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Chapter 1

Overview

Generaleconomic equilibrium theory is static. Sincethereis no dynamics,littl e is known how the
system should reachthe equilibrium state, or how it behavesonceit is away from it. Actually, the
situation is somewhat similar to the situation in Statistical Physicssome100 yearsago,wherethe
macroscopic thermodynamic equations werearound, but neither was their microcsopic foundation
nor their extensioninto non-equilibrium.

In this thesis, we present a dynamic modelof an agent-based (in the languageof Statistical Physics
“atomic”) economy. We construct the dynamics so that the economy evolves towards the general
equilibrium resultwhenthe simulation is started in non-equilibrium. Sincethe modelis dynamic, it
is not possible that the system will reach the exact equilibrium point, asthere is alwayssomekind
of noise in the system that disturbs the evolution process. On the otherhand,the equilibri um point
is alsonot known exactly, as the analytical equations cannot be solved. It will alwaysbe possible,
though, to find an approximateanalytical solution for the equilibrium point which canbe compared
to thesimulation result.

Generally, theequilibrium point of aneconomic systemis thesituation whereno agent canincrease
her utilit y by a change of her strategy. In the languageof evolutionary gametheory, it is the Nash
equilibrium. In our model economy, there is only one kind of commodity which the agentscan
produce, sell and consume. This commodityis not quantized, i.e. the agents canmanipulate any
quantity of it. Thestrategy of anagentthenspecifiesherconsumptionbehaviour aswell astheprice
that shechargesfor the selling of the commodity. The dynamics of the model specifies how the
agents canadapttheir strategies,i.e. it specifies on which timescalesanby how muchthe individual
economic quantities that form the strategy can be changed. Of course, the force which drives the
adaption is thegoalto find a strategy thatoptimizestheutil ity.

As usual, theutilit y function of theagentsconsistsof two terms:Onetermdescribesthedisutility re-
latedto thework theagenthasto perform; thesecondtermdescribesthegainin util ity thatcomesfrom
consumption. Weconsidertwo kindsof consumptionutiliti eswhich leadto very differentbehaviours
of theagents in thelimit of systemswith many agents:

In chapter2 weconsider“squarerootconsumptionutility ”. Here,theagentsareveryanxiousto spend
their money in away thatconsidersevery supplier: Buying nothing from anagent, evenif thepriceis
very high, results in a greatlossof util ity. In contrast, in chapter 3 wheretheconsumptionbehaviour
of theagents is governedby “logistic consumptionutili ty,” substitution is always at hand, especially
in the limit of many agents. If the price of an agent is muchabove average then,shewill not sell
anything at all, asall agents decide to buy moreof theother (lessexpensive) products instead.This
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results in very large fluctuationswhentheagents adapt prices,andit is muchmoredifficult to choose
dynamics that leave thesystemstable andgive reasonableequilibrium results. In orderto beableto
compare theresults of the two models we tried, though, to make aslittle changesin thedynamicsas
possible whenwe switched from squareroot to logistic consumptionutili ty.
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Chapter 2

The basic model: square root consumption utility

2.1 Model description

The basic model consists of
�

agents, each of them producing exactly one good. Eachagentis
characterizedby a utili ty function �������	��
���
 ������� ��� � � ��� (2.1)

� � is theamount of work of agent � ; � � � is theamountof good � (bought from agent� ) which agent�
consumes.Theconversion of work into (dis)utility is convex, meaning thatworking twice asmuchis
morethantwice asunpleasant. In contrast,consumption is concave, meaning that consuming twice
asmuchis lessthantwice aspleasant.1

Themodelworksasfollows.

Initi alization:� Eachagent� receivesaninitial amountof money � ���  .� Eachagent� setsaniniti al price ! �"�  .� Eachagent� sets,for eachgood� , aninitial demand#� � � �  . Thesedemandssettheratiosbetween
thegoods, that is, we alwaysuse$ � #� � � �&%

.

Onetime step:

1. Agentsorder goods according to their demandsvector #� � � suchthatexactly all money is spent.
This meansa rescaling of the #� � � : � � � � #� � � � ��� ')(�*����� � #� � � ! � � (2.3)

1In this paper, Eq. 2.1will beused.However, it canbeseenasa specificversionof+-,/.10324,65�798:,<;>= � ?A@B ,�C , ?ED 79FG, ? ;-H (2.2)

where
5�79IJ;

is a convex functionand

D 79IJ;
a concave function.Many of our resultsshould alsohold for this moregeneral

versionof theutility function.
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� ��� ')(�* is the amountof money left over from the last time step,seebelow. Note that now$ ���� � � � � ! � � � ��� ')(�* , which is thebudget constraint.

2. Goodsareproducedto order, andsold at the pricespreviously indicated. That is, eachagent
produces � ��� ����� �K� � � (2.4)

andreceivestheamountof � ��� ' � ! � � � � (2.5)

Since,according to Eq. 2.3eachagent hasspentall hermoney with herorders,theresult of Eq.
2.5 is indeedtheamountof money with which they go into thenext time step.

3. Utiliti es
� �

arecalculated.

4. Adaptation of demands: Every L�M time steps,agents adapt (seeSec.2.2) their � � � to maximize
util ity givenprices.Usually, L�M ��% .

5. Adaptation of prices: Every LKN time steps, agents adapt(seeSec. 2.2) their ! � to maximize
util ity. Adaptation of priceshappenson a muchslower time scalethanadaptation of demands,
i.e. LONQPRLSM . Usually in this paper, LGN ��%UTGV .

In an alternative versionwe replace points 4. and5. by a different adaption scheme: We allow the
agents to directly calculate theoptimaldemandsgivenprices.This reduces L�N dramatically:

4. Adaption of demands: Every L>M time steps, agentscalculate(seeSec.2.4.1)their optimal � � �
to maximizeutili ty givenprices.Usually, L M �W% .

5. Adaptation of prices: Every LKN time steps, agents adapt(seeSec. 2.2) their ! � to maximize
util ity. Adaptation of prices happenson a slower time scalethanadaptation of demands: L9N �%UT

.

2.2 Adaptation

The above model description does not specify how adaptation takes place. In fact, many different
adaptation schemeswork. Throughout this paper, we use“tri al-and-error” adaptation. This means
that, from time to time, agents try different strategies. If the performance(

�
utility ) of a changed

strategy turnsout to bebetter than theperformanceof thepreviousstrategy, then they will stick with
thenew strategy. For eachagent � , astrategy consistsof the XK#� � �KY)� andof ! � . Trial-and-error adaptation
for the #� � � worksasfollows:

1. After L M time steps with the “normal” strategy, the agent picks randomly a � between
%

and�
andthusthe corresponding strategy entry #� � � . Theagentremembersits old value, plus the

corresponding utili ty
� �

, andthengeneratesa new valuefor #� � � .2
2. The agent operateswith the new trial value for LZM time stepsand then looks at the resulting

util ity. If this new utilit y is larger thantheoriginal one,shesticks with thenew #� � � , otherwise
shereturnsto thepreviousdemandsvector.

2According to theabove modelspecification,thismeansthatall [FU, ? will berescaledsuchthatstill $ F�, ? .]\ .
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Trial valuescanbeobtainedvia two mechanisms:� Mutation. Theold � � � is changedby a smallrandomamount.� Copy. A new valueof � � � is takenfrom anotheragent.

For this paper, only mutation will beused.

Theabove explanationwasin termsof demands #� � � . Adaptationfor ! � happensaccordingly, thethree
main differencesbeing that (1) there is only oneprice per agent, (2) the trial time L^M is replacedbyLON , and(3) agents enterinto trial modeonly with probability ! '9_`�9a6b wherewe use! '9_c�9aAb �dT � % .
More parameters arenecessary to fully describe adaptation; for example, a mutation for #� � � is, with
probability

%Ke �
, either #� � � � f�gih � #� � � � j`blk	mon M � _:aEf�k or #� � � � f�gih � #� � � � j`blk e n M � _:aEf�k where

n M � _:aEf�k is a
random number between

%
and

% � TO% . For the price adaption we mutateaccordingly with a factorn N � _:aEf�k which is a random numberbetween
%

and
% � % . Our simulationsindicatethat our results are

robust as long as the mutations remainsmall, and as long as LcN remains long enough so that the
adaptationof demands cancomplete evenwith smallmutations.

2.3 Related work

Themodelis relatedto amodelby Bak,Norrelyke,andShubik(BNS)[1]. Themaindifferenceis that
in the present paper, agents transparently adapt � � � (via #� � � ) and ! � , which seemto be the plausible
economic quantities to work with. In addition, the present paperassumesthat everybody is buying
from everybody, whereas theBNSmodelassumesthateverybodyis buying from their “lef t” neighbor
only. No differencesbetween this modelandthe BNS modelwill be analyzed here, but for us, the
work of BNSprovideda good first exampleof a simulation of anagent-basedeconomy.

2.4 Analytical approximation

Theabove modelcorrespondsto a solution of a two-step optimizationproblem:

1. First, for given prices Xp! �ZY)� andmoney � ��� ')(�* find an optimal allocationof the #� � � suchthat
util ity is maximized. This is done in Sec.2.4.1.

2. Second, given that every agentknows every other agent’s reaction to price changes,find an
optimal price. SeeSec.2.4.2.

2.4.1 Optimal consumption

For givenpricesandmoney, theutili ty function of every agent is a solefunction of thedemands � � � :� �4q ��� � 
� e � 
 � ����� � � � � � 
sr �3t � ��� ')(�* � � ! � � � �vu � (2.6)
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� �"� ')(�* is themoney from thelasttime step;theLagrangianmultiplier meansthatall money hasto be
spent.3

Now consider a fixedagent � . Since � �w� $ ���� � � � � and � ��� ')(�* do not depend on � � � , the derivative
with respect to � � � is simple, andthe derivative with respect to r � is just the budget constraint. The
rootsof thetwo expressionsare

� � � � %r 
� ! 
� and
%r 
� � � ��� ')(�*�x �� � %! x � (2.7)

Theresulting full expressionfor theoptimalconsumption givenprices andmoney is therefore

� � � � � ��� ')(�*! 
� �x �� � %! x � (2.8)

Notethatfor ahomogeneoussolution,wecandropall indicesandobtain theobviousresult � �zyJ{ N| (�*
which mustbetruefor any util ity function.

2.4.2 Optimal price

It is muchharder to find anexpression for theoptimalprice which anagent should chooseif all other
prices andthereaction Eq. 2.7 is known. Therelevant pieces of theutili ty function are}� � ��� %��~� � � %! 
� r 
�

�� 
 
�r � ! � � � %! 
� r 
� (2.9)

��� %� ! (-�� ~� � � %r 
�
�� 
 
or � ! (�*� � � %r 
� (2.10)

Notethatin contrastto theprevioussection wherethe“pleasure”of consumptionwasbalancedagainst
the “pain” of paying for it we balancenow the displeasureof work against the pleasure of getting
money for it.

Large
�

limit

In thelimit
�����

, the r � becomeindependent of ! � sincethecontributionsof ! � to themis of order%Ke��
. r � doesnot depend on ! � anyway. Maximizationof theabove expressionfor theutil ity w.r.t. ! �

andthenpassing to thehomogenouscasewhere r 
� � r 
� � r 
 � X ���s% Y e �o! givestheresult

!�� � 
 {`� �X ���s% Y * {`� � (2.11)

3This is alreadyanapproximation. Sincethemodelis stochastic,incomewill not alwaysbethesame.However, in the
currentformulation,the

F�, ?
areslowly varyingvariables.That is, onewould have to maximizetheexpectationvalueof

+Z,
over thedistribution of �J�"�/� .

