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bTransport Systems Planning and Transport Telematics, Technical University of Berlin,

Germany
cCowles Foundation for Research in Economics, Yale University, New Haven, Connecticut

Abstract

This paper considers a simple model of an economy. The economy consists of agents. Each
agent produces exactly one good. The good is sold on the market and the agent uses the
resulting money to buy many other goods. All agents have the goal to maximize their own
utility, which consists of a positive contribution from consumption, and a negative contri-
bution from work. The problem for the agent thus is to balance work and consumption. In
contrast to many other economic models, this model prescribes the process in all complete-
ness. The paper looks both at analytical solutions and at simulation results. A particularly
important results is that a well-defined market only emerges when prices adapt on a much
slower time scale than consumption. This makes clear that a functioning market does not
just emerge by itself.
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1 Introduction

Economic General Equilibrium Theory is static. Since there is no dynamics, it is
not specified how the system reaches the equilibrium state, or how it behaves once
it is away from it. A consequence is that nobody actively sets prices – in that theory,
they are the outcome of the common thought process, which is not realistic with
respect to the real world.
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Game theory offers a framework which allows to couple the setting of prices to
agents, e.g. in the Cournot or Bertrand games (e.g. [1], Chap. 6). However, again,
game theory is static: It only searches for a situation in which nobody wants to
change, but does not consider how the system reaches that state. Evolutionary game
theory (e.g. [2]), then, is a framework which makes game theory dynamic and it is
possible to evaluate the dynamic behavior of the system. For example, Nash equi-
libria (NE) are fixpoints of the dynamic evolution of evolutionary game theory.
Such fixpoints can be stable (attractive) or unstable (repulsive); if such a fixpoint
is unstable, it means that the corresponding NE is essentially irrelevant under the
given adaptive rule, and possibly irrelevant under any adaptive rule. It is also pos-
sible to have more complicated limit sets such as cyclic or chaotic ones. If they
are attractive, they have a basin of attraction, meaning that if the system ever gets
into the basin of attraction, then it will go to the limit set and remain there. This is,
however, only true for deterministic systems; in stochastic systems, the noise can
drive the system out of the basin of attraction into another one.

One can see from this that convergence to a NE is only a subset of the behavior
that an evolutionary game can display. The question thus becomes if one can get
some insight into what dynamic behavior is indeed plausible. For this, one needs
to construct dynamic models. In this paper, we construct a dynamic model of mar-
kets. Our thinking, and thus our model, is based on the assumption that there are
individual actors in the economic world, and that we want to be able to identify
these individual actors in our simulation model. Our model is constructed around
a simple production-consumption economy, i.e. each actor produces a single good,
and trades that for many other goods from many other actors in order to be able to
consume a diversity of goods. Our approach is to define the rules of the system, and
then to analyze the resulting dynamics. Our longterm working hypothesis is, consis-
tent with our analysis above, that there will be some cases in which the dynamics
converges to results which are similar to results of General Equilibrium Theory,
while there will be other cases in which the dynamics displays a completely differ-
ent behavior. In this paper, we will concentrate on the first aspect, i.e. the analysis
in how far a simple model is consistent with conventional static equilibrium theory.

2 The basic model

Our model derives from work by Bak, Norrelykke, and Shubik (BNS) [3]. Yet, the
relation turns out to be somewhat complicated. Its discussion is therefore postponed
to Sec. 6. The basic model consists of N agents, each of them producing exactly
one good. Each agent is characterized by a utility function

Ui = −q2

i

2
+ 2

∑

j 6=i

√
xij . (1)
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qi is the amount of work of agent i; xij is the amount of good j (bought from
agent j) which agent i consumes. The marginal disutility of work, −∂Ui/∂qi, is
increasing, meaning that working twice as much is more than twice as unpleasant.
In contrast, the marginal utility of consumption, ∂Ui/∂xi, is decreasing, meaning
that consuming twice as much is less than twice as pleasant.The model is initialized
by each agent i receiving an initial amount of money Mi,0, setting an initial price
pi,0, and setting, for each good j, an initial preference x̂ij,0. Each time step then
consists of the following sub-steps:

(1) Agents order goods according to their preferences vector x̂ij,t such that ex-
actly all money is spent. This means a re-scaling of the x̂ij,t, i.e. xij,t =
x̂ij,t Mi,t−1/(

∑

j 6=i x̂ij,t pj,t) . Mi,t−1 is the amount of money left over from the
last time step, see below. Note that with this equation

∑

j 6=i xij,t pj,t = Mi,t−1,
which is the budget constraint. Agents to not buy from themselves, that is,
∀t : xii,t = 0. This simplifies some of the mathematics.

