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Chapter 1

Overview

Generalecoromic equilibrium theay is staic. Sincethereis no dynamics,littl e is known how the
systen shoud reachthe equiibrium state or how it behaesonceit is away from it. Actually, the
situaion is somavhat similar to the situdion in Statisti@al Physicssome100 yearsago, wherethe
macrogopic thermodynanic equaions were around, but neither was their microcpic foundation
nor their extensioninto nonrequilibrium.

In this thesis we presenta dynamic model of anagen-basel (in the languageof Statistcal Physics
“atomic’) econany. We construct the dynamics so that the ecanomy evolves towards the gereral
equiibrium resultwhenthe simulation is startel in non-eaiilibrium. Sincethe modelis dynamic, it

is not possble that the sysemwill read the exact equiibrium point, asthere is always somekind

of noise in the system that distuibs the evolution process. On the otherhand,the equilibri um point

is alsonot known exactly, asthe analytical equdions camot be solved. It will always be possible,
though, to find an appraximate analtical solution for the equilibrium point which canbe comparel

to the simulation resut.

Generaly, the equiibrium point of anecoromic sysgemis the situdion whereno ager canincrease
her utility by a change of her straegy. In the languageof evolutionary gametheay, it is the Nash
equiibrium. In our model ecoromy, thereis only one kind of commodty which the agentscan

produce, sell and consume. This commodityis not quanized, i.e. the agens can manipulate ary

quartity of it. Thestrategy of anagentthenspecfiesherconsunption behaiour aswell asthe price

that she chargesfor the selling of the commodty. The dynamics of the model specfies how the

agerts canadaptther straegies,i.e. it spedfies on which timescaésan by how muchthe individual

ecoromic quartities that form the strategy can be charged. Of course, the force which drivesthe
adapion is the goalto find a straegy thatoptimizesthe utility.

As usual the utility function of the agents corsistsof two terms: Onetermde<ribesthe disutility re-
latedto thework theagenthasto perform; thesecad termdeseibesthegainin utility thatcomesrom
conaumption We considertwo kinds of consumption utiliti eswhich leadto very differentbehavious
of theagersin thelimit of systemswith mary agerts:

In chager 2 we corsider‘square root consunptionutility ”. Here,theagensarevery anxiousto sperd
their money in away thatconsdersevery sugplier: Buying nothing from anagent evenif thepriceis
very high, resulsin a greatlossof utility. In contrast, in chager 3 wherethe consumption behaviour
of theagens is goverred by “logistic consumptionutility,” substitution is always at hand especially
in the limit of mary agents. If the price of an ager is much above averag then, shewill not sell
arnything at all, asall agens decide to buy moreof the other (lessexpersive) prodwctsinstead. This



resutsin very large fluctuaionswhenthe agers adapt prices, andit is muchmoredifficult to choo®
dynamicsthatleave the sysem stable andgive reasmableequiibrium restuts. In orderto be ableto
compae theresuts of thetwo modek we tried, thoudh, to malke aslittle changesin the dynamicsas
possble whenwe switched from squareroct to logistic consumption utili ty.



Chapter 2

The basic model: square root consumption utility

2.1 Model description

The bast model consstsof N agens, ead of them producing exacly one good. Eachagentis
charaterized by a utility function

2
vi— -2 Y a. @)
J#i
g; is theamoun of work of agen ¢; z;; is theamountof good; (boudht from agent;) which agent:
conaimes.Thecorversian of work into (dis)utility is corvex, meanng thatworking twice asmuchis
morethantwice asunpleasan In contrast,consumptio is conave, meanng that conaiming twice
asmuchis lessthantwice aspleasnt?

Themodelworksasfollows.

Initi alization:
e Eachagent: recavesaninitial amountof money M/ .
e Eachagent: setsaninitial pricep; o.

e Eachagenti setsfor eachgoodj, aninitial demand;; o. Thesedemandsettheratios betwee
thegoods, thatis, we alwaysusey_ ; Z;; = 1.

Onetime step:

1. Agentsorde goods accading to their demands/ectors;; suchthatexactly all money is spent.
This meansarescaing of the Z;;:

. M
P (2.3)
> 3ijpj
J#i
LIn this paper Eq. 2.1will beused.However, it canbe seenasa specificversionof
Ui=-Aig(a) + zaijh(xij) ; (2.2)

i#i
whereg(X) is acorvex functionandh(X) aconcae function. Many of our resultsshoud alsohold for this moregeneral
versionof the utility function.



M; ;1 is the amountof money left over from the last time step,seebelow Note that now
E#i zij p; = M; 1, whichis thebudget constraint.

2. Goodsare producedto order andsold at the prices previously indicated. Thatis, eachager

produces
G =) i (2.4)
J#i
andrecavesthe amountof
M; =piq; . (2.5)

Since,accadingto Eq. 2.3 eachagat hasspentall hermoney with herordess, therestt of Eq.
2.5is indeedthe amountof money with which they gointo the next time step.

3. Utiliti esU; arecalcdated.

4. Adaptaion of demanis: Every T, time stefs, ageris adgt (seeSec.2.2) their z;; to maximize
utility givenprices.Usually, T, = 1.

5. Adaptaion of prices Every T, time stefs, ageris adapt(seeSec. 2.2) their p; to maximize
utility. Adaptaton of priceshappeson a muchslower time scalethanadaptation of demand,
i.e. T, > T,. Usuall in this paper, T, = 10°.

In an altemative versionwe replae points4. and5. by a different adagion schene: We allow the
agertsto directly calculate the optimaldemais given prices. This redues’, dramatically.

4. Adaption of demand: Every T, time stefs, agents calaulate (seeSec. 2.4.1)their optimal z;;
to maximizeutility givenprices.Usually7;, = 1.

5. Adaptaion of prices Every T, time stefs, ageris adapt(seeSec. 2.2) their p; to maximize
utility. Adaptaton of prices happenson a slower time scalethanadaptation of demand: 7, =
10.

2.2 Adaptation

The abovre model desciption does not spedfy how adaptéion takes place In fact, mary different
adapation schaneswork. Throughout this paper we use“tri al-anderror’ adaptéion. This means
that, from time to time, agens try different straegies. If the perfaomance(= utility) of a charged
straigy turnsoutto be better than the performanceof the previous strateyy, then they will stick with
thenew straegy. For eachagenti, astrat@y consstsof the (g;;) ; andof p;. Trial-and-eror adagtation
for the Z;; works asfollows:

1. After T, time steps with the “normal” strakgy, the agent picks rancomly a j between 1 and
N andthusthe correpondng stratey entry 7;;. Theagentremembersts old valug, plus the
correspomling utility U;, andthengeneatesa new valuefor ;.2

2. The agen opeateswith the new trial valuefor I, time stepsandthenlooks at the resuting
utility. If this new utility is larger thanthe original one,shesticks with the new 3, otherwise
shereturnsto the previousdemarmsvecta.

2Accordirg to theabore modelspecificationthis meansghatall £;; will berescaledsuchthatstill Z i = 1.
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Trial valuescanbe obtainedvia two mechaisms:

e Mutation. Theold z;; is changedby a smallrandomamount

e Copy. A new valueof z;; is takenfrom anoheragent.

For this paper only mutatian will be used.

Theabove explanationwasin termsof demand z;;. Adaptationfor p; happ@saccadingly, thethree
main differencesbeing that (1) there is only oneprice peragen, (2) thetrial time Z; is replacedby
T,, and(3) agerts enterinto trial modeonly with probability p.;,; wherewe usepy;q; = 0.1.

More parametes arenecesary to fully descibe adapation; for example a mutatian for ; is, with

probability 1/21 either:i'ij,new = fi'ij,old X fw,rand or iij,new = fi'ij,old/f:c,rand Wheref:c,rand is a
random numbe betweer 1 and1.01. For the price adgtion we mutateaccadingly with a facta
fp,rand Which is arandan numberbetweenl and1.1. Our simulatonsindicatethat our resuts are
robust as long as the mutatins remainsmall, and as long asZ; remairs long enoudn so that the
adapationof demand cancomplet evenwith smallmutatiors.

2.3 Related work

Themodelis relatedto amodelby Bak, Norrelyke,andShubik(BNS)[1]. Themaindifferenceis that
in the presem pape, agerts transparetly adaptz;; (via £;;) andp;, which seemto be the plausble
ecoromic quantities to work with. In addtion, the preent paperassumesha everybay is buying
from everybody, wherea the BNS modelassumeshateverybodyis buying from their “left” neighbor
only. No differencesbetwee this modelandthe BNS modelwill be andyzed here but for us, the
work of BNS provideda goad first exampleof a simulaion of anagentbasedecanomy

2.4 Analytical approximation

Theabove modelcorrespomisto a soluion of atwo-stg optimization problem:

1. First, for given prices (p;); andmoney M;;_; find an optimal allocationof the Z;; suchthat
utility is maximized Thisis dorein Sec.2.4.1.

2. Second given that every agentknows every otheragen’s readion to price changes,find an
optimal price. SeeSec.2.4.2.

2.4.1 Optimal consumption

For given pricesandmoney, the utility function of every agen is a solefunction of thedemars z;:

U’i = —q1~2/2 + 2 Z \/@ + )\z (Mi,tfl — ija:ij) . (26)
J#i



M; ;1 isthemong from thelasttime step;the Lagrargian multiplier meanghatall money hasto be
spen.3

Now consder afixedagent :. Sinceg = >, ; ;i andM; ;1 do notdepemnl on z;;, the derivative
with respet to z;; is simple andthe derivative with resgectto ) is just the budget constaint. The
rootsof the two expressionsare

1 1 M

i Pj i z il

ki Pk

Theresdting full expressionfor the optimal consumptian given prices andmoney is therdore
My
Tij = ?“1 (2.8)

p; —
ki Pk

Notethatfor ahomogeneos solution, we candropall indicesandobtan the obviousresut x :]]\‘]4—[’;

which mustbetruefor ary utility function.

2.4.2 Optimal price

It is muchharderto find anexpresson for the optimal price which anagern shauld chooseif all othe
prices andthereacton Eq. 2.7 is known. Therelevant pieces of the utility function are

2
~ 1 1 1

2
1, 1 _ 1
=37 (Zp) TAp D5 (219

Jj 7 j I
Notethatin contrastto theprevioussecton wherethe“pleasure”of consunptionwasbalarcedagains
the “pain” of paying for it we balancenow the displeasureof work agairst the pleasire of geting
money for it.

Large N limit

In thelimit N — oo, the \; becaneindependert of p; sincethe cortributionsof p; to themis of order
1/N. X\; doesnot depeml on p; aryway. Maximization of the above expressionfor the utility w.r.t. i
andthenpasing to thehomogenouscasewhereX = A3 = X\* = (N — 1) /Mp givestherestt

22/3 M
pN 7(]\[_ 1)1/3.
3Thisis alreadyan approdimation. Sincethe modelis stochasticincomewill not alwaysbe the same.However, in the

currentformulation,the z;; areslowly varyingvariables.Thatis, onewould have to maximizethe expectationvalueof U
over thedistribution of M;_1.

