Dynamic Traffic Assignment on Parallel Computers

Marcus Rickert and Kai Nagel*
Los Alamos National Laboratory and Santa Fe Institute
1399 Hyde Park Rd, Santa Fe NM 87501, U.S.A.

May 10, 1999

Abstract

We describe part of the current framework of the TRANSIMS traf-
fic research project at the Los Alamos National Laboratory. It includes
parallel implementations of a route planner and a microscopic traffic sim-
ulation model. We present performance figures and results of an offline
load-balancing scheme used in one of the iterative re-planning runs re-
quired for dynamic route assignment.

1 Introduction

In the context of urban planning, it would be useful to have a computational
tool that evaluates transportation consequences of urban evolution scenarios.
The anticipated urban structure, including anticipated demographic data and
anticipated transportation infrastructure, could then be fed into a computer,
and the computer would calculate the resulting traffic. Maybe the tool would
even have a virtual reality component, enabling one to zoom to one’s home and
count the number of passing cars during the rush hour (see Fig. 1). Clearly,
such a tool should include the effects of “induced” traffic, i.e. the observation
that lower congestion levels encourage people to more travel; the tool should be
able to say something about the variability of traffic; and it should be capable
of incorporating new technology, such as telecommuting or telematics systems.

The problem of induced traffic makes clear that transportation is not a simple
infrastructure problem, where to find a good or optimal solution to move a
given demand, but a problem where individual people’s values and preferences
play an enormously important role. In consequence, any quantitative technique
needs to be able to represent aspects of human decision-making. The problem
thus becomes as much a problem of (computational) social science as one of
engineering.

The TRANSIMS (TRansportation ANalysis and SIMulation System) project at
Los Alamos National Laboratory [1] is an attempt to build such a tool. The
key to the TRANSIMS design is that it is completely microscopic, which means
that it keeps track of individual travelers throughout its modules. Similarly,
elements of the transportation infrastructure, such as intersections, traffic lights,
turn pockets, etc., are represented microscopically.

In TRANSIMS, each traveler is a computational agent. Agents make plans
about what to do during a day — in order to get from one activity location to
another, agents can, for example, walk, use bicycles, drive cars, or use busses.

*Corresponding author. Email kai@santafe.edu

Eventually, all plans are simultaneously executed in a micro-simulation of the
transportation system.

In principle, this leads to a straightforward simulation approach (see Fig. 2):
Derive synthetic households from demographic data and locate them on the
network; use the demographic information together with land use information
to derive activities (working, sleeping, eating, shopping, etc.) and activities
locations for each household member; and let agents decide about mode and
routing for their transportation. So far, all these are plans, i.e. intentions of
the simulated individuals. These plans can then all be fed into a realistic trans-
portation micro-simulation, which can be used as the basis for analysis, such as
emissions calculations.

The advantage of such a microscopic approach is that, at least conceptually,
it can be made arbitrarily realistic. This makes it possible to include dynamic
effects such as queue spillover, which are sometimes hard to represent in tra-
ditional methods. It also makes it possible to include new and perhaps unan-
ticipated technology at a later time. For example, the whole architecture of
ITS (Intelligent Transportation Systems) can be mirrored by a careful software
implementation.

Yet, there are also several disadvantages, some of them being:

(i) Size of the problem: Metropolitan regions typically consist of several millions
of travelers. Executing a second-by-second transportation micro-simulation on
a problem this size within reasonable computing time is only possible with the
use of advanced statistical and computational techniques.

(ii) Behavioral foundation: We are far from understanding human behavior. For
that reason alone, we are unable to predict the behavior of individual travelers.
However, there seems to be a realistic chance that the macroscopic (emergent)
behavior that is generated by thousands or ten-thousands of interacting individ-
uals is considerably more robust than the behavior of an individual agent. This
would be similar to Statistical Physics, where the trajectory of a single particle
is unpredictable, yet, useful macroscopic properties of gases such as equations
of state can still be derived.