(2) Goods are produced to order, and sold at the prices previously indicated. That
is, each agent produces qi,t =

∑

j 6=i xji,t and receives the amount of money
of Mi,t = pi,t qi,t . Since, according to Item (1), each agent has spent all her
money with her orders, the result is indeed the amount of money with which
they go into the next time step.

(3) Utilities Ui,t are calculated.
(4) Preferences are adapted: Every Tx time steps, agents adapt (see below) their

xij to maximize utility given prices. Usually, Tx = 1.
(5) Prices are adapted: Every Tp time steps, agents adapt (see below) their pi to

maximize utility. Adaptation of prices happens on a much slower time scale
than adaptation of preferences, i.e. Tp � Tx. Usually in this paper, Tp = 105.

The above model description does not specify how adaptation takes place. In fact,
many different adaptation schemes seem to work. Throughout this paper, we use
“trial-and-error” adaptation. This means that, from time to time, agents try different
strategies. If the performance (= utility) of a changed strategy turns out to be better
than the performance of the previous strategy, then they will stick with the new
strategy. For each agent i, a strategy consists of the (xij)j and of pi. 2 Trial-and-
error adaptation for the x̂ij of agent i works as follows:

(1) After Tx time steps with the “normal” strategy, the agent picks one of its (x̂ij)j

randomly. It remembers its old value, plus the corresponding utility, Ũi, and
then obtains a new “trial” value for x̂ij .

(2) The agent operates with the new trial value for Tx time steps and then looks
at the resulting utility. If this new utility is larger than the original utility, it
sticks with the new x̂ij , otherwise it return to the old one.
Trial values are obtained via mutation: The old xij is changed by a small
random amount.

2 Double indices of type (Xij)j refer to the vector (Xi1, ..., XiN ).
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The above explanation was in terms of preferences x̂ij . Adaptation for pi happens
accordingly, the only three differences being that (1) there is only one value per
agent, (2) the trial time Tx is replaced by Tp, and (3) agents enter into trial mode
only with probability fp where we use fp = 0.1. The latter is done so that only a
small fraction of the system is in trial mode since otherwise the agents that are in
trial mode are not faced with an approximation of the “normal” system.

More parameters are necessary to fully describe adaptation; for example, a muta-
tion for x̂ij is, with probability 1/2, either x̂ij,new = x̂ij,old × fx,rand or x̂ij,new =
x̂ij,old/fx,rand where fx,rand is a random number uniformly distributed between 1
and 1.01. For price adaption we mutate accordingly with a factor fp,rand which is a
random number between 1 and 1.1. Our simulations indicate that our results are ro-
bust as long as the mutations remain small, and as long as Tp remains long enough
so that the adaptation of the x̂ij can reach a steady state even with small mutations
(see Fig. 1 plus related text in Sec. 4, and Sec. 5).

3 Analytical approximation

Finding relations between dynamical models and “static” game theory is often not
straightforward. In particular, it is critical that one is clear about what are the strate-
gies, and what is known to each agent. In our model, each agent i’s strategy consists
of the vector of the (x̂ij)j and of the price pi. Since prices are kept constant for long
periods of time, one can assume that agents find (x̂ij)j such that utility is max-
imized when prices are given. On a second level, agents optimize prices against
that reaction of their fellow consumers. That is, prices are optimized against the
fact that consumers display optimal reaction to prices. In consequence, the above
model corresponds to a solution of a two-step optimization problem: (1) First, for
given prices (pj)j and money Mi,t−1 find an optimal allocation of the x̂ij such that
utility is maximized. This is done in Sec. 3.1. (2) Second, given that every agent
knows every other agent’s reaction to price changes, find an optimal price. See
Sec. 3.2.

