TERM PROJECT

Generating Day Plans From

Origin-Destination Matrices

Marcel Rieser
August 2004
ETH Zurich, Switzerland

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Abstract

Traffic demand modeling was based for a long time on demand matri-
ces, also called origin-destination-matrices (OD-matrices). These matrices
were used by various traditional assignment models like VISUM [13] or
EMME/2 [4]. But more and more microsimulation tools are becoming a
major role in traffic demand modeling, because they offer several advan-
tages over the assignment models.

Because microsimulation models include decision making processes,
some knowledge about the individual’s plans has to be given. This in-
cludes also information about activity patterns, which are lacking in OD-
matrices. Nevertheless, OD-matrices contain many useful information,
particularly because they are often immediatly available. The question
comes up how OD-matrices could be used to regenerated plans, which is
discussed here.

First approaches are shown by comparing VISUM—a traditional as-
signment model—with MATSIM [8]—a microsimulation model—in a case
study of the Zurich Area of Switzerland.

CONTENTS

Contents
1 Introduction
2 Overview
21 Terminology,
22 InputData
23 Processes
24 OutputData,
3 Preprocessing
31 FileFormats
3.2 ascii2villages.plo oo
3.3 ascii2population.pl 0 oL
4 Generating Day Plans
41 IntroductiontoDayPlans
42 fmaltrips
43 fma2persons
44 fma2plans
441 Choosing persons fortrips.
442 Speed Optimizations
443 Other Characteristics
5 Postprocessing
51 cityplans2plans L oL
5.2 Location Choice for Secondary Activities
521 Introduction,
52.2 Modifications oL Lo
523 Usage.
6 Model Verification and Results
61 UsedData
6.1.1 Population and Activity Patterns
6.1.2 OD-matrices
6.2 Scenarios
6.3 Number of Generated Day Plans
6.3.1 fma2trips
632 fma2persons.
633 fmaZplans L L.
6.4 Number of Trips Generated
641 fma2trips o
642 fma2persons.
643 fmaZplans L
6.5 ExecutionTime, .
6.6 Comparison with Counting Stations

6.7 Travel Time Analysis
Conclusions

Future Work

»

AN O\ U1 =

NN NN

CONTENTS

Acknowledgements
References

A Example files
Al wvillagestxt
A2 population.txt oo
A3 patternsitxt Lo
A4 translation.txt
A5 willagesxml L L L
A6 populationxml L Lo oL
A7 cityplansxml oo
A8 pre-plansxml oo
A9 plansxml L
Al0plansdtd
A1l demand-matrixfma
Al2configxml
Al3configdtd
Aldsettingsxml L o
Al5landusexml
Al6landusedtd

B SVG - Scalable Vector Graphics

39

40

42
42
42
43
44
44
44
45
45
46
47
48
49
49
50
51
51

52

1 INTRODUCTION 3

1 Introduction

Microsimulation is becoming more and more important in traffic simulation,
traffic analysis and traffic forecast (see [14]). Some advantages over conven-
tional assignment models are:

e Computational savings in the calculation and storage of large multidi-
mensional probability arrays.

e Larger range of output options, from overall statistics to precise informa-
tion about each specific synthetic traveler in the simulation.

e Explicit modeling of the decision making processes of the individuals.

The last point is important since it is not a vehicle which produces traffic, it
is the person who drives it. Persons do not just produce traffic, instead each
of them tries to execute his day (week, life) in a profitable way. They go to
work to gain money, they go hiking for their health and pleasure, they visit
their relatives for pleasure or because they feel obliged to do so, they shop to
cook a nice dinner at home, and so on. Since not all of this can be done at the
same location they have to travel, which produces the traffic. To plan a day
efficiently, a lot of decisions are made by each person:

e Which route should I take to get to work? — Route choice decision
e Which mode should I use to go to the lake? — Mode choice decision

e Should I drink another beer before going home? — Activity duration
choice decision

e Should I go shopping near my home or at the mall? — Location choice
decision

e When should I do sports today? — Activity starting time choice decision
e Whom should I take along? — Group composition decision

e Should I go swimming before or after work? — Activity chain choice
decision

There are many more decisions to make, some of them are planned hours
(days, months) in advance and others are made as a spontaneous reaction to
specific situations. Many decisions induce other decisions. For example, if [am
late for work, I am supposed to work longer, so there’s no time left to go shop-
ping today, so I need some time tomorrow to do the shopping. This example
shows the importance of describing plans for each individual in a simulation
model, because it is the plan and the decisions made by the person who adhere
to this plan that produces the traffic.

To simulate a typical day in an urban area, microsimulation tools need pre-
cise information about the plans of each individual and also some knowledge
about people’s decision making process. But to extract daily plans (activity
chains) from persons is not a trivial task. On the other hand conventional as-
signment models like VISUM [13] or EMME/2 [4] typically use OD-matrices
which hold the information about the trips from an origin to a destination (usu-
ally zones or regions), but these do not provide links back to individuals. This
leads to the main question of this paper:

2 OVERVIEW 4

Is it possible to impute (reconstruct) people’s activity chains from a
set of origin-destination matrices (OD-matrices)?

This paper demonstrates first approaches to answer this question. It is orga-
nized as follows: first, the case study to which the approaches are applied is
discussed including the description of the OD-matrices and how they have
been generated. This is followed by a detailed description of the “activity chain
generation process”. To assess the quality of the results we compare VISUM
and MATSIM [8] results employing OD-matrices and daily activity chains re-
spectively. Finally, concluding remarks and recommendations for future re-
search are outlined.

2 Overview

2.1 Terminology

The area under investigation is divided into different zones. A zone is an area
containing a number of inhabitants, a number of work places and other char-
acteristics. Usually, a zone corresponds to a city, a village or a municipality.

Origin-destination matrices (OD-matrices) show the number of trips from
every zone in the area under investigation to all the other zones. The matrices
are also called demand matrices, based on the meaning of the data. In this
paper, OD-matrices is used because of its more general meaning.

If people are on the road, they usually travel from one activity to another
activity. That means they usually follow an activity-chain. Activity chains, also
called activity patterns, list all activities of one person in chronological order. An
activity chain starts and ends usually with an activity referred as “being home”
or just “home”. A typical pattern is home-work-leisure-work-home , or
simply h-w-l-w-h

Between two activities, one or more legs have to be defined. A leg describes
which transportation mode is used to get from one activity to the next one. It
is possible, that the transportation mode changes (e.g. from car to train when
using ‘Park&Ride’). In those cases, more than one leg can be stored between
two activities.

When a person travels from one place to another (optionally with one or
more stops in between), they often speak from a journey. A journey can either
be a round-trip or only one-way, e.g. going on holiday. But before going on a
journey, people usually make a plan where to travel to. A plan is an example
of a activity chain, consisting of a start location, an end location (both with
an activity assigned) and several stations along the journey. The difference
between a plan and a journey is that the latter is fixed, while the plan only
shows the intention a traveller has. The journey based on a plan differs in most
cases from the plan as unforeseen events may happen during the execution of
the plan.

This case study focuses on day plans—plans for one day (plans can usually
be of any duration of time from a few minutes up to several years). But it must
be noted that the presented methods could work with any kind of activity-
chains, and thus with any kind of plans.

2 OVERVIEW 5

Modal split

45.44% motorized individual
transportation mode

(Activity chain distribution M
12% h-w-I-h
21% h-w-h
etc.

OD-hrs7-8,mode car
17 work trips
12 shop trips ...

OD-hrs8-9,mode car

4 education trips
3 work trips ...
OD hrs9-10,mode car
6 leisure trips
11 shop trips ...

Zone A
#persons: 165

Zone B
#persons: 231

OD hrs7-8,mode car
17 work trips

12 shop trips ...
OD-hrs8-9,mode car
22 work trips
3 shop trips ...
OD-hrs9-10,mode car
Land use data Land use data

4 leisure trips
work capacity: 215 3 education trips.. work capacity: 35
education capacity: 54 education capacity: 0
leisure capacity: 134 leisure capacity: 436
shop capacity: 67 shop capacity: 98

Figure 1: Summary of the used input data

2.2 Input Data

In order to generate day plans out of OD-matrices, additional data is required.
The geographical location of zones is needed as well as demographical infor-
mation and behavioral data of the population. Figure 1 shows a very simple
example of required (and available) data.

All input data is stored in multiple text files. The format of the data is ei-
ther compatible with VISEM [13] or consist simply of space-delimitted values.
Appendix A lists examples for all files mentioned in the following chapters.

The data used as input were either calculated using VISEM [13] as de-
scribed in [12], or were compiled to use as input for VISEM in [12]. The results
of VISEM can be used by VISUM [13] to do a static assignment of the traffic in
the OD-matrices. As the input for MATSIM [8] is essentially based on the input
or output of VISEM, meaningful comparisons between MATSIM and VISUM

2 OVERVIEW 6

Input Output

villages

Ixt Pre-Processing Main-Processing Post-Processing
D population

Ixt

tt » i
D git e ascii2villages.pl fmaztrips.exe cityplans2plans.exe plans.xml
" . fma2persons.exe . .
. ascii2population.pl LocationChoice

Dtranslatlon fma2plans.exe

xt

. Input for
Wi MATSIM
Simulation

Figure 2: Overview of the involved processes

are possible.

2.3 Processes

The above mentioned input files are processed by various scripts and pro-
grams. Some processes can be run sequentially to batch-process multiple input
files.

In a first stage the various plain text files are converted into XML files. Af-
ter this pre-processing, day plans are generated by one out of tree different
programs: fma2trips, fma2persons or fma2plans. These programs and their dif-
ferences will be discussed later. In a third stage, the generated plans are post-
processed by cityplans2plans and, depending on which main process was used,
with LocationChoice to validate against plans.dtd from MATSIM [8].

Figure 2 shows an overview of the processes discussed in this paper. The
detailed data flow, including intermediate data files, will be shown later for
each main process.

