is no need to retransmit lost packets. For example, if an 
agent reports that he is blocked in unexpected congestion (e.g. waiting for a cablecar), he 
needs a new route instantly. If its request is lost or delayed, it makes no sense for the system to 
buffer its request, since the agent has moved on, and the location in the original request might 
now be invalid. A new route computed based on the old information will be invalid as well. It 
is the agent’s responsibility to restate its position again if it does not receive a new route after 
a certain time has elapsed (GLOOR 2001).   
It is easier to deal with error conditions using UDP. We use UDP to transmit the agent 
positions from the recorder/player module to the visualizers. If the network is down for a few 
seconds, the simulation does not need to slow down because of lost packets. Once the viewer 
is back on line, it will receive the latest positions. 

Multicasting. Often there is a need for sending the same packet to more than one receiver. 
This can be achieved by opening multiple TCP connections or, more easily, by sending 
multiple UDP packets to the receivers. However, on large simulations, the network interface 
card (NIC) of the sending host quickly becomes the bottleneck, as it is unable to send out 
enough packets to keep the receivers fully occupied.   
There is the possibility to use multicasting to send packets to every host on the local network. 
Multicasting is a relatively recent addition to the network standards; it is particularly useful for 
any kind of streaming data such as radio or television broadcasts over the network. Its 
advantage is that the multiplication of the packets for multiple receivers is not done by the 
NIC but by the network itself. This avoids the NIC bottleneck.   
A drawback with multicasting is that it has, similar to UDP, no arrival control. That is, there is 
no feedback to the sender if all packets arrived at all destinations, or even at any destination at 
all. In consequence, this is not useful when message arrival needs to be guaranteed.  
To live with this problem, it often is possible to implement some sort of flow control into the 
application. This seems to be a hard task and might introduce performance issues. But often 
there is no need for the full flow control available in TCP, and a lightweight solution can 
increase the performance substantially. This task is simplified by the fact that in most local 
networks packet loss is almost zero if you do not saturate the network.   
Multicasting provides groups of hosts, that are referenced using special IP addresses (higher 
than 224.0.0.0). The sender chooses one of these groups and sends a single packet to this IP 
address.  A receiver must explicitly join a group first, telling its NIC and the operating system 
to listen for packets sent to this group.   
An advantage of this addressing scheme is that the sender does not need to know the IP 
address of the receiver. This simplifies the configuration of the system substantially. The 
Internet routers ensure that the packets find their way from the sender to the receivers, once 
they are registered to the multicast group.   
Sending agent data to the viewers is an instance where multicasting is extremely effective. 
With our current pedestrian datasets, where 500 agents are simulated, each viewer requires 1.5 
MBit/s of bandwidth. By using multicasting, this bandwidth can be effectively shared between 
viewers, especially when they are viewing approximately the same location. As we build our 
datasets to a realistic scale (thousands of pedestrians), this bandwidth saving will become 
increasingly important.   
The project presented here is a collaboration between two institutes at ETH Zürich. One of 
them is located more than 5 km away from where our computational cluster is. For every 
viewer that is connected to the simulation, extra bandwidth is needed. Using multicast, we 
cannot reduce the bandwidth used for one viewer. But as soon as there are multiple viewers 
looking at the same general area, the bandwidth remains almost constant. 
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File Based Communication. When integrating existing modules from other simulation 
systems, it is often not possible or desirable to make modifications to their code. Typically, 
these systems use input and output files to pass data between modules.   
Since we do not want to change our implementation for every “foreign” module, we use a 
wrapper around such modules. This wrapper reads the input from our modules as messages 
over the network, converts it into files understandable by the foreign module, and executes the 
foreign module. The corresponding output file is then read by the wrapper and reintegrated 
into our message based system.   
Another use of such a wrapper is as a substitute for modules that have not yet been 
implemented. As we have not completed the activities generator module yet, we use a simple 
file, which contains “handmade” activity chains. A wrapper reads this file and sends the chains 
to the activity database module. 

 

6. Preliminary results 

A small proof-of-principle run is documented in Fig. 10 and 11. It is assumed that all agents 
leave in the morning from the hotel and hike to the same mountain peak. They however want 
to avoid each other because they want to hike in solitude. Fig. 10 shows the first run, where no 
hiker knew about the other hikers’ intentions. Fig. 11 shows the situation after 50 iterations, 
where hikers have learned to spread out and avoid each other. 

Fig. 12 shows a situation similar to Fig. 11, but in the 3D viewer.  The hikers are visible as 
dark red figures in the background – to make them visible at all, they are drawn at ten times 
their natural size. In addition, Fig. 12 can be used to obtain an impression of the quality of the 
computer rendering of the scene, since it corresponds to the scene photographed in Fig. 1. 

Considerably more work will be necessary to fill these elements with true real-world meaning. 
Progress will be reported in future papers. 

 

Figure 10: First run. All agents have the same destination, and at this stage, the same 
route. 
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Figure 11: After 50 iterations 

 

Figure 12: This is a picture of our 3-dimensional visualizer, showing the same view as 
Figure 1. 
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