8



A cautionary remarkaboutthe interpretation of this formula should be madehere, becausewe did
two important approximations: First we only consider the “large

�
” limit, secondly the calculation

doesnot includethefluctuationsthatarecaused by thetesting of new prices. Now notethat � is the
averageamount of money peragent, but moreexactly it is ���>� (theaverageamount of money which
theagents that arein thesteady state have) which should beused. Thepoint is that it is possible that� �� � �>� asa consequenceof thefluctuationsin money dueto theconstanttesting of new pricesin
equilibrium: If, in equilibrium, anagent testsa lower price, hermoney will fluctuate upwards andif
shetesta higher price, it will fluctuatedownwards. Like this, � �� ���>� if theagents thatcurrently
arenot testing (the onesthat arein the steady state) do not give asmuchmoremoney to the agents
that testlower pricesthanthey give lessto theagents that testhigher prices.This modelwith square
root consumption utilit y does not (to leading order) show suchan asymmetry, so that we cansafely
set ���>� equal to � � � '�jc' e�����%

. In amodelwhereit is easyto substitute oneproductfor another
(e.g. themodelwith a logistic utility function, seechapter 3) agents that testhigh priceswill loseall
theirmoney, while theonesthattestlow priceswill earnverymuch.In thiscasetheaveragemoney of
theequilibratedagents will be lessthan � '�jc' e�� andfluctuationsmustbeincludedin thecalculation
of theNashequilibrium price.
Now inserting Eq. 2.11backinto Eq. 2.7 givesthe relaxedstatedemands, production andthusalso
utili ty level asa function of

�
alone:

� � � ( 
 {`�X ���s% Y 
 {`� (2.12)

� � X ����% Y � � � ( 
 {`� X ���s% Y * {`� � T �l�G� X ���o% Y * {`��� (2.13)

and � �&X � 
 {`� � � ( � {`� Y X ����% Y 
 {`� � % �l�G¡G¡£¢ X �¤��% Y 
 {`� � (2.14)

Thatis:� Pricesareproportional to theamount of money � in thesystem.� Pricesdecreasewith increasing
�

.� Consumptiondoesnot dependon prices.� The consumptionof eachindividual gooddecreaseswith increasing
�

. However, the sumof
all consumption, $ � � � � , which is just theproduction in the homogenous case,increaseswith�

. This is a consequenceof fact thattheslope of theutilit y function goesto infinity as �¦¥ T
,

meaning thatan § amount of eachgoodgivesaninfinite increasein utili ty4.

It is important to noteherethatwearelooking for theNash equilibrium pricelevel andnot thesystem
optimum: If all agents would work together they could agreeupona price ! which would maximize
theutil ity of all of themat thesametime. This pricecanbecalculatedby inserting the“homogenous

4Notethatthis is quiteaunrealisticbehaviour, asoneexpects theproduction (aswell asutility) to beboundfor ¨ª©¬«
(likewiseonewould expecta lower bound ­v®s¯±° for thepricein this limit). In chapter3 wheretheagentsshow logistic
consumption behaviour, this will indeedbe the case,but the pricewe have to pay to get that resultwill be that themodel
shows very large(andlikewiseunrealistic)fluctuations.
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budgetconstraint” � � yJ{ N| (�* into theutilit y function andmaximizing theresulting function w.r.t. ! . It
would belower thantheNashequilibrium price:

!²�>³ � �X �¤��% Y * {`� � (2.15)

and(by reinsertioninto
�

) give theagents themaximumutil ity� �´³ � �� X ����% Y 
 {`� � (2.16)

Thesituationis thesameasin the“prisonersdilemma”wherebothplayerswould bebetteroff if they
played together, but becauseevery player tries to maximizehis own profit, both areworseoff in the
end.Themechanismof trying to maximize only theown utili ty makesthesystemoptimumunstable:
In thepresentcase, if thesystemis in thesystem optimum,oneagent canprofit by charging a higher
price, but becauseall agents try to do the same,the systemevolvestowardsa lower average utilit y
level. It is theNashequilibrium, therefore,which is anattractorof thedynamics,andin orderto find
theequilibrium price level onealwayshasto consideronly oneagent trying to find theoptimal price
for herself andonly thenconsiderthehomogenouscase.

Strictly speaking, in order to find anexpressionfor theoptimalprice of anagent � in thenonhomoge-
nouscase, it is not enough to consider only two timesteps (i.e. to consider only the reaction Eq. 2.7
that theagents will show in thetimestepafter theprice change),becausetheredistribution of money
afterapricechangetakes longer. After apricechangeseveral timestepsareneededuntil anew steady
distribution of money is established(seeSec.2.9). Thesteady statecondition� � � ! � ����� � � � � � (2.17)

(with � � � given by Eq. 2.8) yields (seeSec. A.1.1 in the appendix) that if the pricesarefixed the
distribution of money will convergeto

� � � � '�jc'� �� �`µ �`¶ µ�·¸·¸·¸µ �c¹ � ¶ � �`ºZ�� � ! � � ! �`¶ �9�9� ! �`¹ � ¶�� �:µ �c¶ µ�·¸·¸·¸µ �`¹ � ¶ ! � � ! �c¶ �9�9� ! �`¹ � ¶ � (2.18)

The sumsgo over all X �»� � Y -tuples X9� * � � 
 � �9�9� � � | ( 
 Y of integers between
%

and
�

. All � x �6¼ �% � �9�9� � X �½� � Y mustbedifferentandtheorder is not relevant. For thesumin thenumerator, all � x must
bedifferent from � . This sumhasonly

����%
summands.

If this is known theresulting production anddemandsof all agentsareknownaswell (by useof Eq.
??) and therefore also the resulting utili ty, which becomesa sole function of the prices and � '�j¾' .
Maximization of the util ity with respect to ! � canthen be performedin principle, but the resulting
equationsaretoo complicatedto treat analytically.

In Sec.A.1.1 a further analysis of Eq. 2.18is performedfor thecasewhereall agents except agent �
charge thesameprice ! . This analysis yields for examplethat if ! � !6�´³ , agent� should optimally
charge a lower pricethan ! �>³ , which shows thatthesystemoptimum is unstable(asstatedabove).
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2.5 Simulation results

2.5.1 Adaptation of demands

First, we checkif thesimulation reacts to pricedifferentials. For that,we setoneagent at a different
price thanall others(Figs. 2.1and2.2). Oneseesthatagents slowly shift their consumption towards
thegoodwith thelowerprice,visible in thegraphsasa largerproduction for thatagent. Onealsosees
that this results in a higher utilit y for thatagent, meaningthat in this caseaveragepricesaretoo high
andan individual hasan advantagewhencharging a lower price. This effect is what will drive the
adaptationof prices in Sec.2.5.2.

Thevalidity of theanalytical solution (i.e. Eq. 2.18)canbeverifiedhere. In thecasewhereall agents
except onehave thesameprice, theformula reducesto� �¿� � '�jc' !� ! 
 X �¤� � Y ! � (2.19)

for agent� with price ! � and� � � '�jc' � � ����s% � � '�jc'����% ! 
 X �¤� � Y ! �� ! 
 X ��� � Y ! � (2.20)

for therest. Theseequationsmustbeexactly valid for all numbersof agents,aswedid noapproxima-
tions. Because theresultfor theoptimal demandsgivenprices(Eqs.2.7)wasusedfor thederivation
of Eq. 2.18,these formula is alsoimplicitl y verified. For thesimulation where � '�j¾' ��� , ! � � and! � � � �¸À wereused, theaboveexpressions evaluate to� � ��% � %vÁ�T À´Â (2.21)

for
����%UT

and � � ��% � � ��Â�� � (2.22)

for
����Ã�T

. Thesimulationswererunfor
� ¢ %UTAÄ timestepsand, indeed,anexactequality of themean

allocationof money in equilibrium andtheabove values is found.

Oneseesin Figs. 2.1 and2.2 that it takes about 40000 timestepsuntil the aggregateconsumption
hasrelaxed to the value corresponding to the prices. Including some“safety margin,” we will useL N ��%UTGTÅTGTGT in thefollowing simulations.

Somecautionary remarks aboutthis choiceof LAN �Æ%UTGTÅTGTGT
: First of all, this figurewould needad-

justment if we’d wantto simulateaneconomy with moreagents: Sinceeveryagentcanadapt only one� � � pertimestep, L´N scales linearly with
�

. Secondlyonehasto beawarethat thesystemconsidered
in this section is far away from equilibrium. Indeed,according to Eq. 2.11 the steady stateprice is
approximately

T �l¡ in thesystemof
%UT

agents andapproximately
T �¸À in thesystemwith

Ã�T
agents. If

thesystemis thatmuchaway from equilibrium, thereis astrongsignal for theagents thatthey should
lower the price. This signal getsweaker on the way to equilibrium andthusadaptation time for the
demands will get longer, demanding a higher L�N . Thus,theinclusionof theabove mentioned“safety
margin” cannot beavoided.This subjectwill bediscussedfurtherin Sec.2.10.

2.5.2 Adaptation of both demands and prices

We now allow both the demands #� � � andthe prices ! � to adapt. As explained above, the adaptation
of the #� � � happenson a fasttime scale, while adaptation of the ! � happenson a slow time scale. In
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practice, this meansthatevery othertimestepevery agenttriesanew #� � � 5. In contrast,new pricesare
tried out only every L�N �Ç%UTGV

time steps,andthey areleft in place for thesameduration before they
areevaluated.

As a result, this simulation takesmuchlonger, notethetime scalein Figs.2.3. Onealsoseeshow the
system relaxestowardsa priceof about

T �l¡�Â , a production of about 1.2,anda util ity of about5.7.

For comparison, the “large
�

” solution from Sec. 2.4.2gives,for
�È�¤%UT

and � ��%
usedhere,!É� T �pÂ�� , �±� % �l� % and

� � �/� TO% . It is clearthat the valuesof the simulation will not completely
agreewith the values of the analytical calculation sincethe assumptions aredifferent. For example,
theanalytical calculation is valid only for large

�
(compared to

���Æ%UT
in thesimulation), andthe

analytical calculation doesnot take into account fluctuations.

Fig. 2.4shows theresults for thesimulation with
Ã�T

agents. Sincein this modelevery agent canbuy
from every otheragent, computation timealwaysscaleswith thesquareof

�
. Thus,simulationswith

thatmany agentstakealong time. In thiscase, thesimulation needsseveral daysof computationtime.
Thetabular below summarizesthesimulation results of this section:�

=10 price production util ity
simulation 0.87 1.2 5.7
analytical 0.76 1.3 6.0
rel. error 0.13 0.08 0.05�

=50 price production util ity
simulation 0.461 2.16 18.22
analytical 0.434 2.31 18.59
rel. error 0.06 0.07 0.02

(2.23)

Because theanalytical solution is only valid for large
�

, oneexpectsthesimulation results closer to
the analytical solution in the simulation with

Ã�T
agents. This is indeed verified asthe relative error

decreases.As explained in Sec.2.10,oneshould not trust this resulttoo much,though, becausein a
simulation with trial-and-erroradaption of thedemands the resulting steady state price dependsalsoLON : As the system evolvestowardsequilibrium “from above”, the “recovery time” which is needed
for thetransient(upwardor downward)jumpsin util ity to dieoutafterapricechangegetsever longer
andeventually becomes larger than LÊN . Hence,no further deflation of theprices is possible becauseLON timestepsafter a lowering of the price the agents alwaysfind themselvesat a lower utili ty level
thanbefore.

In the next section, the agents are allowed to calculate their optimal demands. This removes the
problemwith thetransientjumpsof theutilit y, sincedemandsadapt almostinstantly (delayedonly by
theredistribution of money). LKN reducesto about

%UT
andis no longerdependenton

�
. Of course,this

savesalsoenormously in computationtime.
5Recallthatevery testingof a new demandvalueneedsËEÌvÍ timesteps:In the first timestepa new valueis chosen.In

thesecondtimesteptheperformanceof this new valueis evaluatedandtheagentspossiblygoesbackto theold value.No
testingof a new demandis consideredin the second timestep. The sameappliesto the testingof new prices: A whole
“testingcycle” alwaysneedsË:ÌKÎ timestepssothattheagenthasthechanceto comebackto theformerutility level in case
shetesteda “bad” price.
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2.6 Simulations with calculated instead of adapted consumption

The analytical solution implies and the simulation results (in particular Sec. 2.5.1) confirm that,
insteadof slow adaptation, agents could settheir consumptiondirectly via

� � � � � �! 
� ����� � %! � � (2.24)

So a possibility is to usethis directly in the simulations. In fact, apart from different fluctuations,
simulation results look the sameasbefore. This savesenormouslyin termsof computer time, since
we cannow do price adaption with LKN ��%UT instead of L�N �&%UT V

time steps.

Fig. 2.5 showsthe result in the system of
%UT

agents. As the computer time is greatly reduced,also
systemswith many moreagents canbeconsidered, seeFig. 2.6 for a simulation of aneconomy with%UTGTGT

agents.

Froma conceptual point, this meansthatwe allow agents to locally usemathematicsin order to find
better (i.e. locally optimal) solutions. Sincewe have demonstratedthat the samesolution can be
reached via adaption, this canbe seenpurely asa shortcut in computation. Note however that this
equivalenceof adaptationandcalculation is only valid aslong asthereis a uniquemaximum.Some
discussionin how far sucha quantitativedifferencemayneverthelessresult in aqualitativedifference
is madein Sec.2.10.

