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Chapter 1

Introduction

Have you been in a jam on a highway that urged you to stop your vehicle
but there was no visible reason that caused the jam?

Such jams are often called phantom jams, because they are not gener-
ated by reasons that we usually expect to cause a jam such as accidents,
construction work, police action or obstacles of any kind. A phantom jam
might be caused for instance by a traffic density that is too high. If any
car in a very dense but still laminar traffic slows down unnecessarily, his
behavior might cause a jam behind him.

In transportation science several kinds of jams can be of interest.

Alot of reserach is done on simulations of entire cities where jam oc-
curance is examined depending on road networks, alternative public trans-
portation, working hours and day planning habits etc.

This work is interested in jam occurance depending on the traffic den-
sity and the free parameters of the traffic models. We therefore examine a
periodic street filled with cars according to a global density p.

The vehicular motion will be given by two traffic flow models. We will
examine a model by Stefan Krauss and compare it to a discrete model, the
Nagel-Schreckenberg cellular automat.

To compare and analyze traffic models, we will use the aspects explained
in the following.

A very easy way to give a traffic flow model a “face” is to draw its
fundamental diagram. This is a plot of the flow or flux, vehicles per second,
towards the density: ¢(p), where ¢ = (v(p))p using the average velocity
(v(p)) at a given system density p. The model of Stefan Krauss (SKM)
shows hysteresis, which we will investigate further in section 3.2.

Phantom jams depend intuitively on the global traffic density. This is



supported by simulations. We will analyze the breakdown behavior of the
traffic models mentioned above as well as the recovery behavior. These are
transitions from laminar to jammed traffic and from jammed to laminar
traffic respectively. Hence we have two initalization possibilities. To get
an idea of these transition behaviors we will measure the breakdown and
recovery times (Thgown and Trec) depending on the traffic density p, system
size (number of vehicles) N¢ars and the free parameters in the SKM. Thgown
and Trec seem to be of an exponential character. The questions we will ask
ourselves are

What information do we get out of plots of Todown aNnd Trec?

How are these plots correlated to the plots of the fundamental diagram?
What kind of exponential behavior do Thgown and Trec show?

Are they diverging?

The SKM can be divided into three types I, IT and III of traffic flow
models. These types are distinguished by their choice of the parameters
acceleration a and braking capability b. In agreement with Krauss and Janz,
it is hard to distinguish the types I and II. Details about these configurations
will be presented later.

The outflow from jams is a criterion to determine differences. Type I is
said to have a stable outflow, whereas type Il has an unstable outflow. Stable
and unstable outflow refer to the downstream behavior below an artificial
jam. In a stable outflow we find no further jams (daughter jams). In an
unstable outflow we do. These daughter jams can appear and disappear on
time scales Trec and Thyown respectively.

As a consequence, the interface (spacial transition between the artificial
jam and free flow) of type II models is smeared out. We measured the in-
terface width of both models in various configurations in order to categorize
the models and the types I and II.

The leading questions are:

How does the mterfafe width of different model types develop in time?
(~ const., ~T, ~T2)

How does it depend on the model type?



Chapter 2

Traffic Flow Models

There are various ways of implementing traffic on computers. Depending on
the aim and purpose of the simulation different models apply better.
Before we explain the traffic flow models used in this work, we’ll have a
rough overview over other traffic models.
All traffic flow models (TFMs) are based on the thought of providing
collision free car following. The apporaches being used can be categorized
roughly as follows:

Macroscopic TFMs

The similarity between unidirectional traffic low and the flow of a viscous
liquid is obvious. Thus many models apply Navier-Stokes-style equations on
traffic simulations. Collision free traffic is provided indirectly by the mass
conservation equation and the existence of pressure.

Microscopic TFMs

Looking at individuals in traffic we can generate various rules of behavior for
safe driving. In driving school we learn the 2 seconds headway-rule, giving
us a safe distance to the car in front of us. This rule, or slight adaptions of
it, are the fundamental thought behind microscopic TFMs, updating every
individual’s speed and position at every time step. An individual driver
usually adapts his speed taking only the leading car into account.



Continuous space vs. discrete space

Using microscopic TFMs gives us two possibilities in handling the position-
ing of vehicles: discrete space coordinates (z; € N) or continuous space
coordinates (z; € R).

Continuous space coordinates allow a more realistic and smooth driving
while discrete space coordinates provide faster updating and computing.

In discrete space coordinates, vehicles are placed into cells and “jump”
from cell to cell in order to drive. The cellular automaton model uses this
technique. The latter will be discussed and used in this work as an adaption
of Krauss’ model.

Of course one could construct hybrid models, using combinations of the
two suggestions mentioned here. The reader can consult many articles and
books on such topics.

2.1 Krauss’ traffic flow model

The SK model is a microscopic continuous-space TFM. The SKM does not
try to implement human decision making as realisticly as possible, it rather
tries to implement what we observe when looking at individual behavior in
traffic. In the following we want to give the assumptions relevant for the Ste-
fan Krauss model, but skip the detailed derivation of the time discretization
and the update rule.

2.1.1 Background, assumptions

Let us think of a single car with its leader so far ahead that it doesn’t have
to be taken into account for its velocity updating. In such a free headway
situation we need to set a very general restriction, to give the velocity an
upper boundary:

¥ < Vinax

This maximum velocity could be considered as the drivers desired veloc-
ity on a freeway or the maximum velocity given by traffic rules.

In dense traffic situations, individuals aim for collision free driving. Thus
it is usually safer to drive within a certain safe velocity range:

U < Ugafe



As in most microscopic models, vgafe Of a following car has to take into
account: the current velocity vy of the car itself, the velocity of the leading
car v; and the gap g between the two,

VUsafe = Usafe (Uf, v, g)

While respecting these two velocity boundaries, vehicles try to obtain
the hightest velocity within the given range. If possible they try to increase
their speed according to a given acceleration a.

Using discrete time steps At, we have a temporary update rule

v(t + At) = min (Vpax, v(t) + aAt, vgate)

We need to specify a few more things:

When updating the velocity for the next time step, it is realistic to bound
acceleration and deceleration and implement an update rule that takes lim-
ited velocity changing capability into account. We call b the maximum
deceleration and a the maximum acceleration capability:

-b< iv <a
Sl s
As we will see later, the restricted %’U is essential in this model and
distinguishes it from many others. The choice of ¢ and b defines different
types of macroscopic behavior and jam formation.
Gaps between vehicles are measured from bumper to bumper:

g =1y — Ty — Lear

with z; and xf as the positions of the leading and following car and Ly,
the average length of a vehicle.

Using d(v) as the braking distance of a vehicle driving with a velocity v,
collision free driving between two following cars f and [ means

d(vy) +vsAt < d(v) +g

d(v) depends on the braking capability b. The human reaction time
(implemented via the vy At term) is set to be equal to the update time step
At, which is typically one second.



2.1.2 Update rule

A detailed derivation of the final update rule can be found in [1] and [2].
The result is as follows:
) =l +
Vdes(t) = min (Viax, v(t) + aAt, Ve (t))
)
)

max (0, vqes(t) — aen)
= z(t) + vt + At)At

Additionally we included a noise term aen in the update rule that pre-
vents the system from becoming homogeneous. The noise term makes in-
dividuals not accelerate as fast as they could, which does not affect safety.
This idea becomes clearer when writing a formal velocity update with noise
as

v(t + At) = v(t) + aAt — aen

€ is to be chosen in [0... 1] indicating how much noise we allow, while 7
generates rational random numbers in [0...1).

2.2 The Nagel-Schreckenberg cellular automaton

The Nagel-Schreckenberg model uses discrete space coordinates and discrete
velocities. An illustrative way to implement this is to use an array to rep-
resent a lane (street) which vehicles drive on. Each cell has the average
length of a car in a jam, typically 7.5 metres. In the NS cellular automa-
ton, velocities and positions are integers, which is an argument to use a
cellular automaton when simulating very big systems due to faster updating
possibilities.

Velocities should be bound by an upper velocity Vinax. Vmax = 5111C;T1;ste
corresponds to 135km/h and hence seems to be a realistic approach. A car
is represented by an integer between 0 and Viax in the array, corresponding
to its velocity. In the code, one can use —1 is an empty cell.

Cars “jump” from cell to cell according to their current speed. To pre-
serve safety, cars should not drive further than the gap in front of them
allows it. Assuming a sudden stop of a leading car at cell n, the following
car will drive over the open gap and should halt in cell n — 1. Note that this
is an indirect implementation of infinite braking capability.

If vehicles are not hindered by leading cars, they should try to obtain
maximum speed, and accelerate their speed by 1 velocity unit per update.