3.1 Optimal consumption For given prices (pj)j and amount of money Mi =
Mi,t−1, the optimization problem that each agent i faces is to maximize Eq. (1)
under the constraint that the amount of money Mi,t−1 is exactly spent. This is as
usual achieved by first adding the constraint via a Lagrangian multiplier,

Ui := −q2

i /2 + 2
∑

j 6=i

√
xij + λi

(

Mi,t−1 −
∑

pjxij

)

, (2)

and then setting first derivatives with respect to the decision variables equal to zero.
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Now consider a fixed agent i. Since qi =
∑

j 6=i xji and Mi,t−1 do not depend on xij ,
the derivative with respect to xij is simple. Together with the budget constraint this
results in

xij =
1

λ2
i p2

j

,
1

λ2
i

=
Mi,t−1

∑

k 6=i
1

pk

, and xij =
Mi,t−1

p2
j

∑

k 6=i
1

pk

. (3)

3.2 Optimal price Optimal prices are now computed by taking Eq. (1) and taking
the first derivative with respect to pi. Note that it is no longer necessary to include
the budget constraint, since this is automatically fulfilled as long as all agents follow
Eqs. (3).

However, one is faced with a new difficulty. Changing a price also changes the
distribution of money. That is, in order to evaluate the effect of a price change
by agent i, one needs not only compute the reactions of the buyers, but also the
resulting re-distribution of money, the resulting 2nd-order reaction of the buyers,
etc. Thus, one needs to find the steady state solution of the system in reaction to a
price change and only then take derivatives.

We were in fact able to find a closed form formulation of that steady state solution
[4], but it is beyond the scope of this paper. Important insight is already gained
from the case N → ∞. In this case, the change of the steady state value of Mj

(j 6= i) goes to zero so that it can be neglected. Similarly, the influence of pi on
∑

k 6=j
1

pk
decreases as 1/N . Together, this also decouples λj from pi. With this, one

can express everything using either pi or some terms that explicitly do not depend
on pi. After entering these conversions into Eq. (1), taking the first derivative w.r.t.
pi and setting it to zero, one makes the assumption of a homogeneous system (Nash
Equilibrium) by setting pi = p,

∑

k 6=i
1

pk
→ N−1

p
, etc. The final results are

p ≈ 22/3 M

(N − 1)1/3
, x ≈ 2−2/3

(N − 1)2/3
, q ≈ 2−2/3 (N − 1)1/3 , (4)

and U ≈ (22/3 − 2−7/3)(N − 1)2/3 (see Tab. 1). That is:

• Prices are proportional to the amount of money M in the system, while the “phys-
ical” variables x, q, and U do not depend on money or price levels at all.

• Prices decrease with increasing N . This is plausible because larger N means that
it is easier to substitute one good by another, increasing competition.

• The consumption of each individual good decreases with N , as it should. How-
ever, the sum of all consumption,

∑

j xij , increases with N . This is a consequence
of the fact that the slope of the utility function goes to infinity as x ↘ 0, mean-
ing that agents always want “a little bit of everything”, no matter how large N is.
This also implies that q → ∞ when N → ∞, which is physically implausible.
Other utility functions do not have this effect but cause other “problems” [4,5].
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N p x q U

10 0.76 0.15 1.31 6.01

50 0.43 0.05 2.31 18.60

1000 0.16 0.01 6.30 138.80
Table 1
Some numbers for the “large N” approximation (with M = 1).

Note that we are looking for the Nash equilibrium and not the system optimum
(SO): All agents together could agree upon a price pSO which would maximize
the utility of all of them at the same time. This price can be calculated by insert-
ing the “homogeneous budget constraint” x = M/p

N−1
into the utility function and

maximize the resulting function w.r.t. p. This results in pSO = M/(N − 1)1/3,
which is lower than the NE price. Reinserting pSO into U give them the SO utility
USO = 3

2
(N − 1)2/3 , which is larger than the NE utility. The situation is the same

as in the “prisoners dilemma” where both players would be better off if they played
together, but because every player tries to maximize his own profit, both are worse
off in the end.

The case N = 2 can also be solved exactly but is somewhat peculiar (see Sec. 6).
For all other N , we were unable to find a simple solution.