(iii) Consistency problem: The approach outlined above is not as straightfor-
ward as it sounds because the plans depend on expectations about traffic condi-
tions during execution. For example, if a person expects congestion, he or she
may make different plans than when no congestion is expected. Yet, congestion
occurs only when plans interact during their simultaneous execution. In short,
plans depend on congestion, but congestion depends on plans. — This logical
deadlock is not unknown in economic theory and is traditionally overcome by
the assumption of rational agents. Both with and without the assumption of ra-
tionality, this problem of consistency between plans and micro-simulation makes
the computational challenge even bigger.

(iv) Robustness: Any approach to a problem needs to have reproducibility of
the results under a wide enough range of changes, or otherwise the results are
useless for practical purposes.

This paper concentrates on the computational problems, and what we have done
to solve them.

2 Dynamic traffic assignment

First let us briefly describe the traditional approach to the problem. The tra-
ditional urban transportation planning process consists of four steps [2]:

e Trip generation: Flows out of and into so-called traffic analysis zones are
generated.

e Trip distribution: After the trip generation, we only have sources and
sinks of traffic, but not how they are matched. This is done in the trip
distribution part. As a result, one now has an origin-destination table, i.e
a matrix with origins as columns and destinations as rows, and each entry
denotes the amount of traffic from the respective origin to the respective
destination.

e Modal split: The traffic streams are distributed on the different modes.

e Assignment: The traffic streams are assigned on particular routes on the
network.

TRANSIMS, in contrast, generates activities, that is, origin and destination
information is always attached to the people. Nevertheless, TRANSIMS also at
a certain point has all the origin-destination relations given and needs to assign
these on a network. One could even translate the TRANSIMS information to
origin-destination matrices, although one would give information away, such as
exact starting times of trips, and information from trip chaining, e.g. the effect
that congestion in the morning may lead to later departure times in the evening.

Traditional assignment [2] assumes that traffic streams are constant throughout
the evaluation period. Often, only the morning or afternoon peak is selected as
such an evaluation period. However, when the time periods become too short,
the theoretical foundation of these models is no longer valid. Yet, longer time
periods (such as an hour) are not capable of generating dynamic short-term
effects, such as queue build-up or congestion spreading during the onset of the
rush hours.

Iterated microsimulations of traffic provide an alternative for the assignment
portion. Several groups (e.g. [3, 4, 5, 6, 7, 8]) have used the iterative approach of
routing-microsimulation—feedback of travel-times to obtain an assignment (route
set) that is, within the accuracy permitted by any implicit or explicit stochastic-
ity of the model, self-consistent. In this paper we outline part of the framework
of TRANSIMS [1, 9] as it was used for an extensive case-study of the Dallas /
Fort Worth (Texas) street network, and for preliminary studies using data from
the Portland (Oregon) metropolitan area.

The “Dallas” study [9] used origin-destination matrices provided by the local
transportation planning authority (NCTCOG) as input. It used a so-called
focussed road network, which means that for a 5 miles times 5 miles study
area all streets were represented, whereas with further distance from the study
area more and more of the less-important streets were left out. This network
countained 9864 nodes and 24 622 uni-directional links, of which 2276 nodes and
6124 links were in the study area.

The Portland study is planned to be run on the complete road network, including
all local streets. This network contains about 200000 uni-directional links.
We also use another network, with 20000 links, which has been used by the
local transportation planning authority (Portland Metro) for their traditional
assignment studies. Demand generation will this time be achieved via activities
generation, as intended by the TRANSIMS design. Results in this paper are
based on very preliminary sets of home-to-work trips [10]. This should be of no
consequence for the computational results presented in this paper.

The simulation set-up itself consists of two main applications: (a) a route plan-
ner based upon a fast implementation of the Dijkstra algorithm that uses time-

dependent link travel-times to compute shortest routes, and (b) a traffic mi-
crosimulation that executes the routes generated by the planner and supplies a
feedback file which is used in subsequent calls of the router.

In the following sections we will describe the two applications and their mutual
dependency in more detail.