The main processes fma2trips, fma2persons and fma2plans as well as city-
plans2plans share a common configuration file config.xml. This file contains
the paths of input- and output-files and has the same format as the MATSIM-
configuration file. While these file paths could also be passed as arguments,
collecting them in a configuration file helps simplifying running different sce-
narios.

It has to be said that each run produces only persons of a specific transporta-
tion mode (car, bike, public transport, ...). The mode is also set in config.xml.

Additionally, a file settings.xml exists which contains lookup values used by
more than one process.

2.4 Output Data

The resulting day plans have to validate against a document type definition,
plans.dtd (see Appendix A.10) from MATSIM [8]. Each plan needs to be as-
signed to a person with a unique ID and consist of a series of activities. For

3 PREPROCESSING 7

each activity x- and y-coordinates must be provided, as well as a time informa-
tion (either duration or start- / end-time), which should be given in the format
“hh:mm”. To travel between the locations, a leg mode has to be set (see Ap-
pendix A.9 for an example of a valid plan file).

3 Preprocessing

3.1 File Formats

VISEM [13] has its own ASClII-based file format, whereas MATSIM [8] uses
XML-files for storing information. Thus, data has to be converted from ASCII
format into MATSIM XML-files. This preprocessing of the ASClI-files is done
by two Perl scripts. Perl was chosen because it easily parses complex lines
of text, containing different values separated by blanks. Perl is a standard on
Unix, Linux and Mac OS X; for Windows, ActivePerl [1] is freely available.

3.2 ascii2villages.pl

usage:
perl ascii2villages.pl input-file output-file

This script converts a plain text file containing information about zones into a
corresponding XML file. The input-file (usually villages.txt, see Appendix A.1)
is expected to contain the village-id (integer value), the village-name (string
value), and the x- and y-coordinate of the village-center, both integer values.
Optionally, a fifth parameter can be listed, containing the radius of the popu-
lated area (also an integer value). All the values should be separated by tabu-
lators. The village-name can contain digits, spaces or other special characters.

Such data can be generated by most GIS-applications [5] for the area of
interest.

The output, an XML representation of the given data (see Appendix A.5),
is written into the file specified in the second argument, output-file. This file is
only used by cityplans2plans, when it is started with the option -cityid2xy

3.3 ascii2population.pl

usage:
perl ascii2population.pl IN_villages IN_popuplation
IN_patterns [IN_translation] IN_% OUT_population.xml

This script writes out the number of people living in each zone, split up into
different activity patterns. The given distribution of the activity chains is used
to assign a chain to the persons. Notice that minor rounding errors of the num-
ber of people can occur because of distributing the population to the zones,
reducing the population according the given modal split and assigning the ac-
tivity chains.
The argumgents have the following meaning:

IN_villages: A plain ASCII file containing zone-id, zone-name, x-coordinate

and y-coordinate, separated with tabs, in this order (villages.txt, Appendix
A.1). This is the same input file as for ascii2villages.pl.

3 PREPROCESSING 8

IN_population: Contains a matrix with the zones in rows and different popu-
lation groups in columns. The values in the matrix contain the number
of people of a distinct population group within a zone. Row and column
headers display zone-ids and the population group names, respectivly.
The very first cell (intersection of header row and header column) needs
to be empty (population.txt, Appendix A.2).

VISEM [13] uses the same format for input of zones and residents. As
MATSIM [8] does not use population groups, only the total count of peo-
ple per zone will be used further.

IN_patterns: A list containing activity patterns in the first row and their global
frequencies in percents (0 — 100) in the second row. Activity patterns con-
sist of multiple characters in a row, each character depicting an activity
(patterns.txt, Appendix A.3).

IN_translation: (optional) Depending on the origin of the input data, the
name of activity patterns must be translated to match the terms used by
MATSIM [8]. To automate this translation, provide a file containing two
rows of characters. The first row must contain the shortcuts (one char-
acter) of activities in the original language, while the second row should
contain the corresponding characters in the new language (see transla-
tion.txt, Appendix A.4 for an example). A specific character can not be
used in both lists — the lists must exist of completly different charsets.
Capital and small letters are distinguished as different characters.

IN_%: Modal Split to use in percents (0 — 100). This value is used to gener-
ate only the given percentage of persons listed in the file IN_population.
Usually, the whole population is listed in the IN_population file. But it is
very unlikely that all people use the same transportation mode at a time,
therefore this percentage allows an easy setup to only generate that part
of a population, which indeed uses the simulated transportation mode.

If reduction of the population by the same percentage in every zone is
unwanted, it is recommendable to adjust the number of people in the file
IN_population and to use 100 as parameter (see chapter 6.2, scenarios, for
a detailed discussion on how to use this parameter).

OUT _population.xml: XML-output of the script given at the beginning, con-
taining a list of zones (see population.xml, Appendix A.6). For each zone,
every possible activity pattern and the number of persons behaving along
this pattern in a zone are listed. Every pattern will be used at least once
in each zone.

At the beginning, OUT _population.xml contains the so called start population.
When new people are created, the numbers of people in OUT_population.xml is
decreased. This means that the file contains at every time only those people
which have not yet left their home, why it is also referred to as containing the
home population.

The script ensures that in every zone, every activity patterns is used at
least once. Additionally, all fractional values are rounded using the oper-
ator ceil() . This leads to slightly more persons generated than listed in
IN_population. But because the difference is very small and for other reasons
shown later, it has no real influence on the results (see chapter 6).

4 GENERATING DAY PLANS 9

4 Generating Day Plans

4.1 Introduction to Day Plans

Day plans, for simplicity usually referred as plans, consist of detailed informa-
tion about the daily activities of a person. Activity patterns are used as a base
for schedules. Activity patterns list all activities of one person in chronological
order for one day, for which they are also called “activity chains”. An activity
chain starts and ends usually with an activity referred as “being home” or just
“home”.

In an activity chain single activities are classified as primary or secondary
activities. Usually, the activity with the longest duration is selected as the pri-
mary activity, while all other activities are graded secondary. This implies, that
there is only one primary activity in most cases. If two or more activities have
the same, maximum duration, the first is chosen as primary. The distinction
between primary and secondary activities is needed for the MATSIM-module
LocationChoice, which depends on this information (see chapter 5.2).

Following the rule of duration work is a typical primary activity. If work
is not part of a pattern, education/e , leisure/l or shop/s can take the
position of primary activity.

In the example h-w-l-w-h , the first occurence of work would be chosen
as primary activity, whereas in the pattern “h-lI-s-h 7 the second activity,
leisure , would be designated as primary (assuming leisure has a longer
duration than shop).

Each activity in a day plan has different attributes containing additional in-
formation about the activity, such as the location where an activity takes places,
as well as duration or other temporal information (e.g. ending time). MATSIM
uses the format “hh:mm” or even “hh:mm:ss” to store times. While time in-
dications in the “hh:mm:ss” form are very human-readable, the format is not
very well suited for electronic processing. Thus, the main processes described
below use a simple integer value for storing durations or times, which opens
up the possibility to use simple mathematical operators to modify times. The
stored values represent the minutes since midnight and are converted into the
standard time format in a post-processing step (see cityplans2plans, 5.1).

MATSIM [8] can use plans as a base for its simulations.

4.2 fma2trips

usage:
Jfma2trips.exe config.xml data.fma

For every trip in the OD-matrix data.fina a new person with exactly the one trip

from the OD-matrix is generated. So, basically this program only creates trips,

but not real day plans where people end their days at the place they started it.
In the configuration file, the following entries are needed:

leg_mode: A string containing the mode to use for the leg -tags between ac-
tivities, usually ‘car’.

output_plans: Path of a file to write out the newly generated plans. The file
will not be overwritten, but new plans will be appended to it. Thus,

4 GENERATING DAY PLANS 10

the file misses the ending </plans> -tag, so that other plans can be ap-
pended in a later iteration.

inout_counter: Because fma2trips always creates new day plans, it never reads
in any plans-file. To avoid problems with the uniqueness of person-
ids, fma2trips stores the highest used person-id in the file specified in
inout_counter, and reads this file to initialize the person-id to use upon
startup. If the file is not found or cannot be read, fma2trips starts with a
person-id of 1.

The application, written in C++, assigns both generated activities (the one
before and after the trip) the type home/h . This proved to be the most sta-
ble way for MATSIM [8] even if the second activity has place in another zone
than the first activity and cannot really be a home-activity. This behaviour was
chosen to prevent conflicts in MATSIM [8]. For the first activity, the attribute
end_time is set with a random value between the start-time and the end-time
of the read-in OD-matrix. The time information is stored as the number of
minutes since midnight. The second activity, which is also the last activity for
every plan, contains no time information. Figure 3 shows the data flow includ-
ing intermediate files. Note that not all input files are used as fma2trips uses a
very simple algorithm.

4.3 fma2persons

usage:
Jfma2persons.exe config.xml data.fma

This process generates for each trip stored in the OD-matrix data.fma a new
person—as long as people are available in a zone. From the data in the OD-
matrix, the home-location and the location of the primary activity are assigned
to the new person, but not the locations of secondary activities. Latter are set
by LocationChoice in a post-processing step (see 5.2).

In the configuration file, the following entries are needed:

leg_mode: A string containing the mode to use for the leg -tags between ac-
tivities, usually ‘car’.

input_population: Path of a file containing information about the starting pop-
ulation. In the first iteration, this is the file generated from ascii2popula-
tion.pl (population.xml, Appendix A.6). In following iterations output_pop-
ulation should be used, as this file contains only the count of those people
which have not been assigned a plan yet.

input_plans: Path of a file containing day plans. If this file exists, the plans
in this file are copied to output_plans and newly generated plans will be
added to this file with continued ids. If not, newly generated plans will
start with an id of 1.

input_settings: Path to the seftings.xml file, which contains the default dura-
tions of activities as well as the definition of the primary activity for each
activity pattern.