To give an impression of these thoughts, we can illustrate two following
situations where cars are heading to the right. The numbers indicate the
speed that the velocity update would choose for that specific situation:

step o3 2 5
stept+1|... 2 3 5

Combining the cellular automaton rules of motion, we are able to for-
mulate the following update rules:

v*(t+ 1) min(gap, v(t) + 1, Vinax)
v(t+1) = max(0,v*(t +1) —n)
z(t+1) = z(t)+v(t+1)

z represents the position in the array. 7, functions as noise and is drawn
as follows:

1 < random number <r
0 “else

nr € {Oa 1}5 Nr = {

where r has to be chosen to regulate the amount of noise. In this work
r = 0.5 was chosen everywhere.

2.3 How local jams occur

This section should explain roughly, how jams can occur. The thoughts will
be given for Krauss’ model but can be adapted to the cellular automatonas
well.

In traffic situations with very low densities cars can drive at V.5 without
being hindered by their leading car. This means, that they can easily stop
their own car (including reaction time) if their predecessor does a full brake.
Using the braking distance d(v), we have a safety condition for two following
cars driving at Viax

d( Vmax ) + Vmax At < d(Vmax) +g
~—~— ~—

follower follower leader

When increasing the car density p, the average gap (g) between cars
decreases and the equation above becomes false. Hence it is necessary for
cars to drive at a lower speed v < Viax to preserve safety. In terms of the
SK model algorithm, vg,se decreases as g decreases.



Figure 2.1: A space-time plot of Krauss model. Initialized to equidistant
positions and uniform speed, the car following dynamics produce jam waves
due to noise. a = 0.2, b = 0.6. The space axis is pointing to right right, the
time axis is pointing downwards. The trajectory of a car can be found by
connecting its positions (dots) between time steps. Space-time plots will be
explained in section 3.1.

This change from unhindered to hindered traffic flow is sudden at a
certain critical density.

For p above this critical density vehicles interact and adapt their desired
speed to their leader’s speed and the gap between them. This would ther-
malize into a state with all cars at equidistant positions g; = g; and identical
velocities v; = vj, for all leader-follower pairs (4, j), if we had not included
the noise term aen. The latter is responsible for density fluctuations and
eventual breakdown of laminar flow.

In figure 2.1 we see a space-time plot of a configuration above this critical
density. The system is initialized to equidistant positions and the velocities
of the laminar noiseless solution. Velocity fluctuations add up in the up-
stream direction and cause the system to break down locally, meaning at
least one car comes to a full stop.

We will deal with traffic breakdown and jam recovery in chapter 5.
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2.4 Conventions

2.4.1 Constants and units

As all measurements will be averaged over cars, it is reasonable to identify
the system size with the number of vehicles N,s. For initialization, the
code needs the constants p and N¢,s and the parameters a, b, Vinax and e.
With the average length of a vehicle L¢,r, the system length is calculated
trivially by

N Lear
P

Lsystem =

respecting periodic boundary conditions.
We drop dimensions of all kinds and agree to use

1 spaceunit =1 carlength = 7.5 metres =1
1 timeunit = 1 update =1 second =1

Converting these relations back into SI units results in realistic velocity
ranges: Vipax <5 — V.. < 135km/h.

a, b and Vi, are constants, and we use typically a = 0.2, b=0.6, e =1
and Vinax = 3. These parameters are being used in the following work for

typical Krauss type I' systems unless specified otherwise.

2.4.2 Terminology of “jammed”

In the following we will use the word jammed in various contexts. We will
talk about jammed traffic, jammed start etc. The use of these expressions
was adapted a bit, which we should declare here.

When talking about a jammed system, jammed flow or jammed traffic,
we mean that there is at least one car in the system standing still at every
time step and that jam waves exist. To call this state “coexistence” would
describe more what we actually see, because for most jam situations not all
cars in a periodic system are positioned within the jam, some drive freely
between two jam waves - see figure 2.1. We still call such a situation jammed,
because we do find halting cars at every time step.

We will also use the expression of a jammed start of a simulation. By
this we mean an initialization of the system that was artificially forced into
a jam before running.

1See chapter 4.
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Chapter 3

Analysis of traffic flow

We will now introduce a few tools and graphs that will help us to qualify
our traffic flow models. In a first section, we will look at normal space time
plots, as you saw them already earlier in this paper.

Then we will describe and understand how to read fundamental dia-
grams and see how our two models can be distinguished and point out a few
specialities about Krauss’ model.

3.1 Space-time plots

Space-time plots are a very easy tool to get a first impression of vehicular
movement. Technically it is also very easy to plot a lane into a UNIX shell
using one line for every time step. therefore we draw the space axis pointing
to the right and the time axis pointing downwards. A vehicle is represented
by a dot. A trajectory of a car can then be found by connecting all dots
representing that specific car from time step to time step. A driving car
draws its trajectory into a “south east” direction in the space-time plot. A
car standing still is drawn by a vertical line.

Traffic jams become easily visible this way: In a jam, cars stand still with
relatively little space between them. A car jam is a dark wave travelling
through the system. In a standard Type I Krauss system' and a cellular
automaton, these waves travel upstream (in “south west” direction in the
space-time plot).

Space-time plots are even more informative than video sequences, be-
cause they show an entire development through time at once. This allows
us to compare different kinds of jam formation. We will see in chapter 4

!The different types of Krauss models will be explained later in chapter 4.
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that the kind of model we choose and our parameter settings influence the
development, shape and life time of jams.

Figure 3.1 shows two space-time plots: A Krauss’ model on top and a
cellular automat development on the bottom. Some comments:

Upper space-time plot, Krauss type I: We see a few rather big jam waves
propagating through the system. This is what is ment, when we speak of
a phase separation. The jam waves become more stable as we increase our
system density. In between two jams we have a so called outflow from jams,
where we find a laminar driving situation.

Lower plot, standard cellular automaton: The cellular automaton does
not develop a clear separation of phases. Minijams come and go like fluctu-
ations and have a comparably short life time. Between two jams we again
find an outflow situation, but this outflow is not stable for this model. We
can find several little jam waves starting within the chosen time window
that were caused in the outflow of a previous jam.

In chapter 4 space-time plots will serve us to distinguish different types
of traffic flow.

3.2 The fundamental diagram

3.2.1 Densities

We have to specify a bit what is ment when we talk about the density of a
system. Clearly we do not always deal with absolutely homogeneous traffic
situations, which makes it necessary to distinguish bewteen local and global
densities.

In this work and if not specified otherwise, a simple p without indices
declares the global density:

Necars _ amount of cars

p=lph = Leystem  System length

Other densities of interest are for instance the density in a jam, pjam, or
the denity in the outflow of a jam, poy. We will refer to these always using
the corresponding index.

3.2.2 Fundamental diagrams

We found out earlier in 2.3 that above a certain density vehicles cannot drive
at Viax anymore and have to slow down to preserve safety for collision free

13



Figure 3.1: Space-time plots at p = 0.3. On top, a type I Krauss’ model us-
inga =0.2, b= 0.6 and Vinax = 3 and on the bottom the cellular automaton
with Viax = 3.
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driving. The average velocity (v) thus depends on the global density p. We
expect that

Viax — (noise) < (p — 0)
(v) = { 0 o (z 1)

Measurement of (v) give us a first impression of the efficiency of traffic
flow. However, it is more applicable to know the vehicle flow, how many
cars per second? pass by. In order to get there, we multiply (v) with the
global density p to obtain the desired flow

Thus, (v) is the slope of ¢(p) for low densities.
Assuming the so far deducted structure of (v(p)) we find for g(p) that

q(0) = ¢(1) =0 and ¢(p) >0

The second statement holds for vehicles driving strictly forward. A plot
of ¢(p) is what we mean when talking about a fundamental diagram.

We will now talk a bit about the measurement of fundamental diagrams
and then investigate specific cases for different models.

3.2.3 Different types of fundamental diagrams

Our systems have to be initialized in one way or another. The initialization
has a direct influence on the flow of vehicles and their fundamental diagram.

Respecting thermalization, it is sufficient for some models and situations
to measure the flow g(p) for a certain period of time and calculate a time-
averaged mean value.

This work uses models and initialization techniques that allow a sys-
tem to change state after a certain waiting time which is unknown in the
beginning®. We therefore need ensemble-averaged measurements at fixed
moments in time. We say we take snapshots of the fundamental diagram.

We will initialize a system by placing vehicles at equidistant positions
and with the expected mean velocity (v(p)). This requires sufficient ther-
malization before doing measurements.

%Single lane traffic
3To determine this waiting time (called recovery and breakdown time later) is a part
of the aim of this work

15
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Figure 3.2: A fundamental diagram, Krauss’ model, without noise, a = 0.2,
b=0.6,¢=0.