4 Simulation results

First, we check if the simulation reacts to price differentials. For that, we set one
agent at a different price than all others (Fig. 1). One sees that agents slowly shift
their consumption toward the good with the lower price, visible in the graphs as a
larger production for that agent. One also sees that this results in a higher utility for
that agent, meaning that in this case average prices are too high and an individual
has an advantage when charging a lower price. This effect is what will drive the
adaptation of prices further below.

The simulation is confirmed by the analytical result. The “large N” Nash Equi-
librium price, Eq. (4), is 0.53, since M = 1 and N = 10. This indicates that a
base price of 3, as in Fig. 1, is too large. One also sees that it takes about 30 000
timesteps until the aggregate consumption has relaxed to the value corresponding
to the prices. For N = 50 agents, relaxation takes about 70 000 time steps (not
shown). Including some “safety margin”, we will use Tp = 100 000 in the follow-
ing simulations.

We now allow both the preferences x̂ij and the prices pi to adapt. As explained
above, the adaptation of the x̂ij happens on a fast time scale, while adaptation of
the pi happens on a slow time scale. In practice, this means that in every second
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Fig. 1. Simulation where the preferences x̂ij adapt via trial-and-error to price differentials.
Initially (at negative times, not shown), the simulation is run such that all agents find op-
timal x̂ij against a uniform price of 2.4. Then, at t = 0, the price of agent 0 is set to 2.4,
and the reaction of the system is displayed. LEFT: Production. RIGHT: Utility. The fat line
describes the average behavior, the single thin line the behavior of the one agent with the
lower price, all other thin lines are examples of other agents. N = 10, M = 1.
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Fig. 2. Simulation where both the preferences x̂ij and prices pi adapt via trial-and-error,
system of 10 agents. Initial prices are at 3. LEFT: Prices. RIGHT: Production.

time step every agent tries a new x̂ij . In contrast, new prices are tried out only
every Tp = 105 time steps, and they are left in place for the same duration before
they are evaluated.

As a result, this simulation takes much longer, note the time scale in Fig. 2. One
also sees how the system relaxes toward a price of about 0.87, a production q of
about 1.2, and a utility U of about 5.7. These values are similar to the “large N”
values given in Tab. 1 (N = 10). This similarity gets better with larger N . Larger
sizes than N ≈ 50, however, cannot be tested because they take several days of
computer time. In addition, the analytical calculation does not take into account
fluctuations, which may also explain part of the difference between simulation and
analytical result.

The analytical solution implies and the simulation results confirm that, instead of
slow adaptation, agents could set their consumption directly via xij,t = Mi,t−1/p

2

j,t

∑

j 6=i
1

pj,t
.

So a possibility is to use this directly in the simulations. The motivation behind this
is that one could argue that agents should capable of doing “local” optimizations, in
the sense that they should be able to compute a best reply against a fixed environ-
ment, here given by known prices. This would correspond to an agent who knows
everything about him-/herself and is able to compute a corresponding mathemati-
cally optimal reaction to a fixed environment. Such an agent would, however, not be
capable of predicting other agents’ reactions to that best reply. Apart from different
fluctuations simulation results look the same as before. This saves enormously in
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Fig. 3. Production in a simulation where preferences are calculated optimally while prices
adapt via trial-and-error. Initial prices are 3. One sees that the system relaxes toward the
same value as in Fig. 2. Note the much shorter time scale on which that happens.

terms of computer time, since we can now do price adaption with Tp = 10 instead
of Tp = 105 time steps. Fig. 3 shows the result for the same parameters as those
used for Fig. 1. But much larger systems can now be simulated (not shown).

5 Separation of time scale and stability

The stability of the above model hinges critically on the fact that adaptation of
prices is much slower than adaptation of preferences. In effect, price adaptation is
made so slow that the adaptation of preferences and the redistribution of money
has always completed before the performance of a price change is evaluated. As
shown earlier by direct simulation, one needs to wait about 50000 timesteps until
preferences and money have adapted to a new price situation. This corresponds to
a complete separation of time scales.