2.7 Fluctuations in equilibrium

Eq. 2.20givestheamountof money all agents will endup with if oneagent � chargesprice ! � while
all otheragents charge! : � jc'�Ï � � '�jc'�¤��% ! 
 X �¤� � Y ! �� ! 
 X ��� � Y ! � (2.25)

UsingEq. 2.7we seethattheagents will buy

� �3� � jc'�Ï! 
� X %Ke ! � 
 X ��� � Y e ! Y (2.26)

from agent � . To first orderin Xp! � � ! Y this is

� �3� �!�X ����% Y � � �! 
 ��Xp! ��� ! Y � (2.27)

where � � � '�jc'¾e�� is theaverageamountof money peragent. We cannow find anexpressionfor
thefluctuation in production of agent � that is inducedby the testing of price ! � : We assumethat the
system hasrelaxed to the homogenoussituation whereall agents (except agent � ) charge the steady
stateprice ! � ! ÏvjcÐ � � 
 {`� �X �¤��% Y * {`� 6 � (2.28)

6Notethat � andnot �JÑi�9Ò is usedfor theaveragemoney of theagentsin equilibrium.We assumethatfor every agent
who testsa lowerpriceandwhothereforelowerstheaveragemoney of theagentsin equilibriumtherewill beonewho tests
a higherpriceandresetsthis averagemoney to � . This is correctto leadingorderin this model,but not in themodelof
chapter3, seetheremarksbelow Eq. 2.11
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and(in accordancewith theadaption algorithm describedin Sec.2.2)wewrite Xp! � � ! ÏvjcÐ Y as X nZ_:aEf�k �% Y ! ÏvjcÐ , where
nZ_:a6f�k

is a random numbernot larger than
% � % and not lower than

%Ke/% � %É�ÓT � Á�T�Á .
Introducing � ÏvjcÐ � � e ! ÏKj¾Ð , the production in the homogenoussituation, the production � � �X �¤�o% Y � � of agent� becomes:

� � � � ÏvjcÐ � � * {`� X ���s% Y � {`�� X n�_:aEf�k ��% Y (2.29)

In thelarge
�

limit thefluctuation ÔZ�OX � Y � � a � � ÏvjcÐ is thusgivenbyÔK�OX � Y ��� X � � Y * {`� X n�_:aEf�k ��% Y (2.30)

Therefore, in absolutevalue,fluctuationswill slowly increasewith
�

. Relative fluctuations arepre-
dicted to beconstant in thelarge

�
limit:

ÔK� _`gcb � ÔZ�OX � Y� ÏKj¾Ð � � X %Õ� n�_:a6f�k Y � (2.31)

Thus,the production canvary at mostby
� T>Ö

up or � % ¡ Ö down. In particular, it cannot drop to
zero.

Theresultshould bemoreaccurateif oneassumesthatnot only oneagent changesherprice,but that
we have

� b
agents that lower theprice to ! b and

� Ï
agents that increasethe price to ! Ï at the same

time. In our modelwe have � Ï � � b �d× m � (2.32)

where×J�É! '9_`�9a6b e � is about
Ã�Ö

(morecorrectly, × is givenby
T � %Ke/% � %Ke � �dT � T À Ã À Ã , seetheparagraph

belowEq. 2.35). If, asbefore, ! b and ! Ï arewritten in the form ! b � n�b ! ÏvjcÐ and ! Ï � n�Ï ! ÏvjcÐ , the
result is (in thelarge

�
limit) ÔZ� _:gcb9� Ø N � � X %Õ� n�b Y 
 ×-X n�b 
 n�Ï � � Y (2.33)

for therelativeupward fluctuationsand(by symmetry)ÔK� _:gcb9� kEjch²f � � X %Õ� n�Ï Y 
 ×-X n�b 
 n�Ï � � Y (2.34)

for therelative downwardfluctuations. Surprisingly, sincein our model
n<b 
 n�Ï � � on theaverage,

theresult is about thesameasbefore, i.e. thefluctuationsdepend only very weakly on × . Thereason
is of coursethat $ x �� � *N º in Eq. 2.7 dependsonly weaklyon × : It is alwaysapproximatelygivenbyX �¤�o% Y e ! .

2.8 Comparing results of simulations with different parameters

As seenin Sec.2.6, thesimulation with calculatedinsteadof adapteddemandscanbeconsideredas
a mereshortcut leading to the sameequilibrium results and(qualitativly) the samebehaviour when
the systemis away from equilibrium. Therefore, although data from simulations with calculated
demands is usedbelow, theconclusions thataredrawn should alsohold for themodelwith trial-and-
erroradaption of demands. A discussion of a (herenot relevant) difference betweenthetwo kindsof
adaption is madein Sec.2.10.

14



First of all, we areinterestedin comparing simulationswith differentnumbersof agents.
Eq. 2.31states that in thelarge

�
limit therelative fluctuationsin production areindependent of the

numberof agents andnot larger than Ù � T>Ö of theequilibrium production value. Fig. 2.7 shows the
result of anexperimentaltestof this.
Fig. 2.8 showshow the equilibrium price is decreasing with the number of agents in the system.A
comparision with theanalytically predictedresult ! � 
 ¶ÛÚ^Ü yÝ | (�*¾Þ � ÚiÜ is made.
Fig. 2.9 is an illustrationof thefact that theaverageamount which theagents sell is decreasingwith
increasing

�
, theaverage production is increasingwith N, compareSec.2.4

Fig. 2.10shows that utilit y is increasingwith
�

. In this model,for large
�

, utili ty is proportional
to
� 
 {`� (seeEq. 2.14). This unbounded increaseof util ity with

�
is understandablefor a model

with square root consumption utilit y as the slope of the consumption utilit y is infinite for � � T
.

Thesituation is very different in thelogistic modelof chapter 3 wheresubstitution is alwaysat hand:
strong downwardfluctuationsresultfrom thetesting of pricesandaverage utilit y evendecreasewith�

. Evenif price-testersareexcludedfrom thecalculation of theaverageutilit y, utili ty is boundedfor�R�ß�
: In this limit, theslope of the logistic consumptionutilit y is

%
, which meansthat theagents

do not gainmoreutilit y if they canbuy from a larger numberof agents.

The following simulations explore how the model reactsto different amountsof money in the sys-
tem. The numberof agentsis kept constantat

%UT
. Fig. 2.11 shows that production andutility are

independent of theamount of money in thesystem,while prices areproportional to it.

Finally, Fig. 2.12is an exponential fit to thedecay curve of the average price in the system of
%UTGTGT

agents. Thesimulation starts at a muchtoo high averageprice à aEáU�  of about
� T

. Theaverage price
decays exponentially according to à a6áU� ' � à aEáU�  �âÊãåä X �çæ�è Y until à gcé is reached. Exponential decayis
expectedsincethemutation is multiplicative. Thesmooth crossover to theequilibrium value(instead
of a sharpcorner) is caused by thefluctuations. Thefitting parameters are:à a6áU�  ��%vÁ � ÁGÁ � æê�dT � TGTGT � ��Â � à g¾é �dT � %vÃGÁ � (2.35)

Thesevaluesare consistent with the price adaption parameters: On the average, about
Áå% 7 agents

test a new price every L�N timesteps. Half of them will choose to test a lower price according to! � ! e n N � _:aEf�k . Theexpectation value ë n¿ì of thereduction factor
%Ke n N � _:aEf�k is

ë n¿ì ��í * · ** *M-î �T � % �dT � ÁGÃ � % � (2.36)

This results in
æç�dï�ð X:ë n¿ì Y e X"L�N e X T � T�Áå%Ke � Y:Y �dT � TGTGT � % ¡ .

2.9 Separation of time scale and stability

Thestability of theabove modelhingescritically on thefact thatadaptationof prices is muchslower
thanadaptation of demands. In effect, price adaptation is madeso slow that demands(andmoney)
adaptationhasalways completedbefore theperformanceof a price changeis evaluated.As shown in
Sec.2.5.1by directsimulation weneedto wait about

Ã�TGTGTGT
timestepsuntil demandsandmoney have

adaptedto anew pricesituation. Thisfigureis correct for theconsidered systemsof
%UT

and
Ã�T

agents,
but generally it scales with

�
(seealso the commentsabout it in the next section). If demands are

7Every Ì�Î timesteps­ �òñ ,ôó:õ .z\ °Êö of theagentsthatdid not testa new price in the last testingperiodentertrial mode.
Asymptoticallythis meansthattherewill be

7 °K÷ \:øv\ ÷ \:; ¨ . °K÷ °�ùA°�ùA¨ agentsthattesta new priceevery ÌÊÎ timesteps.
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calculatedasin Sec.2.6 theadaption time is greatly reducedto about
Ã

timestepsandit is therefore
enough to wait only L�N �ú%UT

timestepsbetween two consecutive pricechanges.It is very important
to note that changesin price must still be madeon a slower time scale than adaption of demands
asstill sometime is needed for the redistribution of money. Note alsothat in the second caseLòN is
independent of

�
, while in thefirst caseLUN scaleslinearly with

�
.

In termsof stability, it is not possible to violate this rule: If demandsarecalculated, prices will go
to infinity if L>Nüû�L²M , becausein the timestep after a price increasethere is an upward jump in
utili ty. In thecase of trial-and-error adaption of demands,makingpriceadaptationtoo fastrelative to
consumptionadaptation leadsto highersteady statepricesor (in caseof very fastprice adaption) to
continuously increasingprices8. Thereason for this is simpleandwill beexplainedin moredetail in
the next section: A price increasewill init ially increasethe corresponding income; the reduction in
salessetsin later.
Thetabular below givesa quantitative overviewon thedependence of !`�>� on LåN for too low choices
of LåN in a systemof

Ã�T
agents with trial-and-erroradaption of demands:LON !²�´�%UTGTGTGTGT T �¸À>�¡ TGTGTGT T �¸À>¡� TGTGTGT T � Ãå%� TGTGTGT % �l� %%UTGTGTGT �/� Ã%UTGTGT �Gý ¡% �

(2.37)

Theseparationof time scalesis alsoreflected in theLagrangian solution: Onehasto solve for the � � �
first, whenpricesaregiven,andthenoptimizeprices basedon theconsumptionbehavior.

2.10 A difference between trial-and-error and calculated adaption of
demands

Fig. 2.13is acomparisionbetweenthesimulationswith trial-and-error adaption andthecorresponding
simulations with calculatedadaption of demands. Obviously, the average equilibrium price ! �´� is
higher for trial-and-error thanfor calculation. Why arethe results (apartfrom different fluctuations
anddifferent timescales)not the same?Thereason is that in the caseof trial-and-error adaption the
system exhibits a feature which is absent whenthedemandsarecalculated:
In the caseof trial-and-error adaption every test of a new price is foll owed by a transient jump of
utili ty. If a lower price is tested, thejump will bedownwards, becausein thefirst timestepsafter the
price change theagent earnslessmoney for thesameamount of work. Mathematically, assumethat
all agents charge price ! andoneagent changesit to ! 
 î ! . Theproduction �	�þ� e ! of theagent
will not change in thefirst timestep, but herincomehaschangedto �OXp! 
 î ! Y . Thusshecanbuy now

8This is clearfor examplefor Ì�Î . Ì>Í (for thesamereasonasfor calculatedadaption).Thetransitionpoint from “too
high” to “infinite” equilibrium price canbe describedlike that: If ÌÊÎ is so small that the recovery time after an average
priceincreaseis longerthan ÌKÎ evenif therewouldbeno noise,all average(andlargerthanaverage)priceincreaseswill be
acceptedanthuspriceswill go to infinity.
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� f�g¾h � é Ý NKÿ k N Þ| (�* from theother agents. Theresulting jump in utili ty isî � � � X �¤��% Y X � � f�gih � � � j`bpk Y (2.38)

where� j`bpk ��� e ! e X ����% Y . To first orderin î ! this is

î � � � � X �¤��% Y î !! � (2.39)

Consider thecaseî !�� T now. Dueto adaption of thedemands the incomewill slowly go up (along
with theproduction) and(if onewaits long enough)a new steadylevel of utility will bereached. L N
mustbechosenlargeenoughsothatthis level is reachedbefore L^N timestepsareover. Fig. 2.14shows
how thesetransient jumps look like in caseall agents charge! exceptonewith ! b � ! 
 î !��ü! .
Different valuesfor ! and! b areconsideredin a system of

Ã�T
agents.