As we said, we expect our system to change state over time: A laminar
system can break down into a jammed state and an artificial jam can recover
into pure laminar traffic.

We have to be able to follow traffic flow through time and to obtain data
for

q(p) = q(p,t)

This can be done by taking snapshots at certain moments in time. Our
code should calculate these snapshots of the flow ¢(p, %) at a given time step
i.

To retrieve a reliable ensemble-averaged value over the corresponding
part of the phase space, we have to start several parallel simulations with
different random seeds.

3.2.4 ¢ =0 fundamental diagram for Krauss

Choosing € = 0 takes all disturbance by noise away. A reduction of veloc-
ity is only caused by shorter gaps between cars as density increases. The
corresponding fundamental diagram is displayed in figure 3.2.
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The slope on the steadily increasing part for low p equals Vinax. This
fundamental diagram describes the so called “homogeneous” solution. It
can be used for velocity initialization.

The point of maximum flow in figure 3.2 defines the outflow from jams

Qout = Q(pout)-

3.2.5 € =1 fundamental diagram for Krauss

Since the shape of the fundamental diagram depends on the initialization,
we will show both results for a laminar and a jammed start and explain
them separatly.

Starting a simulation with jammed initial conditions is done by halting
an arbitrary car and waiting until all vehicles in the (periodic) system queue
behind it. The jam is formed, when we measure

v; =0 Y vehicles i

for the first time.

Theoretical examinations

To understand what information we can retrieve from the fundamental dia-
gram we will first have a look at a theoretical sketch. The following diagram
contains both initial states laminar and jammed.

jammed start "
|
|
|
|
|
| I
| o
| measure time influence
| ‘

-

+ - P
pjm pe

A theoretical sketch of a fundamental diagram belonging to a Krauss type I
model.

For low densities (left hand side), both systems result in the same flow.
The laminar system stays laminar, and the jammed started system recovers
into laminar flow, because there are few enough cars to regain free flow.

17



As we increase our vehicle density p (going rightwards in the sketch) we
do not get the same result for the flow for initial conditions laminar and
jammed above a certain density pj;,. A laminar started system keeps its
free flow and increases it with the typical slope of Vihax. The flow increases
up to a density p. (“e¢” like “edge”, see figure above), where the laminar
flow collapses and jammed and laminar systems show the same vehicle flow
again. This is the typical edge we find in Krauss’ fundamental diagram. We
say that Krauss’ fundamental diagram has a reversed-A-shape. Some speak
of hysteresis [2].

At the density pj,, where the lines of laminar and jammed started sys-
tem flows split, a jammed started (infinite) system is in general not capable
of recovering anymore. The density where these two lines split (which is
the maximum flow that an infinite jammed started system can reach after
a finite run time) we call pj,,, because it is the “maximum flow for jammed
starts”.

The branch of the jammed start follows the lower dashed line in the
fundamental diagram, until it is joined by the upper line at p. where both
systems have the same flow again.

It is possible for finite systems to recover onto the laminar branch af-
ter a so called recovery time 7T;ec, which increases rapidly with p. This
phenomenon will be investigated later in this work.

Let us from now on talk about the laminar branch (top) and the jammed
branch (bottom) in the fundamental diagram.

What happens at the edge at p. in the figure?

The flow g(p) does not join the jammed branch smoothly at p.. A system
initialized to a laminar state can collapse and form jam waves. By doing
so, the flow breaks down and a system state (p,(@aminar) breaks down to

(pa Qjammed) with

Qlaminar > Gjammed

When a system breaks down to a jammed flow, the point (p,q) moves
from the laminar branch down to the jammed branch. A system in between
is not often found, and if so, it is usually at the very edge at pe.

The position of this edge depends directly on the time when we take
our snapshot. The longer our fundamental diagram snapshot measure time
is, the more likely it is for a system to break down. And, denser systems
are more likely to collapse. These two facts explain why the edge position
depends on the snapshot time. Snapshots of later measurement times feature
a “shorter” edge with the corresponding p, further to the left, because more

18



systems collapsed and the corresponding data points at the edge are missing.
They moved down to the jammed branch and

Pe = pe(t)

The double arrow in the sketch signifies this with the +/— symbols. It
indicates the position shifting of p. depending on larger (4) or smaller (—)
snapshot measurement times.

In the following we will examine these observations on real measure-
ments.

Measurements

Figure 3.3 shows what we just dicussed on an example of 5000 vehicles. The
snapshot was taken after 30’000 updates, 20 such simulations were taken
into account at each density. The ensemble average can then be calculated
from 20 independent simulations with different random seeds. The jammed
and the laminar branch were both drawn into the same plot to illustrate
their relative positions.

Compared to the theoretical shape of the fundamental diagram we can
notice a slight shift between the data of the laminar start and the jammed
start for densities above pe, in figure 3.3 above p, = 0.21. The jammed
started flow is a bit lower than the the laminar one.

This difference also changes in time. As we take our snapshot later
in time, the jammed branch shifts upwards slowly until it overlaps with
the laminar branch while the position of the laminar branch seems to be
constant in time.

3.2.6 CA fundamental diagram

Finally we display measurements of the fundamental diagram of the cellular
automaton in figure 3.4, 5000 cars after 30’000 updates. We displayed only
the laminar start data, because it does not differ from the jammed started
one.

Notice that the point of maximum flow is shifted towards smaller p
compared to the point of maximum flow in the fundamental diagram of
Krauss. Relatively lower car densities can cause a jam. The two plots do
not use the same p scale though.

19
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Figure 3.3: A fundamental diagram for Krauss’ model, ¢ = 1, a = 0.2,
b = 0.6, Vinax = 3, 5000 cars, snapshot after 30000 steps.

0.4
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0.1 - b
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Figure 3.4: A fundamental diagram for a standard cellular automaton,
Vimax = 5, 5000 cars, snapshot after 30000 steps.
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Chapter 4

Features of Krauss’ model

4.1 Free parameters

Krauss’ model allows us to chose four parameters arbitrarily, which are the
maximum velocity Vpax, the acceleration a, the braking capability b and the
noise e.

The maximum velocity Vihax has an obvious global effect on the traffic
flow ¢ = vp. It is the slope in the fundamental diagram when every vehicle
is driving at its desired maximum velocity Viax- We will treat Vinax as a
global constant and not as a parameter to adjust the systems behavior.

Acceleration and deceleration

The acceleration and braking capability a and b respectively determine driv-
ing behavior and the interaction between cars. In laminar situations we
therefore do not expect too many changes in behavior when adjusting a and
b. In partly jammed regions a and b influence the behavior of cars when
getting into a jam or leaving a jam, for example:

e Cars with low deceleration capability, b < Vnax, have to take an
oncoming obstacle into account much earlier, because it takes them
longer to slow down. This affects the upstream situation in front of
a jam, cars “attach” smoothly to the jam. When slowing down, cars
eventually have a velocity similar to the noise, v ~ aen. The noise
step in the update rule can push the velocity close to zero and cars
halt even with a gap > 0 ahead.

v(t) ~ ae(n) = v(t + At) = vaes(t) — ae(n) ~ 0
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Hence, the average gap (g) in a continuous system is > 0. We obtain
jams with densities pjam < 1.

e Cars with an infitinte braking capability, b = oo, do not need to adjust
their velocity when approaching a jam. This is realized in the cellular
automaton, where only the condition v(¢ + 1) < gap ahead ensures
safe driving. The average gap between cars in a jam in a cellular
automaton system is therefore zero. Jams are stiff and have no inner
dynamics and pjam = 1.

More about making artificial jams in 6.2.1.
e A large acceleration is bound to large noise aen. a ~ Vipax results in

an unpredictable chaotic movement, which might be a reason for the
missing phase separation in this type of configuration.

Just as explained in these examples, the regulation of @ and b allow us
to distinguish several types of models within the Krauss model. Krauss
distinguished three types of motion, enumerated I, IT and ITI. The criteria
to distiguish them are of a global kind, for example:

Does traffic spontaneously form structures? Does it seperate into two
phases, laminar and jammed ¢

How is the outflow from jams? Do we find daughter jams in the outflow
from jams or can we call the downstream flow “stable”?

Note that all three types of Krauss’ model that will be explained in the
following preserve the safety condition

d(vy) +vpAt < d(v) +g.

Different settings just apply to how this condition is realized.

4.2 Types I to III according to Krauss

Type I: Low acceleration, low deceleration

This is probably the most “typical” configuration for Krauss’ model.