4 GENERATING DAY PLANS

ascii2villages.pl

villages
xml

—

villages population patterns translation PKWx-y
Ixt txt txt Ixt fma
—

—

7

.

fma2trips.exe]

v

v

counter cityplans
txt xml

)

4

cityplans2plans.exe

-cityid2xy -minutes2time
-writeXML=+legs

L

plans.xml

Input for MATSIM

Input-Files

Simulation

Figure 3: Data flow when using fma2trips

4 GENERATING DAY PLANS 12

output_population: Path of a file to list the population at the end of one itera-
tion. This file should be used as input_population for the next iteration.

output_plans: Path of a file to store the newly generated plans, including any
previous plans from input_plans. This file should be used as the input
for the next iteration, or as input to cityplans2plans when called with the
option -cityid2xy (see 5.1).

The application, also written in C++, reads one line after the other from the
OD-matrix. Every cell represents the number of persons who travel from one
zone to another zone). The first zone is interpreted as home-city, while the
destination is interpreted as the location of the primary activity. The algorithm
randomly picks this number of persons from the population in the home city,
decreasing the count of people in the population list. Every chosen person
already has an activity pattern assigned from the preprocessing stage.

Every chosen person and its plan is written into output_plans. When writing,
each activity gets a duration assigned. The default duration for each activity
type is set in the settings file (see Appendix A.14). If an activity type occurs
more than once in an activity pattern, the duration for each single activity is
divided by the number of occurences of the activity type. This way, the sum
of durations of all the activities of one type in the activity pattern matches the
default duration in the settings file.

Even though those assumptions are sensible, sometimes the durations can
be quite wrong. For example, the duration of the shopping activity in the ac-
tivity chain "home-shop-home’ could be just some minutes (i.e. buying a bread
at the bakery next door) or it could also be about 10 hours (i.e. a shopping
day at the mall). The same question applies for the leisure activities. On the
other hand, the average duration of ‘'work” and ‘education” usually has less
variance. Nevertheless, for lack of more detailed assumptions the generation
process will be employing these assumptions for the time being.

As the count of available people is decreased while reading one OD-matrix
after the other, it can happen that there are no more people available in a zone.
In this case, no new plans are generated anymore. It is assumed, that the miss-
ing rides are generated by persons that started earlier in another zone to which
they have to return. As these rides are already listed as part of other activity
chains, we do not lose much information by ignoring them (see chapter 6 for
details).

The data flow including intermediate file is shown in figure 4.

It must be noted that it is almost impossible to reach a perfect match, de-
pending on the used OD-matrices. As an example, the output matrix for a
whole day generated by VISEM [13] as explained in [12] prevents a perfect
match: for many zones the number of trip starts differs from the number of
trip ends—making it impossible for persons to be at home at the end of a day.
As MATSIM-plans are all round-trips, the number of trip starts and trip ends
will be the same for each zone.

4.4 fma2plans

usage:
Jfma2plans.exe config.xml data.fma

4 GENERATING DAY PLANS

13

villages population patterns translation PKWx-y
txt xt txt txt fma
$: ¢ i
ascii2villages.pl ascii2population.pl
&
villages
xml
fma2persons.exe]
AN
population cityplans
xml xml
— k)
v ¥ e
1 >
cityplans2plans.exe | 1 MATSIM
-cityid2xy -minutes2time | !
-writeXML=+legs i
\ 1 landuse
1 xml
P ! —
- y
1
3 LocationChoice —> =
pre-plans | ! plansxml [O
xml ! =
1 =]
' g
1 |

Input-Files

Simulation

Figure 4: Data flow when using fma2persons

4 GENERATING DAY PLANS 14

Both fma2trips and fma2persons have some drawbacks. The first one does not
generate real day plans, while the latter in combination with LocationChoice (see
5.2) does not reproduce the trips in the OD-matrices. fma2plans tries to generate
complete day plans with as many trips as possible from the OD-matrix.

At a first glance, the algorithm works similar as fima2persons: When gen-
erating a new person, the person is assigned an activity pattern. But while
fma2persons assigns and writes out all activities of the pattern at creation time,
fma2trips only generates the first activity (home) and the second activity, both
located according to the trip from the OD-matrix. When the process is started
again with another OD-matrix, the existing plans are read in. Every person
whose plan is not yet complete is placed as visitor in the zone of its last activity.
When new trips have to be generated, either such a visitor or a new person
may be used for the trip.

In the configuration file, the following entries are needed:

leg_mode: A string containing the mode to use for the leg -tags between ac-
tivities, usually “car’.

input_population: Path of a file containing information about the starting pop-
ulation. In the first iteration, this is the file generated from ascii2popula-
tion.pl (population.xml, Appendix A.6). In following iterations, the out-
put_population should be used, as this file contains only the count of those
people, which have not yet been assigned a plan.

input_plans: Path of a file containing day plans. If this file exists, the existing
plans will be copied to output_plans and newly generated plans will be
appended to this file with continued ids. If not, newly generated plans
will start with an id of 1.

input_settings: Path to the seftings.xml file, which contains the default dura-
tions of activities.

output_population: Path of a file to write out the population at the end of
one iteration. This file should be used as input_population for the next
iteration.

output_plans: Path of a file to write out the newly generated plans, including
previous plans from input_plans. This file should be used as the input for
the next iteration, or as input to cityplans2plans.

output_complete_plans: Complete plans will be written to the file specified in
output_complete_plans. This helps speeding up the process as those plans
do not have to be read in again in later iterations.

Figure 5 shows the data flow including the mentioned files.

After all available OD-matrices have been processed, it may happen that
there are still plans which have not yet been completed. Those plans can be
completed in two ways. One possibility is to just add a home-activity at the
end of the plans, ensuring all people are at home at the end of their plans,
leaving out any other, not yet located and scheduled activity. A second way
to complete the plans is to add all missing activities and marking all already
assigned activities as primary activities. This allows to assign the locations to
the missing activities using LocationChoice (see 5.2).

4 GENERATING DAY PLANS

15

v

YV Vv

ascii2villages.pl

ascii2population.pl

villages
xmi

A 4

villages population patterns translation PKWx-y
txt xt txt txt fma
L —'

v

fma2plans.exe]

{_)

v

W

complete
population plans cityplans
xml xml xml
—J

A

A7

.
cityplans2plans.exe
-complete=+home
-cityid2xy -minutes2time
\ -WriteXML=+legs +append

v

cityplans2plans.exe

-cityid2xy -minutes2time
-writeXML=+legs,+open

)

pre-plans
xml

plans.xml

Input for MATSIM

Input-Files

Simulation

Figure 5: Data flow when using fma2plans

4 GENERATING DAY PLANS 16

4.4.1 Choosing persons for trips

When a new trip from zone A to zone B needs to be generated, fina2plans has
to decide whether it creates a new person, or if it should try to add the trip to a
visitor in zone A. One way to do so is shown in algorithm 1.

Algorithm 1: Choosing a person for a trip from zone A to B

plan := find visitor in zone A who can travel to B;

if no plan found then
plan := generate new person from zone A, if possible;
else

if last activity of plan ends after end-time of OD-matrix then
if home population of zone A > 0 then
plan := generate new person from A4;
add first home activity to the new plan;

end
end
end

if plan = NULL then

/* the trip cannot be generated */
else

add activity to plan;

set location of activity to zone B;

remove plan from visitors in zone A4;
end

The algorithm tries to find a visitor who can travel from A to B. A visitor
cannot travel this leg, if he is only missing the last home-activity and B is not
its home zone. If no visitor is availabe or the found plan is scheduled to start
after the processing hour, the algorithm tries to generate a new person from
the home population of zone A. A new person cannot be generated when the
whole population from A has already a plan assigned. If either a visitor or a
new person is chosen, a new activity according to the persons activity pattern
is generated and appended. The location of the new activity is set to zone B.
The durations of the generated activities are set the same was as in fima2persons
(4.3).

Algorithm 1 uses visitors to generate new trips whenever it is possible and
feasible. As this penalizes the home population, the algorithm was modified.
Algorithm 2 first chooses randomly between the home population and visitors,
the probabilities corresponding to the count of people in each group.

To switch between the two algorithms, a compiler flag FAVOR_VISITORS
has been defined. Set it to 1 to use algorithm 1, and to O to use algorithm 2.

4.4.2 Speed Optimizations

Both of the proposed algorithms above search the visitors lists of zones to find
matching people for every trip that needs to be generated. This opens a huge
potential for optimizations and speed increases.

Caching search results is not feasible, as the lists continuously change. Ad-
ditionly, the recently found plans will often be used and thus removed from the

4 GENERATING DAY PLANS 17

Algorithm 2: Choosing a person for a trip from zone A to B without
favoring visitors

countVisitors := number of visitors who can travel from A to B before the
end-time of the current OD-matrix;
countPopulation := number of people still at home in zone A4;
if (countVisitors + countPopulation) > 0 then
if (random()*(count Visitors + countPopulation)) < countVisitors then
/* choose a visitor */
plan := find visitor in zone A who can travel to B;
else
/* generate a new person from home population */
plan := NULL;
end
else

/* there is no one who can to to zone B */
plan := NULL;
end
/* the rest of the algorithm is basically the same as algorithm 1 */
if plan = NULL then
plan := generate new person from zone A, if possible;
else
if last activity of plan ends after end-time of OD-matrix then
if home population of zone a > 0 then
plan := generate new person from A4;
add first home activity to the new plan;

end
end
end

if plan = NULL then

/* the trip cannot be generated */
else

add activity to plan;

set location of activity to zone B;

remove plan from visitors in zone A4;
end

list, invalidating the chached information. In order to reduce computational
time, shortening the lists as much as possible seems the best way to speed
things up, besides keeping the lists sorted which allows to stop a search before
the end of the list is reached.

A first step that helps to keep lists short is to insert only those plans into the
visitors list which wait for additional activities. This means that complete plans
will not be inserted into the visitors-list. Completed plans are even written into
another file, so they do not have to be read in and parsed in later iterations.

A second possibilty is not to insert those people who just wait to drive home
in the time frame of the current OD-matrix. Instead of inserting them into the
visitors list, it is checked if a trip home is available according to the OD-matrix.
If this is the case, the home activity is appended to the plan and the count of
trips from the current zone to the home location of the person is decremented.