If preferences are calculated, as in Sec. 3.2, this adaption time is greatly reduced
to about 5 timesteps 3 and it is therefore enough to wait only 10 timesteps between
two consecutive price changes. It is very important to note that changes in price
must still be made on a slower time scale than adaption of preferences as even if
the agents always buy the optimal amount still some time is needed until a steady
state distribution of the money is established. However, the main aspect of the “sep-
aration of time scales” is now achieved by the agent itself, which reaches the best
reply instantaneously.

In terms of stability, it is not possible to violate this rule: Making price adaptation
faster relative to consumption adaptation leads to continuously increasing prices,
which then just go to infinity. The reason for this is simple: A price increase will
initially increase the corresponding income; the reduction in sales sets in only later.
If thus the effect of the price increase is evaluated very soon, it will seem like a
utility-increasing move.

3 This figure is correct only if N is not smaller than ≈ 10. For smaller numbers of agents,
the redistribution of money takes longer.
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This effect is also reflected in the analytical solution: One has to solve for the
xij first, under the assumption that prices are given. Only then does one optimize
prices based on the consumption behavior. Any attempt to solve this in a different
sequence leads to pi → ∞ or does not work at all.

This result, albeit plausible once one understands the model and its dynamics, came
as a surprise to some of the authors, because the implication is that the market (in
the sense of competitive prices) does not play under all circumstances, but only
if the time scales of adaptation are separated in the correct way. One could argue
that consumers would develop strategies to cope with quickly changing prices. Yet,
certainly for simple models and possibly for the real world, some regulation may
be necessary to achieve competition. The issue is related to “sequential games”,
“subgame perfection”, and “Stackelberg games” in game theory, and also shows up
in transport simulations [6].

6 The BNS model

Our results allow some outlook on the BNS model [3]. In that paper, agents are
located on a ring, and every agent buys from the left and sells to the right.

The solution with respect to consumption remains the same as in Eq. (3). However,
since

∑

k 6=i
1

pk
= pj , one also obtains xij =

Mi,t−1

pj
. We will write xij ≡ xi, since

there is only one good that each agent consumes.

With respect to optimal price, first note that in the steady state, Mi = Mj = M ,
since otherwise one agent accumulates money. With this, Ui = −1

2
q2

i + 2
√

xi =
−1

2
M2/p2

i +2 M/pj . Taking the first derivative w.r.t. pi and setting it to zero leads
to the unexpected result p−3

i = 0 or pi = ∞. This gets explained by noticing that
the amount of money that the agent i spends is always xi pj = M

pj
pj = M and is

thus totally independent from the price that j sets. On another level, this is clear
since our model prescribes that agents have to spend all their money in every time
step. So if there is only one person to buy from, that person always gets all the
money, and for that reason that other person will raise the price as high as possible,
since that reduces the amount of work (as long as they do it unilaterally, as the NE
solution prescribes).

This means that a straightforward interpretation of the BNS model in terms of the
present paper is not possible. One way to explain the differences is that in the
present paper, the independent strategic variables are given via the vector (pi, xi1, ..., xiN).
In contrast, in the BNS paper the only independent strategic variable is λi, while pi

and xij are given via xij = 1/(λ2

i p2

j) and pi = 21/3 λ
−1/3

i p
2/3

i q
1/3

i,t−1, where qi,t−1

is the demand from the previous time step. The interest of the BNS paper is in the
dynamics of the λi, which are re-calculated in every time step so that the budget is
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approximately balanced, while locally optimal strategies are maintained. In conse-
quence, in spite of a lot of apparent similarity between BNS and the present paper,
the actual approach and interpretation are rather different.

7 Summary

We have presented a simple dynamic model of a market. Certain versions of the
model can be solved analytically. Simulation offers the possibility to go beyond
the analytically solvable cases. In both cases, for stable solutions it is crucial to
select the dynamics correctly. In the model of this paper, price adaptation has to
happen on a much slower time scale than consumption adaptation, otherwise prices
go to infinity. This is intuitively plausible; nevertheless, it needs to be taken into
account both when building simulations models and possibly when regulating the
real world.

Economic dynamics uses the institutions of our society. This dynamics is far from
ideal process-free economic equilibrium theorizing. The size of the time lags in
the adjustment processes matters and there appears to be a trade-off between the
speed of adjustment and stability. This raises both empirical questions as well as
questions in theory in characterizing both price and quantity adjustment processes.
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