The upper space-time plot in figure 3.1 shows an example of low acceler-
ation and deceleration, we can see structure formation from a homogeneous
initialization into two phases. Traffic can separate into laminar and jammed
regions.
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Figure 4.1: A space-time plot as an example of low acceleration high decel-
eration, type II. a =1, b = co.

Type II: Low acceleration, high deceleration

This configuration is realized for instance in the standard cellular automaton
as it was derivated earlier. b — oo allows arbitrary deceleration. This type
is difficult to distinguish from a type I.

However, the outflow from jams gives some arguments to determine a
border between the types I and II, because type II does not show clear
phase separation. The outflow from jams of a type II model is unstable.
These issues are investigated in chapters 6 and 7. See figure 4.1 to get an
impression of such a space-time plot.

Type III: High acceleration

A high acceleration setting for Krauss’ model does not show phase separation
at all. Flow is macroscopically homogeneous, and because jams do not occur,
this type is not applicable to real traffic situations. An example is shown in
figure 4.2.

4.3 The (a,b) parameter plane

For better orientation we can draw the parameter plane with axes a and
b and draw the potential positions of the borders between the three types
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Figure 4.2: A space-time plot as an example of high acceleration (low de-
celeration), type III. a = Vipax = 3, b= 0.6.

described. Krauss did this separation as shown in figure 4.3, measuring the
density difference between laminar and jammed flow and the proportion of
stopped vehicles in free flow.
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Figure 4.3: The parameter plane (a,b), taken from Krauss [1].
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Chapter 5

Breakdown and recovery
times

From the explanations of the preceeding sections it should be clear now,
that traffic flow can be found in several states. The extremes are laminar
traffic on the side of low vehicle densities, where a vehicle can drive freely
without too much interaction of its leading car, and jammed traffic, where
jam waves travel through the system and at least one car is standing still
per time step. We want to analyze the kind of transition we obtain when
going from very low densities to very high ones and back.

Measuring the transition or waiting times that pass until the system is
likely to switch from an unstable initial state to another state can help us to
describe the laminar<»jammed transition and whether a meta-stable state
exists.

Such transition times are the recovery and the breakdown times.

5.1 The recovery time

In the range of low densities, p < poyt traffic is laminar and absolutely
stable. Even stopping an arbitrary car until the entire system is jammed
behind it resolves back into laminar traffic flow. Such an artificial jam is
called megajam and we call the stopped vehicle the jam maker.

Once we release the jam maker, the system will try to regain laminar
flow. This becomes impossible when dealing with high vehicle densities,
because in such a situation vehicles have too little freedom to rearrange
themselves to obtain laminar flow globally. We can define a p-range, where
the system does recover after a finite time 7. We define T, to be the time

26



it takes to recover from an artificial megajam back into laminar flow.

For all measurements of this work, we will agree to measure the recovery
time starting with the car positioned furthest upstream in the original jam
moving again faster than a critical speed v > Vipax/2. This critical speed
is arbitrary and we set it so high because finite gaps (g) > 0 within the
jam allow the most upstream positioned vehicle to move very slowly within
the jam, which should be distinguished from that specific car reaching the
downstream end of the jam and accelerating, see section 6.2.1 and figure 5.2.
This way Trec = 0 for very low densities because the system is resolved just
as the last car moves again.

Alternatively, we could measure Ty, starting with all cars standing still
in the artifical megajam. This adds a linear term scaling with Na;g to the
recovery time (a thermalization time Tj(therm)), because the first N — 1 cars
need to first leave the megajam:

Troc = Tj(therm) + Tr(:cﬁ)

This approach we will use for an analytical discussion of Ty, see fig-
ure 5.2 for further illustration.

For p > pout our Tre increases exponentially and we have to face com-
putational limits. To get reliable averaged measurements of Ty, above 107
iterations for 5000 cars takes several days on a Pentium IIT 700MHz.

5.2 The breakdown time

Similar to the definition of the recovery time, we define the breakdown time
Thdown as the time that passes between the laminar system initialization and
the moment when we find the first car with speed v = 0. Because we do
not interfere with the system (like we did in order to produce a megajam
for Trec) we measure Thqown starting right after system initialization. As a
consequence, we need to split Tygown into an effective recovery time, and a
thermalization term:

(therm)

Todown = T} + 1M

bdown

For low densities, Thgown 1S extremely long because the laminar traffic is
too stable to cause a jam ever. For p — 0 we expect Thqown — OO-
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5.3

Theoretical expectations of the breakdown and
recovery times

In figure 5.1 we have a very rough theoretical plot of the transition times
connected to the fundamental diagram. It should help us to get a detailed
understanding of the connection between transition time, fundamental dia-
gram snapshot time and the shape of the fundamental diagram. We want
to point out a few remarkable areas in the following. The enumeration
corresponds to the numbers in figure 5.1.

(1)

For p — 0 we are dealing with stable laminar traffic. In the range of
0 < p < pjm all cars have enough space to arrange themselves with
gaps bigger than the minimal gap necessary to preserve safety. As a
consequence, the jam-maker will not be able to reach the tail of the
megajam before it resolves itself. Since we measure Tie. after the last
car in the jam moves, we usually have a Tyec — 0 with p — 0.

The Point (pjm,q(pjm)) qualifies the maximum flow of an infinite
jammed started system. However, a finite system can recover from
jammed into laminar state within a finite time range. In the figure
this is illustrated by the dashed line indicating the jammed branch of
the fundamental diagram using a relatively large snapshot time. This
(reversed-A-shape) edge development was indeed observed in measure-
ments of small systems, see section 3.2. For extremely large snapshot
times a system configuration (p, ) can move from the jammed to the
laminar branch in the fundamental diagram and we obtain the edge
(reversed-A-shape) even for the jammed branch.

Trec(pjm) qualifies by the way a critical measurement time: We will
most likely not find a reversed-A-shaped fundamental diagram for a
jammed start when simulating for a time shorter than Tiec(pjm), be-
cause that is the minimal time required for a system to recover. We
get a cut-off at Trec(pjm) below which a simulation is futile.

The longer we choose our snapshot time, the more likely it is for a
finite system to recover onto the laminar branch. For large times,
even denser systems can recover. As a consequence, the edge of the
reversed-A-shape grows in the direction indicated by the arrow in the
lower left diagram of the figure when the snapshot time is increased.

When increasing the snapshot time 7' — oo the edge of the hook in
the jammed branch of a finite system will move to the right (because
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(4)

denser systems had the time to recover) until one of the following cases
becomes true:

(a) Trec has no divergence before it intersects with Thgown cOming
from the right. Let us say they intersect at p.. In the figure p,.
would be positioned approximatly near p*. See comments under
(5). The system [pe, g(p.)] is unstable in both states and is likely
to continuously switch between laminar and jammed state in a
time range Trec(pc) = Thdown (pe) < 00.

Thdown () is limited by Trec(p) and we have an identical transition
probability from one phase to the other. At p. both states laminar
and jammed are likely to be found.

(b) Trec diverges. If Thqown diverges also, it raises the question if both
times have the same singularity or if they lie apart.

In between those two singularities or on that single singularity
a system has an infinite recover and an infinite breakdown time.
This means that the development in time depends only on the
initialization. If the system is infinite, transition is not possi-
ble and the laminar and jammed states are separated by inifite
boundaries.

Thdown — 0 for p — 1, because cars cannot move at all at p = 1 and
a jam is found as the initial condition. The reason for this is that for
p — 1 we have vgafe ~ noise = aen which makes it very likely to find
cars with v = 0 after the first update, even if they have a finite gap in
front of them. In this case Té(eg‘)m can be considered to be zero since
cars are initialized using v; = (v(p)), which thermalizes into jammed

flow after only a few iterations.

Thdown grows exponentially for decreasing p. Either it diverges near a
certain p* or it intersects with Tyec at p., which we mentioned already.

As we approach the edge at p. from above coming from p > pe, Thdown
increases rapidly. The longer we choose our snapshot time, the more
likely it is for a system to break down. We see this correlation in
figure 5.1. The longer Thqown 1S, the further left we move on the p-
axis and we “eat up” the edge in the fundamental diagram (see the
leftarrow in the lower right diagram in the figure).
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Figure 5.1: A theoretical comparison of recovery and breakdown time and
the structure of a Krauss type I fundamental diagram using the same p-scale.
The arrows indicate the edge displacement when increasing the fundamental
diagram measurement snapshot time.

5.4 Measurements of T,.. and Tygown

We will now look at the measurements and plots that were the starting point
for the assumptions of figure 5.1.