(2.11)




A cautionary remarkaboutthe interpretaion of this formula shoud be madehere becase we did
two importent appioximations: First we only consder the “large N” limit, secomlly the calcuation
doesnotincludethe fluctuatonsthatarecausel by thetesting of new prices. Now notethat M is the
averggeamourt of money peragent, but moreexadly it is Msg (the averageamourn of monegy which

theagensthat arein the steady state have) which shoud be used. The point is thatit is possilie that
M # Mgg asaconsequaceof thefluctuationsin money dueto the conganttestng of new pricesin
equiibrium: If, in equlibrium, anageri testsa lower price, hermoney will fluctuate upwards andif

shetesta highe price, it will fluctuatedownwards Like this, M # Mgg if the agerts thatcurrently

arenot testirg (the onesthat arein the stealy statg do not give asmuchmore money to the agens
thattestlower pricesthanthey give lessto the agens thattesthighe prices. This modelwith squae
root consumption utility does not (to leadng orde) shav suchan asymmetryso that we can safely
setMgg equdto M = M, /N = 1. In amodelwhereit is easyto subdgitute oneproductfor anaher
(e.g.themodelwith alogistic utility function, seechaper 3) ageris thattesthigh priceswill loseall
their money, while theones thattestlow priceswill earnvery much.In this casetheaveragemoney of
the equilibrated agens will belessthan M;,;/N andfluctuatonsmustbeincludedin the calcuation

of the Nashequilibrium price.

Now insetting Eq. 2.11 backinto Eq. 2.7 givesthe relaxed statedemandsproduction andthusalso
utility level asafunction of N alore:

2—2/3
P 2.1
TN (212
¢g=(N-1)z~223(N-1)Y3 063N -1)/3, (2.13
and
Ur (223 —27T3)(N —1)%3 ~ 1.388 % (N — 1)%/3. (2.14
Thatis:

e Pricesareproportional to theamour of money M in thesysem.
e Pricesdecreasewith increasingN.
e Consunptiondoesnot dependon prices.

e The consumptionof eachindividual gooddeceaseswith increasing/N. However, the sumof
all consimption 3~ ; z;;, which is just the production in the homogenots case increaseswith
N. Thisis aconsequaceof fad thatthe slope of the utility function goesto infinity asz \, 0,
meanirg thatane amour of eachgoodgivesaninfinite increasein utility*.

It is important to noteherethatwe arelooking for the Nash equilibrium pricelevel andnotthesydem
optimum: If all agerts would work togetherthey could agreeupona price p which would maximize
the utility of all of themat the sametime. This price canbe calaulatedby inserting the “homogenols

“Notethatthisis quiteaunrealisticoehaiour, asoneexpeds theprodudion (aswell asutility) to beboundfor N — oo
(likewise onewould expecta lower bourd p., > 0 for thepricein thislimit). In chapter3 wherethe agentsshaw logistic
consumpion behaiour, this will indeedbe the case but the price we have to pay to getthatresultwill bethatthe model
shaws very large (andlik ewise unrealistic)fluctuations.



budgetcondraint” x = ]]‘f—fﬁ into the utility function andmaximizng theresuting function w.r.t. p. It
would be lower thanthe Nashequilibrium price:

pPso = ﬁ (2.15

and(by reinsertioninto U) give the agens the maximumutility
Uso = g (N —1)%/3, (2.16)

Thesituationis the sameasin the “prisonersdilemma’”whereboth playerswould be better off if they
playedtogether, but be@useevery playe tries to maximizehis own profit, both areworseoff in the
end. Themechansmof trying to maximize only the own utility makesthe sysemoptimumunstéle:
In the preentcaseif thesysemis in the systan optimum,oneagert canprofit by chaging a higher
price, but becaseall agerts try to do the same the systemevolvestowardsa lower average utility
level. It is the Nashequilibrium, therebre,which is anattractorof the dynamics,andin orderto find
the equilibrium price level onealwayshasto consideronly oneagern trying to find the optimal price
for herséf andonly thencorsiderthehomogenouscase

Strictly spe&ing, in orde to find anexpressionfor the optimal price of anageri ¢ in thenonrhomoge
nouscas, it is not enoudn to consicer only two timesteys (i.e. to consder only the reacton Eq. 2.7
thatthe agens will shaw in the timestepafter the price chang), becausethe redistibution of monegy
afteraprice changetakeslonger. After aprice changeseverd timestg@sareneedduntil anew steag
distribution of money is estalished(seeSec.2.9). Thesteag statecondtion

M; =p; > xji, (2.17)
J#i
(with z;; given by Eq. 2.8) yields (seeSec. A.1.1 in the appendix) thatif the pricesarefixed the
distribution of money will corvergeto

Z Dji1Pjo---Pjin_2
M, — Mot j1<ja<..<in_2,ju#i ] (2.18
2 Z Pj1Pjs---Pin_»

j1<j2< . <JjN_2

The sumsgo over all (N — 2)-tuples (41, jo, ..., jn—2) Of integers betweer 1 and N. All jx, k =
1,..., (N —2) mustbedifferentandtheorder is notrelevant. For the sumin thenumerabr, all j must
bedifferent from 4. Thissumhasonly N — 1 summands

If thisis known theresuling production anddemanls of all agents areknownaswell (by useof Eq.
??) andtherdore also the resuling utility, which becmesa sole function of the prices and M,;.
Maximization of the utility with respectto p; canthen be perfamedin principle, but the resuting
equdionsaretoo complicatedto trea analytically.

In Sec.A.1.1 afurther andysis of Eq. 2.18is performedfor the casewhereall ageris except agent ¢
chage the sameprice p. This andysis yields for examplethatif p = pso, agent: shoul optimally
chage alower pricethanpso, which shawvs thatthe systemoptimum is ungable (asstatedabore).
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2.5 Simulation results

2.5.1 Adaptation of demands

First, we checkif the simulation reads to price differentiak. For that, we setoneagert at a different

pricethanall others(Figs. 2.1and?2.2). Oneseeshatageris slowly shift their consumption towards

thegoodwith thelower price, visible in thegraphsasalarger production for thatagen. Onealsosees
thatthis resuts in a highe utility for thatagen, meaningthatin this caseaverage pricesaretoo high

andan individual hasan advantagewhen chaging a lower price. This effect is whatwill drive the

adapationof pricesin Sec.2.5.2.

Thevalidity of theanalytical solution (i.e. Eq. 2.18)canbeverifiedhere In the casewhereall agens
except onehave the sameprice, theformulareduesto

M; = Mot (2.19

p
2p+ (N — 2)p;
for agent; with price p; and
Mot = M; _ Moy p+ (N = 2)pi
N -1 N —12p+ (N - 2)p;
for therest Theseequdions mustbeexadly valid for all numbes of agents,aswe did no approaxima-
tions. Becaug theresultfor the optimal demanls given prices(Eqs. 2.7) wasusedfor the derivation

of Eqg. 2.18,thes formulais alsoimplicitly verified. For the simulaton whereM,,, = N, p = 3 and
p; = 2.4 wereusdl, theabove expressiors evaluae to

M =

(2.20

M; = 1.19047 (2.21)

for N =10 and
M; = 1.23762 (2.22)

for N = 50. Thesimulatonswererunfor 2% 10° timestgsand indeed,anexactequdity of themean
allocation of money in equiibrium andthe above valuesis found.

Oneseesin Figs. 2.1 and2.2 thatit takes abou 4000 timesepsuntil the aggreate consumption
hasrelaxed to the value correspomling to the prices. Including some*“safety magin,” we will use
T, = 100000 in thefollowing simulaions.

Somecautianary remarks aboutthis choice of 7, = 100 000: First of all, this figure would needad-
justmern if we'd wantto simulae aneconany with moreagens: Sinceevery agentcanadagtonly one
z;; pertimesep, T}, scalelinearly with N. Secondlyonehasto be awarethatthe sysemconsdered
in this secton is far away from equilibrium. Indeed,accodingto Eq. 2.11the steay statepriceis
appoximatel 0.8 in thesysemof 10 agens andapproximatdy 0.4 in the sygemwith 50 ageris. If
the systemis thatmuchaway from equilibrium, thereis a strong signal for the ageris thatthey shoutl
lower the price. This signal getswealer on the way to equiibrium andthusadaptation time for the
demand will getlonger, demamling a higher,. Thus,theinclusion of the abose mentianed“safety
maigin” canrot be avoided. This subgectwill bediscussedurtherin Sec.2.10.

2.5.2 Adaptation of both demands and prices

We now allow both the demand z;; andthe prices p; to adag. As explained above, the adagation
of the z;; happenson a fasttime scak, while adagation of the p; happenson a slow time scale In

11



pracice, thismeanghatevery othertime stepevery agenttriesanewv @f’. In cortrast,new pricesare
tried out only every T, = 10° time steps,andthey areleft in place for the samedurafon befare they
areevaluaed.

As aresult this simulaion takesmuchlonger, notethetime scalein Figs. 2.3. Onealsoseeshow the
systam relaxestowardsa price of abaut 0.87, aproduction of abaut 1.2, anda utility of about5.7.

For compaison, the “large N” solution from Sec. 2.4.2gives,for N = 10 and M = 1 usedhere,
p ~ 0.76, ¢ = 1.31 andU = 6.01. It is clearthatthe valuesof the simulation will not compleaely
agreewith the values of the analytical calcuation sincethe assimptiors aredifferent. For example,
the analytical calaulation is valid only for large N (comparel to N = 10 in the simul&ion), andthe
analytical calaulation doesnottake into account fluctuaions.

Fig. 2.4 shaws theresuls for the simulaion with 50 agens. Sincein this modelevery agent canbuy
from every otheragen, computdion time always scaleswith the squae of N. Thus,simulaionswith
thatmary agenstake along time. In this case thesimulaton needsseveral daysof compuationtime.
Thetahular below summariesthe simulaion resuls of this secton:

N=10 price | production | utility
simulaion | 0.87 1.2 5.7
analtical | 0.76 1.3 6.0
rel. error 0.13 0.08 0.05
; ; — (2.23
N=50 price | production | utility

simulaion | 0.461 2.16 18.22
analtical | 0.434 2.31 18.59
rel. error 0.06 0.07 0.02

Becaug the analytical solution is only valid for large N, oneexpectsthe simulaion resuts closer to
the andytical solution in the simulaion with 50 agens. This is indeel verified asthe relative errar
decrases.As explainedin Sec.2.10,oneshauld not trustthis resulttoo much,thoudh, beausein a
simulaion with trial-and-error adagion of the demand the resuting stealy stae price depemsalso
T,: As the systen evolvestowardsequiibrium “from above”, the “recovery time” which is needel
for thetransient(upward or downward) jumpsin utility to die outafterapricechargegetseverlonger
andeventually becoms larger than,. Hence,no further deflation of the prices is possble becaise
T, timesepsafter a lowering of the price the agerts alwaysfind themsévesat a lower utility level
thanbefore.

In the next secton, the agerns are allowedto calculate their optimal demamnls. This removesthe
prodemwith thetransentjumpsof the utility, since demand adap almostinstantly (delayedonly by
theredistribution of money). 7, redwcesto abou 10 andis no longerdepemlenton N. Of course,this
savesalsoenormosly in compuationtime.

SRecallthatevery testingof a new demandvalueneeds2T;, timestepsin the first timestepa new valueis chosen.In
the secondimestepthe performanceof this new valueis evaluatedandthe agentgpossiblygoeshackto the old value. No
testingof a new demandis consiceredin the secom timestep. The sameappliesto the testingof new prices: A whole
“testing cycle” alwaysneed2T;, timestepssothatthe agenthasthe chanceto comebackto theformerutility level in case
shetesteda “bad” price.