5 POSTPROCESSING 18

Having a lot of short activity patterns with only three activities, this helps a lot
to keep the visitors-list short. But it must be noted that in this case, people wait-
ing for home trips are favored over other visitors having more than one activity
open or over people still being at home. A #define statement allows to switch
easily between the described behavior above or the standard behavior where
all incomplete plans are added to the visitors list. Set FAVOR_HOME_TRIP&
1 to sort those plans out which end their journey in the current time frame and
keep the visitors list short. Set FAVOR_HOME_TRIP® O to treat those plans
the same way as all other incomplete plans.

4.4.3 Other Characteristics

When a visitor gets an additional activity assigned, the person is removed from
the visitors list of its current location. But it is not added to the visitors list at the
new location. This induces that a person can only have one trip within an hour,
but not more. As the results (see chapter 6.4) will show, it may happen that in
some cases trips cannot be generated because neither any visitor can travel to
the desired destination, nor are there any people in the home population left
who could start a new day plan. But it could be possible that there is a person
coming from another zone who could travel further to the destination the trip
provides.

To work around this limitation, fma2plans can work through the OD-matrix
multiple times. This makes it possible that people can be chosen in a second
iteration for trips which could not be generated before. If people are added
to the visitors list in the destination zone of the newly generated trip, zones
that are processed later already have the new people available unlike zones
at the start of an iteration. To prevent this, a parallel update mechanism has
to be chosen: Moved people are not added to the visitors list, but are added
to another list (“newcomers”) inside the zones. After a OD-matrix has been
processed and when not all trips could be generated, the remaining visitors are
merged with the newcomers. The OD-matrix will then be processed a second
time.

5 Postprocessing

The plans file written by one of the three main-processes fma2trips, fma2persons
and fma2plans would not yet validate against the document type definition (see
plans.dtd, A.10). In particular, the following points would cause an error:

e The location of activities are still only set to zones (if at all), whereas MAT-
SIM [8] expects x- and y-coordinates.

e Durations and end-times are stored as minutes since midnight instead of
the “hh:mm” time format.

e The plans do not yet contain any leg -tags. The leg-mode is only stored
as an attribute in the plan -tag. Appendix A.7 shows an example of such
a file.

In addition to the mentioned points above, the generated plans are not always
complete or are even split up in multiple files.

5 POSTPROCESSING 19

Instead of having multiple small processes, each parsing the plans and do-
ing one conversion, one application was developped which could easily be
extended to support additional conversions. This conversion tool named city-
plans2plans can solve many of the points mentioned above.

To choose locations for activities, which don’t even have a zone assigned
(e.g. the output plans from fma2persons), an existing application LocationChoice
[7], which is part of MATSIM [8], was modified to support more general plans
as it has done before.

5.1 cityplans2plans

usage:
Jcityplans2plans.exe config.xml -modulel[=+paraml,...] [...]

cityplans2plans can perform a variety of different conversions on plans. The dif-
ferent conversions are implemented as modules, while cityplans2plans acts like
a framework for those modules. This setup allows to simply extend the appli-
cations features just by including and recompiling with an additional module.

Each module can be activated using arguments on program start. The argu-
ment that activates a module can contain additional, simple parameters, which
are passed to the module. Additionly, the modules have the possiblilty to load
information from a configuration file.

The following modules are implemented and compiled with cityplans2plans,
and are used in several combinations when postprocessing the plans files from
the three main-processes:

-complete This option loads the module MakeComplete which adds missing
activities to plans, based on the activity pattern stored in an attribute to
plan.

By default, all missing activities are appended with the location set to the
home-location. Because this is not useful in most cases, the module can
take two parameters:

+home When set, each incomplete plans has only a home-activity added.
If other activities are missing, they will be ignored. If this parameter
is not set, every missing activity will be added to the plan, with the
location set to the home location of the person.

+markPrim If this option is set, existing activities are marked with the
primary="true" -attribute. It makes most sense if +home is not
set, as this allows to assign the locations of missing locations using
LocationChoice (see 5.2).

In most cases, only one of the two parameters is needed.

Because this module adds additional activties, it has to know the default
durations of activities. Like fma2persons and fma2plans it expects those
informations in the file settings.xml, whose path has to be declared in con-
fig.xml with the name complete_settings

-cityid2xy This option activates the module cityid2xy . For each activity it
checks if the attribute cityid exists. If it exists, the module chooses
a random point within the populated area of the zone and replaces the

5 POSTPROCESSING 20

attribute cityid with the attributes X100 and y100 . The populated area
is calculated using information from villages.xml (see 3.2, ascii2villages.pl,
and A.5). The path to villages.xml is set as parameter in config.xml with
the name cityid2xy _villages

To choose random points in the zones, the algorithm simplifies the shape
of zones into circles. For every zone, the algorithm searches for the near-
est neighbor and takes the half of the distance as radius for a circle around
the center of a zone, unless the radius of the circle was specified in vil-
lages.txt or villages.xml respectively (see chapter 3.2, ascii2villages.pl, for
more information). Using this procedure, the zone-areas will not overlap
each other. There are even areas, where nobody ‘lives’—which makes
sense, as zones often have centers where people concentrate, while the
population density on the borders of zones is far lower.

The algorithm takes care that whenever a home activity is encountered,
the same coordinates will be used as in previous home activities for the
same person.

-minutes2time This module converts the time information stored in the at-
tributes dur and end_time into the “hh:mm” format MATSIM [8] uses.
This module should only be called, if all time information are given in
minutes since midnight. It does not recognize if a time information is al-
ready given as “hh:mm” and tries to interpret this as integer value which
will then be converted again into that format—what may lead to unde-
sired results.

-svg When enabling the module SVGWriter , a graphic in the SVG-format (see
appendix B) is created. The path of the file must be specified in config.xml
using the parameter name svg_output . Additionally, the following pa-
rameters must be specified in the configuration file:

svg_minX, svg_minY, svg_maxX, svg_maxY The smallest and largest x-
and y-coordinate. These are essentially the same as in the configu-
ration file for LocationChoice (see chapter 5.2).

The content of the graphic can be specified with the following parameters
to-svg :

+homeN Draws a cross on the home location of every N-th person. If N
is omitted, 100 will be used.

+legsN Draws all the legs of every N-th person. If NV is omitted, 100 will
be used.

Figure 6 shows a possible distribution of home locations, generated by
the module cityid2xy, visualized with the option -svg=+home20 . It is
easy to recognize zones with a high population density by the darker
shade of the circles.

-writeXML This option activates the module XMLWriter which writes out
the processed plans into the file specified in the configuration file with
the parameter name writeXML_output . Also in config.xml must be a
parameter with the name writeXML_DTD , containing the value which

5 POSTPROCESSING 21

Figure 6: Chosen home locations of every 20th persons of the population in the
area of Zurich, Switzerland.
Circles represent the habitable area of zones, each dot representing one person.

5 POSTPROCESSING 22

gets written as DOCTYPHnto the output file. This is needed as Location-
Choice validates the file while parsing and thus needs a valid path to the
file plans.dtd.

This module can be called with several parameters:

+legs Write legs between activities. If this option is not set, the legmode
will only be stored as attribute of the person (see appendix A.7 for
an example). If it is set, it is interpreted that a valid plans file has to
be created. Thus, the attributes home_city and pattern will not
be written, too.

+append Does not overwrite an existing file, but rather append the con-
verted plans to the existing file.

+open Does not write the trailing </plans> -tag. This allows to append
plans at a later time.

In order that cityplans2plans can be run, it has to know which plans file to
convert. The path of the input file must be stored in the configuration file with
the parameter name input_plans

5.2 Location Choice for Secondary Activities
5.2.1 Introduction

MATSIM [8] contains a module LocationChoice [7], which chooses locations for
secondary activities in such a way, that each agent has an optimal day plan.
The home-location and the location of the primary activity remain unchanged.

The application, written in Java, uses genetic algorithms to determine the
locations for each agent. Each agent (based on the previously created day
plans) has a limited knowledge about places in the area of interest and searches
within these places for a path, such that his day plan reaches (a local) maximum
utility. Additionally, each agent “knows” some other agents and exchanges in-
formation about places after every iteration. This way, a social network is built
that helps the agents to improve the utility of their day plans.

5.2.2 Modifications

The original application [7] assumed, that all plans contain the activity work ,
which was interpreted as primary activity. Additionally, the application ex-
pected every day plan to have one or two secondary activities. As the activity
patterns and thus the day plans from [12] didn’t fulfill these restrictive require-
ments, the application was modified. In a first step, it was ensured that short
plans with no secondary activities did not crash the application. Such day
plans will now be ignored for the iterative calculations and simply be written
out unchanged at the end. In a second step, the code was modified to respect
the primary -tag (see Appendix A.7) for activities instead of simply checking
for activities of type work . The primary -tag is set by fma2persons or by city-
plans2plans when called with -complete=+markPrim

In the original setup, other activity types were used than the ones in [12].
As an example, education wasn’t accepted as activity, but service and
business were. The missing activity education was added to the code,
replacing business

6 MODEL VERIFICATION AND RESULTS 23

5.2.3 Usage

The quality of the results depends strongly on correct data for the file lan-
duse.xml (Appendix A.15). This file contains a listing of map-cells. Each cell
contains the capacities for the various activities. Because there is yet no data
available about educational landuse, the education -activity was mapped to
the values of the business -activity. This is only a temporary solution to be
able to run the process, until better data is available.

6 Model Verification and Results

6.1 Used Data
6.1.1 Population and Activity Patterns

The model used in this paper is the same as in [12] and has 182 zones with a to-
tal population of 1'247°566 persons. Using a percentage of 45.44% for the modal
split of cars (as calculated by VISEM [13] in [12]), ascii2population.pl generates a
home population of 568’853 persons for the simulation. These are about 2’000
persons too much in respect of the total population and the modal split. Rea-
sons for this difference were already mentioned in ascii2populationl.pl (see 3.3).

Instead of using all 100 activity patterns from [12], only a subset was cho-
sen. In a first step, the number of activities was reduced by merging several
rarely used activities into the work -activity. Notably, these were the activities
Begleitung/B (escort), Service/lW (service), Geschaeftsreise/G (busi-
ness trip) and Dienstreise/D (travelling on company business).