3 Application Framework

As stated above, the basic input of the dynamic assignment process is a list of
trips, defining what vehicles depart from which origin at what departure time
to what destination. For all considerations presented in this paper, the list of
trips is regarded as given and fixed. The main goal lies in assigning actual route
plans to these trips which fulfill a certain optimization criterion, e.g. minimizing
each individual’s travel-time based upon the actual time-dependent link travel-
times which would be generated by executing the route-plans. In TRANSIMS a
microsimulation is used to provide (and verify) the link travel-times generated
by the route-plan. The goal is to generate route plans which are (within the
limitation of the stochasticity of the process) optimal.

Now, initially, the algorithm cannot predict which route will be the fastest, since
that depends on congestion, and no information about congestion is available
initially. This problem is solved via an iterative relaxation approach, that is,
one generates an initial set of routes, runs it through the micro-simulation, re-
plans a fraction f, (or all) of the trips, runs the micro-simulation again, etc.,
until some convergence criterion is fulfilled. Choosing f,. too large usually re-
sults in oscillations (e.g. [11]), except when other measures are taken such as
giving different routes different weights and to distribute trips across the routes
according to those weights (e.g. [3]). Figure 3 depicts the data flow during an
iteration series. Figure 4 shows the accumulated travel-time as a function of the
iteration number for different iteration strategies and re-planning fractions of
1% and 5% (see [12]). Approximately 40 to 60 iterations with 5% re-planning
are required before the travel-time has reached a sufficiently relaxed state.

4 Route Planner

During the initial iteration the route planner reads the trip file and a (poten-
tially time-dependent) link travel-times file to generate a route set. For each
subsequent step, it uses the route set of the previous step (which includes the
trips implicitly) and re-routes a fraction of all trips. The travel-time feedback
from the microsimulation is averaged over bins of width ¢, = 900 seconds. Both
for the initial route planning and for re-planning, each route is handled inde-
pendently, i.e. the planner itself does not keep track of the delays that will be
caused by travelers on the links they are intending to use. The algorithm used
is a fast implementation of a time-dependent Dijkstra [13].

In order to obtain more computational speed, the route planner uses a classical
master-slave parallelization with PVM as message passing library. The master
reads in the current route-plan and distributes trips by coding them into mes-
sages and sending them to the slaves. Each slave reads a copy of the travel-time
feedback file for its shortest path computations. The slaves return routes which
are sorted with respect to departure time and written to a new route set file by
the master. Since the computations of the routes are completely independent,
there is no communication between the slaves at all.

Figure 5 shows the execution times for processing 100,000 plans at two different
re-planning fractions. The data refers to the 14 751 link network used for Dallas,
run on a SUN Enterprise 4000 with 14 CPUs running at 250 MHz. The speedup
is better for larger re-planning fractions f, because the ratio between shortest
path computations and I/O overhead improves. Still, current speed-up is not
very satisfactory and we may have to think about more efficient methods such as
packaging several route requests into single messages, or maybe even completely
abandoning the master-slave approach.

5 Microsimulation

5.1 Driving Logic

The microsimulation uses a cellular automata (CA) technique for representing
driving dynamics (e.g. [14, 15]). The road is divided in cells, each of a length that
a car uses up in a jam (we currently use 7.5 meters). A cell is either empty, or
occupied by exactly one car. Movement takes place by hopping from one cell to
another; different speeds are represented by different jumping distances. Using
one second as the time step works well (because of reaction-time arguments [16]);
this implies for example that a hopping speed of 5 cells per time step corresponds
to 135 km/h. As long as no lane changing takes place, this just models “car
following”; the rules for car following in the CA are: (i) linear acceleration up
to maximum speed if no car is ahead; (ii) if a car is ahead, then adjust velocity
so that it is proportional to the distance between the cars; (iii) sometimes be
randomly slower than what would result from (i) and (ii).