12



2.6 Simulations with calculated instead of adapted consumption

The analtical solution implies and the simuldion resuts (in particular Sec. 2.5.1) confirm that,
instead of slow adapation, agerts could settheir consimptiondirectly via

Tij = 1 (224)

So a possbility is to usethis diredly in the simulafons. In fact, apat from different fluctuaions,
simulaion result look the sameasbefare. This savtesenomouslyin termsof compuertime, since
we cannow do price adapion with 7,, = 10 insteal of 7, = 10° time steps

Fig. 2.5showsthe resut in the sysemof 10 agens. As the compuer time is greatly redued, also
systenswith mary moreagens canbe corsidereal, seeFig. 2.6 for a simulation of anecoromy with
1000 agents

Froma conaeptud point, this meanghatwe allow agentsto localy usemathematicsin order to find
bette (i.e. locally optimal solutions. Sincewe have demonsratedthat the samesoluion can be
reacled via adgtion, this canbe seenpurely asa shatcutin compuation. Note however that this
equivalenceof adagation andcalcuation is only valid aslong asthereis a uniquemaximum. Some
discwssionin how far sucha quartitative differencemay neverthelessresut in aquditative difference
is madein Sec.2.10.

2.7 Fluctuations in equilibrium

Eq. 2.20givesthe amountof money all agens will endup with if oneagert i chagesprice » while
all otheragerts chargep:
Mot p+ (N —2)p;

2.2
N—12p+(N—2)pi ( 5)
UsingEq. 2.7 we seethattheagens will buy

Moth =

Moth
T; = 2.2
‘= P nt (- 2/p) 229
from agent . To first orderin (p; — p) thisis
M M
T = (pi — D), (2.27)

—9
p(N—-1) p?N

whereM = M;,:/N is the average amountof money/ peragern. We cannow find an expressionfor
thefluctuaion in production of agern 4 thatis inducedby the testirg of price p: We assumehatthe
systan hasrelaxed to the homogenoussituaion whereall agents (except agen 7) chage the steag
stateprice
228 M
= Phom = s 2.2

5Notethat M andnot M, is usedfor theaveragemoney of theagentsn equilibrium. We assumehatfor every agent
who testsalower priceandwho therefordowersthe averagemoney of theagentsn equilibriumtherewill be onewho tests
a higherprice andresetsthis averagemoney to M. This s correctto leadingorderin this model,but notin the modelof
chapter3, seetheremarksbelon Eq. 2.11
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and(in acmrdarcewith theadapton algarithm descrbedin Sec.2.2)wewrite (3 —prom) a8S(frand—
1)Phom, Where f,qnq iS @ randan numbernot larger than 1.1 and not lower than1/1.1 = 0.909.
Introducing ghom, = M/prom, the production in the homogenoussituaion, the production ¢ =
(N — 1)z; of agenti becames:

L/3(N — 1)4/3
9i = 9hom — %(fmmd - 1) (229)

In thelarge N limit thefluctudion ég(N) = ¢, — gnom IS thusgivenby
8q(N) = —(2N)"®(frana — 1) (230

Therefae, in absolte value,fluctuaionswill slowly increasewith N. Relative fluctudions arepre-
dicted to be condantin thelarge N limit:

5QTel = ~ 2(1 - fTand)- (231)
Thus, the production canvary at mostby 20% up or = 18% down. In particular, it canrot dropto
zero.

Theresultshoud be moreaccuateif oneassumeshatnot only oneagen chargesher price, but that
we have N; agentsthatlower the price to p, and IV, agents thatincreasethe price to p, atthe same
time. In our modelwe have

Ny~ Ny=rxN (2.32

wherer & py.iq1/2 isabaut 5% (morecorrectly, r is givenby 0.1/1.1/2 = 0.04545, seetheparagaph
belowEg. 2.35). If, asbefore, p; andp;, arewrittenin theform p;, = fippom andp, = frProm. the
resut is (in thelarge NV limit)

6Q7"el,up = 2(1 - fl) + T(fl + fh - 2) (233

for therelative upward fluctuatonsand(by symmetry)

5q'rel,down = 2(1 - fh) + 'r(fl + fh - 2) (234)

for the relaive downward fluctuations. Surprisirgly, sincein our model f + f;, = 2 ontheaverage,
theresut is abou the sameasbefare, i.e. thefluctuaionsdepend only very weakly onr. Thereasm
is of coursethaty", ; pik in Eq. 2.7 dependsonly weaklyonr: It is alwaysapproimately given by
(N —1)/p.

2.8 Comparing results of simulations with different parameters

As seenin Sec.2.6,the simulaion with calcuatedinsteadof adapged demanls canbe consteredas
a mereshatcut leadng to the sameequiibrium resuts and (quditativly) the samebehaiour when
the systemis away from equiibrium. Therefor, although datafrom simulaticns with calaulated
demand is usedbelow, the condusions thataredravn shauld alsohold for the modelwith trial-and-
erroradagtion of demang. A discussia of a (herenot relevan) difference betweenthe two kinds of
adapion is madein Sec.2.10
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Firstof all, we areinterestedin compaing simulaionswith differentnumbersof agens.

Eqg. 2.31states thet in thelarge NV limit therelaive fluctuatonsin production areindependeit of the
numberof agens andnot larger than+20% of the equiibrium production value. Fig. 2.7 shavs the
resut of anexperimentaltestof this.

Fig. 2.8 showshow the equiibrium priceis deceasimg with the numbe of agerts in the system.A
compaision with theandytically predctedresut p = ﬁ% is made.

Fig. 2.9is anillustration of thefad that the average amour which the agers sell is decrasingwith
increasing N, theaverage prodwctionis increasingwith N, compareSec.2.4

Fig. 2.10shaws that utility is increasingwith V. In this model,for large N, utility is propationd
to N2/3 (seeEq. 2.14). This unboundel increaseof utility with N is understamlablefor a model
with squae root consunption utility asthe slope of the consunption utility is infinite for x — 0.
Thesituaion is very differentin thelogistic modelof chaper 3 wheresubditution is alwaysat hand
strorg downward fluctuationsresultfrom the testing of pricesandaverage utility even decreasewith
N. Evenif price-tesersareexcludedfrom the calaulation of the average utility, utility is boundedfor
N — oo: In thislimit, the slope of thelogistic consumption utility is 1, which meanghatthe agens
donotgainmoreutility if they canbuy from alarger numberof agens.

The following simuldions explore how the modelreactsto differentamountsof money in the sys-
tem. The numberof agentsis kept constantat 10. Fig. 2.11 shows that production and utility are
independent of theamourn of money in the sydem,while prices arepropationd to it.

Finally, Fig. 2.12is an exponential fit to the decay curve of the average price in the systen of 1000

agerts. Thesimuldion stats at a muchtoo high averageprice £, o of about20. The average price

decys exporentialy accodingto £, ; = P,y exp(—ct) until P, is reacted. Exponential decayis

expededsincethe mutaton is multiplicative. The smooh crossover to the equilibriu m value(instead
of asharpcorrer) is cause by thefluctuaions. Thefitting parametes are:

Py = 19.99, ¢ = 0.000237, P,, = 0.159. (2.39

Thesevaluesare congstentwith the price adapion paraneters: On the average, abou 91 agens
testa new price every T, timestgs. Half of themwill choo to testa lower price accading to
P = D/ fprand- Theexpectaion value(f) of theredwctionfadtor 1/ f, r4na iS

1.11

(f) = % — 0.9531. (2.39

Thisresutsin ¢ = In((f))/(1,/(0.091/2)) = 0.000218.

2.9 Separation of time scale and stability

Thestahlity of the abore modelhingescritically on the factthatadagation of prices is muchslower
thanadapgation of demand. In effect, price adgtation is madeso slow tha demandgand money)
adapation hasalways complded before the performanceof a price changeis evaluaed. As shavn in
Sec.2.5.1by directsimulaion we needto wait abaut 50000 timestgsuntil demandandmoney have
adapedto anew pricesituation. Thisfigureis correct for the consideral sysemsof 10 and50 agerts,
but gererally it scales with N (seealsothe commentsabaut it in the next secton). If demand are

"Every T, timestep-ia; = 10% of the agentsthatdid not testa new pricein the lasttestingperiodentertrial mode.
Asymptoticallythis meanshattherewill be (0.1/1.1) N = 0.0909N agentghattesta new priceevery T, timesteps.
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calcuatedasin Sec.2.6theadapion time is greatly reduedto abaut 5 timesepsandit is therdore
enowh to wait only 7;, = 10 timestgs betwee two conseutive price charges. It is very important
to note that changesin price muststill be madeon a slower time scak than adapion of demand
asstill sometime is needé for the redistribution of money. Note alsothatin the semnd casel; is
independeat of NV, while in thefirst casel;, scaledinearly with V.

In termsof stablity, it is not possible to violate this rule: If demandsare calaulated prices will go
to infinity if 7, < T, becusein the timeste after a price increasethereis an upward jump in
utility. In the case of trial-and-eror adapion of demand, makingprice adapationtoo fastrelatve to
conaimptionadagation leadsto higher stealy statepricesor (in caseof very fastprice adgtion) to
coniinuously increasingprice$. Thereasm for this is simpleandwill be explainedin moredetal in
the next sectian: A priceincreasewill initially increasethe correspondng income; the redudion in
salessetsin later.

Thetakular belov givesa quartitative overviewon the dependene of p55 on T, for too low chaces
of T}, in asystemof 50 agens with trial-and-erroradaion of demand:

T, Pss
100000 | 0.46
80000 | 0.48
60000 | 0.51
20000 1.31 (2.3
10000 6.5
1000 2e8
1 00

Thesepaationof time scaleds alsoreflectal in the Lagrangan solution: Onehasto solve for the z;
first, whenpricesaregiven,andthenoptimize prices basedon the consimptionbehaior.

2.10 A difference between trial-and-error and calculated adaption of
demands

Fig. 2.13isacomparsion betweerthesimulaionswith trial-and-eror adagion andthecorrespondng
simulaions with calcuated adgtion of demamis. Obviously, the average equiibrium price g is
higher for trial-and-eror thanfor calcuation. Why arethe restuts (apartfrom different fluctuations
anddifferenttimes@les)not the same?The rea®n is thatin the caseof trial-and-error adagion the
systam exhibits a feature which is abset whenthe demamsarecalcuated

In the caseof trial-and-eror adapion every testof a new price is followed by a transientjump of
utility. If alower priceis testel, thejump will be downwards, becawsein thefirst timestes after the
price change the agen earnslessmoney for the sameamoun of work. Mathemaically, assune that
all agens chage price p andoneagent chargesit to p + dp. The production ¢ ~ M /p of theager
will notchange in thefirst timestep, but herincomehaschangedto ¢(p + dp). Thusshecanbuy now

8This is clearfor examplefor T}, = T, (for the samereasorasfor calculatedadaption).The transitionpoint from “too
high” to “infinite” equilibrium price canbe describedike that: If T}, is so smallthatthe recosery time after an average
priceincreases longerthanT, evenif therewould beno noise,all average(andlargerthanaverage)priceincreasesvill be
accepteanthuspriceswill goto infinity.
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Tnew ~ % from the othe agens. Theresuting jumpin utility is

dU = 2(N — 1)(v/Tnew — \/Told) (2.38

wherez,;g =~ M/p/(N — 1). Tofirst orderin dp thisis

dU = /M(N — 1)%19. (2.39
Consicerthe casedp < 0 now. Dueto adagion of the demand the incomewill slowly go up (along
with the production) and(if onewaitslong enaugh)a new steadylevel of utility will bereacted.
mustbechosenlarge enaughsothatthis level is reacedbefare 7, timesteg areover. Fig. 2.14shaws
how thesetransientjumpslook like in caseall agents chargep exceptonewithp = p + dp < p.
Differert valuesfor p andp, areconsderedin a systen of 50 agerts.
Obvioudy, the “recovery time” (the time it takes for the agern to comebackto the former level of
utility) shawvs two important featues. First of all, for a given p, the recovery time doesto a goad
appoximation not depend on dp (of cousewe consder only p’s thatareabout1/1.05p). A higher
|dp| caugsa strongerjump in utility, but it givesalsoa stronger sigral that the other agentsshoutl
increasetheir demandor thatproduct.
Secondy, adepedene of therecaovery time onp is observed. As p — psg ~ 223 M /(N —1)1/3 =
0.434 , the recovery time increasesand eventually becaneslarger than 7, = 100000. This effect
is easily understoa. As p — psg, the averageproduction increases.But becase of the concavity
of the consumption utility, the agens gain ever lessfrom a further increae of the demans. Thus,
the signd that the ageris shoud increasether demandor the cheaperprodwct becaneswealer and
morehidden by the (condant) noise (the conganttesting of all demandgin the sysem. Indedl, in a
simulaion wherethe noise is redwed,therecovery time staysvery smallasp — x5, SeeFig 2.15.
Given thesetwo featues of the recovery time, one seesthat as soonasthe recovery time becanes
larger thanT;,, the deflation of pricesstops. At this point, an average price increasehasabou the
samecharceto beaccepedasanaveragedecrase.As explainedin theprevioussecton, if 7 is very
small,evenaconsantinflation of the prices canresut. In this sen®, 7, canberegardel asakind of
“patienceparamet€’ for theagers. It givesthe maximumtime the agens arewillin g to wait aftera
downward jump of utility to comebadk to the former*“standardof living”.