Remember the comments we made on the thermalization times in Tiec
and Tyqown- Let us declare once more:

e Measurements of the recovery time Tyec do not contain any thermal-
ization time. We start measuring the effective recovery time as soon as
the car positioned furthest upstream in the original megajam reached
a speed of %Vmax. See figure 5.2.

e Measurements of the breakdown time T},qown Were measured includ-
ing the thermalization time. For the simple reason that it is difficult
to determine the thermalization time which also depends on p and
Ncars. We obtain a hint of the possible thermalization time length
after looking at Thgown-plots. See section 5.5. To see that it is diffi-

cult to retrieve a guess about Tl(therm), have a look at figure 2.1 where

the system passes from a homogeneous initial state to jammed state

steplessly.
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Figure 5.2: A space-time plot as illustration of the start when measuring
Trec- We start with a megajam. The jam goes over the boundary on the
right and comes back in on the left side. The interrupting horizontal white

space indicates when the last car in the mega jam (left most in the figure)

reached %Vmax. Until that point, Tj(therm) passes. Afterwards, we start

measuring Tr(ff ) which is zero in the figure because cars move already at a
speed > %Vmax.
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Figure 5.3: Recovery and breakdown time measurements for two system
sizes and model types. For both configurations (type I, b = 0.6 on the left,
type II, b = oo on the right), the absolute positions of Tiee and Thaown shift
to the left towards lower densities when increasing the system size Ncarg
(upper row vs. lower row). On the other hand, the absolute positions of
these waiting times shift towards lower densities for both system sizes when
increasing b = 0.6 — oo, because jam occurrence is favored for increasing b.
This corresponds to a transition from type I to type II.
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5.4.1 T, measurements

The measurement samples for Ty, are the ones coming from low densities
from the left in all plots in figure 5.3.

Comments on the measurements

Measurements started at p = 0.1. Whenever a system was found to have
resolved itself, the simulation went on to find resolving jams in a little bit
denser system.

The criterion to call a jammed-start system “resolved” is, that the slow-
est car reached a velocity

v >0

This does not mean that the jam wave disappeared totally when looking
at the corresponding space-time plot. Jam waves or faint traces of it in a
system that was found to be resolved may still exist, but cars do not halt
anymore. The above criterion is arbitrary. Choosing stricter criteria such
as for instance v > %Vmax results in a steeper slope of Trec(p) for increasing
p, because it takes a system longer to recover to “fast” laminar flow than to
a state where no car is found to stand still anymore.

Discussion of the results

Trec ot low densities. Because we excluded the thermalization time in the
measurement of 7., we find

Trec (p) ~0

for densities p — 0 in the range of absolutely stable laminar flow, as we
expected before.

For the right column in figure 5.3 with b = oo we find a few measure-
ments with Tiec > 0 for relatively low densities. Choosing b = oo we run a
Krauss model of type IT which is supposed to be structureless. Also, we saw
the fluctuation-like behavior in the space-time plots, shown in figure 4.1.
These fluctuations make us find several cars with velocities zero, which the
simulation interprets as a “not resolved” jams. Hence the longer time we
need to wait before finding a fully resolved system. In accordance with
figure 5.3, these disturbances are more likely to be found for larger systems.

Trec for increasing densities. Trec grows very steeply as we increase the
global density. All four plots of Tre. display a certain “knee” at the height
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of about 10’000 steps. The origin of this knee is not fully understood. It
may indicate a higher time scale that has to be respected. The position of
the knee depends on the system size N5 and the type of model.

Trec increases as we increase the system size. This is intuitive, because
bigger systems act more inertly and have more difficulties in recovering from
artificial jams.

A type II model using b — oo allows cars to attach quicker to the up-
stream end of the jam, because they do not need to slow down in advance.
As a consequence, cars leaving the downstream end of a jam reach the
upstream end (over the periodic boundary) quicker and thus delay jam re-
covery. Consequently, Tre. is larger (or shifts towards lower densities) for
larger b.

5.4.2 Tygown Measurements

The measurement samples for Tygown are the ones coming from high densities
from the right in figure 5.3.

Comments on the measurements

Like for the measurements of the fundamental diagram, for this measure-
ment, systems are initialized to a laminar state at equidistant position and
speed of the homogeneous solution.

A system will be called broken down as soon as we find any car with a
speed

v=20

The time will be measured starting right after the initialization and as
we mentioned before, T}, gown-measurements include the thermalization time.

Discussion of the results

Todown for high densities. Figure 5.3 displays Thqown OnN a linear-log scale.
For high densities (p — 0.3), Thqown follows a straight line in the diagram,
which corresponds to an exponential curve on a linear-linear scale.

Results for Thgown show a clear border, in the specific case of figure 5.3,
at p = 0.215. Below that border, we find a steep shape increasing for
decreasing p. Above it, we have a “flatter” (linear-log plot) shape and
relatively less variation. This should give us reason to believe that two
different components cause the shape of the measured Tpgown- We believe
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that theses two components are the thermalization time (mentioned before)
and the effective breakdown time

_ Tl(therm) + T(eff)

deown bdown

For densities p ~ 1 the system breaks down immediatly and we find cars

with v = 0 after a single update. We expect the thermalization time Tl(therm)

to dominate the effective breakdown time Tézf(f‘)”n for p — 1.

Using the fundamental diagram for various snapshot moments we see
that the system can hardly be found in a laminar state for p > p.(0).! As
we approach p — 1, the probability of the existance of a laminar system
decreases and we expect Thgown ~ 0 for densities p below 1.

Tvdown for decreasing densities. Below the border we just mentioned,
Thdown measurement results increase steeply and we expect the effective
recovery time to dominate the thermalization time.

Linear-log plots and linear-loglog plots did not make these results more
graspable. As we increase the system size, the effective break down time
sinks. This is expected because bigger systems have more possibilities in
space to break down.

5.5 Analytic approaches to T, and Tyqown

In this section we want to try to find the basic analytical structures of the
waiting times Trec and Thqown. We will include thermalization times in both
the recovery and the waiting time.

5.5.1 Tre

We divided T}e. so far into two components,

Trec _ T'(therm) + T(eﬁ‘)

J rec

which we try to specify separatly.
The thermalization time T{"™) is the time that passes between the
compilation of the artificial megajam and the moment when the most up-
stream car in that megajam begins moving again. In figure 5.2, this cor-

responds to the time between the first line (time = 0) and the white gap,

'pe(T) is the density, where the position of the right edge of the reversed-A-shape is
determined by taking a snapshot after T updates. pe(0) is the rightmost possible position
of pe. pe is also where the laminar branch breaks down onto the jammed branch in Krauss’
fundamental diagram. See chapter 3.2.
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where the last car in the jam moves with %Vmax (which is used as an arbi-
trary critical velocity). During the thermalization time we just have to wait
until all N cars accelerate. The thermalization time is therefore connected
linearly to the system size as

T,j(therm) x N

The effective recovery time is a bit more tricky to deduct. In very thin
systems of length Lgystem, where we find absolute laminar flow, the follow-
ing equation holds:

Lsystem Z N, carstax

We know that in dense systems, cars need to slow down to preserve safety
and the overall mean velocity is decreased and jams can occur. To measure
the recovery time, we force our system into one megajam before letting it
run and we can distinguish the laminar and jammed phases. Let us look at
a system with a single megajam wave travelling through the system. Hence
we have some cars situated in the megajam (probably standing still) and
free flow between the downstream and the upstream end of the jam across
the periodic boundary. Assume that Ncars and thus Lgygiem are very large
so we can ignore the regions where cars accelerate at the downstream and
brake in front of the upstream end of the megajam. In a system with N,y
vehicles, we define N; to be the number of vehicles situated in the megajam.
They occupy a space

jam length = N;jL¢ar + (G)

(G) represents a correction, because we know that in realistic jams, (g) >
0. We drop this correction in the following assuming that we do find (g) = 0.

On the other hand we find N — N; cars in free flow between the down-
stream and the upstream end of the megajam (again, across the boundary).
Those N — N; cars are spread over the free part of the system at the outflow
density poyt with average gaps (g)out between them.