Lane changing is done as pure sideways movement in an additional “half time-
step” before the forwards movement of the vehicles, i.e. each time-step is subdi-
vided into two sub-time-steps. The first sub-time-step is used for lane changing,
while the second sub-time-step is used for forward motion. Each sub-time-step
requires the exchange of boundary information between CPUs. Lane-changing
rules for TRANISMS are symmetrical and consist of two simple elements: Check
if the other lane is faster, and if there is enough space to “get in” [17]. Two
other important elements of traffic simulations are signalized turns and so-called
unprotected turns. The first of those can for example be modelled by putting
a “virtual” vehicle of maximum velocity zero on the lane when the traffic light
is red, and to remove it when it is green. Unprotected turns get modelled via
“gap acceptance”: There needs to be a certain gap on the lane which has the
priority so that the car from the minor road accepts it. For further information,
see, e.g. [18].

5.2 Micro-simulation parallelization

The main advantage of the CA is that it forces the design of a parallel and
local update, that is, the state at time step ¢ + 1 depends only on information
from time step ¢, and only from neighboring cells. (To be completely correct, one
would have to take our sub-time-steps.) This means that domain decomposition
for parallelization is straightforward (see below), since one can communicate the
boundaries for time step ¢, then locally on each CPU perform the update from
t to t + 1, and then exchange boundary information again. It would even be
possible to overlap communication and computation, although experiments with
it have not shown any systematic improvement on the machines we use.

Rickert, Wagner and Gawron [19, 20] implemented a parallelized traffic simu-

lation running several times faster then real-time! for the German Autobahn
network on an SGI Power Challenger. A summary about how the traffic CA
has been used in simulation models can for example be found in [21].

As stated above, the inherent structure of a traffic microsimulation favors a
domain composition as the general approach to parallelization:

e The street network can easily partitioned into tiles of equal or almost equal
size. A realistic measure for size is the accumulated length of all streets
associated with a tile.

e The range of interdependencies between network elements are restricted
to the interaction range of the CA model. All current rule sets have a
interaction range of 35 meters which is still small with respect to the aver-
age link length. Therefore, the network easily separates into independent
components.

We decided to have the boundaries between CPUs in the middle of links rather
than at nodes. This separates the dynamical complexity at the nodes from the
complexity caused by the parallelization and makes optimization easier. For
example, when having the boundaries at nodes, it can easily happen that three
CPUs are involved in movements across the intersection, whereas for links at
most 2 CPUs are involved in any movement of a single vehicle.

In order to distribute the graph across CPUs, one approach is orthogonal re-
cursive bi-section. In our case, since we cut in the middle of links, the first step
is to accumulate computational loads at the nodes: Each node gets a weight
corresponding to the computational load of all of its attached half-links. Nodes
are located at their geographical coordinates. Then, a vertical straight line is
searched so that roughly half of the computational load is on its right and the
other half on its left. Then the larger of the two pieces is picked and cut again,
this time by a horizontal line. This is recursively done until as many tiles are
obtained as there are CPUs available, see Fig. 6. It is immediately clear that
under normal circumstances this will be most efficient for a number of CPUs
that is a power of two. As one consequence, the tiles can directly exchange
boundary information containing all data necessary for the evaluation of the
CA rule sets, resulting only in local communication between neighboring tiles.

Another option is to use the METIS library for graph partitioning [22]. That
library considerably reduces the number of boundary edges, as shown in Fig. 7.
And example of the resulting tiling can be seen in Fig. 8; for example, the
algorithm now picks up the fact that cutting along the rivers should be of
advantage.

Such an investigation also allows to compute the theoretical efficiency based
on the graph partitioning. Efficiency is optimal if each CPU gets exactly the
same computational load. However, since for the entities that we distribute the
weights are given, load imbalances are unavoidable, and they become larger with
more CPUs. We define this theoretical efficiency due to the graph partitioning

as
_ load on optimal partition

eff: 1)

where the load on the optimal partition is just the total load divided by the
number of CPUs. We then calculated this number for actual partitionings of
both of our 20 000 links and of our 200000 links Portland networks, see Fig. 9.

~ load on largest partition ’

1Running at several times real-time means that several simulation seconds can be computed
in one wall-clock second.

The result means in short that, according to this measure, our 2000 links net-
work would still run efficiently on 128 CPUs, and our 200000 links network
would run efficiently on up to 1024 CPUs.