Obviously, the “recovery time” (the time it takes for the agent to comebackto the former level of
utili ty) shows two important features. First of all, for a given ! , the recovery time doesto a good
approximation not depend on î ! (of coursewe consider only ! b ’s thatareabout

%Ke/% � T�Ã ! ). A higher� î ! � causesa strongerjump in utili ty, but it givesalsoa stronger signal that the other agentsshould
increasetheir demandfor thatproduct.
Secondly, a dependence of therecovery time on ! is observed.As ! � !6�´� � � 
 {`� � e X �¤�o% Y * {`� �T �¸À>��À , the recovery time increasesandeventually becomeslarger than LiN � %UTGTGTGTGT

. This effect
is easily understood. As ! � !´�>� , the averageproduction increases.But becauseof the concavity
of the consumptionutility, the agents gain ever lessfrom a further increaseof the demands. Thus,
thesignal that theagents should increasetheir demandfor thecheaperproduct becomesweaker and
morehiddenby the(constant)noise(theconstant testing of all demands) in thesystem. Indeed, in a
simulation wherethenoise is reduced,therecovery time staysvery smallas! � !c�´� , seeFig 2.15.
Given thesetwo featuresof the recovery time, oneseesthat assoonasthe recovery time becomes
larger than L�N , the deflation of pricesstops. At this point, an average price increasehasabout the
samechanceto beacceptedasanaveragedecrease.As explainedin theprevioussection, if L N is very
small,evena constant inflation of theprices canresult. In this sense, L N canberegarded asa kind of
“patience-parameter” for theagents. It givesthemaximumtime theagents arewillin g to wait aftera
downwardjump of util ity to comeback to theformer“standardof living”.

In thesimulationswith calculateddemands there arealsotransientjumpsin util ity, but the recovery
time is not dependent on either

�
or thecurrent price level in thesystem. Thetransient hasdiedout

assoon astheredistribution of money hastaken place(seetheprevioussection). It is clearthen, that
theresulting steady statepricecanonly beloweror equal to thesteady stateprice in thetrial-and-error
simulation.
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Figure2.1: Simulationwherethe demands #� � � adaptvia trial-and-error while prices arefixed. The
price of agent 0 is fixed at 2.4, the prices of all other agents arefixedat 3. TOP:Production. CEN-
TER: Utility . BOTTOM: Money. Thefat line describestheaveragebehavior, thesingle thin line the
behaviorof theoneagent with the lower price, all otherthin linesareexamplesof other agents. One
clearly seesthatdemands slowly move towardsthegoodwith thelower price. Onealsosees that this
results in a higher utilit y for that agent, meaning that in this caseaverage pricesaretoo high andan
individual hasanadvantagewhencharging a lowerprice. Thiseffect is whatwill drive theadaptation
of pricesin Sec.2.5.2.
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Figure 2.2: Samesimulation as in the previous figure, but with 50 insteadof 10 agents. 100000
timestepsfor theadaption of theproduction to theprice-situation is still enough.
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Figure2.3: Simulationwhereboth thedemands #� � � andprices! � adapt via trial-and-error, systemof
10 agents. TOP:Prices.SECOND: Production. THIRD: Utility . BOTTOM: Money. Oneseeshow
the system relaxestowards a price of about

T �l¡�Â , a production of about
% � %vÃ , anda utili ty of aboutÃ �pÂ . Thebottom figureshows that theaveragepercapita amount of money in the systemremains at

one(asit should) but thattheindividual amountof money fluctuatesconsiderably.
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Figure 2.4: Samesimulation as in Fig. 2.3, but with 50 instead of 10 agents. The system relaxes
towardsa price of about

T �¸À>� , a production of about
� � % ¡ and a util ity of about

% ¡/� �G� . This can
be compared to the analytical result (seeSec. 2.4) of
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% ¡/� ÃGÁ , respectively. Note that

the relative fluctuations in the individual production areabout thesameasin the simulation with 10
agents.
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Figure2.5: Simulationwheredemandsarecalculatedoptimally while pricesadapt via trial-and-error.
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Figure2.6: Simulationwheredemandsarecalculatedoptimally while pricesadaptvia trial-and-error,
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(dotted line), 100 (dashed line) and1000 (long dashed line) agents. The results areall scaled up to
the BDCFEHGIGIG production level. The fluctuations should not be larger than JKGML of the equilibrium
productionvalue,which is confirmedby thefigure,too. Noteespecially thatasaconsequence,in this
modeltheproduction of anagent cannever dropto zero.
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Figure2.8: Theequilibrium price is adecreasingfunction of thenumber of agents in thesystem.The
decreasein price is in agreementwith the“large B ” solution from Sec.2.4.2:

N 10 100 1000
simulation 0.824 0.345 0.159
analytical 0.763 0.343 0.159

(2.40)
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Chapter 3

Logistic consumption utility

3.1 The model

In thefollowing wewill consider theeffectsof adifferent functional form for theconsumptionutilit y,
i.e. ²|³ C±´¶µK·J�¸º¹ » ³�¼ ¨�E®´ » ³v¼ ­½m (3.1)

The differenceto the squareroot util ity function is that in the limit B¿¾ À (where » ¾ G ), the
slope of theconsumptionutility is E andnot À . This meansthat it is very easyhereto substitute one
product for another, e.g. if oneconsiders the price of a product too high. It is very clear therefore
thatall agents which do not behave like theaveragewill bein serioustrouble, asthey will either lose
all their money or they will have to work muchtoo much. Thus,testing of pricescausesvery large
fluctuations which makesthe modelharder to handle thanthe last: If oneis not very careful it will
alwaysbe possible that the economy completely “loses” someof its agents. Furthermore, it is not
alwayspossible to usethe samemeasurement methods (e.g. for equilibrium utility ) asin chapter 2,
becausethefluctuationscanbesolarge thatthey areno longer symmetricwith respectto upwardand
downwardfluctuations.

3.2 Analytic results

3.2.1 Optimal consumption

As in thefirst model,theoptimalconsumptiongiven Á ³ h ÂÄÃ�Å canbecalculatedanalytically. Theresult
is

» ³v¼ C EJ ¨�E®´ÇÆ ³ � ¼ ­ and Æ ³ CÉÈ�ÊIËÌ ³ � Ê ´�JIÁ ³ h ÂÄÃ�ÅÈ ÊwËÌ ³ � ·Ê (3.2)

Altogether:

» ³v¼ C EJ ´ � ¼ ¹ÊwËÌ ³ � ÊJ ¹ ÊwËÌ ³ � ·Ê ¸ Á
³ h ÂÄÃ�Å � ¼ E¹ÊwËÌ ³ � ·Ê m (3.3)
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Notethat » ³v¼ is not proportional to Á ³ h ÂÄÃ�Å . In thehomogeneous situation,all pricesarethesameand
thusthefirst andthesecond termcancelout,but this is no longer truewhenpricesaredifferent. In this
case,if anagenthappensto have thedouble amountof money to spend in a certain timestep thanin
theprevious,shewill not buy thedoubleamount of goodsfrom every agent, but distributehermoney
in a muchmorecomplicatedway.

According to the above equation, » ³�¼ canbecomenegative. For example, assumeÁ ³ ¾ G andall
prices except�zÍ thesame.Then

» ³ ÍtÎ EJ Ï E®´ � ·Í ¸ ¨ÄBF´ÇJw­ �Ð��Í� ·Í ¸ ¨ÄBF´�Jw­ � ·�Ñ p (3.4)

which is negative for �MÍ�ÒÓ� .

As usual, in suchcaseswe will set the corresponding » ³ Í to zero. This means,however, that the
corresponding goodneedsto beexcludedfrom thecalculation; in other words,wenow needto calcu-
late È�ÊwËÌ ³ h Í � Ê and È�ÊIËÌ ³ h Í � ·Ê andre-calculate all » ³v¼ h ¼ ËÌ Í . This needsto bedone iteratively until no
negative » ³v¼ is left. Note that this is not an issue in equilibrium whenall numbers are“reasonable”,
but it is anissue for a simulation.

3.2.2 Optimal price

The“large B ” result canbeobtainedexactly asin basic model.It is here��Î ¨ÄB ¸ xw­�ÁBÔ´ºE (3.5)

which meansthat » Î EB ¸ x and µ Î BÔ´ºEB ¸ x m (3.6)

This givesfor theutilit y: ² CÉÕ EB ¸ x�Ö · ¨�E � JKB · ¸ JKB×´ÇJnmo_w­Øp (3.7)

which is a monotonically increasing function of B with a limiting valueof Gumo_ (seethe plot of this
function, Fig A.2). Note the differencebetweenthis resultandthe result

²ÚÙ B ·rÛ�Ü for squareroot
consumptionutili ty. Here,becausesubstitution getsever easier for » ¾ÝG , theutili ty is bound in the
limit B�¾°À .

As will be explainedin Sec. 3.4 one hasto be careful about the interpretation of Á in Eq. 3.5.
Especially for large B , Á cannot besetequalto Á Â�ÞeÂ � B .

3.3 Simulation results

3.3.1 Trial-and error adaption of the demands

Figs.3.1and3.2show theresults whenbothdemandsandpricesadaptvia trial-and-error, asdescribed
in Secs.2.1and2.2 for thesquareroot consumption utilit y.
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Because of thestrongreactionswhich areprovokedby thepriceadaption procedure, two things had
to bechangedcompared to Secs.2.1and2.2:

The first change hasto be introducedin ordernot to “lose” someagents: During the time whenthe
system is evolving towardsthe steady stateandthe averageprice is constantly falling it canhappen
thatanagent does not try to adjust herpricedownwardsfor a long time andtherefore endsup with a
price which is muchhigher thanthe average. Of course, this canhappen in the first model,too, but
only with logistic consumption behaviour theseagentswill hence get a completely wrong signal to
wherethey should adapt theprice!
The crucial difference is that here, the otheragents would optimally buy nothing at all from these
agentsandratherspend all their money for other(lessexpensive)products:Theoptimalconsumption
of this product asgiven by Eq. 3.3 would benegative. So if theprice �rß of the “expensive product”
is high enough, the otheragentswill constantly decreasetheir demand » ß for it, no matterin which
direction this agentchangesher price. Note that » ß cannot drop to zero, though, asthe adaption is
multiplicative. Thus,theutilit y of that agentslowly decays to zero(exponentially) andit seemsthat
theagentwould alwaysgo backto thesamepriceaftertesting.
Thestochasticity (noise) in themodelleadsto adifferentbehaviour: Supposethepricefor theproduct
staysconstant.Then,as » ß goesto zero, theeffect of a furtherdecreaseof » ß on utility is hiddenever
moreby the(constant)noisein thesystem,as,in absolute value,thedecreasesmustbecomesmaller
andsmaller. Theagentswill thusslowly losethesignal that they should decreasetheir demand» ß of
theproduct. Now supposetheagent changesherpriceby à � . This will causea jump in util ity in the
next timestep by à ² C µâá à � ¸ºã ¨ µ · ­ (3.8)

(Thecalculation to obtain this result is thesameasin Sec.2.10,but theexpansion is for small µ , asµ ¾äG . à � neednot besmall). After that,no matterif à � is larger or smaller than G , utility will still
have the tendency to go down. As this tendency becomesever weaker, the effect of a price change
will be(onatimescale of theorder �l� ) amereshift of util ity upor down by à ² . Thus,priceincreases
will beaccepted,becausethesignal(the tendency of thedemandto go down) is soweak.Theresult
will be that ��ß steadily goesup, the increasebeing dampedonly by the condition that the signal to
decreasethedemandmustnotbecomesostrongthatthetransientjump in utili ty after aprice increase
candie out before �K� timestepsareover.
Thefollowing four figuresshould serve asanillustrationof this effect:
Fig. 3.3 shows the result of a simulation wherenothing is doneto avoid this “loss of agents”. The
pricehistory of oneagent whomeetsthe“f ate” describedaboveis shown.Notethatthesystemrelaxes
towardsahigheraveragepricethanin Fig 3.2. Thereason is thatbecausethesystemhaslost someof
its agents,therestcanshare a larger amount of money peragent, which causesthesteady stateprice
to go up,seeEq. 3.5.
In the next simulation (Fig. 3.4), all agents exept onehave a fixed price � C�J . Oneagentstarts
with �¬ß C�_ andis allowedto adaptherprice. Thefigureshows that this agent receivesa completely
wrongsignal: Theagent choosesanexponential increaseof herprice instead of goingto (andevena
bit below) thepricelevel of theotheragents. Thereasonwhy thepriceincreasesareacceptedis shown
in Fig. 3.5: As thedemandof theproduct goesto zero, thesignal to furtherdecreaseit becomesvery
weak. If the pricesarekept fixed at � CåJ and � ß CÉ_ , andthe effect of a single increaseof �¤ß is
studied for different initi al values» ß h i of thedemand, oneseesthat if » ß h i is smallenough, theprice
increasedoesmerelyshift up theutilit y by à ² (on a time scaleof order �æ� ).
Fig. 3.6 showsthat if we reduce � � , the inflation of the price �Mß (per �n� ) will be faster. Of course,
this is becauseprice increaseshave better chancesto beaccepted. This is thesameeffect astheone
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which causes thetrial-and-error simulationsto yield a higher equilibrium pricethancalcsimulations:
smaller�n� meanslesstime for thetransient jump of utilit y to die out.