In the simulationswith calcdateddemand there arealsotrarsientjumpsin utility, but the recorery
time is notdependen on either IV or the currert price level in the systen. The transent hasdied out
assom astheredidribution of money hastaken place(seethe previoussectia). It is clearthen that
theresuting stead statepricecanonly beloweror equd to the steaq stateprice in thetrial-and-aror
simulaton.
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Figure2.1: Simulationwherethe demanls ;; adaptvia trial-and-error while prices arefixed. The
price of agent 0 is fixed at 2.4, the prices of all othe agens arefixedat 3. TOP: Producion. CEN-
TER: Utility. BOTTOM: Money. Thefatline descibesthe averagebehaior, the sinde thin line the
behaviorof the oneagern with the lower price, all otherthin lines areexamplesof othe agens. One
cleally seeghatdemand slowly move towardsthe goodwith the lower price. Onealsosees thatthis
resuts in a higher utility for thatagen, meanirg thatin this caseaverag pricesaretoo high andan
individual hasanadwantagewhenchaging a lower price. This effectis whatwill drive the adapation
of pricesin Sec.2.5.2.N =10, M = 1.
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Figure 2.2: Samesimulafon asin the previous figure, but with 50 instead of 10 agents. 100000
timestes for the adapion of the prodiction to the pricesituaton is still enotgh.
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Figure2.3: Simulationwhereboththe demand ;; andpricesp; ada via trial-and-eror, sysemof
10 agents TOP: Prices. SEQOND: Produdion. THIRD: Utility. BOTTOM: Money. One seeshow
the systen relaxestowards a price of about0.87, a prodiction of about 1.15, anda utility of abou
5.7. The bottam figure shavs that the average per capta amourt of money in the systemremairs at
one(asit shoud) but thattheindividua amountof mone fluctuaesconsiceraby.
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Figure 2.4: Samesimulaton asin Fig. 2.3, but with 50 insteal of 10 agerts. The sysem relaxes
towards a price of about0.46, a production of about 2.18 and a utility of abou 18.22. This can
be compareél to the analytical resut (seeSec. 2.4) of 0.43, 2.31 and18.59, respetively. Note that
the relative fluctuatons in the individual production areabaut the sameasin the simulation with 10
agers.
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Figure2.5: Simulationwheredemarls arecalcuatedoptimally while prices adayt via trial-and-error.
TOP: Prices. SEGOND: Producion. THIRD: Utility. BOTTOM: Money. Onesess thatthe sygem
relaxes towardsthe samevaluesasin Fig. 2.3. Note the much shater time scak on which that
haprens.
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Figure2.6: Simulaton wheredemang arecalailatedoptimally while prices adaptvia trial-and-eror,
with 1000 agens. TOP: Prices.SECOND: Producion. THIRD: Utility. BOTTOM: Money.
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Figure 2.7: In the large N limit the relative fluctuafons are independen of the numbe of agers.
The figure shaws the individual production of an arbitray agent in sysemsof 10 (solid line), 50
(dotted line), 100 (dasted line) and 1000 (long dasted line) agerts. The resuts areall scalel up to
the N = 1000 production level. The fluctuatons shauld not be larger than20% of the equilibrium
productionvalue,which is corfirmedby thefigure, too. Note espeially thatasa conequere, in this
modelthe prodiction of anagent cannever dropto zero.

3
top: system with 10 agents
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3 bottom: system with 1000 agents
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Figure2.8: Theequilibrium price is a decreasingfunction of the numbe of ageris in the sygem. The

decrasein priceis in agreementwith the “large N ” solution from Sec.2.4.2:

N

10 100 | 1000

simulaion | 0.824| 0.345| 0.159
analtical | 0.763| 0.343| 0.159
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Figure2.9: Theaverage amour which the agens sellis deaeasirmg with N (asit shauld), the average
productionis increasingwith N.
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Figure 2.10: Average utility is increaing with N. Comparewith the equivalentFig. 3.12for the
logistic modelwherea very differentbehaiour is obsened.
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Figure2.11 The production andutility areindependen of the amourt of money in the systen, but
prices are propationd: For the prices, the solid line (which representsthe simulaion wherethe
average amountof money is 5) is scded by a facta of 5. For production and utility no scalirg was
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Figure2.12: Exponential price decayuntil equlibrium price is reachel. Fitting paramegrs: B, o =
19.99, ¢ = 0.000237, P, = 0.159. Simulatonwith 1000agens anda high initial pricelevel of about
20.
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Figure 2.13: Comparison of the resut for the steaqy stateprice level in the simuldions with trial-
and-erroradagion (solid lines) andwith calcuatedadapion (thin lines) of demanls. Top curvesare
for N = 10, bottam curvesfor N = 50. The curves for trial-and-egror give a higher resut than
the correspondng curvesfor calaulated adapion. Thet-valuesof thethin curvesarescakd, asthese
simulafonsrunfor amuchshater time.
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Figure 2.14: Depencencies of the “recovery time”. Simulation of sysems with 50 agentsand
trial-and-eror adaptbn of the demamls. TOP: The prices are fixed at (from bottom to top)
p = 3,2,1,0.6,0.5,0.46. At timeskep 10000 the agen whoseutility is shownlowers her price to
pr = p/1.05 (sdid lines) or p, = p/1.08 (dashedlines). (For the simuldion with p = 0.46 it is
p = p/1.02 andp;, = p/1.05, respetively.) The recovery time increasesasp deceasesbut it is
appioximatel independentof the change in price for agivenp. Forp = 0.5 therecoverytimeis ap-
proximately equal to 90000 sothatacceptane of lower pricesis strormgly suppgessed Forp = 0.46,
the recovery time is larger than,, = 100000 andno further deflation of the priceswill be acceped
arymore BOTTOM: The simulaion with p = 0.46. Thefatsolidline is the averag utility level, the
recovsery time is thetime betweerthe jump andthe crossng of individual andaverage utility.
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Figure2.15: Theinfluence of the noise (the condanttesing of demandg) on the recorsery time. The
dasfedlines arethe samesimulatonsasin Fig. 2.14with p = 0.5 andp = p/1.05 andp; = p/1.08,
respetively. In the simulaions repregntedby the solid lines, the sameparameers are used but
all agerts areonly allowed to adap the demandfor the cheafr product. They always have to buy
the sameamountfrom all the othe agens. The consantsolid line is the averag utility. TOP: The
recovery time is muchshorer whenthe adapion of demandof the cheaper product is not destubed
by the noisein the sysem. The recavery is thengoverned by the pamametersl; and f; ;qnq (S€€
Sec. 2.2) alore, i.e. during recovery on the averageevery agen will raisethe demaml by a facta
(fz,rana) = 1.005 every2 x (2T,) x N = 4N timeseps. Thus,there is no depemlenceonp like it
is descibedin Fig. 2.14. BOTTOM: Also afterthe recasery time haspassedthe noise makesit very
difficult for the ageris to find the optimal demandor the proauct.
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Chapter 3

Logistic consumption utility

3.1 The model

In thefollowing we will consderthe effects of a different functiond form for the consumptionutility,
ie.

2
q
Ui=—5+ D mii (1— i) . (3.1)

The differenceto the squareroot utility function is thatin the limit N — oo (wherez — 0), the
slope of the consumption utility is 1 andnot co. This meanghatit is very easyhereto subditute one
product for anotter, e.g. if oneconsdersthe price of a producttoo high. It is very cleartherdore
thatall ageris which do notbehae like the average will bein seriaustrouble, asthey will eitherlose
all their money or they will have to work muchtoo much. Thus,testing of pricescaugsvery large
fluctuaions which makesthe modelharde to hardle thanthelast If oneis not very careil it will

always be possible that the ecanomy compldely “loses’ someof its agens. Furthemore, it is not
alwayspossble to usethe samemeasuremat methals (e.g. for equiibrium utility) asin chager 2,
becaisethefluctuaionscanbesolarge thatthey arenolonger symmetricwith respectto upwardand
downward fluctuaions.

3.2 Analytic results

3.2.1 Optimal consumption

As in thefirst model,the optimalconsimptiongiven 34 ;_; canbecalcultedanalyically. Theresut
IS

1 D ki Pk — 2M; 1
1
Altogether:
1 Zpk 1
_ _k#i . .
Tij = 2 —Pgm + M; 1 pj Zplzc (3.3)
k#i ki
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Notethatz;; is not propational to M; ;. In thehomoge@eots situation, all pricesarethe sameand
thusthefirst andthe secoml termcarcel out, but thisis nolonge truewhenprices aredifferent. In this
case,if anagenthappensto have the doulde amountof money to spend in a certan timeste thanin
the previous,shewill notbuy the double amoun of goodsfrom every agent but distribute hermoney
in amuchmorecomplicatedway.

Accordng to the above equaion, z;; canbemmenegative. For examplg assumelM; — 0 andall
prices exceptp,, thesame.Then

1 pon+ (N —2)ppm
PSSR [y [/ 34
Tim = 5 ( P2+ (N—2)p2 )’ 34

whichis negative for p,, > p.

As usual in suchcaseswe will setthe correspoming z;,,, to zero. This means,however, that the
correspondng goodneed to beexcludedfrom the calcuation; in other words,we now needto calcu
late >y i m P ANAY g2 1y p; andre-cdculate all z;; 2. This needso bedoreiteratvely until no
negative z;; is left. Notethatthis is notanisste in equiibrium whenall numbes are“reasonabk”,
but it is anissue for asimulation.

3.2.2 Optimal price

The“large N” resut canbe obtainedexacty asin basc model.lt is here

_(N+3)M
S (3.5)
which meanghat . N1
~——andg~ ——. 3.6
TR N3 MR N (3.6)
This givesfor the utility:
U= (L)2(1/2N2+2N—25) (3.7)
Ni3 .5), .

which is a monotaically increasirg function of N with a limiting value of 0.5 (seethe plot of this
function, Fig A.2). Note the differencebetweerthis resultandthe resut U o« N?/3 for squareroot
consimptionutility. Here,becasesubditution getsever easi& for x — 0, theutility is bourd in the
limit N — oo.

As will be explainedin Sec. 3.4 one hasto be cardul abou the interpretaton of M in Eq. 3.5.
Especidly for large N, M canrot be setequalto M,;,;/N.