The simulation uses a parallel update with a global time-step. However, syn-
chronization of all CPUs is only performed after a simulation sequence com-
prising approximately 10-20 time—steps. In between, there is only an implicit
synchronization through the exchange of local boundaries.

The global time—step is used to guarantee consistent collection of statistical
data: Although partial results from the CPUs may not be collected at the same
physical wall-clock time due to a potential time-step gradient (see [23]), they
always belong to the same logical time-step. The master CPU takes care of
combining partial results.

The actual implementation of the microsimulation was done by defining descen-
dent C++ classes of the C++ base classes provided in the Parallel Toolbox.
The underlying communication library has interfaces for both PVM and MPI.
A description of the toolbox is beyond the scope of this paper. More information
can be found in [12].

5.3 Off-line Load Balancing

We implemented a simple external feedback for the initial static load balancing.
During run time we collect the execution time of each link and each intersection
(node). The statistics are output to file every 1000 time-steps. For the next
iteration run the file is fed back to the initial load balancing algorithm. In this
iteration, instead of using the link lengths as load estimate, the actual execution
times are used as distribution criterion. Fig. 10 shows the new tiles after such
a feedback (compare to Fig. 6), and Fig. 11 shows the improved CPU usage in
an example for 4 CPUs.

To verify the impact of this approach we monitored the execution times per
time-step throughout the simulation period. Figure 12 depicts the results of
one of the iteration runs. For iteration step 1, the load balancer uses the link
lengths as criterion. The execution times are low until the first grid-locks appear
around 7:30 am. A grid-lock is a traffic situation in which vehicles get stuck
in dense traffic jams which cannot be resolved anymore. The execution time
increased fivefold from 0.04 sec to 0.2 sec. In iteration 2 the execution time is
almost independent of the simulation time. Note that due to the equilibration,
the execution time for early simulation hours increased from 0.04 sec to 0.06 sec,
but this effect is more than compensated later on.

The figure also contains plots for later iterations (11, 15, 20, and 40). The
improvement of execution times is mainly due to the route adaptation process:
all grid-locks have disappeared and the average vehicle density is much lower.

6 “Dallas” Performance

For the Dallas study, the trip file contained 300,000 trips occupying approxi-
mately 250 MByte of disk space (120 MByte in a slightly compressed binary
format, i.e. after using gzip). The route planner network comprised 9864 nodes
and unidirectional 24662 links. The simulation network itself consisted of 2276
nodes and 6124 unidirectional links covering an area of about five miles x five
miles in the center of the Dallas street network. The original routes generated
for the planning network were truncated to the simulation network by a pre-
processor. A typical iteration step takes about 6-8 minutes for pre-processing,

30-35 minutes for simulation using eight CPUs (250 MHz) on SUN Enterprise
4000, and 15-20 minutes for re-planning on one CPU. Remember that we need
of the order of 50 runs through this; in consequence, we need about 2 days of
continuous computing on our 8 CPU machine for one such iteration series.

7 Performance prediction for Portland (Oregon)

For the Dallas case, we have not just done the above iterations, but we have
used the set-up for extensive studies of the computational performance. This
included a systematic derivation of an equation for the computational perfor-
mance, including such elements as CPU time, communication time (start-up
and bandwidth), competition for bandwidth, etc. This investigation, with the
results of the above graph partitioning investigations, was used to make esti-
mates for our Portland problem. The result, for the 200000 link network, can
be seen in Fig. 13. The figure shows predictions for the so-called real time ratio,
which says how much faster than reality the simulation is. This is for example
interesting for real time applications, since one does not want the forecast to be
slower than reality. The thick lines in the figure refer to a 250 MHz SUN En-
terprise 4000 (black) and a hypothetical machine consisting of the same CPUs
but a two-dimensional communciations topology. The Enterprise 4000 has a
fast backplane, but it is still a bus communications system, thus levelling out
at about 50 CPUs without getting faster than about twice as fast as real time.
The 2-d communcations topology does not have this problem, and speed-up is
nearly linear. (Note, however, that the Enterprise 4000 does not accept more
than 14 CPUs; Enterprise computers which accept more CPUs also have faster
backplanes.)