In order to preventthisunreasonablebehaviour it wasenoughto introducea“lowerproduction limit”:
Everyagentthatproduceslessthan EHGML of theaverageproduction is forcedto lowerherpriceaslong
asherproduction staysbelow this value.

Theproblemthathigh priceagentsgetdecoupledfrom thesystemwill bepresent in thenext section
whereagents areallowedto calculatetheir optimal demands, too.

In thesystemof _KG agentsasecond changehasto bemade,because ���jC�EHGIGIGIGIG is notenough to get
a reasonable result for theequilibrium price. As explained in Sec.2.10, � � mustbechosenso large
that even as � ¾ ��çMç (asan approximate measureof �wçMç Eq. 3.5 canbe used)the transient jumps
in util ity after a change in price have the time to die out. Thereareessentially two parametersthat
determinethelength of therecovery time aftera utili ty-jump:

First, becauseof the concavity of the consumption utility, the influenceof the constantnoise in the
system causestherecovery time to increaseastheaverage price in thesystemdecreases.This effect
determinesfor examplehow fasttheutili ty goesupafteradownwardjumpof utilit y dueto alowering
of the price. The strength of this effect should be aboutthe samefor any utilit y function: E.g. for
logistic consumption the system reacts stronger to price changesbut this doesnot only increasethe
“background noise” that dampens the recovery but it meansalsothat there will be a strongersignal
for all agentsto reactto theprice changeunder consideration which makestherecovery faster.

The second parameteris à ² ¨Äà � ­ , i.e. how much the utilit y jumps after a change à � of the price.
Performing thesamecalculation asin Sec.2.10,onesees thatthejump in utility is hereà ² C ÁÚ¨ÄBF´ºEè´ÇJIÁ�­B×´éE à �� m (3.9)

For a comparisionwith theresult Eq. 2.39we have to consider therelative jump lengths à ² � ² ¨ � ­ . If
thepricelevel in thesystemsare�Kê } ��Â and�¬� Þeë , respectively, thedemandsareapproximatelygivenby» C�Á �g��� ¨ÄBF´ìE¤­ andtheproduction by µ CtÁ �g� (subscriptsomitted). This givestheutilit y levels² ¨ � ­ afterinserting µ and » into therespective functional formsof theutility. Now assuming à ���g� to
bethesamein both caseswe canlook at thequotient of theprefactors, i.e. weconsideríïî à ² � Þeë ¨ ��� Þ�ë ­ � ² � Þeë ¨ ��� Þeë ­à ² ê } �eÂ ¨ �ðê } ��Â ­ � ² ê } ��Â ¨ �ðê } �eÂ ­ m (3.10)

Wechoose ��ê } ��Â and��� Þeë to beof theform qñ¦ � çMç h dr�Kd �oò Â , whereq is between E and J and� çMç h dr�Kd �vò Â is
therespective analytical result for theNashequilibrium price. Like this, theabove quotient becomes
a function of q and B . Thefunctional form of it is quite complicated,but theresult isí Î � (3.11)

for the above range of q and B between EHG and EHGIG . Thus, the jump in utility will be about �
timeslarger for logistic than for square root consumptionutilit y. For the simulation with _KG agents,���jC�EHGIGIGIGIG is no longer enoughthen, asis shown in Fig. 3.7: In this simulation, thepricesarefixed
at about �wGML above therespective analytically predictedequilibrium values(i.e. qâC�EKm�� ) andat timeó CôEHGIGIGIG oneagent changesherpriceaccordingto � ¾ �õ� C ��� EKmvGwJ . Clearly, therecovery time for
logistic consumption behavioris muchlonger thanfor square root consumptionbehavior becausethe
jumpin util ity about

í
timeslarger. It is alsoclearfrom thefigurethat ��� mustbechosenmuchlarger
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than EHGIGIGIGIG for logistic consumption,asevenfor thisrelatively highpricelevel, thelowerpricewould
notbeacceptedafter EHGIGIGIGIG timesteps(asexplainedin Sec.2.10,therecoverytimewill becomeeven
longer as � decreasesfurther). For theactual simulation (Fig. 3.2) we chose �æ�öCô_KGIGIGIGIG . Fig. 3.8
shows the result of a simulation with �l�÷CÔEHGIGIGIGIG compared to the resultof the simulation of Fig.
3.2. As ��� is muchtoo small,thedeflationof theprices stopstoo earlywhich meansthat thesystem
endsup with a higher equilibrium pricethan in thesimulation with � � Ct_KGIGIGIGIG or in thesimulation
wheredemands arecalculated.

3.3.2 Calculated adaption of the demands

Figs. 3.9 ( BøCÚEHG ) and3.10( BøCÚEHGIG ) show theresults whendemandsarecalculatedaccording to
Eq. 3.3 insteadof adaptedby trial-and-error. This includestheiterative procedureto replacenegative» ³v¼ by zero.Again,we notethatcalculating insteadof adapting consumptiongives(within thelimits
setby toosmall �I� in thetrial-and-error simulations)thesameresult while speedingupthesimulation.

An important observationis that in thesimulation theprices of someof theagents perform a random
walk. The problem is related to the onedescribed in Sec. 3.3.1. In this case,agentswith too high
prices will sell exactly nothing at all. If thosepricesarehigh enough, production will stayat zero,
evenif thepriceis lowered.Thatmeansthattrial-and-errorpriceadaptation doesnotwork hereeither,
but theresult of thetoohighprice is notaconstantincrease(asin Sec.3.3.1)but arandom walk of the
price: Every new price is acceptedbecausetheutili ty doesnot change (it staysat zero). Like this, it
is always possible that thepricewill eventually becomelow enough sothat theagent findsthesignal
thatsheshould decreaseherpriceagain.

Here,the solution to avoid theserandom walkers is that every agent that hasproduction zeromust
entertesting modeimmediately (i.e. shewill entertesting modefor surein thebeginning of thenext
testing cycle) andtesta lower price. Like this, no agentwill ever be in a position whereherprice is
somuchhigher thantheaveragethata decreaseof thepricedoesnot increaseherutilit y.

Actually, this effect is very important in general for thesetypesof simulations: Sincethe agents
essentially do hill climbing, thereneedsto bea slope in order to find theuphill direction.

Thefollowing tables summarizetheresults for B�C�EHG :
quantity large B pred xcalc sim tr-and-err sim
p EKm��I� EKm��Mk EKmo_ �
q Gumo�IkIJ Gumo�wyKx Gumo� �M�
U GumoxIkIk GumoxIk � GumoxI�I� (3.12)

and B�Ct_KG :
quantity large B pred xcalc sim tr-and-err sim
p EKmvGw� EKmvGMy EKm�Elx
q GumokIJI_ GumokIxIk Gumo�I�wy
U Gum��M� Gum��MJIk Gum��wGIG (3.13)

A commentto theresult for theequilibri umutili ty: In thesimulation with _KG agents theexperimental
result seemsfar off from theanalytical prediction. This is easyto explain if onelooks at Fig. 3.2. All
measured quantities except utili ty show approximately asstrong upward asdownward fluctuations.
Thesefluctuationsarecaused by testing of “bad” prices. For utility therecanbeonly downwardfluc-
tuationsasit is util ity itself thatdetermineswhether a testedprice is “good” or “bad”. By definition,
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in equilibrium all agents will always go back to their former price after testing. Now let

² çMç the
utili ty level of the agents that are in steady statebut do currently not testa new price. If the price
testers areincludedin theaverageing, average utilit y in equilibri um will alwaysbesmallerthan

² çMç .
If thedownward fluctuationsaresmall (asthey arefor squareroot consumptionutility ) theerrorwill
besmall. Here,thefluctuationsarevery strong, astheagents foll ow logistic consumptionbehaviour,
and

² çMç should thusnotbemeasuredby theaverageutil ity. A bettervalue for

² çzç canbeobtainedif
onetakesthemaximumof utili ty of asingle arbitraryagent. Thiswouldbe Gum��M_ for thetrial-and-error
simulation with _KG agents and Gum��Mk in case of calculateddemands.
For simulationswith moreagents, the problemswith measurementwill be worse,andwe choseto
excludethepricetestersbefore averageing, seebelow.

Still, theresult for thetrial-and-errorsimulation is far off from the“calc” simulation. A closerresult
would probably be obtainedif �l� would be chosen even higher than _KGIGIGIGIG (or equivalently if the
fluctuationswouldbereduced).Furthermore,simulation timeshould beincreased,too, in order to get
a moreprecise result, but the simulation takes so long (even _ timeslonger thanthe corresponding
simulation in chapter 2, becauseof the increaseof � � ) that this makeslittle sense. Thebestthing to
do is to take the result of the corresponding “calc” simulation. It is interesting to noteherethat the
equilibrium priceis lower thanpredicted.This effect is analysedbelow.

As in Sec. 2.6 we can also consider to simulate systemswith more agents. For simulationswith
large B ( B ÒùÎ EHGIG ), a third change (compared to the corresponding simulations with square root
utili ty) hasto be introduced. It merelyhasto do with the methodwe useto measurethe resulting
economic quantities in equilibrium: For large B , the fluctuations become so strong that there is
an asymmetrybetween upward anddownward fluctuations, becausemoney andproduction cannot
fluctuate downwardsbelow zerowhile thereis no bound in the upward direction. As soonas this
asymmetry occurs,theequilibrium valuesof theeconomicquantitiesbecomedependentonhow much
thepricesareallowedto fluctuate. For example,thelarger thepricesareallowedto fluctuate,thelarger
will theupwardfluctuation of production bein caseof a testing of a lower price. This meansthat the
agents thatarein equilibrium (theonesthatcurrently do not testprices)would give ever moremoney
to the onesthat test lower priceswhile they always give nothing to the onesthat testhigher prices.
Like this, the average amountof money Á çzç of these agents is dependent on the amplitude of the
pricefluctuations: Á çMç decreaseastheamplitudeof thepricefluctuationsincreases. But astheNash
equilibrium price �uçMç itself is proportional to Á çMç , even ��çMç will depend on this amplitude. Utility
in equilibrium,asa special case,canfluctuateonly downwards, asevery testof anew pricemustlead
to aworseutility. If theamplitudeof thepricefluctuationsis high, utili ty will fluctuateto zeroin case
of a testof a higher price. The fluctuations dueto testing of lower prices will go muchbelow zero
(astheproductionstrongly fluctuates upwards) andareagaindependent on how muchthepricesare
allowedto fluctuate.

Here,aswe do not vary theamplitude of theprice fluctuations,the importantobservation is that this
effect will appear whenwe areconsidering systemswith large B : As is shownin the next section,
thefluctuationsin production will beproportional to B . With our choiceof themaximumfluctuation
amplitudeof thepricesgivenby � ¾úEKm�E � or � ¾ ��� EKm�E theeffect appearsfor B ÒùÎ EHGIG ascanbe
seenin thetabular below.

quantity large B pred xcalc sim
p EKmvGK� Gumokwy
U Gum��Mk GumoxIJ
q GumokI� EKmvGwx
M E E (3.14)
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For thefirst time, theexperimentalvaluefor �KçMç is considerably lower thantheanalytical prediction� dg� d �vò Â C×ûñü Üû Ã�Å Á . As seenabove, this is becausewe have to insert Á çMç into theformula for � dr�Kd �oò Â
and not Á Â�Þ�Â � B CäE as we did up to now. The measured equilibrium utilit y is much below the
predictedvalue, becauseof thestrong downward fluctuationsof individualutili ty. Thesameapplies
to production: Its measured equilibrium value is higher than predictedbecauseof thestrong upward
fluctuationsof theproduction of theagents thattestlower prices.