They occupy a space

length of free flow = (N — Nj)(Lcar + (8)out)

These two (laminar and jammed) regions cover the entire system and by
adding both lengths we find the equation
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N Lcar
P

Lsystem = = Nchar + (N - Nj)(Lcar + <g>0ut)

Solving for N; gives us the number of cars in the jam as

Lear _ (T, o+
N; = Nj(N,p) =N o (Lear + {(9)out)
_<g>0ut

In the outflow of the jam the following equation holds:

(9)out = Lears ( L 1)

Pout

which gives us simply

Pout — P
N;(N,p) = NPt —P_
i) p(pous — 1)

To obtain an analytical estimation of Tr(:cﬂ ) we will seek the probability

that the jam with NN; cars resolves itself. If the number of cars in the jam
N, stays constant, which means that as many cars attach to the jam at the
upstream end as detach from the downstream end, the jam will not resolve
itself. We define P; to be the the probability that one car can leave the jam
at the downstream end without a car attaching at the upstream end. With
a probability P < 1 the jam shrinks down to a size of N;j — 1 cars. The
probability Py, that all cars can leave the jam (letting the jam disappear)
is then
Py; = (P1)"i = exp (In(P1)Nj(N, p))

J

and after inserting N

Pout — P
Py, = exp { In(P{) N—/————
N P ( ( 1) p(pout - 1))

Finally we obtain an estimation for the recovery time:

1 Pout — P
TEM o — —ex (—]n P N“i)
“ 7 Py, P (Pr) p(Pout — 1)

Note that —In(P;) > 0. We do not find a diverging recovery time and
for finite N we have:
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— 0 &S p—0
Trec ~ 1 < P = Pout
— exp(—In(P)N) & p—1

For increasing N the recovery time shows the following behavior:

lim Trec{ 0 Al P < Pout
N—o0 00 <= P > Pout

which is an infinite step function. Consequently, infinite systems in the-
ory do not recover megajams at all.

5.5.2  Thgown

Just as we did for the recovery time, let us divide the theoretical analysis of
Thdown INto two parts as follows:

Todown = T} "™ + T{50,

Some words on the thermalization time: For this theory cars are ini-
tialized to the homogeneous solution, which is an unnatural state. A few
updates shake the system enough to show enough irregularities and for high
densities the system can collapse into a few jams. The time needed to bring
the system into a natural inhomogeneous state is the thermalization time

Tl(therm). The process of this thermalization is illustrated below:

In the above space-time plot we can see how the individual vehicle dy-
namics develop clusters. We call them clusters because denser and thinner
stripes of vehicle clusters can be seen but we don’t find real jam waves with
halting vehicles yet. When increasing the system size, the average cluster
size does not get wider, we just find proportionally more clusters. In this
thermalization process correlation can be expected to reach as far as the
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width of such an average cluster, which should motivate us to believe that

the thermalization time Tl(therm)

does not depend on the system size N ays-

From measurement results we saw that Tygown followed a straight line
in the linear-log plot for densities p — 1 and we also assumed that in
those ranges the thermalization time dominates the effective break down
time. Hence it is reasonable to look for a decreasing exponential behavior

of Tl(therm) for increasing p such as

Tl(therm) x e(—c(p—PO)), c>0

which leaves the determination of the unknown ¢ and pg to be solved.

Now to the effective breakdown time. In stable laminar flow cars are not
slowed down by the randomization step. The velocity of the next update
step is chosen by

Vdes = Min | Viax, v(t) + aAt, vgafe ()
——
H

followed by a randomization step
v(t + At) = max (0, vges(t) — aen)

determining the final chosen velocity v(t + At).

Let us assume we are in a rather dense, homogeneous traffic situation,
where free flow at Vi,x cannot be realized by individuals and all vehicles
are driving more or less equidistantly at a speed vges < Vinax- We can do
this by temporarily switching off the noise by setting ¢ = 0, or (which is
what we do) by initializing the system to the homogeneous solution.

We will now examine an arbitrary car and its velocity updates for the
next few time steps (including noise). We want to find out which velocity
will be chosen to be minimal in the above equation for vges. Vmax cannot
be chosen, because we demanded to be in a rather dense system. Secondly,
we demanded to be in a (rather) homogeneous equidistant situation. This
prohibits us from accelerating as

Ves = V(1) + aAt
because it harms safety:

’U(t) + aAt > 'Usafe(t) = <’U(p)>
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Hence the update rule will choose

Udes = 'Usafe(t) = <’U(p)>

as minimal velocity, which is marked by the underbracing “H” above.
We now implement the randomization step we can expect the final up-
dated velocity to be

V = Vgate — a€(N)

and we see that the randomization step can slow down cars in dense
systems.

therefore we want to define P| to be the probability that a car decreases
its velocity by ae(n) below its own current vg,ge. This random step affects the
vehicle’s follower because it reduces the gap between them and the followers

gf)e is decreasing below the leader’s vé;}e. With the same probability P| < 1

the follower is expected to decrease its velocity by ae(n) below its vgf)e < Ugi)fe-
The sequence of such events can cause a more upstream positioned car

to stand still after at least s velocity retardations through noise:

{v) _ 2{v)

Tacn)  a
The probability Py for that incident is

(%

PO _ (P,L)s — e(ln(Pi)S)

Using the homogeneous solution as shown in figure 3.2 as estimation, we
can roughly approximate the expected velocity for high densities p with a
linear decaying line:

(v(p)) =—mp+d, m>0

Finally we obtain the probability P

2(—mp+d)

and we find the following rough estimation for the breakdown time:

(eff) 1 (in(p,)2me=d)
deown x FO - 6( )
Note that In(P}) < 0.
What is still missing is the N¢ars-dependency of Tégfgm. The most proba-
ble way to implement this is to expect P| = P|(Ncars) because the explained
random velocity reduction has more chances to occur in larger systems.

40



Chapter 6

The laminar-jammed
interface

In chapter 4 we mentioned that the outflow from a jam is a way to distinguish
Krauss’ model types I to II1. We want to investigate that approach to analyze
traffic flow in detail.

6.1 Interfaces in traffic

When talking about interfaces, we mean the region in space where two
phases of traffic touch each other or diffuse into each other. Rough com-
parisons (only as illustration) to thermodynamical examples could be for
example the two-dimensional interface on the surface of a water nucleus,
separating the liquid from the gas phase. Or, in an n-dimensional Ising
model, the (n — 1)-dimensional surface of a cluster of up-spin-particles sur-
rounded by down-spin-particles.

The interface we will talk about here is the region where laminar traffic
morphes into a jam and vice versa. To deterimine the boundaries of this
interface, we have to set some arbitrary rules that define, where the jam ends
and where free flow starts. We will see later on that the interface stretches
over a certain region in space. Our vehicles run on a one-dimensional street,
thus the interface is something between a point and an interval on the street,
where the diffuse spatial transition from jammed to laminar takes place.

In this work, we will only investigate the downstream interface where
cars leave the jam. The upstream interface, where cars come into the jam
is also interesting!, but will not be looked at here. We will analyze different

'Remarkably that the upstream interface of a jam is stable, when the fundamental
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models by asking ourselves the following questions:

Is the outflow from jams (downstream interface) stable?
How does the interface width develop in time?

How does the interface width depend on the type of model or the braking
capability b?

6.2 Initializations and definitions

As we mentioned we will only examine the downstream interface. We need
to create an artificial jam and examine the flow of vehicles leaving it.

6.2.1 Making artificial jams

We investigate a bit how we produce artificial jams and what aspects have
to be taken into account.

Since we want to examine interface widths that can grow to arbitrary
lengths we have to drop periodic boundary conditions. When vehicles leave
the artifical jam, it shrinks and we have to add further cars at the upstream
end of the jam. In section 3.2.5, talking about the jammed branch in the
fundamental diagram we mentioned that we create an artifical jam by halting
any car and waiting until the entire system is queued behind it. We called
it a jam, when we found v; = 0 Vcars i for the first time.

Due to the noise step

v(t + At) = max (0, vges (t) — aen)

forward motion is retarded strongly when v ~ aen and it is possible to
find cars in jams with a finite distance to their leader and they still do not
drive closer. A car will move forward in the jam only if the random number
generator produces a number that is small enough.

Let us define two types of jams:

Let us agree to call a jam complete when we halt an arbitray car for
an infinitely long time so that pjam = 1 and the average gap to a leader
(gap) = 0. Technically we can initialize this jam of course by aligning cars
positioned bumper to bumper in a queue instead of waiting for this situation
to occur.

diagram fulfills % < 0 everywhere.
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A jam shall be called incomplete when it was formed by halting any car
in a periodic system until v; = 0 Vcars i is true for the first time, like we
mentioned above. Such a jam shows a typical density of pjam = 0.94 and
an average gap (gap) = 0.06. We can compile such an incomplete jam by
placing cars in a line according to these two values. However, halting a car
and waiting results in a different density distribution within the artificial
jam, namely denser at the downstream end, because cars there have had
more opportunities to close the gap in front of them.

To be able to run interface width measurements, we have to keep feeding
cars into the artificial mother jam at the upstream end and try to keep the
original jam at a constant width. Technically it is easier to keep a constant
number of cars (i.e. 50) between the most upstream car in the system, and
the car defining the upper end of the interface.