The prediction means the following: Let us assume we want to look at 24 hours
of traffic, after 50 iterations. Using one CPU, it would take 500 days to get the
desired result. Using 500 CPUs, it would still take a day.

Fig. 14 shows preliminary actual real time ratio measurements for the predicted
situation, i.e. the micro-simulation running on the 200000 links Portland net-
work. The Origin 2000 is a supercomputer with a more powerful communica-
tions technlology than our Enterprise 4000, the predicted near-linear speed-up
is confirmed, and computational speeds may even be faster than predicted due
to additional optimizations in the code. “Preliminary” in the above sentence
means that no vehicles were in the simulation. In our experience, the addition
of actual vehicles does not slow down the code enourmously.?

8 Summary and Outlook

We presented a framework for dynamic traffic assignment. The fast implemen-
tation of the traffic-simulation and the use of parallel computers allowed us to
compute a self-consistent route-set within two days of computing on an 8 CPU
machine for a problem with about 6 000 links. Moving to a realistic representa-
tion of a medium-sized complete city such as Portland/Oregon (1.5 mio people),
one would need a 250 CPU machine to obtain the same result after a similar
computing time. The result is based on geometric domain decomposition of
the geographical area, together with an adaptive load balancing and knowledge
about the efficiency of the domain decomposition.

2We will not be able to measure the scenario with vehicles since our computing access has
been revoked.

9 Acknowledgements

We thank A. Bachem, R. Schrader and C. Barrett for supporting MR’s work as
part of the traffic simulation efforts in Cologne (“Verkehrsverbund Verkehrsimu-
lation und Umweltwirkungen NRW”) and Los Alamos (TRANSIMS). Comput-
ing time on the SGI-1 Challenger of the Regionales Rechenzentrum Kdéln and on
the workstation cluster at TSA-DO/SA is gratefully acknowledged. The work
of MR was supported in part by the “Graduiertenkolleg Scientific Computing
KoIn”. Part of this work was performed at Los Alamos National Laboratory,
which is operated by the University of California for the U.S. Department of
Energy under contract W-7405-ENG-36 (LA-UR 98-2250).

References

[1] TRANSIMS, TRansportation ANalysis and SIMulation Sys-
tem, Los Alamos National Laboratory, Los Alamos, U.S.A. See
http:/ /transims.tsasa.lanl.gov.

[2] Y. Sheffi. Urban transportation networks: Equilibrium analysis with math-
ematical programming methods. Prentice-Hall, Englewood Cliffs, NJ, USA,
1985.

[3] DYNAMIT, see http://its.mit.edu.

[4] R.H.M. Emmerink, K.W. Axhausen, P. Nijkamp, and P. Rietveld. Ef-
fects of information in road transport networks with recurrent congestion.
Transportation, 22:21, 1995.

[5] H.S. Mahmassani, T. Hu, and R. Jayakrishnan. Dynamic traffic assignment
and simulation for advanced network informatics (DYNASMART). In N.H.
Gartner and G. Improta, editors, Urban traffic networks: Dynamic flow
modeling and control. Springer, Berlin/New York, 1995.

[6] K. Nagel. Individual adaption in a path-based simulation of the freeway
network of Northrhine-Westfalia. International Journal of Modern Physics
C, 7(6):883, 1996.

[7] C. Gawron. An iterative algorithm to determine the dynamic user equilib-
rium in a traffic simulation model. In Wolf and Schreckenberg [25], pages
469-474.

[8] H. A. Rakha and M. W. Van Aerde. Comparison of simulation mod-
ules of TRANSYT and INTEGRATION models. In Traffic Flow The-
ory and Traffic Flow Simulation Models, volume 1566 of Transportation
Research Record, pages 1-7. Transportation Research Board, Washington,
D.C., 1996.

[9] R.J. Beckman et al. TRANSIMS-Release 1.0 — The Dallas-Fort Worth
case study. Los Alamos Unclassified Report (LA-UR) 97-4502, Los Alamos
National Laboratory, see http://transims.tsasa.lanl.gov, 1997.