3.3 Simulation results

3.3.1 Trial-and error adaption of the demands

Figs.3.1and3.2shav theresuts whenbothdemand andpricesadaptvia trial-and-error, asdescrbed
in Secs.2.1and?2.2for the squareroot consumptian utility.
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Becausg of the strongreactions which areprovoked by the price adgtion procedure two things had
to bechargedcomparel to Secs.2.1and2.2:

Thefirst chang hasto beintroducedin ordernot to “lose” someageris: During the time whenthe
systen is evolving towardsthe stealy stateandthe averageprice is consantly falling it canhappen
thatanagent does nottry to adjust her price downwardsfor along time andtherdore endsup with a
price which is muchhighe thanthe average. Of course, this canhappae in the first model,too, but
only with logistic consumption behaviour theseagentswill hene geta compldaely wrong sigral to
wherethey shoull adaft the price!
The crucial differenceis that here, the other ageris would optimaly buy nothing at all from these
agers andrathersperd all their money for other(less expensve) products: The optimal consumptian
of this product asgiven by Eq. 3.3would be negative. Soif the price p, of the “expensie product”
is high enowgh, the otheragentswill constntly deaeasetheir demam z, for it, no matterin which
diredion this agentchargesher price. Note that z;, cannd drop to zerg though, asthe adapton is
multiplicative. Thus,the utility of thatagentslowly decassto zero(exponentilly) andit seemghat
the agentwould alwaysgo backto the sameprice aftertesing.
Thestodastcity (noise) in themodelleadsto adifferentbehaiour: Suppsethepricefor the product
staysconstant.Then,asz;, goesto zerg the effect of afurther decreaeof a3, on utility is hiddenever
moreby the (constant)noisein the sysem, as,in absdute value,the deceasesnustbecane smalle
andsmaller Theagentswill thusslowly losethe signal thatthey shoud decrasetheir demandy, of
the prodict. Now suppaethe agen changesher price by dp. Thiswill causeajumpin utility in the
next timeste by

dU = g+ dp + O(¢?) (3.8)

(The calcultion to obtan this resut is the sameasin Sec.2.10,but the exparsionis for smallg, as
g — 0. dp neednot be small). After that, no matterif dp is larger or smalle than0, utility will still
have the tendemy to go down. As this tendaecy becanesever wealer, the effect of a price chang
will be (onatimescde of theorderZ,) amereshift of utility up or down by dU . Thus,priceincreases
will beacceped, becaisethe signal(the tendency of the demando go down) is soweak. Theresut
will bethatp;, steadly goesup, the increase being dampedonly by the condtion that the signal to
decraasethedemandmustnotbecanesostrongthatthetrarsientjumpin utility after apriceincrease
candie out beforeT;, timestgsareover.

Thefollowing four figuresshauld sene asanillustration of this effect

Fig. 3.3 shaws the resut of a simulation wherenothing is doneto avoid this “loss of agens”. The
pricehistory of oneagen whomeetghe“fate’ descibedaboveis shown.Notethatthesystenrelaxes
towardsa higher averagepricethanin Fig 3.2. Thereasa is thatbecaisethe sysemhaslost someof
its agents, the restcanshae alarger amour of money peragent which caugsthe stealy stateprice
to goup, seekEg. 3.5.

In the next simuldion (Fig. 3.4), all ageris exept one have a fixed pricep = 2. Oneagentstars
with p, = 5 andis allowedto adapther price. Thefigure showns that this ager receivesa compldely
wrongsignal: Theagent choosesanexporentialincreaseof her price insteal of goingto (andevena
bit below) thepricelevel of theotheragerts. Therea®nwhy thepriceincreasesreaccetedis shovn
in Fig. 3.5: As the demandof the prodict goesto zerg the signal to furtherdecreseit becomesery
weak. If the pricesarekeptfixedatp = 2 andp, = 5, andthe effect of a singe increaseof p, is
studed for differentinitial valueszy, o of thedemandoneseeshat if z, ¢ is smallenowgh, the price
increasedoesmerelyshift up the utility by dU (onatime scaleof order).

Fig. 3.6 showsthatif we redwe 7y, the inflation of the price p;, (per7,) will befaster Of course,
this is becawseprice increaseshave better charcesto be acceped. This is the sameeffect asthe one
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which causea thetrial-and-eror simulaionsto yield a higher equilibrium price thancalcsimulations
smallerT}, meandesstime for thetransentjump of utility to die out.

In orde to preventthis unreasomblebelaviour it wasenaughto introducea “lower production limit”:
Every agentthatproducedessthan10% of theaverage production is forcedto lower herprice aslong
asherproduction staysbelow this value

The problemthathigh price agents getdecaipledfrom the systemwill be presemin the next sedion
whereagens areallowedto calaulatetheir opimal demand, too.

In the systemof 50 agers asecoml changehasto bemade becaseZ, = 100000 is notenoudn to get
area®nable resut for the equilibrium price. As explainedin Sec.2.10,7, mustbe chosenso large
thatevenasp — pgs (asanappoximaie measureof psg Eq. 3.5 canbe used)the transent jumps
in utility aftera chargein price have the time to die out. Thereare essetially two paranetersthat
deteminethelengh of therecovery time aftera utili ty-jump:

First, becawse of the convity of the consumptia utility, the influence of the constantnoise in the
systan cawsesthe recovery time to increaseasthe average price in the sydemdecrases.This effect
deteminesfor examplehow fastthe utility goes up afteradownwardjump of utility dueto alowering
of the price. The strergth of this effect shoud be aboutthe samefor ary utility function: E.g. for
logistic consunption the sydem reacs strorger to price chargeshbut this doesnot only increasethe
“background noise” that dampes the recovery but it meansalsothatthere will be a strongersignd
for all agentsto reactto the price chargeunde consderaton which makestherecovery faser.

The secaond paraneteris dU (dp), i.e. how muchthe utility jumps after a charge dp of the price.
Performirg the samecalaulation asin Sec.2.10,0nesess thatthejumpin utility is here

M(N —1-2M)dp

dU = N .

(3.9)

For acomparsionwith theresut Eq. 2.39we have to consder therelative jump lenghsdU /U (p). If
thepricelevel in thesysemsarep,,; andp;,4, respetively, thedemarmisareapproimately given by
z = M/p/(N — 1) andtheproduction by ¢ = M /p (subsriptsomitted). This givesthe utility levels
U (p) afterinsating ¢ andz into theresgective functiona formsof the utility. Now assuming dp/p to
bethesamein both casesve canlook atthe quatient of the prefactoss, i.e. we corsider

dUlog (plog ) / Ulog (plog)
dUsqrt (psq'rt)/Usqrt (psq'rt)

We choo® p,q-+ andpy,, to beof theform ¢ x pss anaiye, Wherec is beweenl and2 andpgss anaiyt IS
therespective analytical resut for the Nashequilibrium price. Like this, the abose quotient becanes
afunction of c and N. Thefunctiona form of it is quite complicated,but therestt is

Q=

(3.10

Q~4 (3.11

for the above range of ¢ and N betwee 10 and 100. Thus, the jump in utility will be abou 4
timeslarger for logistic than for squae root consimptionutility. For the simulaion with 50 agers,
T, = 100000 is no longer enaughthen, asis shavnin Fig. 3.7: In this simulation, the pricesarefixed
atabout40% above therespective analytically predcted equiibrium values(i.e. ¢ = 1.4) andattime
t = 10000 oneagent changesherpriceacmrdingto p — p = p/1.02. Clearly, therecovery time for

logistic consumptian behavioris muchlonger thanfor squae root consumptionbehavior beausethe
jumpin utility about@ timeslarger. It is alsoclearfrom thefigurethatZ, mustbechasenmuchlarger
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than100000 for logistic consumptian, asevenfor thisrelatively high pricelevel, thelower pricewould
notbeaccepedafter100000 timestes(asexplainedin Sec.2.10,therecoserytimewill becaneeven
longer asp decreasedurther). For the actual simulation (Fig. 3.2) we chos 7, = 500000. Fig. 3.8
shaws the resut of a simuléion with 7, = 100000 compaedto the resultof the simulation of Fig.
3.2. As T, is muchtoo small, the deflationof the prices stopstoo early which meanghatthe sysem
endsup with ahighe equilibrium pricethan in the simulaion with Z; = 500000 or in the simulaion
wheredemand arecalaulated.

3.3.2 Calculated adaption of the demands

Figs.3.9(N = 10) and3.10(N = 100) shav theresuts whendemandsare calcuatedaccading to
Eq. 3.3insteadof adagedby trial-and-eror. Thisincludestheiterative procedureto replacenegaive
z;j by zero. Again, we notethatcalaulating instead of adaging consimptiongives(within the limits
setby toosmall7,, in thetrial-and-eror simulaions)thesameresut while speedingup thesimulation.

An importart obsewationis thatin the simulaion the prices of someof the ageris perfam arancom
walk. The problem is related to the onedescibedin Sec. 3.3.1. In this case,agentswith too high
prices will sell exactly nothing at all. If thosepricesarehigh enaugh, production will stayat zero,
evenif thepriceis lowered. Thatmeanghattrial-and-errorpriceadgtation doesnotwork hereeither,
but theresut of thetoo high priceis notacongantincrease(asin Sec.3.3.1)but arandan walk of the
price Every new priceis acceped becaisethe utility doesnot chang (it staysat zerg). Like this, it
is always possble thatthe pricewill eventwally becomdow enowgh sothatthe agent findsthe signd
thatsheshoud decreaseherpriceagain

Here, the soluion to avoid theserandan walkers is that every ager that hasproduction zero must
entertestng modeimmediatdy (i.e. shewill entertestig modefor surein the beginning of the next
testing cycle) andtesta lower price. Like this, no agentwill ever bein a position whereher priceis
somuchhigher thanthe averagethata decraseof the price doesnotincreaseher utility.

Actually, this effect is very important in geneal for thesetypesof simuldions. Sincethe agens
essetially do hill climbing,thereneedsto beaslopein order to find the uphill direction.

Thefollowing tables summarizeheresuts for N = 10:

quartity | large N pred| xcalc sim| tr-and-errsim

p 1.44 1.49 1.54

q 0.692 0.673 0.648 (312
U 0.399 0.394 0.386

andN = 50:

quartity | large N pred| xcalc sim| tr-and-errsim

p 1.08 1.07 1.13

q 0.925 0.939 0.887 (313
U 0.48 0.429 0.400

A commentto theresut for theequlibriumutility: In the simulaion with 50 agens the experimental
resut seemdar off from theanalytical predction. Thisis easyto explain if onelooks atFig. 3.2. All

measued quartities except utility shov approximatdy as strorg upward as dowvnward fluctuaions.
Thesefluctuaionsarecausel by tesing of “bad” prices. For utility therecanbe only downwardfluc-
tuationsasit is utility itself thatdetermireswhethe atestedprice is “good” or “bad”. By definition,
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in equilibrium all ageris will always go backto their former price after testirg. Now let {5g the
utility level of the ageris that arein stealy statebut do currertly not testa new price. If the price
testes areincludedin the averageing average utility in equlibri umwill alwaysbe smallerthan U5g.

If the downward fluctuaionsaresmall (asthey arefor squareroot consumptionutility ) the error will

be small. Here,the fluctuaions arevery strorg, asthe agens foll ow logistic consumption behaviou,
andUgg shauld thusnotbe measuredby the average utility. A bettervalue for Us s canbeobtanedif

onetakesthemaximumof utility of asinge arbitrary agen. Thiswould be0.45 for thetrial-and-eror
simulaion with 50 agens and0.49 in cas of calcuateddemars.