In a second step, all activity patterns matching at least one of the following
requirements were chosen:

e Activity pattern consists of 4 or less activities.

e Number of occurences is at least 1% or more of all patterns.

This way, 21 activity patterns remained, representing nearly 93% of all 100
given activity patterns. Table 1 shows the different patterns with their frequen-
cies, when the total population with a modal split of 45.44% is used to generate
the home population.

6.1.2 OD-matrices

VISEM [13] can generate OD-matrices on a hourly basis. The used OD-matrices
in this work were generated as described in [12].

It must be noted that VISEM generates and stores fraction of trips in its OD-
matrices. This makes sense from a mathematical point of view, but it does not
otherwise. As MATSIM [8] only manages complete day plans, the values in the
OD-matrix are rounded to integer values.

VISEM generates a total of 1'372’323 car trips within 24 hours (see [12]),
fractional trips included. If only the rounded trips are counted, a total of
173457625 trips results.

Table 2 shows a listing of the number of trips in the OD-matrices as well as
the number of trips when rounding the values in the matrices.

6 MODEL VERIFICATION AND RESULTS

24

Pattern number of persons trips per pattern | number of trips
h-I-h 157°392 2 314’784
h-w-h 149’849 2 299698
h-s-h 94’391 2 1887782
h-e-h 69’097 2 1387194
h-w-l-w-h 17'442 4 69768
h-l-I-h 13’867 3 41601
h-w-s-w-h 9960 4 39840
h-s-1-h 8996 3 26’988
h-l-s-1-h 6214 4 24’856
h-w-w-h 10014 3 30042
h-s-s-h 5’027 3 15081
h-l-s-h 4’568 3 13’704
h-I-w-h 4’113 3 12’339
h-w-1-h 5643 3 167929
h-w-s-h 4’516 3 13’548
h-e-l-h 2’309 3 6’927
h-s-w-h 2’698 3 8’094
h-e-e-h 1217 3 3’651
h-l-e-h 659 3 1’977
h-w-e-h 494 3 1482
h-e-s-h 387 3 1’161
total 568’853 | weighted avg = 2.23 1269446

Table 1: Frequencies of the 21 patterns used with start population “home”.

hour 0-1 1-2 2-3 3-4 4-5 5-6
n. of trips 140 236 104 833 3’365 | 11’226
rounded 4 33 1 415 2’588 | 10195
hour 6-7 7-8 8-9| 9-10| 10-11 | 11-12
n. of trips | 627436 | 94’332 | 69’250 | 65’955 | 65980 | 95’810
rounded 61’182 | 92971 | 67'999 | 64’774 | 64’822 | 94’404
hour 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18
n. of trips | 112’805 | 108’363 | 74’579 | 77953 | 103’590 | 134’711
rounded | 111’362 | 107’010 | 73’293 | 76’605 | 102’156 | 133’293
hour 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24
n. of trips | 95019 | 67735 | 46'963 | 30°690 | 30°386 | 19’863
rounded 93’653 | 66’366 | 45’664 | 29’338 | 29'019 | 18’478

Table 2: The number of trips in the OD-matrix

trips: the sum of all trip counts, unrounded

rounded: the sum of all rounded trip counts

6 MODEL VERIFICATION AND RESULTS 25

As can be seen from table 2, the fewest trips have place in the hour from
2 o’click to 3 o’clock in the night. (Note: in Table 2, the sum of all trips is
1372324, one trip more because of rounding errors).

6.2 Scenarios

The availability of three different main processes with a variety of other set-
tings allows to run a multitude of different scenarios.

The processes can be started with different orders of the OD-matrices as
well as different start-populations. Further, the durations of the activities can
be varied. In the case of fma2plans, it has itself several variations which must
be chosen and set at compile time.

Table 3 shows a list of possible scenarios. The first value in the compile flag
row stands for FAVOR_HOME_TRIBShe second value for FAVOR_VISITORS
(see chapter 4.4, fma2plans).

process start | end | population | activity durations | compile
time | time w.e.l.s flags
(see text) [hours] (see text)
[1] fmaltrips | 00| 24 [home [8.4.4.1 \ \
2 | fma2persons 00 24 | home 8§.4.4.1
3 | fma2persons 03 27 | home 8§.4.4.1
4 | fma2persons 03 27 | auto2 9.6.5.2
5 | fma2persons 03 27 | auto2 10.8.6.3
6 | fma2plans 00 24 | home 8§.4.4.1 00
7 | fma2plans 03 27 | home 8§.4.4.1 00
8 | fma2plans 00 24 | home 8§.4.4.1 01
9 | fma2plans 03 27 | home 8§.4.4.1 01
10 | fma2plans 00 24 | home 8.4.4.1 10
11 | fma2plans 03 27 | home 8.4.4.1 10
12 | fma2plans 00 24 | home 8§.4.4.1 11
13 | fma2plans 03 27 | home 8§.4.4.1 11
14 | fma2plans 00 24 | auto2 8.4.4.1 00
15 | fma2plans 00 24 | autol 8.4.4.1 11
16 | fma2plans 00 24 | auto2 8§.4.4.1 11

Table 3: Possible scenarios.

The start-population can be one of the following three groups:

home The total population of every zone (totally 1247°566 persons) is mul-
tiplied with the global modal split of 45.44%. This means that in every
zone the same percentage of people use their cars. While ensuring that
every activity pattern is used at least once in every zone, a total of 568’853
people is listed as start population in population.xml (Appendix A.6).

autol As there are differences between the population in cities and in the
county, it is not very realistic that the modal split is the same everywhere.
VISEM [13] asks for differentiated population groups for input. Based on
those information, it is possible to get the number of people who own or

6 MODEL VERIFICATION AND RESULTS 26

at least have access to a car for every zone. This gives a total of 789710
people available for generating trips.

auto2 The number of people when using the population autol is higher than
when the global modal split is used. To prevent that too much people are
generated, the distribution of car-owners is normalized over all zones
so that the total number matches the number of people when using the
global modal split. After rounding the values and distributing the ac-
tivity patterns among the zones, a total of 568’909 people are stored in
population.xml.

In all scenarios, all 24 hours of a day get processed. But while the simulation
starts at midnight in some cases, the start-time was set to 3am in other cases.
3am was chosen as this is the hour after the one with the fewest traffic, which is
often interpreted as the “real” end of a day. The OD-matrices for the hours from
24 to 27 are basically the same as for 00 to 03. Only the time information in the
files needs to be changed to reflect the desired behaviour, because fma2persons
(as well as the other main processes too) uses this internally stored time to set
the end-time of the first activity for newly generated people.

6.3 Number of Generated Day Plans

The goal of each process must be to generate as many trips as possible ac-
cording to the trips in the OD-matrices. Where the population is respected
(fma2persons and fma2plans), it is also important to generate as many people
as available in the start population (and thus this number of day plans), be-
cause the number of trips depends heavily on the number of people in transit.
Generating too many people is not desired as the numbers should reflect the
reality.

6.3.1 fma2trips

Because fma2trips generates a new day plan for every trip in the OD-matrices,
the number of day plans corresponds exactly to the number of trips. This
means that in the model used, a total of 1'345’625 day plans are generated.
But it must be noted, that those “day plans” are not real day plans, because
they only describe a single trip and no round trips.

6.3.2 fma2persons

Generating day plans using fma2persons according to scenarios 2 and 3 shows
that every person from the previously generated population gets a day plan
assigned. The last person is scheduled to leave its home in the hour between
7pm and 8pm, no matter whether the simulation-day starts at midnight or at 3
o’clock in the morning. This is of interest, as other situations may exist where
not enough trips from a zone are available in the OD-matrices for everyone to
leave.

The first time where not all trips listed in a OD-matrix can be generated is in
the hour between 9am and 10am, again in both scenarios. This means also, that
in this hour the first person will travel further from its first location in the day

6 MODEL VERIFICATION AND RESULTS 27

plan (home-location not counted) to the second place (which might be home
again).

Scenario 4 and 5 generate both the exact same number of people for every
hour. The different durations do not make any difference. This can be easily
explained with the fact that once a person is generated, it is written out to a file
and has no longer any influence on other plans. The durations will first start to
make a difference in the MATSIM-simulation.

Comparing the different start-populations (scenarios 2 or 3 vs. 4 or 5) gives
no surprise: The hour in which for the first time no persons can be generated
differs between the two variants, being the hour between 9am and 10am for
the home-variant versus the hour from 7 to 8 for auto2 . This is interesting
especially given that scenario 4 starts with a slightly bigger population than
scenario 3 (5687909 vs. 568’853 people).

Another interesting point is, that not all people from the start-population
are used in scenarios 4 and 5. They both generate only 568’568 day plans, mak-
ing 314 people to stay the whole day at home. Even if these scenarios run
until 27 o’clock, the last person is generated before 24 o’clock—in the remain-
ing three hours no more people can be generated. This leaves the question
open whether the auto2-distribution of the population is indeed better than the
general home-distribution.

Figure 7 shows a graph depicting the number of trips generated by VISEM
[13] and the number of plans generated with fma2persons according to the set-
tings to scenarios 3 and 4. The values for scenario 2 are not shown as there is
no visible difference to scenario 3, while scenario 5 is not shown as it has ex-
actly the same number of plans as scenario 4. Remarkable are the three peaks
(morning and evening rush hour, whereas the peak at noon cannot easily be
explained, see [12]) which VISEM generates.

The figure nicely shows how the number of trips diverge from the number
of newly generated plans starting at about 10 o’clock.

6.3.3 fma2plans

In a first stage, each of the four variations of fma2plans was run once with the
OD-matrices starting at midnight and once with the OD-matrices starting at
3 o’clock. The four variations are distinguished through the different alloca-
tion of the two compile-flags. Three additional scenarios with a different start-
population were computed, leading to a total of 11 scenarious for fma2plans.
Table 4 gives an overview over the number of generated day plans for differ-
ent scenarios. As can be seen, the difference of comparable scenarios starting
at midnight or at 3 o’clock are minimal in relation to the number of gener-
ated plans as well as to the number of plans not completed. Regarding the
percentages of plans generated, it is obviously that the combination of not fa-
voring home trips and not favoring visitions gives the best results concerning
the number of generated day plans.