[10] J. Esser and K. Nagel. Census-based travel demand generation for
transportation simulations. In M. Schreckenberg al, editor, Pro-
ceedings of the workshop “Traffic and Mobility, Aachen, Germany,
Sep/Oct 1998. Also Los Alamos Unclassified Report LA-UR 99-10, see
http://www.santafe.edu/~kai/papers.

[11] K. Nagel. Experiences with iterated traffic microsimulations in Dallas. In
Wolf and Schreckenberg [25], pages 199-214.

[12] M. Rickert. Traffic simulation on distributed memory computers.
PhD thesis, University of Cologne, Cologne, Germany, 1998. See
http:/ /www.zpr.uni-koeln.de/~mr/dissertation.

[13] R. R. Jacob, M. V. Marathe, and K. Nagel. A computational study of
routing algorithms for realistic transportation networks. ACM Journal of
Ezxperimental Algorithms, in press. Also Los Alamos Unclassified Report
LA-UR 98-2249, see http://www.santafe.edu/~kai/papers.

[14] K. Nagel. Particle hopping models and traffic flow theory. Physical Review
E, 53(5):4655, 1996.

[15] K. Nagel. From particle hopping models to traffic flow theory. Transporta-
tion Research Records, 1644, in press.

[16] S. KrauB. Microscopic modeling of traffic flow: Investigation of collision
free vehicle dynamics. PhD thesis, University of Cologne, Cologne, Ger-
many, 1997.

[17] M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour. Two lane traffic
simulations using cellular automata. Physica A, 231:534, 1996.

[18] K. Nagel, P. Stretz, M. Pieck, S. Leckey, R. Donnelly, and C. L. Bar-
rett. TRANSIMS traffic flow characteristics. Los Alamos Unclassi-
fied Report (LA-UR) 97-3530, Los Alamos National Laboratory, see
http://www.santafe.edu/~kai/papers, 1997. Earlier version: Transporta-
tion Research Board (TRB) preprint 981332.

[19] M. Rickert and P. Wagner. Parallel real-time implementation of large-
scale, route-plan-driven traffic simulation. International Journal of Modern
Physics C, 7(2):133-153, 1996.

[20] C. Gawron, M. Rickert, and P. Wagner. Real-time simulation of the german
autobahn network. In F. Hof}feld, E. Maehle, and E.W. Mayer, editors,
Proc. of the 4th Workshop on Parallel Systems and Algorithms (PASA
‘96). World Scientific Publishing Co., 1997.

[21] K Nagel, M Rickert, and C L Barrett. Large-scale traffic simulations. In
J. M. L. M. Palma and J. Dongarra, editors, Vector and Parallel Processing
— VECPAR’96, volume 1215 of Lecture Notes in Computer Science, pages
380-402. Springer, 1997.

[22] Metis library. http://www-users.cs.umn.edu/~karypis/metis/metis.html.

[23] K. Nagel and A. Schleicher. Microscopic traffic modeling on parallel high
performance computers. Parallel Computing, 20:125-146, 1994.

[24] K. Nagel, M. Rickert, R. Frye, P. Stretz, P. M. Simon, R. Jacob, and
C. L. Barrett. Regional transportation simulations. In Proceedings of the
Advanced Simulation Technologies Conference, Boston, MA, U.S.A., 1998.
The Society for Computer Simulation International.

[25] D.E. Wolf and M. Schreckenberg, editors. Traffic and granular flow ’97.
Springer, Heidelberg, 1998.

10

data (demographic, transportation infrastructure, ...) }

v

synthetic

population

generation

A

microsimulation

VAVAV y

route and

performance
analysis

(e.g. pollution,

economical)

activities

modal

planning

planning

Figure 2: TRANSIMS design

12

li
\\ /CI—p\L

Pre-Processor Simulator

Route-Set

travel-time
feedback of
iteration i

Figure 3: Iterative assignment with simulation feedback. For iteration ¢ 4+ 1
the fraction f, of the previous route-set is re-planned by the router using link
travel-times of iteration i. The remaining fraction 1 — f, is simply reused.
Before the route-set is fed into the simulation it is clipped to the boundaries of
the study-area.