For even larger B , the experimentalvalueswould differ even morefrom the predicted values. For
examplethe average measuredutil ity will becomenegative while the analytical solution saysit will
convergeto Gumo_ .
For themeasurementof theequilibrium values it seemsmostnatural to excludealwaystheagents that
arecurrently testing a new price before averageing. At thesametime we canincludethedependence
onthesteady statepriceonthefluctuationsin theanalytical solution. Thisis shown in thenext section.
Like this, measuredandpredictedvaluesfor thecaseBFC�EHGIG aregivenby:

quantity large B pred xcalc sim
p GumokIk GumokI�
U Gum��Mk Gum��Mk
q GumokI� Gumokwy
M GumokI_ GumokI_ (3.15)

Theagreementis muchbetter now. Noteespecially, that theaverageamountof money of theagents
in equilibrium is no longer fixedat E . It is below below E becausethe “low-price-testers” possesan
disproportionate shareof Á Â�ÞeÂ . Notealso,that thepredictedvalues for utili ty andproduction did not
change compared to the last tabular. This is becausethe refinedanalytical solution merelyincludes
the calculation of Á çMç . The predicted valueof the steady state price is thenobtainedby insertingÁ çMç insteadof Á into the formula for � dr�Kd �oò Â . µ CÉÁ �g� , » C µ � ¨ÄBø´tE¤­ andtherefore alsothe
prediction for

²
is thusnot changed.

3.4 Fluctuations

A striking feature of themodelaretheobservedstrong fluctuations. Indeed,oneexpectsthefluctua-
tions in this modelto bemuchlarger thanin thefirst model,sincein the » ¾ýG limit (or equivalently
the Bø¾�À limit) theslopeof theutil ity function is oneandnot infinity, which meansthat substitu-
tion is alwaysat hand. This factis illustrated in Fig. 3.11,wherefluctuationsin individualproduction
arecomparedbetween the two modelsfor BþCÉEHGIG . Thevery differentkind of consumptionutilit y
makes the fluctuations increasewith B much stronger than in the first model: Comparethe fluc-
tuations in the systemof 100 agents to the system of 10 agents (Figs. 3.9 and3.10). For logistic
consumptionutili ty both absoluteaswell asrelative fluctuatuations in production areproportional toB : If in thehomogenoussituation oneagent changesherpriceby ÿ � , herproduction will fluctuateby
approximately ÿ µ Î Gumo_½ÿ � ¦ B¯m (3.16)

Note,thatis astriking differenceto thesquareroot model,wherethefluctuationsincrease(in absolute
value) only

Ù B Å Û�Ü .
Thecalculationthatleadsto theresult Eq. 3.16is thesameasin Sec.2.7: Firstcalculatetheallocation
of money in caseall agentsexceptagent

�
chargeprice � . This reducesto solving thefollowing linear
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system of equations: Á ÞeÂ ß C � ¨¢¨ÄBÔ´ Jw­ » ÞeÂ ß ¸ » ³ h ÞeÂ ß ­ (3.17)

Á ³ C�Á Â�ÞeÂ ´é¨ÄBÔ´ºE¤­�Á ÞeÂ ß m (3.18)

Here, » ÞeÂ ß is the amount of goods that the “other” agents exchange amongthemselvesand » ³ h ÞeÂ ß is
theamountof goodsthatagent

�
buysfrom anarbitrary otheragent. Both » ÞeÂ ß and » ³ h ÞeÂ ß aregivenby

Eq. 3.3.

After solving for Á ÞeÂ ß , onecancalculate » ÞeÂ ß h ³ (theamount of goods that theother agents buy from
agent

�
) by inserting theresult for Á ÞeÂ ß into Eq. 3.3. Theproduction µ ³ Cô¨ÄBÚ´�E¤­ » ÞeÂ ß h ³ is thengiven

(to first orderin ÿ � î � ³ ´ � ) by:µ ³ C µ ß Þ Í ´ EJ � B · ´é¨ªx � ¸ JIÁ±­eB ¸ J � ¸ �IÁ� · B ÿ � m (3.19)

Assumingthatthesystem is in therelaxedstate,wecanset��Î E . In thelimit B�¾°À thefluctuation
in production is thengivenby Eq. 3.16.NotealsothatEq. 3.16givesbothabsolute aswell asrelative
fluctuationsat thesametime,asin thelimit BF¾°À µ ß Þ Í î Á �g�÷Î E .
Thus,oneseesthat in caseof a lowering of the price, therewill be very strong upward fluctuations
in production if therearemany agentsandin caseof an increasein price theproduction candrop to
zero. This is not possible for thesquareroot utility whereproduction fluctuatesnot morethanaboutJKGML up or down (seeSec.2.7).

A consequenceof the strong fluctuations is that (compared to the first model) the average utili ty in
equilibrium is increasingwith B only for small B : For large B it is againdecreasingandeventually
even becomesnegative: As with production, utili ty showstwo kinds of fluctuations. If an agent
increasesher price, utilit y will drop to zeroalongwith the production, but in caseof a lowering of
the price, util ity canfluctuate much below zeroas the production goesup! It is these very strong
downwardfluctuationsin theindividualutilit y which make theaverageutility uselessasa measureof² çzç , theutilit y level of theagents in equilibrium. The individual util ity is (apartfrom thedownward
fluctuations) positive andexhibits a strong cutoff in the upward direction, asafter testing of a new
price in equilibrium (leading eventually to a decreasein utili ty) utility will jump backto its former
value. A measure of

² çzç canbeobtainedby excluding all agentsthataretesting a new price. Now,
weagainobserve thatutilit y is increasingwith N aspredictedby Eq. 3.7,seeFig. 3.12.As explained
in thelastsection, we adopt thesameprocedurefor themeasurementof all economicquantities.

A directconsequence of theasymmetry of thefluctuationsis that Á çzç is �éÁ Â�ÞeÂ � B for large B (see
Fig. 3.13). This hasan important influence on the Nashequilibrium price, as � çMç is proportional
to Á çMç : For B ÒùÎ EHGIG , the average equilibrium price goesbelow E as is shownin Fig. 3.14.
Analytically, this canbe understood becausethe Á in Eq. 3.5 mustbe replacedby Á çMç . Like this�ðçzç becomesdependenton thefluctuations.

An analytical expressionfor Á çMç canbe found like that: We introducethe parameters � and � that
describe thepricefluctuation. � ¦ B is theaveragenumberof agents that testlower prices(of course
it is likewisetheaveragenumber of agents that testhigher prices). On theotherhand, �ª� î � ¦ ��çMç
is theexpectation valuefor a lower pricewhich is tested. Thevalues of � and � mustbedetermined
very exactly, astheresult will bevery sensible to slight changesin � and � . Thevalueshave already
beendeterminedbelowEq. 2.35,they are �jC~GumvGK�M_ �M_ and � CtGumokI_IxuE .
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For the calculation we assumethat the �KB agents that testa higher price canbe excludedfrom the
system asfor these Á Î G . This leaves �IB agentswith price �H� andmoney Á � and ¨�E ´ J��M­eB agents
with price ��çMç andmoney Á çzç . Theusual steady statecondition isÁ çMç C �ðçMç�� ¨¢¨�Eù´ÇJ��M­eB×´éE¤­ » çMç ¸ �IB » çMç h ��� (3.20)Á � C Á Â�ÞeÂ � BÔ´é¨�E®´ÇJ��M­�Á çMç� (3.21)

wherefor » çzç and » çMç h � Eq. 3.3 hasto beused.Beforesolving for Á çMç , we insert also ��� C � � çMç
andfinally Eq. 3.5, ��çMç C
	 û ü Ü �
�����û Ã�Å . Theresulting systemof equationsis still linear in Á çMç and
yields a quitecomplicatedformula for thedependence of Á çMç on ¨ÄB¯pgÁ î Á Â�ÞeÂ � B¯p��«pg� ­ . Because
all parametersexcept B areconstants,we insert thesevaluesanddisplay Á çMç asa function of B
alone: Á çMç ¨ÄB ­ÐCtJ ¨ÄB×´éE¤­õ¨ÄGumokI_KGK�wB�´ºE¤­GumvGIG�El� �MxKB Ü ¸ EKmo�KGw�KB · ´Çxnm ynElxKB�´ºEKmokKGw_ (3.22)

Thefunction is plottedin Fig 3.15.

By reinsertion of Á çMç into the expressionfor �MçMç the refinedformula for the steady stateprice is
found.

Thefollowing tabular showstheresult of anexperimental testof thenew formulae for Á çzç and��çMç .
In thesystemof xKGIG agents we find:

quantity large B pred xcalc sim
p Gumo�uEl_ Gumo�KGwx
M Gumo�KGK� Gumo�KGwx (3.23)

In orderto get somemoreinsight into the dependence of Á çMç on � and � , it would be nice to find
anapproximation to thefull expression. Thedependenceon B is

Ù E � B for large B , but becauseof
the small prefactor of the B Ü term in the denominator, the E � B term dominatesonly for very largeB ( B ÒùÎ _KGIGIG ). For the tayler expansionin the interesting range B��¥EHGIGIG many termsmustbe
consideredandthustheresultdoes not becomeclearer.

3.5 Some discussion

As shown in the previoussections, the large fluctuations in a modelwith logistic consumption be-
haviour canresult in a lot of (initially not expected) new effects. In termsof stability , thesefluctua-
tions arehardto handle. We tried to changeaslittl e aspossible in thecodewhenwe switchedfrom
square root to logistic consumptionutil ity so that it waspossible to comparethe results of the two
models, but in apossible furtherdevelopmentof amodelwith logistic consumption util ity oneshould
neverthelesslook aftera way to reduce thefluctuations.Below aresomeideas how to do that:

Theeasiest way to control thefluctuationsis by adapting theamplitudeof theallowedfluctuationsin
theprices. Theamplitudeshould bereducedwhenlarge B areconsidered. This doesnot necessarily
meanthattheapproachto thesteady statewill take longer: If thesystem startsatatoohighpricelevel
andtheprice adaption amplitude is very high, large price decreaseswill not beaccepted(even if the
new priceis above �uçMç ) becausetheresulting increasein production (work) is sohigh.

40



The strongfluctuations can also be seenas a result of too much information and flexibili ty. For
example, introducing a spatial component will reduce thesefluctuations: In caseof a small price
change,only theconsumersbeinglocatedright at theborderline betweentwo supplierswill switch.

Similarly, if consumersreactedonly imperfectly to pricedifferences,thestrong fluctuationswouldgo
away. This couldfor example beachievedby using something like» ³v¼» ³ Ê Ù�� Ã�� ���� Ã�� ��� (3.24)

for the allocationof consumption whenprice differentials aresmall.1 Suchan approachwould be
consistentwith approachesin Statistical Physics.