The choice of jam used to examine the questions above is so far not rel-
evant. Complete jams represent a stable situation in time while incomplete
jams represent the more realistic situation:

In spontaneous jams of Krauss’ space continuous model we observe gaps
(gap) = 0 only locally, rarely in jams that were several car lengths long.
For global traffic densities p < 1 that show phase separation and form jam
waves, any car is found in a jam only during a finite stretch of time and cars
in the jam do not have the opportunity to align to (gap) = 0.

6.2.2 Defining the interface

At the downstream end of the artificial jam, cars accelerate. The interface
is the transition in space from jammed to laminar traffic. Technically it
is impossible, due to fluctuations of positions and velocities, to nail down
the interface to a single point. We need to specify an upstream and a
downstream end. The upstream end of the interface shall be the point where
cars can leave the jam to try to obtain a higher velocity. As daughter jams
can occur for some configurations, this might be possible at the downstream
end of several jams. The car, positioned at most upstream, who is just
about to accelerate and leave its jam shall define the upstream end of the
interface. We detect this car by finding the most upstream positioned car
in the artificial mother jam that fullfills

1
U 2 Ucritical ™~ §Vmax

The critical velocity vcritical 18 arbitrary and difficult to choose. Using
%Vmax has shown to be a good approach. Alternatively we could detect the
most upstream car whose gap g to its leader fullfills
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J |

Figure 6.1: A sequence of a cellular automaton space-time plot developping
an interface. The arrow above the “J” marks the artifical mother jam that
is kept at a constant number of cars. The arrow above the “I” marks the
interface, limitied by the first car in the mother jam moving, and the last
two cars downstream driving at about Viitical-

g 2 Geritical ~ const. X Viax

The downstream end of the interface shall be the point where the two
most downstream positioned cars reach a relatively high critical velocity
Veritical-  Due to noise, cars never reach Vi, itself. The test condition to
find the downstream end of the interface can be

v 2> Veritical ~ Viax — <n0ise> = Viax — ae(n)

This condition should be fulfilled for the two cars positioned furthest
downstream. We can say they managed to escape from the jam without
forming further jams and therefore remove the car positioned furthest down-
stream from the system (next time the condition is checked for the new two
cars positioned furthest downstream, which were before the second and third
cars positioned furthest downstream). The downstream end of the jam is
now simply marked by the car positioned most downstream in the system.

Figure 6.1 summarizes these issues with a space-time plot, indicating the
mother jam and the boundaries of the interface.

6.3 Simulations

6.3.1 Stability of outflow and interface width development

The interface development in time is a criterion to qualify different types of
traffic flow models as we saw in chapter 4. There we talked about stable
and unstable outflow from jams.

Remembering that we remove the most downstream positioned car if it
and its follower reach Vi yitical, we expect a model with a stable outflow to
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Figure 6.2: A space-time plot of a cellular automaton developing daughter
jams in the outflow of previous jams. The arrows indicate their starting
points.

have a constant interface width. If no daughter jams develop, the interface
is very simple, as it just describes the region where cars accelerate from
standing still at the downstream end of the mother jam until they reach
Veritical-

An unstable outflow is signified by an increasing interface width. If a
daughter jam develops, the interface gets wider. Only the two most down-
stream positioned cars will be respected when testing if we can remove a
car. The development of a daughter jam therefore just shifts the edge of
potential cars getting free further downstream, which widens the interface.

In figure 6.2 we see a space time plot of a cellular automaton with daugh-
ter jams. The quasi-diffuse appearance of the interface is typical for the that
kind of model.

6.3.2 Results

Let us now look at simulation results of interface width measurements using
complete jams, (gap) = 0 and a motherjam kept at 100 cars.

We obtain the measurement of the interface width as plotted in figure 6.3.

In agreement with Krauss’ definition and description of the types I and
I1, we obtain a constant interface width (stable outflow) for a normal type
I Krauss model using a = 0.2, b = 0.6 and a growing interface (unstable
outflow) for a type IT model implemented by a standard cellular automaton.
The shape of the plot for the interface width development of the cellular
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Figure 6.3: Interface width development over time. The simulation run time
axis is pointing to the right, the interface width axis is pointing upwards.
On top for a type I Krauss model, on the bottom for the cellular automaton.
The left charts show the development on large time scales, on the right we
can see corresponding space-time examples.

automaton allows us to be certain that it grows linearly in time. This is not
too surprising: The region that determines whether the interface grows or
not is the outflow of the most downstream positioned daughter jam. That
region is somehow self similar in time. If another daughter jam develops
further downstream, this region will just be shifted on below to the new
daughter jam, but show the same behavior there as before. The probability
of a daughter jam developping at the downstream end of the system is
probably constant in time, hence the linear growth.

interface width o time

The corresponding space-time plots of stable and unstable outflow can
be seen in figure 6.3.
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Chapter 7

Krauss model vs. cellular
automaton

The parameter space of Krauss’ model contains the cellular automaton.
Using

a =1
b = o©
noise = aen
n € {0,1}
_ 1 < random number <r
= { 0 < else

we can convert to the Nagel-Schreckenberg cellular automaton. The
configuration a¢ < b = oo makes the cellular automaton similar to a type I1
Krauss model with modified noise.

By initializing systems with vehicle velocities and positions as integers

v;, T; €N
we obtain standard cellular automaton dynamics!.
To see how the cellular automaton fits into the theory of Stefan Krauss,
we would like to try to investigate the dynamics via the break-down/recovery
behavior and their jam interface widths.

!For every car that has had a gap g = 0 once, v;, x; € N will be fullfilled automatically.
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7.1 Jammed<«laminar transition behavior and wait-
ing times comparisons

The preceeding section introduced tools and aspects to qualify the transition
from laminar to jammed flow. The waiting time plots indicate alot about a
system’s behavior by the shape and relative and absolute positions of Tyec
and Thdown-

The following discussion of the waiting times refers to figure 7.1.

Krauss type I

Both recovery and waiting time increase steeply at two corresponding den-
sities. The upper boundary of the T-axis (Tjax = 10% updates) represents
the longest simulation run time examined for 5000 cars. The density range
between the two curves where neither Tyoc nor Tyqown could have been de-
termined represents systems whose phase for a finite time range T' ~ Thax
depends only on the initialization: Such systems need more time than Tmax
to recover from a megajam and hence are expected to stay jammed for sim-
ulation times below Ti,.x and laminar systems are not expected to break
down below that time. In earlier sections we observed that the absolute po-
sitions of Trec and Thgown shift slightly towards low densities when increasing
the system size N¢urs because larger systems are more inert to change state
in time.

Krauss type II (continuous)

The graphs of the waiting times for a Krauss type 11 show a different behavior
just by the increased b = oco. We know from space time plots, that type
IT systems show no phase separation but have fluctuation-like minijams.
These minijams are responsible for the measurement “irregularities” in low
densities, where we find several examples of Ty, > 0 even though we expect
Trec = 0 for p — 0. The fluctuations make the system detect cars with
v ~ 0 which is interpreted as a still existing jam.

For increasing p, Tyec is steeper here than in the graph of type I and the
knee for Tiec at p >~ 0.16 is “fatter”. But all in all the relative position of
high T}e. has not changed drastically between types I and II.

The break down time Th,qown 1S very different. We mentioned that Thgown
is probably dominated by its thermalization time for large densities. This
region (p > 0.215) shows the same structure for both types I and II. Below
p = 0.215, Thgown is much “flatter” for type II and the density range of
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Figure 7.1: Breakdown and recovery times for N, s = 5000. On top: Krauss
type I continuous (a = 0.2, b = 0.6, Viyax = 3). Middle: Krauss type II
continuous (@ = 0.2, b = 00, Vinax = 3). Bottom: cellular automaton,
discrete (Vmax = 5). In the upper two diagrams, the left peak belongs to
Trec and the right peak to Thgown- In the lowest plot this is reversed due to
an overlap of the waiting time plots.
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undetermined system waiting times is more narrow. Whether Ty gown follows
a straight line in the linear-log plot is difficult to determine.

The type II waiting time diagram makes one believe that Ty and Thgown
could intersect for finite system sizes.

cellular automaton (discrete type II)

The cellular automaton is part of the Krauss type II regime of models. The
system used to obtain the waiting times for this model adapted the noise
using a probability r = 0.5.

Compared to the continuous type II, we do not find the irregular mea-
surements of Tyec for p — 0. It seems to be easier to find cars with sufficiently
large velocities to call the system “resolved”. Maybe this is a hint that the
cellular automaton fluctuation-like minijams are shorter in time (increasing
the likelihood of find a recovered system) or that the ones for continuous
type II are more likely to overlap in time (decreasing the likelihood to find
a recovered system).