For simulatonswith more agens, the prodemswith measurenentwill be worse,andwe chaoseto
excludethe pricetesersbefare averageing seebelow

Still, theresut for thetrial-and-error simulation is far off from the “calc” simulaion. A closerresut
would probably be obtanedif 7, would be chosen even higher than 500000 (or equivalently if the
fluctuaionswould bereduced).Furthermae, simulaton time shoudd beincreaed,too, in order to get
a more predse resut, but the simulaion takes solong (even 5 timeslonge thanthe correspondng
simulaton in chaper 2, becaseof the increaseof 7;) thatthis makeslittle serse. The bestthing to
dois to take the resut of the correpondng “calc” simulation. It is interesting to note herethatthe
equiibrium priceis lower thanpredicted. This effect is analysedbelow

As in Sec. 2.6 we canalso constder to simulat systemswith more agens. For simulationswith
large N (N >= 100), athird chang (compare to the corespomling simulaions with squae root
utility) hasto be introduced. It merely hasto do with the methodwe useto measurehe resuting
ecoromic quartities in equilibrium: For large N, the fluctuaions beamme so strorg that there is
an asynmetry betwee upward and downward fluctuaions, becaisemoney and production cannd
fluctuae downwardsbelow zero while thereis no bourd in the upward diredion. As soonasthis
asymmety occus, theequilibrium valuesof theecoromic quantties becanedepadenton how much
thepricesareallowedto fluctuae. For example,thelarger thepricesareallowedto fluctuat, thelarger
will theupwardfluctuaion of prodwction bein caseof atestirg of alower price. This meanghatthe
agersthatarein equilibrium (the onesthatcurrently do not testprices)would give ever moremoney
to the onesthat testlower priceswhile they always give nothing to the onesthat testhigher prices.
Like this, the average amountof money Mgg of thes agens is dependen on the amplituce of the
pricefluctuations: Mggs decreaeasthe amplitude of the price fluctuaionsincreasesBut asthe Nash
equiibrium price pgg itself is proportional to Mgg, evenpgg will depeml on this amplitude. Utility
in equilibrium, asa specia case canfluctuae only downwards asevery testof anew price mustlead
to aworseutility. If theamplitude of the pricefluctuaionsis high, utility will fluctuateto zeroin case
of atestof a highe price. The fluctuaions dueto testing of lower prices will go muchbelow zero
(asthe production strongly fluctuates upwardg andareagaindependen on how muchthe pricesare
allowedto fluctuate

Here,aswe do not vary the amplituce of the price fluctuatons, the importantobservation is that this
effect will apper whenwe are consicering sysemswith large N: As is shownin the next sectim,
thefluctuaionsin production will be proportional to N. With our choice of the maximumfluctuaion
amplitude of the pricesgivenby p — 1.1p or p — p/1.1 theeffect appearsfor N >~ 100 ascanbe
seenin thetalular below.

quartity | large N pred| xcalc sim

p 1.04 0.97

U 0.49 0.32 (3.19
q 0.96 1.03

M 1 1
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For thefirst time, the expelimentalvaluefor pss is corsideradly lower thanthe analyical predction
Danalyt = %M . As seenabove, this is becaisewe have to insett Mss into the formulafor pgy,qiy:

andnot M;,/N = 1 aswe did up to now. The measued equilibrium utility is much below the
predcted value, becauseof the strorng downward fluctuaions of individual utility. The sameapgies
to production: Its measurd equilibrium value is highe than predided beauseof the strong upward
fluctuaions of the production of the agerns thattestlower prices

For evenlarger N, the experimental valueswould differ even more from the predcted values. For
examplethe average measued utility will becane negative while the analtical solution saysit will
corvergeto 0.5.

For themeasuementof theequilibriu m valuesit seemsnostnaturl to exclude alwaysthe agens that
arecurrently testing a new price befare averageing. At the sametime we canincludethe depandene
onthesteaq statepriceonthefluctuaionsin theanaltical solution. Thisis shavnin thenext sectian.
Like this, measuedandpredcted valuesfor thecaseN = 100 aregivenby:

quartity | large N pred| xcalc sim

p 0.99 0.98

U 0.49 0.49 (3.15
q 0.96 0.97

M 0.95 0.95

The agreenentis muchbette now. Note especially, thatthe average amountof money of the agens
in equilibriumis no longe fixedat 1. It is belonv belov 1 beausethe “low-price-tesers” posesan
disproporionate shareof M;,;. Note also,thatthe predidedvalues for utility andprodiction did not
charge compaedto the lasttatular. This is becaisethe refinedanaytical solution merelyincludes
the calcuation of Mgg. The predcted value of the stead stat price is then obtaned by inseting
Mss insteadof M into the formulafor pepaiye. ¢ = M/p, = q/(N — 1) andtherdore alsothe
predction for U is thusnot changed.

3.4 Fluctuations

A striking featue of the modelarethe obsewed strong fluctuaions. Indeed, oneexpectsthe fluctua
tionsin this modelto be muchlarger thanin thefirst model,sincein thez — 0 limit (or equivalently
the N — oc limit) theslope of the utility function is oneandnot infinity, which meanghat subsitu-
tion is alwaysathand Thisfactis illu strated in Fig. 3.11,wherefluctuaionsin individual production
arecompaed betwee the two modelsfor N = 100. Thevery differentkind of consumptionutility
malkes the fluctuaions increasewith N much stronger thanin the first model: Comparethe fluc-
tuationsin the systemof 100 ageris to the sysem of 10 agens (Figs. 3.9 and 3.10). For logistic
conuumptionutility both abolute aswell asrelative fluctuatiations in production are propationd to
N: If in thehomogenoussituaion oneagert changesherprice by dp, herprodiction will fluctuateby
appoximately
0q =~ 0.50p x N. (3.19

Note,thatis astriking differenceto thesquareroot model,wherethefluctudionsincreasgin absdute
value) only oc N1/3,

Thecalcultionthatleadsto theresut Eq. 3.16isthesameasin Sec.2.7: Firstcalcuatetheallocation
of money in caseall agentsexceptagent; chage price p. This redue@sto solving thefollowing linear
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systen of equatons:
Motn, = p(N — 2)Zoth + Ti,oth) (3.17)

M; = Myor — (N - 1)Moth- (31&

Here,z,, is the amoun of goods thatthe “other” agens excharge amongthemsévesandz, 4, is
theamountof goodsthatagert 7 buysfrom anarbitrary otheragen. Both z,;, andz; o4, aregivenby
Eq. 3.3.

After solving for M,,,, onecancalcuate x4, ; (the amourt of goods thatthe other agerts buy from
agert 7) by insating theresut for M., into Eq. 3.3. Theprodictiong; = (N — 1)z, is thengiven
(tofirst orderin ép = p; — p) by:

1pN2 — (3p+2M)N + 2p + 8M
4q; = 9hom — Ep ( P pQJ\)]— P (5]7- (319)

Assumingthatthesystanis in therelaxedstate we cansetp ~ 1. In thelimit N — oo thefluctuaion
in production is thengivenby Eq. 3.16. NotealsothatEq. 3.16givesbothabsdute aswell asrelatve
fluctuatonsatthe sametime, asin thelimit N — oo gyor, = M/p = 1.

Thus,oneseeshatin caseof alowering of the price, therewill be very strorg upward fluctuations
in produwction if therearemary agentsandin caseof anincreaein price the production candropto
zero. Thisis not possible for the squareroot utility whereproduwction fluctuaesnot morethanabou
20% up or down (seeSec.2.7).

A corsequace of the strong fluctudions is that (compaed to the first model) the average utility in
equiibrium is increasingwith N only for small N: For large N it is againdecreaingandeventually
even becanesnegative: As with production, utility showstwo kinds of fluctuations. If an agert
increasesher price, utility will drop to zeroalongwith the production, but in caseof a lowering of
the price, utility canfluctuae muchbelov zero asthe production goesup! It is thes very strorg
downwardfluctuaionsin theindividualutility which make the averageutility uselessasa measuref
Usg, theuutility level of theagens in equiibrium. Theindividual utility is (apartfrom the dowvnward
fluctuaions) positive and exhibits a strong cutdf in the upward direction, as after tesing of a new
price in equiibrium (leading eventwally to a decreasein utility) utility will jump backto its former
value A measue of Ugg canbe obtaned by excluding all agentghataretesting a new price. Now,
we againobsewe thatutility is increasingwith N aspredctedby Eq. 3.7, seeFig. 3.12. As explained
in thelastsecton, we adop the sameprocedurefor the measurenentof all ecanomic quantties.

A directconsguene of the asymmetry of thefluctuaionsis that Msg is < My, /N for large N (see
Fig. 3.13). This hasanimportantinfluence on the Nashequilibrium price, aspss is propationd
to Mgs: For N >= 100, the average equilibrium price goesbelon 1 asis shownin Fig. 3.14.
Analytically, this canbe undestoal becaisethe M in Eq. 3.5 mustbe replacedby Mgsg. Like this
pss becanesdepenienton thefluctuatons.

An analtical expressionfor Mgg canbefound like that: We introducethe paramegrsr and f that
descibe the pricefluctuation.r x N is the average numberof agens that testlower prices(of course
it is likewisethe averagenumker of ageris thattesthighe priceg. Ontheotherhard,p = f X pgg
is the expectation valuefor alower price which is tesed. The values of » and f mustbe detemined
very exactly, astheresut will bevery sensble to slight changsin r» and f. Thevalueshave already
beendeteminedbelowEq. 2.35,they arer = 0.04545 and f = 0.9531.
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For the calaulation we assumehatthe r N ageris that testa higher price canbe excludedfrom the
systen asfor these M = 0. Thisleavesr N agens with pricep andmoney M; and(1 — 2r)N agens
with price psg andmoney Mgg. Theusud stead statecondtion is

Mss = pss{((1 —2r)N — 1)zss + rNzss,} (3.20
Mot /N — (1 —27) M.
M, = tot/ (T r)Mss (3.21)
wherefor zss andzss; Eq. 3.3 hasto be used. Beforesolving for Msg, weinset alsop; = fpss
andfinally Eq. 3.5,pss = % Theresuting systemof equationsis still linearin Msg and

yields a quite complicaed formulafor the dependene of Mss on (N, M = M,;,/N,r, ). Becaug
all paramegrsexcept N are consants,we insertthesevaluesanddisplay Msg asa function of N

alore:
(N —1)(0.9504N — 1)

0.001843N3 + 1.806 N2 — 3.713N — 1.905
Thefunction is plottedin Fig 3.15.

By reinsetion of Mgg into the expressionfor psg the refinedformula for the steaq stateprice is
found.

Mgs(N) =2

(3.22

Thefollowing takular showstheresut of anexperimenal testof the new formulae for Mss andpss.
In the sysemof 300 ageris we find:

quartity | large N pred| xcalc sim
p 0.815 0.803 (3.23
M 0.804 0.803

In orderto getsomemoreinsight into the dependere of Msg onr and f, it would be nice to find
anappioximation to the full expression Thedependereon N is « 1/N for large N, but becauseof
the small prefactor of the N3 termin the denaminatog the 1/N term dominaesonly for very large
N (N >= 5000). For thetayler expansionin theinteresting range N < 1000 mary termsmustbe
consderedandthustheresultdoes notbecomecleaer.

3.5 Some discussion

As shown in the previoussectbns, the large fluctuationsin a modelwith logistic consunption be-
haviour canresut in alot of (initially not expeded) new effects. In termsof stablity, thesefluctua
tions arehardto handke. We tried to change aslittl e aspossilte in the codewhenwe switched from
squae root to logistic consumption utility sothatit was possille to comparethe resuts of the two
models but in apossble furtherdevelopmentof a modelwith logistic consumptian utility oneshoud
neverthelesdook afteraway to redue the fluctuations. Below aresomeideas how to do that:

Theeasiesway to contrd the fluctuationsis by adaping the amplitudeof the allowedfluctuaionsin
theprices Theamplitude shodd bereducedwhenlarge N areconsdered This doesnot necessarily
meanthattheapproachto the stead statewill take longer: If thesystem startsatatoo high pricelevel
andthe price adagion amplitude is very high, large price decreaeswill not be acceped (evenif the
new priceis abore pgs) becaisetheresuting increasein production (work) is so high.
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The strong fluctuaions can also be seenas a result of too much information and flexibility. For
example introducng a spatal comporent will redwe thesefluctuations: In caseof a small price
charge,only the conaimersbeinglocatedright atthe borderline betweertwo sugplierswill switch.