1In fact,theleadingtermsfor consumption are�����! #"%$ ��&('*)+-, (3.25)

Onecouldreplacethis by �����! ."%$ � &0/21436587:9 ; �! <"�$ � &2=�/>'?)+ , (3.26)

For ;A@*B this would returnto whatwe hadbefore(zeronoiselimit); for ;C@ED this would switchoff theeffect of the
first termcompletely(largenoiselimit).
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Figure3.1: Relaxation for a logistic consumption utilit y. Systemwith BFC�EHG agents.
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Figure3.2: Relaxation for a logistic consumption utility. Systemwith BäCÉ_KG agents. Because of
the large jumps of utilit y after price changeswe need ���©C�_KGIGIGIGIG to get a reasonable result for
the equilibrium price level. Here,the downward fluctuations in individual utilit y dueto a testing of
a lower price canbe quite strong. For examplethe fluctuation at timestep x � Gw� goesdown to about´â_ . Here,onecanseevery clearly how every testof a lower price is accompaniedby a large upward
fluctuation of money andproduction, andby a large downwardfluctuation of utili ty.
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Figure3.3: If “low-producers” arenot forced to lower the price, it is possible that theseagentsget
decoupledfrom thesystem. Theuppersolid line shows theresult for theaveragepricein asimulation
with _KG agents wherenothing is doneto avoid this lossof agents. Thethin line is thepricehistory of
oneagentthat happenedto get decoupled. For comparision, the lower solid line shows the average
pricefrom Fig. 3.2wherethereis no lossof agents. Clearly, thesystemrelaxesto a lowersteady state
price, then.
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Figure 3.4: Simulation whereall agentshave a fixed price � CþJ and one starts at �¢ß CÝ_ and
is allowedto adapt her price. This agentgetsa wrong signal to wheresheshould adaptthe price.B�Ct_KG .
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Figure 3.5: The reason why agents with too high prices adapttheir prices in the wrong direction.
Simulation whereone agent W startsat a too high prise of ��ß Cø_ andall the others have a fixed
priceof � C�J . Theoptimaldemand of theexpensive product would bezero,but thedecreaseof it is
sloweddown ever moreby thenoisein thesystem. Theeffect of a change of ��ß with � � h �¢dr�K� C EKmvGw_
in timestep

ó C EHGIGIGIG is shown for different initial valuesof thedemandfor thatproduct. TOP:The
initi al demand» ß h i of theexpensive product is about onetenth of thedemand » ÞeÂ ß Î Á �g��� ¨ÄB�´ÇJw­
for the other products. The signal to reduce » ß is very strong and neither a price increase(solid
line) nor a price decrease(dashed line) canstopthe fall of the util ity of agent W . SECOND: Same
simulation, but with » ß h i Î E � EHGIG » ÞeÂ ß andonly the price increaseis shown. Because, as » ß ¾¿G ,
the noisein the system slows down the decreaseof » ß ever more, it takes longer for the transient
jump in utilit y to die out. THIRD: As » ß h i Î E � EHGIGIG » ÞeÂ ß , theagent is essentially decoupled from the
system. A priceincrease(solid line) merelyshifts theutili ty up andis thereforelikely to beaccepted.
Dashedline: nopricechange.BOTTOM: solid line: sameasTHIRD, thedashedline is alsothesame,
but without noise. That meansthat the agents canonly adapt » ß . The price increasewould not be
accepted,then, as » ß (andalongwith it utili ty) decays exponentially to zerowithout any damping.
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Figure3.7: Therecovery timeafterachangeof price is longer for logistic consumption utilit y thanfor
squarerootconsumption utili ty becausein caseof logisticconsumptionthejumpin utility afteraprice
change is about � timeslarger. Both simulations with BýC _KG agents. Thepricesarefixedat about�wGML above the respective analytically predictedequilibrium value (i.e. �eê } ��Â Î Gumo� and ��� Þ�ë Î EKm�� )
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agent is shown, rescaledso that theaverage utilit y in thesystemwould be E . Solid line: squareroot
consumptionutil ity, dashedline: logistic consumptionutili ty.
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Figure3.8: �z�ÇC EHGIGIGIGIG is not enough for trial-and-error adaption of demands in a system of _KG
agents. Thecurvesfrom top to bottom: Simulation with �Ø�jC�EHGIGIGIGIG ; simulation with �w�jCt_KGIGIGIGIG ;
analytical result from Eq. 3.5with Á C E (dashedline); result of thecorresponding simulationwith
calculatedadaption of demands (with scaled
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-values). Clearly, the equilibrium resultof the “trial -

and-errorsimulation”is muchcloserto theresult of the“calc simulation,” if � �§C�_KGIGIGIGIG is used.–
Thereason why theequilibri umprice in thecalcsimulation is belowtheanalytical valueis explained
in Sec.3.4.
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Figure3.9: Relaxation for a logistic consumptionutil ity whendemands arecalculated. SystemwithB�C�EHG agents.
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Figure3.10:Relaxation for a logistic consumptionutili ty whendemands arecalculated. SystemwithB�C�EHGIG agents.
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Figure3.11: Fluctuations in themodelwith logistic util ity function aremuchlarger thanin thebasic
model: Top curves: basicmodel,bottom curves: logistic model. Alwaysaverageproductionaswell
astheproduction of a single (arbitrary) agentis plotted. Simulationswith EHGIG agents.
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Figure3.12:TOP:average equilibrium util ity is decreasing with { for large { : Theblackline is the
average util ity in the system of |~} agents. The topmost thin line is for the system of ��} agents, the
lower thin lines for systemsof |~}�} and ��}�} agents, respectively. The reason for the decreasein the
large { limit is the large fluctuations,ascanbe seenin the MIDDLE figure: In the system of ��}�}
agents,theutili ty of asingle agentis usually positive,but exhibitsverystrong fluctuationsin direction
of negative utility. Upwardsthereis astrong cutoff, which is (in contrastto averageutilit y) increasing
with { . BOTTOM figure: In order to measure the equilibrium utilit y onemustaverageonly over
the utili ty of the agents that do not testnew prices. Equilibrium util ity is thenincreasingwith { as
predictedby Eq. 3.7.
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Figure3.13: In the simulation with ��}�} agents, ���0� is smallerthan ���!�>�>��{���| . Obviously, the
reason is the asymmetric fluctuations in individual money: Consider the curve for the individual
money above. The agent is in equilibrium except whenshetests a new price. If shechanges her
price to � �!�>�4� , her production will fluctuate by ���<��}�����{���� �!�����¡  � �(��¢ . Her money thus fluctuates
by �8� �£� �!�>�4�¥¤ �8� . Inserting somevalues: For {¦����}�} , � �(� is about }���§ . Thus,for an average
price changewhere�0�!�>�4��¨©��|�ª£}��«}¬� ¢ �­�0� , �8� is predicted to be about ®¯� . This is confirmedby
thefigure in caseof price decreases. For price increasesit meansthat themoney will dropto zeroas
the agent will not sell anything. – The conclusionis that the agentsthat testlower priceswill share
a disproportionate share of the total amount of money in thesystemandthus � �0� becomessmaller
than � �!�>� ��{ . Clearly, theeffect becomesstrongeras { increases.
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Figure3.14: Average equilibri um price is decreasingwith { : Fromtop to bottom: Simulationswith|~} , ��} , |~}�} and ��}�} agents.For {²�³|~}�} and ��}�} theprice is below | which is a consequenceof the
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Chapter 4

Summary

Wehavepresenteda simpledynamicmodelof a market. Certainversionsof themodelcanbetreated
analytically. Simulation offers the possibilit y to go beyond the analytically solvablecases.In both
cases, for stablesolutionsit is crucial to select thedynamicscorrectly. In themodelof thispaper, price
adaptation hasto happenon a muchslower time scalethanconsumption adaptation, otherwiseprice
evolution will not behave reasonably. This is intuitively plausible; nevertheless, it needsto be taken
into account bothwhenbuilding simulationsmodelsandpossibly whenregulating therealworld.
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Appendix A

A.1 Analytical solutions for the square root utility

A.1.1 Optimal prices

Giventhatoneknowstheconsumer’s reaction Eqs.2.7,onecancalculatetheoptimalprice. For this,
onehasto replace ��¾ by ¿ÁÀ¬ÂÃ ¾8Ä ¾ÆÅ , leading to

ÇÈ ¾ �   |É �ËÊ¾
ÌÍÍÍÍÎÐÏÅ ÂÃ ¾ ��Å�Ñ �ÓÒÕÔÏÀ¬ÂÃ Å |� À

Ö�××××Ø
Ù
Ú É ÏÅ ÂÃ ¾¬Û Ä ¾«Å ÚÝÜ ¾

ÌÍÍÍÍÎ |�Ë¾ ÏÅ ÂÃ ¾ �ÞÅ�Ñ �ÓÒÕÔÏÀ¬ÂÃ Å |� À   ÏÅ ÂÃ ¾ � Å Ä ¾«Å
Ö�××××Ø � (A.1)

Notethat
Ü ¾ does not depend on ��¾ .

Two limiting casesareeasyto calculate:ß {�à á . In this case,the dependence of ¿ À�ÂÃ Å |���� À on ��¾ vanishesandthusall
Ü Å become

independentof �0¾ . In this case, thederivative of
ÇÈ ¾ w.r.t. ��¾ becomes

É � ÒËâ¾ ÌÎ ÏÅ ÂÃ ¾ |Ü ÙÅ
ÖØ Ù   Ü ¾�� Ò Ù¾ ÏÅ ÂÃ ¾ |Ü ÙÅ � (A.2)

Solving for ��¾ results in ��ã¾ � É Ü ÒÕÔ¾ ÏÅ ÂÃ ¾ |Ü ÙÅ � (A.3)

In thehomogeneouscase,
Ü Ù¾ � Ü ÙÅ � Ü Ù �ä�Ó{   | ¢ �å�Ý� , andtherefore

�.� É Ùçæ ã ��Ó{   | ¢ Ô æ ã � (A.4)

This yields Ä � É Ò Ùçæ ã �Ó{   | ¢ Ò Ùçæ ã and �¯� É Ò Ùçæ ã �Ó{   | ¢ Ô æ ã � (A.5)ß {²� É . In this case, ¿ À¬ÂÃ Å |���� À �è|����Ë¾ . In this case,é ÇÈ ¾é �Ë¾ �ê� Ò ã¾ ¼ (A.6)
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andsetting this equal to zeromeans��¾ë�£á . This maylook surprisingatfirst, but makessense
since this is themonopoly situation: Eachagentbuysonly onegood, andsotheseller canraise
priceswithout boundandstill make thesameamountof money.

Theexactapproachto find theoptimalpricewhich agentì should charge if sheknowsall otherprices
must include a correct treatmentof a change in the allocationof money that results from a change
of theprices. In thesimulation wheredemandsarecalculatedthis is theonly mechanism thatdelays
the immediate adaption of demands to a new price situation. So in order to studytheeffect which a
setting of a new pricehas, onefirst hasto calculatetheresulting allocationof money. This gives(by
Eq. 2.7)directly thenew demands of all agents andthereforealsotheresulting changein utili ty.

Theallocationof money thatresults from agivenpricedistribution mustfulfill thesteady statecondi-
tion �Á¾í�·�Ë¾ ÏÅ ÂÃ ¾ Ä Å�¾î¼ (A.7)

where Ä Å�¾ � ��Å� Ù¾ ¿ À¬ÂÃ Å Ôï�ð � (A.8)

This is a linear system of equations for the �A¾ ’s asfunctionsof the prices. Since ¿ Å ÂÃ ¾ Ä ¾«Å#�ñ�Á¾
(meaning that every agentspends all her money in every timestep) the total amountof money is
conservedandtherefore only {   | of the �A¾ ’s areindependent. Thedeterminantis no longer zero,
though, if theequation for �#ò is replacedbyòÏ ¾ Ã Ô � ¾ �ó�ê�!�>�ç¼ (A.9)

thusintroducing theconservedparameter � �!�>� . Theresult is then:

�ê¾ë� � �!�>�É ¿ Å�ô>õ(Å�ö�õÕ÷Æ÷Æ÷Æõ(Å�øÕù ö Ñ Å ð ÂÃ ¾ ��Åçô��:Å�ö��ú�ú� �:Å�øÕù ö¿ Å�ô�õ(Å�öçõÕ÷Æ÷Æ÷Æõ(Å øíù ö �:Å ô �:Å ö �ú�ú� �:Å�øíù ö � (A.10)

Assumingthat all agents keeptheir prices fixed, theabove formula givestheallocationof money as
function of the price which agent ì sets. This meansthat agent ì alsoknows the resulting demands
which putsherutili ty function in theformÈ ¾���� Ô ¼~�ú�ú�ú¼Ó� ò¯¢ �   |É �~¾���� Ô ¼~�ú�ú�ú¼Ó� ò¯¢ Ù Ú É ÏÅ ÂÃ ¾ û Ä ¾«Å0��� Ô ¼~�ú�ú�ú¼Ó� òü¢ � (A.11)

In this form util ity canbe maximized without any constraint to find ��¾�Ñ � ï � ��� Ô ¼~�ú�ú�ú¼Ó�Ë¾ ÒÕÔ ¼Ó�Ë¾!ý Ô ¼~�ú�ú� � ò�¢ ,
but even for {��þ� the derivative w.r.t. � ¾ becomesso complicatedthat the rootscannot be found
analytically.