If the number of completed plans is examined, those processes compiled
with FAVOR_HOME_TRIPS = &eem to be better at a first glance. This can
easily be understand as the algorithm tries to use existing plans, before it gen-
erates new plans. This leads to more plans being completed than when new
plans would be generated. Because incomplete plans will be completed (see
chapter 5.1, cityplans2plans, option -complete), the total number of trips will

6 MODEL VERIFICATION AND RESULTS

28

140000

—— VISEM

120'000

100'000

Scenario 3

—-——- Scenario 4

80'000

60'000

A

Number of Trips (VISEM)
Number of Plans (Scenarios)

40'000

20'000

0

SEF

U T T
01 2 3 45 6 7 8

9 10 11 12 13 14 15 16 17 18 19 20 21 2

Time of Day

T T T T 1

23 24 25 26 27

Figure 7: Comparison of the number of trips generated by VISEM and the
number plans generated by fina2persons.

scenario fma2plans plans generated * plans plans not

completed completed
6 | 00-24 home 00 | 568’330 | 99.9% 480'674 | 87656 | 15.4%
7 | 03-27 home 00 | 568’315 | 99.9% 480’916 | 87399 | 15.4%
8 | 00-24 home 01 | 540'384 | 95.0% 500296 | 40°088 | 7.4%
9 | 03-27 home 01 | 540412 | 95.0% 500560 | 39852 | 7.4%
10 | 00 —24 home 10 | 551’581 | 97.0% 467°029 | 84’552 | 15.3%
11 | 03 -27 home 10 | 551'473 | 96.9% 466’533 | 847940 | 15.4%
12 | 00-24 home 11 | 540221 | 95.0% 5007147 | 40074 | 7.4%
13 | 03 -27 home 11 | 540018 | 94.9% 500085 | 397933 | 7.4%
14 | 00-24 auto2 00 | 566’771 | 99.6% 500236 | 66535 | 11.7%
15 | 00 -24 autol 11 | 650761 | 114.4% 549’816 | 100'945 | 15.5%
16 | 00 -24 auto2 11 | 553’111 | 97.2% 518759 | 34’352 | 6.2%

*for population “home”: 100% = 568’853 plans
for population “autol”: 100% = 568’853 plans
for population “auto2”: 100% = 568’909 plans

Table 4: Number of generated and completed plans per scenario

6 MODEL VERIFICATION AND RESULTS 29

be similar for both variants. For traffic simulations, the total number of trips,
and thus the total number of day plans, is more important than the accuracy
of the generated plans, because the plans will be re-scheduled anyway during
the simulation.

6.4 Number of Trips Generated

VISEM [13] generated a total of 1372323 trips for cars within 24 hours (see
[12]), fractional trips included. If only the rounded trips are counted, a total
of 1'345'625 trips result. Table 1 shows that using the start-population home,
fma2plans could not generate more than 1269'446 trips. This is slightly less
than the number of VISEM. The difference may be explained in the way the
activity patterns were chosen (see chapter 6.1).

6.4.1 fma2trips

Because every trip from the OD-matrix is transformed into a simple day plan,
the number of trips generated by fma2trips is the same as the number of trips
in the OD-matrix. But again the same arguments as in 6.3.1 (Number of Day
Plans Generated — fma2trips) should be considered: These plans are not real day
plans and are mainly used to compare the results of other processes after being
processed by MATSIM [8].

6.4.2 fma2persons

When using the start population home, all plans are generated. This means,
that also the total number of trips will be generated. If the start population
auto2 is used, about 300 people will stay at home the whole day, not executing
their activity pattern. It follows that about 700 trips will not be generated—less
than 0.5% of all trips.

6.4.3 fma2plans

In the case of fma2plans, the results depend on the used variation. As is shown
in table 5, scenarios 6 and 7 are again the best within the group which start
with the home-population. Clearly visible is the influence of the compile flag
FAVOR_HOME_TRIPSNhen it is set (scenarios 8, 9, 12 and 13) the number of
plans not completed is only about half of the number of when the flag is not
set (scenarios 6,7, 10 and 11).

Looking at the values of scenarios using another start population (scenarios
14 - 16), scenario 15 with the start population autol attracts attention: Nearly
all trips are generated after processing the 24 OD-matrices! But at the same
time a big number of plans are not completed at this time, leading to too many
trips generated when completing those plans. This can be explained that using
the population autol more people are available in the zones than in other
start populations When in other variations no trips could be generated, there
are still people available when using the population autol . This leads to more
trips generated as well as to more plans generated which itself is responsible
for the higher number of not completed plans at the end.

6 MODEL VERIFICATION AND RESULTS 30

scenario Trips generated Plans not | Trips of plans com-
fma2plans completed | pleted with “home”

6 | 00-24 home 00 | 1'175'032 | 87.3% 87°656 | 1262'688 93.8%
7 | 03-27 home 00 | 1175234 | 87.3% 87'399 | 1'262'633 93.8%
8 | 00-24 home 01 | 1'165'072 | 86.6% 40'088 | 1205160 89.6%
9 | 03-27home 01 | 1'165'368 | 86.6% 39’852 | 1'205'220 89.6%
10 | 00 —24 home 10 | 11317431 | 84.1% 84’552 | 1'215'983 90.4%
11 | 03 -27 home 10 | 1'130'747 | 84.0% 84'940 | 1'215'687 90.3%
12 | 00-24 home 11 | 1'164'654 | 86.6% 40074 | 1204728 89.5%
13 | 03 -27 home 11 | 1'164'429 | 86.5% 39933 | 1204'362 89.5%
14 | 00 -24 auto2 00 | 1'193'634 | 88.7% 66’535 | 12607169 93.6%
15 | 00— 24 autol 11 | 1’339°006 | 99.5% 100945 | 17439951 | 107.0%
16 | 00 -24 auto2 11 | 1'199°009 | 89.1% 34’352 | 1'233'361 91.7%

Table 5: Number of generated trips per scenario (100% = 1"345'625)

Scenarios 14 and 16 both use the start population auto2 . They have slightly
better numbers when looking at the number of trips generated before complet-
ing plans. But because they also generate more complete plans, less trips will
be added when completing plans with home-activities. But even then, these
two scenarios yield better results than many of the other scenarios.

It can be said that the variants with both deactivated FAVOR_HOME_TRIPS
and FAVOR_VISITORSgive the best results, both in the number of generated
day plans as well as the number of generated trips. The difference between
runs with the start-population home and the start-population auto2 is too
small to be able to decide which one is better. More thorough tests are nec-
essary to find the one solution that fits better.

6.5 Execution Time

The execution time has significant differences between the various scenarios.
Figure 8 shows the times for the different scenarios, split up into the different
processes. The times were measured on an Apple PowerBook G4, 1.25GHz G4
processor (Motorola PowerPC 7475, a low-power RISC-Processor for mobile
computers) with 1 GB RAM, running Mac OS X 10.3.4 and with the built-in
harddisk running at 4200 RPM.

One can clearly see that fina2trips is the fastest process—but again with the
least meaningful results. The times for fma2persons itself is quite constant, but
the durations of LocationChoice fluctuates significantly. This may be explained
in the different numbers of plans which have secondary activities depending
on which start-population was used.

Remarkable are the times for fma2plans with both compiler flags deactivated
(see chapter 4.4). They run significantly longer than any other variant, but also
give the best results as seen earlier. This is mainly because the visitors list in
each zone is searched more often and more thorough than in other variants.
The (a little) shorter execution time when using the start-population auto2
can be explained that through the better disposition less people are stuck in a
zone, keeping the visitors list short.

6 MODEL VERIFICATION AND RESULTS 31

100
[l Main Process cityplans2plans LocationChoice

(fma2....)

80

60

40

20

fma2trips I
fma2plans
fma2plans
fma2plans
fma2plans
fma2plans
fma2plans
fma2plans
fma2plans
fma2plans
fma2plans
fma2plans

home 00-24 fma2persons
home 03-27 fma2persons

home 00-24

00 home 03-27
0l home 00-24
0l home 03-27
10 home 00-24
10 home 03-27
11 home 00-24
11 home 03-27
00 auto2 00-24
11 autol 00-24
11 auto2 00-24

w9e6s512 auto2 03-27 fma2persons
00 home 00-24

wl0e8s613 auto2 03-27 fma2persons

Figure 8: Execution Time in Minutes

6.6 Comparison with Counting Stations

VISUM [13] output will stay as the reference to which the MATSIM [8] output
will be compared. MATSIM is known to produce results similar to VISUM
[11]. Nevertheless, a similarity check is also done by a one-to-one conversion
of each trip of the OD-matrices into ‘one-trip-plans’, as generated by fma2trips.
As already mentioned, those are not ‘real’” plans but the produced traffic should
be similar to the one VISUM generated.

The following scenarios are used for the following comparison:

fma2trips: scenario 1 from table 3

fma2personsW8: scenario 2 from table 3

fma2personsW9: scenario 4 from table 3; extended default durations for activ-
ities

fma2personsW10: scenario 5 from table 3; even more extended durations for
activities

The main distinction is the different duration definition, since this is the
main assumption made for the day plan generation process. The three gen-
erated day plans are used as initial plans for MATSIM [8] iterating 50 times
using the route replanning modul [11]. At the same time VISUM can generate
a steady assignment based on the OD-matrices.

6 MODEL VERIFICATION AND RESULTS

32

N7

Counting Link 1 Link2
Station ID

106 3012 3013
122 5067 5066
168 3193 3192
178 4634 4635
213 5027 5026
221 2147 2146

Figure 9: Location of the used Counting Stations in the Area of Zurich, Switzer-
land.

The results of MATSIM [8] will be compared to the VISUM reference out-
put. The comparison will be done only for the motorized private transport
since MATSIM [8] is only able to handle this mode at the moment.