Similarly, if consumergeadedonly imperfectly to price differencesthe strorg fluctuaionswould go
away. This couldfor examplke be achieved by using somethng like

.’L‘ij
2 < o P (3.29

Tik

for the allocation of consumption when price differentids are smalt Suchan approachwould be
congstentwith apprachesn Statisti@l Physics

YIn fact, theleadingtermsfor consunption are

1
o~ (P=pj)+ 4 (3.25)
Onecouldreplacethis by

1
@~ (P —p;) | tanh[8(P —py)]| + 1 - (3.26)

For 8 — oo this would returnto whatwe hadbefore(zeronoiselimit); for 3 — 0 this would switch off the effect of the
first termcompletely(large noiselimit).
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Figure 3.2: Relaxdion for a logistic consumption utility. Systemwith N = 50 agens. Becaug of
the large jumps of utility after price chargeswe need1, = 500000 to get a rea®nable resut for
the equilibrium price level. Here,the downward fluctuaions in individual utility dueto a testng of
a lower price canbe quite strong. For examplethe fluctuatn at timestg 3e08 goesdown to abou
—b. Here,onecanseevery cleally how every testof alower priceis accommniedby a large upward
fluctuaton of money andproduction, andby a large downward fluctuaion of utility.
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Figure 3.3: If “low-produces” are not forcedto lower the price, it is possble that theseagentsget
decaipledfrom thesysten. Theupper solid line shavs theresut for the averagepricein a simuldion
with 50 agens wherenothing is doneto avoid this lossof agerts. Thethin line is the price histary of
one agentthat hagpenedto get dewupled. For comparsion, the lower solid line shavs the average
pricefrom Fig. 3.2wherethereis no lossof agerts. Clearly the systenrelaxesto alower steay stae
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Figure 3.4: Simulatian where all agentshave a fixed price p = 2 andone stars aty, = 5 and
is allowedto adat her price. This agentgetsa wrong sigral to wheresheshoutl adaptthe price.

N = 50.
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Figure 3.5: The rea®n why agents with too high prices adapttheir prices in the wrong diredion.
Simulatian whereone agenth startsat a too high prise of p, = 5 andall the others have a fixed
price of p = 2. Theoptimaldeman of the expersive product would be zero, but the deaeaseof it is
slowed down ever moreby the noisein the sygem. The effect of a change of p, with f, ;qna = 1.05
in timestg t = 10000 is shawvn for different initial valuesof the demandbor thatproduct. TOP: The
initi al demandy, o of the expersive prodtct is about onetenth of thedemanl z,, ~ M /p/(N — 2)
for the othe products. The signd to redice x;, is very strong and neither a price increase(solid
line) nor a price decrease(dashel line) canstopthe fall of the utility of agent h. SEGOND: Same
simulaton, but with z;, o ~ 1/100z,, andonly the price increaseis shavn. Becaug, asz, — 0,
the noisein the sysem slows down the decreaseof x;, ever more, it takes longer for the transent
jumpin utility to die out. THIRD: As zp, o =~ 1/1000z,, theager is essentlly dewupled from the
systen. A priceincrease(solid line) merelyshifts the utility up andis thereforelik ely to be accepted.
Dashedine: nopricechange. BOTTOM: solidline: sameasTHIRD, thedashedline is alsothesame,
but without noise That meansthat the agens canonly adaf z;,. The price increasewould not be
acceped, then, asxzy, (andalongwith it utility) decg/s exponentally to zerowithout ary damping.
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perT, is strorgerwhenT, is redued, i.e. the “wrong-sigral” effect is strorgerfor smallg T,
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Figure3.7: Therecorery time aftera change of price is longer for logistic consumptian utility thanfor
squae rootconsumptian utility becaisein caseof logistic consunptionthejumpin utility afteraprice
chargeis about4 timeslarger. Both simulaions with N = 50 ageris. The pricesarefixed at abou
40% above the respetive analytically predictedequiibrium value (i.e. pgre = 0.6 andp,, ~ 1.4)

andattimet = 10000 oneagentchargesherpriceaccadingtop — p = p/1.02. Theutility of this

agern is shawvn, res@ledso thatthe average utility in the sysemwould bel. Solid line: squareroot
consimptionutility, dastedline: logistic consumption utility.
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Figure 3.8: T, = 100000 is not enougdh for trial-and-eror adapton of demanda in a sysem of 50
agerts. Thecurvesfrom top to bottom: Simulatian with T, = 100000, simulation with T,, = 500000,
analytical resut from Eq. 3.5with M = 1 (dashedline); resut of the correspomiing simulation with
calcuated adapion of demana (with scaledt-values). Clearly the equiibrium resultof the “trial -
and-error simulaion”is muchcloserto the resut of the “calc simulaton,” if T; = 500000 is used.—
Thereasm why the equlibri um price in the calc simulation is belowthe analytical valueis explained
in Sec.3.4.
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Figure3.9: Relaxaton for a logistic consimptionutility whendemana are calcuated Systemwith
N =10 agens.
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Figure3.11: Fluctuatiors in the modelwith logistic utility function aremuchlarger thanin the basc
model: Top curves basicmodel, bottom curves: logistic model. Alwaysaverage production aswell
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Figure3.12: TOP:average equiibrium utility is deaeasirg with N for large N: Theblackline is the
average utility in the sysem of 10 agerts. The topmog thin line is for the systen of 50 agens, the
lower thin lines for sysemsof 100 and500 agerts, respetively. The reasa for the deceasein the
large N limit is the large fluctuations, ascanbe seenin the MIDDLE figure: In the systen of 500

agerts, theutility of asingle agentis usuall postive, but exhibits very strorg fluctuaionsin diredion
of negatwve utility. Upwardsthereis a strorg cutdff, whichis (in cortrastto average utility) increasirg
with N. BOTTOM figure: In orderto measue the equiibrium utility one mustaverageonly over
the utility of the agents that do not testnew prices. Equilibrium utility is thenincreasingwith N as
predctedby Eq. 3.7.
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Figure3.13 In the simulation with 300 agens, Mss is smallerthan M;,./N = 1. Obvioudly, the

reasm is the asymmetrt fluctuatons in individual mone/: Consider the curve for the individual
moneg/ above. The agent is in equiibrium exceptwhen shetesk a new price. If shechanges her
price to pyes:, her production will fluctuae by dq = 0.5N (pest — pss). Her money thus fluctuates

by §M = psest X dq. Inserting somevalues: For N = 300, pss is about0.8. Thus, for an average

price changewherep;es: ~ (1 + 0.05)pss, dM is predidedto be abaut ¥5. This is confirmedby
thefigurein caseof price decreasesFor price increasest meanshatthe money will dropto zeroas
the agent will not sell arything. — The conclusionis thatthe agentsthat testlower priceswill shae
adispropartionate shae of the total amouri of money in the sygem andthus Mss becanessmalle

thanM,,. /N . Clearly, the effect becanesstrorgerasN increases.
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Figure3.14: Average equlibrium price is decreaingwith N : Fromtop to bottam: Simulationswith
10, 50, 100 and500 agents. For N = 100 and500 the price is below 1 which is a conequere of the
factthatpgs < Mgg, but Mss < 1 for large N .
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Chapter 4

Summary

We have preseaiteda simpledynamicmodelof a market. Certainversians of themodelcanbetreatel
analytically. Simulation offers the possbility to go beyond the analytically solvable cases.In both
casesfor stablesolutionsit is crucial to select thedynamicscorrectly. In themodelof this paper, price
adapation hasto happen on a muchslower time scalethanconsumptian adagation, othewise price
evolution will not behae reasombly. This is intuitively plausible; nevertheles, it needsto be taken
into accaint bothwhenbuilding simulatonsmodelsandpossbly whenregulating the realworld.
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Appendix A

A.1 Analytical solutions for the square root utility

A.1.1 Optimal prices
Giventhatoneknowsthe consimers reacton Egs. 2.7, onecancalcuate the optimal price. For this,
onehasto replaceg; by 3°;; zi;, leadng to

2

1 M

~ M;
Ui:_ﬂ 2371 + 2 Z,/.Zij—i-/\i ; Z 1 —ijmij . (A-l)
i Y — £ DAY = j#
k25 Pk ki P

Notetha \; does notdepem on p;.
Two limitin g casesareeasyto calcuate:

e N — oo. In this casethe dependerce of 3 . 1/pr on p; vanishesandthusall \; becane
indepencentof p;. In this case the derivative of U; w.r.t. p; becanes

2
1 1

J#L J#
Solving for p; resuts in

_ 1
pi=2X" 2 35 (A.3)
j#i

In thehomogerouscase X! = A = \? = (N — 1)/Mp, andthereore

22/3 M
= ——. A4
P= N1 (A4

Thisyields
z=2"2B3(N-1)"23 andqg=2"23(N -1)1/3. (A.5)
e N =2.Inthiscase};;1/pr = 1/p;. In thiscase,

=p7 3, A.6
g P (A.6)
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andsettirg this equad to zeromeangy; = oco. This maylook surprsingatfirst, but malkesseng
since thisis themonopdy situdion: Eachagentbuysonly onegood andsotheseller canraise
priceswithout boundandstill make the sameamountof money.

Theexactapprachto find the optimal pricewhich agent: shoutl chage if sheknows all otherprices
mustinclude a correct treamentof a chang in the allocation of money that resuts from a chang
of the prices. In the simulation wheredemars are calcdatedthis is the only mechatsm thatdelays
theimmedide adgtion of demand to a new price situation. Soin order to studythe effect which a
setting of anew price has onefirst hasto calaulatethe resuting allocationof money. This gives(by
Eqg. 2.7)direcly thenew demana of all agens andtherebre alsotheresuling changein utility.

Theallocationof money thatresuls from agivenprice distribution mustfulfill the stead statecondr
tion

M; =p; Y i, (A7)

J#i

where M
Tji J (A.8)

PP Y
This is alinear system of equdions for the M;’s asfunctionsof the prices. Since}_,; zi; = M;
(meanirg that every agentsperds all her money in every timestg) the total amountof money is
conervedandtherdore only N — 1 of the M;’'s areindependen. The determinantis no longe zero,
though, if the equdion for My is replacedby

N
> M = My, (A.9)
i=1

thusintroducing the consrved parameeér M;,;. Theresut is then:

M= Miot 2j1<js<.<jn—ayjs#i PirPia=-Pin s _ (A.10)

2 z:]'1<j2<...<j1\r72 pjlpj2"'ij—2

Assumingthatall agens keeptheir prices fixed, the above formula givesthe allocationof money as
function of the price which agen ¢ sets This meansthat agent: alsoknows the resuting demand
which putsherutility function in theform
1
Ui(p1,--sDN) = _Eqi(pl,m’pN)2+22 -'Eij(pla---apN)- (A.12)
J#

In this form utility canbe maximized without ary corstrairt to find g oyt (p1, ---s Pie1, Pit1, ---PN)»
but evenfor N = 3 the derivative w.r.t. p; becanesso complicatedthat the roots cannd be found
analytically.