So let usasa first stepassumethat all otheragent’s pricesarefixed andidentical. According to the
above formula theallocation of money will be�ê¾í�£� �!�>� �É � Ú �Ó{   É ¢ �Ë¾ (A.12)

for agentì and � ÿ � �!�>�ë  �ê¾{   | � � �!�>�{   | � Ú �Ó{   É ¢ �Ë¾É � Ú �Ó{   É ¢ �Ë¾ (A.13)
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for all otheragents. Using these expressionsto calculatethedemands,Eq. A.11 givesthe following
expressionfor theutilit y:

È ¾í�   |É � Ù�!�>� ��� Ú �Ó{   É ¢ � ¾ ¢ Ù��Ê¾ � É � Ú �Ó{   É ¢ �Ë¾ ¢ Ù � ò Ò Ùï Ú Ôï���� Ù Ú É�� �Ó{   | ¢ �ê�!�>�É � Ú �Ó{   É ¢ �Ë¾ (A.14)

After derivation w.r.t. �:¾ andsetting to 0, theoptimal ��¾ wouldstill beamongtherootsof anexpression
which is too complicatedto treat exactly. It is interesting, though, to explore graphically how agent ì
would setherprice for different price levelsof all theotheragents. This is shown in Fig. A.1: If all
agentschargeaprice � whichis larger than� ò	�6��
��
� ¨ É Ùçæ ã �ó���Ó{   | ¢ Ô æ ã , agentì should setherprice
optimally somewherebetween � ò	�6��
���� and � , not below � �
� . Accordingly if ��¸Á� ò�����
��
� , e.g. if � is
chosento bethe“system-wide”equilibrium price � ��� ÿ£�ó���Ó{   | ¢ Ô æ ã , �Ë¾ will optmally bebetween� and� ò	�6��
��
� , which meansthatthesystem-wideoptimalpriceis instableandthesystem will evolve
towardstheNashequilibrium price.Of course,as�#à � ò�����
��
� we observe that �:¾Õàñ� ò�����
���� , too.

A.2 Analytical solutions for the logistic utility

In order to find theoptimal consumptioneach agentì maximizesÈ ¾ë�   � ÙÉ Ú ÏÅ ÂÃ ¾ Ä ¾«Å¡��|   Ä ¾«Å ¢ ÚÝÜ ¾ � �ê¾�Ñ �ÓÒÕÔ   ÏÅ ÂÃ ¾ �:Å Ä ¾«Å � � (A.15)

Thecalculation is thesameasin Sec.2.4.1andgivestheresultÜ ¾í� |¿ÁÀ¬ÂÃ ¾ � ÙÀ � ÏÀ�ÂÃ ¾ � À   É �ê¾�Ñ �ÓÒÕÔ�� and Ä ¾«Å%� |É ��|   Ü ¾��:Å ¢ � (A.16)

Puttingthetwo results together:

Ä ¾ÆÅ�� |É   �:Å ¿ À¬ÂÃ ¾ � ÀÉ ¿ÁÀ¬ÂÃ ¾ � ÙÀ Ú �Á¾��:Å |¿êÀ¬ÂÃ ¾ � ÙÀ � (A.17)

Although Ä ¾ÆÅ is not proportional to �.¾ , thehomogenoussolution gives

Ä � �ó���{   | (A.18)

asit should and
Ü

becomes Ü � |�   É ��Ó{   | ¢ � Ù � (A.19)

As in Sec.A.1.1onecanassumethat thereaction Eq. A.16 to givenpricesis knownandcalculatethe
optimal price by substituting � and �µ¾2Ñ �ÓÒÕÔ in Eq. A.15. In thelarge N limit wherethedependence of¿êÀ�ÂÃ Å |���� À and ¿ À¬ÂÃ Å |���� ÙÀ on � ¾ is neglectedtheresultis:

� ¾ � ò ÒÕÔÙ � Ü ¾ Ú ÔÙ ¿ À�ÂÃ ¾ Ü À �ÔÊ � ¿ À¬ÂÃ ¾ Ü À � Ù ÚÝÜ ¾ ¿ À�ÂÃ ¾ Ü À � (A.20)
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In thehomogenous case: �#� �Ó{ Ú � ¢ �{   | � (A.21)

With this result weseethat Ä is simply givenby Ôò ý ã which givesanequilibrium utilit y ofÈ � � |{ Ú � � Ù ��|�� É { Ù Ú É {   É ��� ¢ (A.22)

which is a monotonically increasingfunction of N that convergesto 0.5 in the largeN limit, seeFig.
A.2. Comparethis result to theBOTTOM figureof Fig. 3.12.

A.3 Random walkers, an example of an interesting bug

Thissection is onemoredemonstrationto show how easyit wasto getthingswrongwhenthesmall,at
first sight nonproblematicchange of theconsumptionutility (from square root to logistic) wasmade.
In this case,themistake leaded alsoto a very behaviour of theagents.

Again the problem is related to the fact that in case of logistic consumption if an agent j chargesa
high price, it is possible that

Ü ¾��:Å�� | which meansthat Ä ¾«Å is smaller thanzero1.

Themostsimplething to do is setting those Ä ¾«Å thatwould benegative to zeroandrescaleall Ä ¾ÆÅ in
the endso that still all the money is spent in every timestep. Although this procedure seemsto be
reasonableat first sight, there is animportant bug hiddenin it.

First of all, the rescaling procedureis hard to justify, as it hasto be donewith a rescaling factor
proportional to the amountof money which hasto be spent. This would contradict Eq. 3.3 which
states thatthedemandsarenot chosenproportionally.

Secondly, consider that all agentswho charge too high pricesanddo not sell anything, will seetheir
production, their amountof money andthereforealsotheir utili ty dropto zero. Theseagents perform
a random walk, accepting every price they test,becausetheir utilit y doesnot change. In this way it
is possible that their price becomesvery large. This should of course not influence thebehaviour of
all theother agents, especially it should not influence theaverageprice level, astheseagents do not
produceanything andtheaverageprice is givenby

� ��� � ¿-�~¾«�Ë¾¿ �~¾ � (A.23)

If �~¾ is zero, � ��� does not depend on ��¾ . The simulation shows,though, that the average price level
very muchdependson thepriceswhich these randomwalkerscharge! In retrospectthereasonfor the
strangebehaviour is quite simple: Although not appearing explicitly in theformula for � ��� theprices
of the random walkers still appear in the calculation of the

Ü ¾ ’s andtherefore influenceall �4¾ . Only
the iterative methoddescribed in Sec. 3.2.1removesthe bug andmakesa correct calculation of theÄ ¾«Å possible.

Now, strictly speaking, it makesno senseto let theserandom walkers exist at all: Every real “intelli-
gent” agent thatdoesnot sell anything would lower herpriceaslong asherproduction stays at zero.
Shewould certainly not considerhigher pricesaswell andin doing sobecomea random walker. But
unlesswe allow our agents to be “stupid” random walkers, the bug will hardly becomevisible, as

1impossiblein thebasicmodel,seethecorrespondingEq. 2.24.
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no agents with unreasonably high priceswill emerge! In fact, if non-producersareforced to lower
their price (i.e. no randomwalkers canemerge), thesimulation results with andwithout the iterative
methodwill bealmostidentical, seeFig. A.3: Thebugshowsonly if theagentsareallowedto behave
unreasonably.

The following figureswill showthe very interesting behaviour of this “bugged” economy and the
analysisperformedto get thebug uncovered.Fig. A.4 shows thecurvesfor price,production, utilit y
andmoney devlopmentin aneconomy of |~}�} agents. Equilibrium andthe(for logistic utili ty typical)
fluctuationsseemto startonly around timestep ��}�}�}�}�} . Beforethat,strongfluctuationsin theaverage
pricelevel areobserved,accompaniedby corresponding fluctuationsin averageproductionandutilit y.
In this phase,individualbehaviourshowsessentially no deviation from theaverage! In thesystemof��}�} agents,average prices canbecomeaslargeas |���} before equilibrium starts, seeFig. A.5.

Now let’sseehow thisstrangebehaviour is relatedto thepresenceof randomwalkers. Fig. A.6 shows
that only aslong astherearerandom walkers, the system shows the strange behaviour. As soonas
thereareno random walkersanymore, the systemcancomeinto equilibrium. As in this simulation
thereis essentially alwaysonly onerandom walker present (seeFig. A.6), it is easyto seetheeffect
that thesecause. For exampleFig. A.7 show how the average price in the system always follows
the price which the random walker charges!Indeed,if oneagent � chargesa very high price, Ä ¾«Å is
approximately givenby Ä ¾«Å ¨ |É   �:Å� � ¿êÀ�ÂÃ ¾ � ÀÉ � � (A.24)

for ìç¼������� (seebelow). Thus,although agent � doesnot have anything to do (directly) with the
trades betweenagents ì and � , Ä ¾«Å depends strongly on � � ! With the above choice of their demands
theutili ty of all agentsis at a local maximumif pricesareconsidered fixedfor themoment.If agent� now happensto increase(decrease)herprice,all Ä ¾«Å do decrease(increase).In orderto comeback
to the local maximumof utility, the agents must try to increase(decrease)their Ä ¾«Å ’s again. From
the above formula onesees that this canbe done by a collective increase(decrease)of the prices.
In this way the average price level in the system always follows the random walk of agent � and
no equilibrium canbe established until all random walkers are“caught” by the system. As soon as
all random walkersarecaught, the distribution in pricesgetsvery narrow (seeFig. A.8 andhence
no agentcan“escape” the system andbecomea random walker. Of course, the narrownessof the
distribution of pricesin equilibrium is alsothe reason for the large fluctuations thatcanbeobserved
there, as,if the distribution is very narrow, agents that testprices arevery “exposed”. Fromnow on
thesystem behaves“normally”, i.e. asthesystemin Sec3.3.2,asthebug in thecode hasno effects
anymore.

A.3.1 Demands in case of a random walker

Theseareapproximations to Eq. 3.3 if there is a random walker “ � ” which chargesa muchtoo high
price. If ì����� , ¿ À¬ÂÃ ¾ � ÙÀ is approximately given by � Ù� . In equilibrium the first two summandsof
Eq. A.17 canalmostcancel to zeroandonly thethird summandis important. In thepresentsituation,
though, ��¾ cansafely be neglectedcompared to ¿ À¬ÂÃ ¾ � À : if ì����� at least onesummand is much
larger than �Þ¾ , ( �ê¾ being of theorder of theequilibrium price) andif ì¥��� � ¾ is zeroanyway. We
now getfor thecaseof ì ��!� and �"��!� that Ä ¾«Å is approximatelygivenby

Ä ¾«Å ¨ |É#  �:Å� � ¿ À¬ÂÃ ¾ � ÀÉ � � � (A.25)
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If j is therandomwalker itself wehave

Ä ¾ � ¨   ¿ À¬ÂÃ ¾�Ñ Å � ÀÉ � � Ú �Á¾� � � (A.26)

Also herethe second term is muchsmallerthanthe first, so Ä ¾ � is negative andwill be set to zero.
Thismeansthatnoagentwill buy from therandomwalker. Finally, if ì is therandomwalker, Ä � Å will
besetto zeroin therescaleprocedureof theprogram,as �¯¾ is zero.
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FigureA.2: Analytically predictedvalueof theequilibrium utilit y in thelargeN limit asa functionof
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FigureA.3: If non-producersareforced to lower their price (i.e. “intelligent agents”), thebug in the
codeis hiddenastherearenorandom walkers: Thin curveis theaveragepricein thebuggedeconomy
(i.e. here,if agent ì buys nothing from agent � , �6Å is not excludedfrom the calculation of

Ü ¾ ). The
solid curve is theaverageprice in thesimulation wherethe iterative methodof Sec.3.2.1is usedfor
thecalculation of the

Ü
’s. Simulationswith |~}�} agents.
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Figure A.4: Relaxation for a logistic consumption util ity when demandsare calculatedand non-
producersarenot forced to lowertheirprice. Systemwith 100agents. Notethestartof thefluctuations
assoon asequilibrium is reached.
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FigureA.6: Numberof agentswhichdonotproduceanything in thesystem of 100agents.This is just
thenumber of agents thatcharge a too high priceandarerandom walkers therefore.Thepoint where
equilibrium is reachedis markedby displaying thegraph for average production, scaled up for better
visibility . Beforeequilibri um is reached thereare long periods with just one random walker: One
agent is a randomwalker between timestep 0 to about 2.15e5 andthere’s a different onefrom about
1.95e5until equilibrium is established, seeFig. A.7. Hencethere areno random walkersanymore.
Theproduction of anagentcantemporarily dropto zero,though,whenshetests a higher price.
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FigureA.7: Thefigureshows theprices of the two random walkersmentionedin Fig. A.6 andtheir
effect on theaverage pricelevel.
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FigureA.8: Thefigureshowsthestandarddeviation in thedistribution of pricesasfunction of time.
In the lower curve the random walkers areexcludedfrom the calculation. Evenwithout the random
walkers, thedistribution of pricescannot benarrow aslong asthereis no equilibrium, astherandom
walkers greatly disturb the price developementof all the other agents. Only whenall the random
walkers arecaught andequilibri um is established, thestandarddeviation becomesvery small.
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