13

VST until 10:00 AM [sec]

4.5e+08

4e+08

3.5e+08

3e+08

2.5e+08

2e+08

1.5e+08

1e+08

5e+07 H -

0 1 1 1 1 1
0 20 40 60 80 100 120

iteration

Figure 4: Relaxation of the accumulated travel-time.

14

execution time [sec]

700

600

500

400

300

200

100

(I
=l

#CPU

Figure 5: Execution times of the Route Planner

15

10

*

3 . - AN Le
. £
i wwg e

e g $3 ’of%’w

* + s

. ftwg. R
R ol

YL e, TR

. o Hat L
A

ces Lt

Figure 6: Orthogonal bi-section

16

100000

10000 ¢

1000 | .-

.orth. bisec. (200k links) -
METIS (200K links) -
~1000%x**0.5

1 4 16 64 256 1024

number of split edges

100

Figure 7: Number of split edges

17

o

Figure 8: Partitioning by METIS

18

-, 09r g
=
g 08¢ g
£ 07 .]
2 e2 network (80k links)
g 0.6 B OB N 1

05 METIS x i

0.4 METIS (k-way)) . . .

1 4 16 64 256 1024

number of CPUs
1 X X X X XX reoccndimg

-, 09r g
=
g 08¢ g
L2 07+ |
b= .
o allstr network (200k links)

% 06| OB g
E 05 METIS x oy % 4
0.4 METIS (k-way)) . . .

1 4 16 64 256 1024

number of CPUs

Figure 9: Top: Theoretical efficiency for Portland network with 20000 edges.
Bottom: Theoretical efficiency for Portland network with 200000 edges.

19

at, S8 SRS
*ql o TRy s, s a4t
Moo g oasetta B e s B 8
g 20, gt LAt fes s ted L
2o a5 a0 Tae
52,25 sk a0 ot
OO I U sas, e
Eifpeafalill, L. L,
2 Q&A:i;@’ﬁ‘m N

b

* M 48
* A£ a
R * * 2
2a
*
w x* I, =
*
- .
* 3 o x
ow oo B M
* * e
PRI A g
x
x Fx XX
N - %
Fa
X XX E X
2%
xx x %
b X
+ + K

Figure 10: Partitioning after load balancing. Compare to Fig. 6.

20

[] pecode [Encode [it [] Links [] LoadData [J LoadPlans
[] Nodes [] RecvBnds |l RecvControl [RecvTravs [] sendBnds
[] sendcControl |l SendTravs I Wait [| WriteData

256.369 256.511 256.653 256.794 256.936 257.078 257.220

[] pecode [Encode ['t [| Llinks [] LoadData [Jll LoadPlans
[] Nodes [] RecvBnds I RecvControl I RecvTravs [sendBnds
[] sendControl [SendTravs I Wait [| WriteData

245.841 245.982 246.124 246.266 246.408 246.550 246.691

Figure 11: Top: CPU usage without loadbalancing feedback. Bottom: CPU

usage with loadbalancing feedback. Note that the idle time, summed over all
CPU, is much shorter.

21

execution time on slowest CPN [s]

0.22

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

simulation time [h]

Figure 12: Execution times with external load feedback

22

10 |

0.1

NOW s
(2-D grid) ==
5*performance -

5*c_net -
5*performance + 5*c_net ----

10 100
number of CPN

Figure 13: Performance predictions. From [24].

23

Performance of CA for Portland (no output, orthogonal bisection, 20k links network)

32 T T T T T T
Origin 2000; Jun 1998; no cars ——— -~ -

= 16 Enterprise 4000; Apr 1999 .~ 1
§ x -
] 8 r -]
o
n -
5 4 | -
£ o
2 2 | i
©
Q
£ 1r 1
E .
= 05 F g

0-25 1 1 1 1 1 1

1 2 4 8 16 32 64 128

number of CPUs

Figure 14: Performance, measurements on Sparc Enterprise 4000, and on Ori-
gin 2000.

24