The MATSIM-simulation as well as the VISUM assignment use the same
underlying network [6]. Some changes made to this network are described in
[15]. The comparison of the outcome of the simulations will be done at 12 links
(see Figure 9) of the given network where also counting data is available [2].
But direct comparison with the field volumes will not be made since the VISEM
output has already produced too much traffic, mentioned above.

Figure 10 shows the hourly volumes of four of the twelve links for which
counts are available. VISUM shows the three peaks already mentioned above.
This differs substantially from the hourly volumes recorded at the counting
stations, so a comparison to real world data does not make sense until the
calibration of VISEM has been improved. The comparison between VISUM

6 MODEL VERIFICATION AND RESULTS 33

5000

Counting Station
A weee VISUM 4500 4~

— fma2trips
-~ fma2persons w8 4000 4------
-~ fmazpersons w9

Counting Station

3500 -

— fma2persons wi0.

3000 {-----

2500 4------

Volumes of Link ID2146
8
8

Volumes of Link 1D2147

£ 2000 -+

8883

2 " 8R

Time of the Day.

5000

Counting Station Counting Station
L

aree VISUM eree VISUM
— fmaztrips — fmaztrips
-~ fmazpersons w8 -~ fmazpersons w8

I

-~ fmazpersons w9 -~ fmazpersons w9

— fmazpersons wi0

3500 { oo

" | — fmazpersons wio

8
8
8

2500 { oo 4 & e L A e

8
8
8

Volumes of Link ID3012

Volumes of Link ID3013

Time of the Day

Figure 10: Hourly Volumes from VISUM, MATSIM and Counting Stations

and OD2Trips shows known similarities [11]. That confirms again that VISUM
and MATSIM produce comparable results.

At a first sight, the hourly volumes of fma2personsW8 differ strongly from
the expected results. This is not really surprising since the activity durations
are just mere assumptions. But giving it a closer look, there are still some simi-
larities:

e The three peaks are still there
e The morning peak matches pretty well

e The other peaks appear too early in the day (noon peak around 1lam,
evening peak around 4pm)

This leads us to the other two duration definitions (fma2plansW9, fma2plansW10).
Especially fma2plansW10 matches the first two peaks quite well. Also, the third
peak appears at the right time but with too low volumes, while the volumes
late in the night are too large.

This also shows up if we compare the absolute and relative errors (see Fig-
ure 11) from each MATSIM [8] run with VISUM averaged over the twelve given
links in Figure 9.

The absolute error is calculated as follows:

1 n
Eabsolute = ; * z; |Ui - pi| (1)
i—

6 MODEL VERIFICATION AND RESULTS 34

800 ~
700
600
500
400
300
200
100

Absolute Error to VISUM

Time of the Day

800
700
600
500
400
300
200
100

LS e e A G [s o S A e R R R AP R e R
Sy w'o Ny 990y QY

Absolute Error to VISUM

Time of the Day

Figure 11: Hourly Average Absolute and Relative Errors of all 12 Counting
Stations.

with n the number of counting stations (= 12), v; the number of trips calculated
by VISUM and p; the number of trips according to the used day plan genera-
tion process.
The relative error is calculated as follows:
1 v —pi
Erelative = ﬁ * Z; ﬁ (2)
fma2plansW10 matches the best. Until 5pm the errors of fma2plansW10 and
fma2trips are surprisingly similar. More discrepancies do not appear until the
evening peak. The reason for this difference lies again in the duration defi-
nition. The duration of a day plan therefore can differ between 3 hours (e.g.
h-s-h) to 16 hours (e.g. h-w-l-w-h). If more activity chains were used, the
duration of a day plan could go up to 27 hours (h-w-I-e-s-h)! In one sen-
tence, short chains normally produce too short out-of-home durations while

6 MODEL VERIFICATION AND RESULTS

35

VISUM: Percentage of Trips

o% 20% 40% 60% 80% 100%
hrs3-4 |0 -10 min
hrs45 |al0-20min L — L L
hrs56 Ja20-30min | ——] ! ——
hrs67 @30-60min ¢ = ; =
hrs7-8 60 - : 1
578 |w60-120min | — : —
hrsg-9 : T ; =
nrsot0 i i i] |
2 hso : : : —
8 stz : — ; i
o $:
R 7 7 7 ;
T bz : — : ——
S s : : ; —
2 hrsise f
£ hisie7 L L L i
hrsi7-18 ! — L d
hisig-19 L —L L 1
hrsi9-20 : : : :\‘
hrs20-21 : : : :
hrs21-22 7 7 7 7 >
hrs22-23 : : : :
hrs23-24
fmaztrips: Percentage of Trips fma2personsW10: Percentage of Trips
40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
T hrs3-4 *00-10 min ‘
= L L hrs45 “a10-20min L <L L L
: : : | : : —
: hrs6-7 " 830 - 60 min :
hrs7-8 ~ w60~ 120 min L L < hrs7-8 “w60-120min | L L =t
T T = I T T —
hrsg-9 . ; ; — hrsg-9 : ; ; = "
hrs9-10 7 = 7 — : hrs9-10 7 — 7 7 >
2 hso : = : — 2 hso-i : — : ——
8 st : ; ; — ol 8 i : ; ; =
@ 23 : = L hrsi213
£ i i i T £ i i i T
T hssu : : : — S etz : : : —
S hrsuis : = ; : ’ S hrsiass : ; ; T "
2 hrsiss 7 — 7 — 2 hrsis6 7 7 7 i ;
£ hrsie7 : : : : i hisier : : : “ ¥
hrsi718 : ; ; ; hrsi7-18 : ; ; F +
hrsig-19 . hrsig-19 !
wasz0 ! = ! == mosz0 ! ! ! 5 !
hrs20-21 : = ; — * hrs20-21 : ; ; = *
hrs21-22 7 = 7 7 ; hrs21-22 7 = 7 y\
hrs22-23 : = : : hrs22:23 : = : .
hrs23-24 ! hrs23-24 1
fma2personswW9: Percentage of Trips fma2personswW8: Percentage of Trips
o% 20% 40% 60% 80% 100% % 20% 40% 60% 80% 100%
hrs3-4 *a0-10 min T hrs3-4 *00-10 min T
hrsé-5 01020 min = ! ! ! hrsd§ Tai0-20min L = ! !
hrs5-6 ~ 20 ~30 min ; ; ; hrss-6 © i ; ; ;
hrs6-7 : hrs6-7 " 830 - 60 min :
hrs7-8 ~ w60~ 120 min ! ! == hrs7-8 w60~ 120min L ! ! =
hrs-9 . ; ; = " hrsg-9 : ; ; a
hrs9-10 7 = 7 = + hrs9-10 7 — 7 =
2 N : = : — 2 hso-i : : —
8 st : 8 it : :
—
@ 23 = L L Lt 2 hrsi213 == L p——
E T T T T : E T T T I
5 hessu : : : : p— S stz — : —————
S hisuis : ; ; = = S hrsiass — ; — : ’
g hisisis 7 — : T) g hisisi6 7 : : =
£ hrsie-17 : : : 3 £ hisier : : : =
hrsi718 : ; ; E - hrsi7-18 : o ; =
hrsig-19 7 7 7 ¥ : hrsig-19 7 : 7 = >
hrsi9-20 : — : ‘\ hrsi9-20 : T : o
hrs20-21 : = ; — hrs20-21 : = ; E 5
hrs21-22 7 7 7 o hrs21-22 7 o 7 X
hrs22-23 : : : = = hrs22:23 : . : —
hrs23-24 ! = hrs23-24 1 :

Figure 12: Trip Travel Time Distribution from VISUM and MATSIM

the reverse is true for longer ones. The results are still surprisingly good for
the crudeness of the assumptions made.

6.7 Travel Time Analysis

Figure 12 shows the travel time distributions of VISUM [13] and MATSIM
[8]. First, one can recognize that the three peaks again shows up in VISUM,
fma2trips and also in fma2personsW10, since the travel times increase at these
times of the day. fma2personsW9 and fma2personsW§ on the other hand just
show the first two peaks. Even more, fina2personsW8 produces very long trips
during noon time which is not surprising because the noon and the evening
peak are squeezed together.

Another interesting point shown in Figure 12 is that VISUM produces less
average trips (10-30 minutes) than fma2trips but more short and long ones. The
reason for that could be due to the fact that all individuals in MATSIM try to

7 CONCLUSIONS 36

optimize their travel times by using the MATSIM router. If individuals find
faster routes, they slow down the other individuals using those routes. But
during the MATSIM iteration process, the width of the travel time distribution
decreases as well as the average travel time.

7 Conclusions

Converting demand or OD-matrices to day plans offers new possibilities to get
input data for agent based micro-simulations. The described processes show a
promising approach to reconstructing day plans from OD-matrices, even if this
problem is highly underdetermined. Moreover, since the behavior of individu-
als is not easy to determine without expensive surveys, day plan reconstruction
is an alternative.

The experience gained from this project shows that by using OD-matrices,
a lot of behavioral data gets lost which is necessary for micro-simulations like
MATSIM [8]. It must be questioned whether it is easier trying to convert OD-
matrices into day plans, or if creating day plans from other statistical input
might be more useful. The latter should also be feasible when no microcensus
data but only common census data is available. By using additional informa-
tion like land-use data, population census data, modal split and activity chain
distributions, the reconstruction can be done, too.

8 Future Work

While the first results look promising, there are still several issues where fur-
ther research can be done:

Better default durations for activities In a simple step, the definition of the
average duration can be extended. For example, the activity chain hlh
defines an average duration of leisure which is longer than the leisure ac-
tivity in h-w-l-w-h . With this extension, the problems mentioned above
will be reduced. Because for fma2persons the primary activity for each ac-
tivity pattern already must be defined, one can think about an extended
definition of activity patterns including the duration for each activity in
a pattern.

Dynamic Allocation of Departure Times and Durations Another promising,
partly explored approach for MATSIM [8] optimizes departure time and
the duration of an activity [15], so that badly chosen activity durations
will be corrected. Before it can be applied, the utility function needs to be
properly estimated, but see [3] for first experiences.