While T;e. increases at a similar position as in the cases of the previous
types, Thdown is found much further left, near low densities. The fact that
they overlap is a consequence of the choice of critical velocity for resolved
systems and broken down systems. In both cases we examine the slowest
car, which has to be above a certain v} to call the system recovered from a
jam and below a certain v to call it broken down from laminar. The waiting
time overlap is a consequence of

1
— = > :0
2 ’U¢ ’U¢

A waiting time overlap can by the way also occur for the types I and II
when simulating very small systems.

The fact that Tygown is positioned so far towards low densities is most
probably a consequence of the fluctuation-like minijams that make the sys-
tem detect cars with speed zero, even though such jams resolve quickly.

7.2 Downstream interface comparison

Another possibility to distinguish types I and II according to Krauss, is to
examine their interface outflow behavior which we introduced before. Type
I has a stable outflow from jams while type II has an unstable one.

Figure 6.3 shows space-time plots of the corresponding outflows.
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The Krauss type I system (a = 0.2, b = 0.6 and Vinax = 3) shows clear
phase separation and we find no further jam development downstream.

The cellular automaton develops downstream daughter jams and out-
flowing vehicles converge in new jams. As we stated previously, jams in the
cellular automaton appear and disappear within short time ranges. This
fluctuation-like behavior dissolves clear downstream edges of jams and we
observe a diffusion of the interface, which is probably linear.

The border between types I and II in the (a,b)-plane defined by the
dashed line in figure 4.3 is very vague. It should be possible to re-draw that
line alternatively by doing precision measurements on detecting growing
interface widths when decreasing b at a constant a.

Analogue to phase transitions

Looking at the space-time plots, one wants to compare the laminar<>jammed
transition to a regular (first order) phase transition. This comparison is not
totally precise, but it is an interesting and fertile mind experiment.

The two phases jammed and laminar can be definded precisely and the
analogon to water (gas<>water) is obvious. The transition between jammed
and laminar flow though is different to the ones of nucleation and Ising
models. For instance, the first order liquid-gas nucleation is determined
by surface tension. Such a force cannot be found amoung cars, because
they are not attracted by electromagnetic or aequivalent forces. However,
the following thoughts point out a few remarkable similarities to first order
phase transitions:

Let us think of a 2-phase system with two control parameters and a
first order phase separation line ending in a second order critical point.
The corresponding phase plane could look like the following diagram (using
arbitrary axes):

2D-Plane of phase state

Krauss style  CA style

(For example, water without a solid phase, with control parameters (axis
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labels) temperature and pressure.) The text in the diagram will be ex-
plained:

The first order phase transition is designated by a sudden reformation in
the new phase when crossing the critical point, and by a phase coexistance
at that point. Krauss systems of type I show clear phase separations. Jam
waves are stable and can be looked at as a condensation in the new phase.
Also, if we assume the existance of a singularity p, of the breakdown time,
px could function as a critical point above which spontaneous jam formation
occurs. These arguments should be a motivation to draw the left dashed line
in the diagram above and to understand Krauss’ model as a realization of a
quasi first order phase transition between the phases laminar and jammed.

The cellular automaton on the other hand, being a type II Krauss sys-
tem, shows no clear phase separation (figure 3.1). Jams occur as density
fluctuations (nucleoli) with short life times. A cellular automaton system,
initialized to a single megajam, dissolves into many small short-life jams dis-
tributed over the entire system. Something similar is observed when going
“around the critical point” in the 2-phase plane (right dashed line in the
diagram): water changes continuously into the gas phase and both phases
are mixed but not separated.
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Chapter 8

Computational issues

8.1 Code

Structure

In this work we examined two traffic flow models, namely Krauss’ model
and the cellular automaton. The cellular automaton was developed out of
Krauss’ model with the adaptions mentioned in chapter 7. This does not
result in the fastest possible implementation of the cellular automaton ever
(and the expression “cellular” somehow loses its purpose) but this adaptive
implementation is helpful for model comparison.

We will therefore only discuss the implementation of Krauss’ model. The
core of the program is a

class car

containing all information for individual vehicles, position z, velocity v
and the gap to the their leader g. Cars are organized in an array of type
car using the Blitz++ library, which offers quick manipulations on arrays:

blitz::Array<car,1> cars;

The Blitz array does not need the array length at compile time compared
to standard arrays. All information about the simulation and functions
operating on cars are put together in a class system:

class system

{
public:
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system() ;
blitz: :Array<car,1> cars;

void reset(real);
void update(bool);
void measure();

int N;

real rho, L_system;
bool collapsed;
bool resolved;

As we mentioned before, the system size is identified with the number of
cars. All measurements are averaged over cars, which makes it reasonable
to keep the number of cars constant as a precision reference. Also, the
simulation performance does not depend on the global density as it is the
case for many programs. The density is the argument in the function reset
mentioned above.

For this work an external setup file containing information about the
simulation was used. That way we could avoid recompiling before running
a new configuration. The setup file contains information about:

e The system settings such as Ncars, p
e The density range that should be examined and its resolution

e How long the simulation should run and at what intervals fundamental
diagram snapshots should be saved

e Krauss’ parameters, such as a, b, Vax, € and the random seed
e Settings on how to start the simulation (laminar or jammed)

e Settings whether the simulation should halt when a jam was resolved or
a laminar start broke down (required for waiting time measurements)

e Settings, if the space-time plot should be piped into the standard out
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As random number generator the standard drand48 was used. Via the
setup files different simulations could be started in parallel with different
initializations to obtain an ensemble-averaged value.

Performance

The code structure illustrated above results in 1.25 million updates per
second on a 700 MHz Pentium IIT. About 8% of the CPU time is consumed
by measurement and storage of data.

8.2 Use of the Beowulf cluster

We talked about ensemble averaging of measurements.

To obtain reliable data for fundamental diagram or waiting times, at
least ten independent simulations should be run with different random seeds.
We are also interested in comparing a fundamental diagram with the corre-
sponding waiting times. To get all this data takes alot of CPU time, and we
need to think of some kind of parallelization.

A real parallelization of the code is not reasonable, because we are dealing
with a single lane road. However, the independent simulations leading to
one ensemble averaged measurement can be run spread over several CPUs
running in parallel.

Due to our data structure getting all all of its parameters from an exter-
nal setup file, this is a very easy thing to do on the Beowulf cluster provided
by ETH. Users don’t have to spread their CPU time over different nodes.
This is handled by a central queueing system respecting jobs from users
according to the requested wall time. All nodes mount the users home di-
rectory before starting. therefore we created a directory structure with a
different setup file in each directory. This is easily done using a few simple
batch files.

To examine traffic flow depending on snapshot moment, system size and
breaking capability b we need to look at the fundamental diagram and wait-
ing times of various systems. 20 independent simulations (different random
seeds) of four different system sizes were examined. This results in 640 sim-
ulations requesting an average wall time of approximatly 24 hours. On a
single CPU machine this would take 2 years to compute, which makes the
use of a cluster inevitable.
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Chapter 9

Summary

The work of this paper can be seen as a digestion and re-evaluaton of the
dissertation of Stefan Krauss.

We made a few comments on traffic models in general and described the
model of Stefan Krauss and the cellular automaton by Nagel and Schreck-
enberg.

In a few middle sections we presented several tools that help us to analyze
traffic. We showed common techniques such as space-time plot analysis giv-
ing good pictures over development in space and in time. We explained the
fundamental diagram of various model types used in this work and pointed
out their specialities. We mentioned the uncommon ensemble-averaging of
space-time plot instead of the general approach to calculate time-averaged
plots.

The Krauss model can keep one busy for quite a while. Not only because
it hides a few uncertain features, but also because it allows variation of
at least two parameters that change the behavior drastically. We pointed
out the differences between the types I, IT and III and gave arguments to
distinguish them.

We examined the transitions times in detail. These are the recovery time
that it takes to resolve an artificial megajam at a given overall density, and
the breakdown time that passes until we find the first vehicle with speed
zero after homogeneous initialization. Especially the recovery time has not
been investigated much. We explained how to read plots of transition times
and explained their tight connetion to the fundamental diagram. Then we
showed a few measured plots of these times and pointed out their behav-
ior when changing to another model (by changing the breaking capability)
and when changing the system size. We tried to give reasonable analytic ap-
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proaches to the waiting times via the corresponding recovery and breakdown
probability.

Another tool to analyze traffic is the interface width development in the
outflow of a jam. Some model types show a stable outflow from jams while
some others show an unstable one. These observations can be grasped by
measuring the interface width dependency in time. Krauss model types I
and II are distinguished by their interface behavior. We believe that further
investigation on the actually very simple interface width could help to draw
a more precise line between the types I and II.

In a later chapter, we tried to compare a type II Krauss model to the
standard cellular automaton and point out their differences, summarizing
the observations of the previous chapters.
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