Solet usasa first stepassumethatall otherager’s pricesarefixed andidentical. According to the
above formulatheallocation of money will be

p
M; = Mypp —————F——— A.12

for agenti and
Moy — M; My p+ (N —2)p;

N-1  N-12p+ (N -2)p;

M

(A.13)
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for all otheragerts. Usingthes expresionsto calaulatethe demanls, Eg. A.11 givesthe following
expressionfor the utility:

v — Miy(p + (N — 2)pi)? )2 2\/ (N — 1) Mot (A.14)

2pten+ (N -2 (524 L 2+ (N =2
After derivation w.r.t. p; andsetting to 0, theoptimal p; would still beamongtherootsof anexpres$on
whichis too complicgedto trea exactly. It is interestirg, thoudh, to explore graphically how agern ¢
would sether price for different price levels of all the otheragens. This is shovn in Fig. A.1: If all
ageris chage aprice p whichis largerthanpy sheq ~ 22/2 M /(N —1)/3, agenti shoul setherprice
optimaly somevherebetween pysheq @andp, notbelow p,,. Accordngly if p < pnqsheq, €.9.1f pis
chognto bethe“system-wide equiibrium pricepso = M/(N —1)'/3, p; will optmally bebetweea
P andpy qsheq: Which meanghatthe systam-wide optimal priceis instableandthe system will evolve
towardsthe Nashequilibrium price. Of course,asp — pnasheq We Obs@vethatp; — pnasheq, 10O.

A.2 Analytical solutions for the logistic utility

In orderto find the optimal consimptioneadt agent; maximizes
) + wa - Tij) +Ai ( it—1 — ijwij) . (A.15)
J# J#i
Thecalcdation is the sameasin Sec.2.4.1andgivestheresut
1
)\i (Zpk 2Mi,t—1) and Tij = 5(1 — )‘ipj)- (A.16)
Zk?éz k#i

Puttingthetwo resuts togetrer:

1 Zk;éz
Tij = = —Dj + Mipj =——- (A.17)
IR DA B S
Although z;; is not propationd to M;, the homoge@éoussolution gives
M/p
= A.18
T= N (A.18)
asit shoud and\ becomes ) u
A=-——-2———— (A.19)
p (N-1)p?

Asin Sec.A.l.lonecanassumehatthereactbn Eq. A.16 to givenpricesis knownandcalcuatethe
optimd price by subsituting ¢ and; ;_; in Eq. A.15. In thelarge N limit wherethe depenienc of

ki 1/pk andysy ., 1/pz onp; is neglectedtheresultis:

N1 (Ai + 5 Xk )‘k)
i ( kst )‘k)2 + i Dokt Mk .

pi= (A.20)
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In thehomogenots case:

p= 7(NN+_3)1M . (A.21)

With this resut we seethatz is simply given byNL+3 which givesanequilibrium utility of

1

U= (513

2
) (1/2N? + 2N - 2.5) (A.22)
which is amonotmically increasingfunction of N that convergesto 0.5in thelarge N limit, seeFig.
A.2. Compareghisresut to the BOTTOM figure of Fig. 3.12.

A.3 Random walkers, an example of an interesting bug

Thissection is onemoredemorstrationto shov how easyit wasto getthingswrongwhenthesmall,at
first sight nonproblematic change of the conaimptionutility (from squae root to logistic) wasmade.
In this casethe mistale leadel alsoto avery behaiour of the agerts.

Again the problem is relatad to the factthatin cas of logistic consumpti if anagent j chargesa
high price, it is possble that \;p; > 1 which meanghatz;; is smalle thanzerd-.

The mostsimplething to do is setting those z;; thatwould be negative to zeroandresaleall z;; in
the end so that still all the money is spent in every timestep Although this procedire seemgo be
reasmableatfirst sight, there is animportart bug hiddenin it.

First of all, the rescding procedureis had to justify, asit hasto be donewith a rescaing facta
proportional to the amountof money which hasto be spent. This would contradict Eq. 3.3 which
states thatthe demandsrenot chosnproportionally.

Secondy, consder tha all agents who chage too high pricesanddo not sell arything, will seetheir
production, theiramountof money andthereforealsotheir utility dropto zera Theseagerns perform
arandam walk, acceping every price they test,becasetheir utility doesnot charge. In this way it
is possble that their price beamesvery large. This shoul of course not influence the behaviou of
all the other agens, esgecially it shodd not influence the averageprice level, astheseageris do not
producearything andthe average priceis givenby

Day = 2. qiDi
0 2. G

If g; is zerqg py, does notdeper on p;. The simulation shows,though, that the average price level

very muchdependson the prices which these randbm walkerschage! In retraspectthe reasorfor the
strarge behaiour is quite simple Although not appeaing explicitly in theformula for g, the prices

of the random walkers still apper in the calcuation of the ’s andtherebre influenceall ¢;. Only

the iterative methoddescibedin Sec. 3.2.1removesthe bug and makesa correct calcuation of the
z;; possble.

(A.23)

Now, strictly speakng, it makesno serseto let theserandom walkers exist at all: Every real“intelli-
gent agent thatdoesnot sell anything would lower her price aslong asher production stays at zero.
Shewould ceriainly not corsiderhighe pricesaswell andin doing sobecomearandom walker. But
unlesswe allow our agerts to be “stupid” random walkers, the bug will hardy becomeuvisible, as

limpossiblein the basicmodel,seethe correspading Eq. 2.24.
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no agerts with unreasondly high priceswill emepe! In fact, if nonprodwersareforcedto lower
their price (i.e. norardomwalkers canemepe), the simulaion result with andwithout the iteraive
methodwill bealmostidertical, seeFig. A.3: Thebug showsonly if theagentsareallowedto behae
unreasonaly.

The following figureswill showthe very interestirg behaiour of this “bugged” ecoromy andthe
analysis performedto getthe bug uncovered. Fig. A.4 shows the curvesfor price, production, utility
andmone/ devlopmentin aneconany of 100 agents Equilibrium andthe (for logistic utility typical)
fluctuaionsseemto startonly arourd timesep500000. Beforethat,strong fluctuaionsin theaverage
pricelevel areobserved,accanpaniedby correspondng fluctuationsin average prodiction andutility.
In this phase,individual behaviourshowsessetially no deviation from the average! In the sysemof
500 agerts, average prices canbecomeaslarge as150 befare equilibrium starts seeFig. A.5.

Now let's seehow this strargebehaiour is relatedto the presenceof randomwalkers Fig. A.6 shavs
that only aslong asthereare rancdom walkers, the systan shavs the strange behaviour. As soonas
thereare no randan walkersanymore, the systemcancomeinto equiibrium. As in this simuldion
thereis essetially alwaysonly onerandan walker presem (seeFig. A.6), it is easyto seethe effect
that thesecause For exampleFig. A.7 shov how the average price in the systan always follows
the price which the rancom walker charges!Indeed,if oneagent a chargesa very high price, ; is
appoximatel givenby

g~ & B DA P (A.24)

2 pa 2pa

for 4,7 # a (seebelan). Thus,although agen a doesnot have anything to do (directly) with the
trades betweenagens < andj, z;; depenls strondy on p,! With the above choice of their demand
the utility of all agentds at alocal maximumif pricesareconsideral fixedfor the moment.If agen
a now hagpensto increase(decreaseher price, all z;; do decrease(increase).In orderto comebad
to the local maximumof utility, the agens musttry to increase(decease)their z;'s again. From
the above formula one sees that this can be dore by a collective increase(decrease)of the prices.
In this way the average price level in the systan always follows the randan walk of agen a and
no equiibrium canbe estaltished until all rancdbm walkers are“caught” by the sysem. As som as
all random walkers are caudht, the distribution in pricesgetsvery narrov (seeFig. A.8 andhene
no agentcan“escge” the sysem and bemme a randan walker. Of course, the narrownessof the
distribution of pricesin equlibrium is alsothe rea®n for the large fluctuaions that canbe obseved
there as,if thedistribution is very narraw, ageris thattestprices arevery “exposed”. Fromnow on
the systen beraves“normally”, i.e. asthe sysemin Sec3.3.2,asthe bug in the code hasno effects
arymore

A.3.1 Demands in case of a random walker

Theseareappraximations to Eq. 3.3if there is arandan walker “o” which chagesa muchtoo high
price. If & # a, >p4; p: is approiimately given by p2. In equlibrium the first two summandof
Eq. A.17 canalmostcanel to zeroandonly the third summands important. In the presntsitudion,
though, M; cansafel be neglectedcompaedto} . .; px: if i # a atleag onesummal is much
larger than M;, (M; being of the order of the equilibrium price) andif i = a M; is zeroaryway. We
now getfor thecaseof i # a andj # a thatz;; is appraimately given by

_pj Zk;ﬁi Pi

1
- A.25
2 pa 2pa ( )

CCij ~
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If j is therandomwalker itself we have
_ ZigPh | My (A.26)
2pa Da

Also herethe secom termis much smallerthanthe first, so z;, is negaive andwill be setto zero.
This meanghatno agentwill buy from therancomwalker. Finally, if 7 is therandomwalker, z;; will
be setto zeroin theresale procedureof the program,as M is zera
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FigureA.1l: Optimalprice for oneagentin caseall otheragens chage pricep is givenby theroot of
the derivative of Eq. A.14. Fromleft to right this deriative is plotted for N = 100, M,,; = N and
p = pSO = 0.216, p = pnasheq = 0.343 andp = 0.4. Notethatthe optimal priceis alvaysbetwee

PNasheq andp.
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FigureA.2: Analytically predcctedvalueof theequiibrium utility in thelarge N limit asa function of
N.
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FigureA.3: If non-poducersareforced to lower their price (i.e. “intelligent agents”), the bug in the
codeis hiddenasthere areno randan walkers: Thin curveis theaverage pricein the buggedeconany
(i.e. here,if ager i buys nothing from agert j, p; is not excludedfrom the calaulation of X;). The

solid curve is the average price in the simulation wherethe iterative methodof Sec. 3.2.1is usedfor
the calcuation of the A’s. Simulaticnswith 100 agers.
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Figure A.4. Relaxaion for a logistic consunption utility when demandsare calcukted and non
producersarenot forced to lowertheir price. Systermwith 100agents. Notethe startof thefluctuations
assom asequilibrium is reacted.
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Figure A.5: Relaxaion for a logistic consunption utility when demandsare calculted and non
producersarenct forced to lower their price. Systemwith 500 ageris. Pricescanbe pushel ashigh
as150by the preseceof rancdbm walkers but eventially all randan walkers arecatght.
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FigureA.6: Numberof agens which do not producearything in thesysten of 100agents. This s just
the numbe of ageris thatchage atoo high price andarerancbm walkers therefore. The point where
equiibrium is reackedis marked by displaying the graph for average prodiction, scalal up for better
visibility. Before equlibri um is reacted thereare long periods with just one randan walker: One
agern is arardomwalker betwee timeste 0 to abou 2.156é> andtheres a different onefrom abou
1.95e5until equiibrium is estabished seeFig. A.7. Hencethere areno rancbm walkers arymore.
Theproduction of anagentcantempaarily dropto zero,though, whenshetess a higher price.
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FigureA.7: Thefigure shaws the prices of the two rancbm walkers mentonedin Fig. A.6 andtheir
effectontheaverage pricelevel.
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FigureA.8: Thefigure showsthe stardarddeviation in the distribution of pricesasfunction of time.
In the lower curve the randan walkers are excludedfrom the calcuation. Evenwithout the rancbm
walkers, the distribution of pricescamot be narrav aslong asthereis no equiibrium, astherancbm
walkers gredly disturb the price developementof all the othe agens. Only whenall the rancbm
walkers arecatght andequlibri um s estallished the stardarddeviation become¥ery small.
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