Alter Default Durations of Activities Based on OD-matrices When using the
main-process fma2plans it can happen that a person leaves a zone sooner
(or later) than its default duration defines. Until now, the person is moved
to the new location, but the duration of the last activity is not changed—it
stays the same as if the person had left at the scheduled time. By chang-
ing the durations according to their real departure time might yield in
better results.

8 FUTURE WORK 37

| option

possible values

random seed no seed (current status)

user-defined seed 1

user-defined seed 2

other seeds ...

time of simulation 00-24

03 -27

05-29

activity durations w8e4 145l

w9 e6 15 s2

wl0e816s3

separately defined for each activity pattern
start population population home with modal-split 45.44%
population autol with modal-split 100%
population auto2 with modal-split 100%
compile flags (only fma2plans) | FAVOR_HOME_TRIPS 0 0 1 1
FAVOR_VISITORS 0101
different behavior in iterations (see above)

Table 6: Possible Options for Future Scenarios

There are a lot of smaller changes which would not change the whole pro-
cess, but where it might be interesting to see in what changes they result:

e What happens when in fma2plans people were chosen by default from
the home population instead of randomly from visitors and home popu-
lation or only from the visitors list?

o fma2plans cycles twice through each OD-matrix to generate trips (see 4.4).
Already in the first pass people can be chosen which are scheduled to
leave at a later hour. It might make more sense that in the first pass only
people are chosen which are scheduled to leave in or before the current
hour, and only in the second pass people whose activity durations must
be shortend.

o Until now, the processes do not use any random seed. It should be checked
whether using different, explicit random seeds have a big influence on
the results.

o Described above are variants either starting at midnight or at 3am. How
would results differ it the day plan generation processes are started at
5am?

e The algorithm to choose random points within a zone is not yet optimal.
Small zones in the country with big distances to other zones get for the
populated area a too big circle assigned. This could be counteracted by
using custom circle-radii for the populated area. The processes are al-
ready prepared for this data (see villages.txt and villages.xml, Appedices
A.1 and A.5 respectively).

Table 6 gives an overview over the different settings and parameters that could
be used in further tests.

8 FUTURE WORK 38

Finally, it would be interesting to generate dayplans directly from the in-
put data VISEM uses instead of the output data of VISEM. In that case, OD-
matrices would not be used anymore as input but statistical information about
population and traffic in the area under investigation. Of substantial interest
would be to see if this direct conversion yields in the same three peaks as VI-
SUM generates (see figure 5), or if the peak at noon would be far smaller as
expected.

8 FUTURE WORK 39

Acknowledgements

My biggest thank goes to Michael Balmer, who supervised this work and was
greatly involved in analyzing the results. His earnest interest in this project
was always very motivating for me. I also appreciate very much Prof. Dr. Kai
Nagel for coming up with this great topic and his supervision of my project.

I highly esteem the discussions with Prof. Dr. Kay W. Axhausen. His pro-
posals were very interesting and brought in many helpful aspects from outside
a computer-scientist’s view. I also like to thank Philipp Frohlich for his help
with VISUM.

REFERENCES 40

References

[1] http://lwww.activeperl.com

[2] Swiss Federal Road Authority. Automatic traffic counts 1999. Bern,
Switzerland, 2000. http://www.astra.admin.ch . Accessed July 2004.

[3] Charypar, D. and Nagel, K. Generating complete all-day activity plans
with genetic algorithms, 10th International Conferece on Travel Behaviour
Research, Lucerne, Switzerland. August 2003. http://www.ivt.baum.

ethz.ch/allgemein/iatbr2003.html . Accessed July 2004.

[4] INRO. http://www.inro.ca . Accessed July 2004

[5] ESRI. http://www.esri.ca . Accessed August 2004

[6] Federal Office for Spatial Development (ARE).
http:/ /www.are.admin.ch/are/en/service/sitemap/index.html. Ac-
cessed July 2004.

[7] A. Altenhoff (2003) Modellierung des Location choice Prozesses in einem ak-
tivitatenbasierten Modell mit kooperierenden Agenten, Institute for Computa-
tional Science, ETH Ziirich.

[8] Multi Agent Traffic Simulation, http://www.matsim.org

[9] Nagel, K; Balmer, M; Raney, B. Large scale multi-agent simulations for trans-
portation applications, ETH Zurich, Switzerland and TU Berlin, Germany,
2004.

[10] Raney, B. and Nagel, K. An improved framework for large-scale multi-
agent simulations of travel behaviour. In Proceedings of Swiss Transport Re-
search Conference (STRC), str (2004). See www.strc.ch

[11] Raney, B. and Nagel, K. Iterative route planning for modular transporta-
tion simulation. Swiss Transport Research Conference (STRC), Monte
Verita, Switzerland 2002. http:/ /www.strc.ch. Accessed July 2004.

[12] Rieser, M. Berechnung von Nachfragematrizen mit VISEM, Semesterarbeit,
Institut fiir Verkehrsplanung und Transportsysteme (IVT), ETH Ziirich,
2004.

[13] PTV AG, VISEM & VISUM, Karlsruhe, http://www.ptv.de

[14] Vovsha, P; Petersen, E; Donnelly, R. Microsimulation in Travel Demand
Modeling: Lessons Learned from the New York Best Practice Model. In
Transportation Research Record: Journal of the Transportation Research
Board, No. 1805, TRB, National Research Council, Washington, D.C., 2002,
pp- 68-77

[15] M. Balmer, B. Raney, and K. Nagel. Coupling activity-based demand gen-
eration to a truly agent-based traffic simulation - activity time alloca-
tion. Paper (submitted), Transportation Research Board Annual Meeting,
Washington, D.C., 2005

http://www.activeperl.com
http://www.astra.admin.ch
http://www.ivt.baum.ethz.ch/allgemein/iatbr2003.html
http://www.ivt.baum.ethz.ch/allgemein/iatbr2003.html
http://www.inro.ca
http://www.esri.ca
http://www.matsim.org
www.strc.ch
http://www.ptv.de

A EXAMPLE FILES 41

A Example files

A1 villages.txt

A plain text file, containing zone-id (integer value), zone-name (string value)
and x- and y-coordinate (both integer values) of the center of the zone. Op-
tionally, the radius of a circle for the populated area can be given as integer
value. The values must be separated with tab-stops. The zone-name must start
with a letter and can contain spaces, numbers, parantheses and hyphens. Lines
starting with a star (*) will be ignored.

The following regular expression is used to parse the lines:

($id, $name, $xcoord, $ycoord, $radius) =
I (\d+)\s+(\w+(?:\s*[a-zA-Z0-9_\(O)\-]*)*)t+(\d+)\s+(\d+)

\s+(\d+)/;
Example:
* id name X y radius
1 Aeugst am Albis 679257 236349
2 Affoltern am Albis 676549 236982
3 Bonstetten 678055 241570
4 Hausen am Albis 683119 232918
5 Hedingen 676396 239040 416
6 Kappel am Albis 681247 231079
7 Knonau 677523 230863 1239
8 Maschwanden 674813 231983
9 Mettmenstetten 677702 233296
10 Obfelden 674502 235299 875
11 Ottenbach 673216 237008
12 Rifferswil 680083 233127
13 Stallikon 679227 243112
14 Wettswil am Albis 678228 243405
21 Adlikon 694831 271059
22 Benken (ZH) 691299 278808
23 Berg am Irchel 687357 268980
24 Buch am Irchel 689244 267305
25 Dachsen 688631 280091
26 Dorf 691008 269802
27 Feuerthalen 690827 282734
28

A.2 population.txt

A file containing a matrix of real numbers in plain text. The numbers represent
the number of persons in a zone and in a given population group. A header
row contains labels for different population groups, whereas a header column
contains zone-ids. The intersection cell of header row and header column must
be empty. The values must be separated by spaces or tab-stops.

Example:

A Aa Aap
1 0.000192164 227.7224408 0.000296154
2 510.8429427 0.000431773 0.000443067

A EXAMPLE FILES

A.3 patterns.txt

0.000158329
0.000386093
0.000239504
0.000499918
0.000740565
0.0042928
0.000574902
0.000643576
1819.681396
0.001275368
0.000502897
261.8125894
0.000978575
0.000300345
0.000403986
0.000245071
0.00024174
0.000493452

0.00018706

0.000456153
0.000282964
0.000590632
0.000874947
0.005071691
0.000679222
1107.842027
0.002256751
0.001505718
0.00059373

972.6631053
0.001149149
193.9833573
0.000473775
286.5460953
350.1249999
0.000575928

0.000191953
0.000468085
0.000290366
0.000606083
0.000897835
0.00520428

0.00069699

0.00076843

0.002330244
0.001554747
0.000613064
0.000436399
0.001193921
0.000489881
0.000492886
0.001568631
0.000390648
0.000602041

42

A list containing activity patterns in the first row and the corresponding per-

centages in the second row, separated by blanks (tab-stops or spaces).
The following regular expression is used to parse the lines:

($pattern, $frequency) = /$\s*(\w+)\s+(\S+)\s*/;

Example:

ZFZ 27.74
ZAZ 26.41
ZEZ 16.63
YASYA 12.17
ZAFAZ 3.06

ZFFZ 2.43

ZAEAZ 1.74

ZEFZ 1.57

ZFEFZ 1.08

ZAAZ 1.75

ZEEZ 0.87

ZFEZ 0.79

ZFAZ 0.71

ZAFZ 0.98

ZAEZ 0.78

ZSFZ 0.39

ZEAZ 0.46

ZSSZ 0.20

ZFSZ 0.10

ZASZ 0.07

ZSEZ 0.05

A EXAMPLE FILES 43

A.4 translation.txt

The file must contain two rows, in each one character, separated with spaces or
tab-stops. Activity patterns from patterns.txt (see A.3) will be translated from
the characters in the first row into the corresponding characters in the second
row. A specific character must not be in both columns. Capital and small letters
are distinguished as different characters.

The following regular expression is used to parse the lines:

($from, $to) = /B\s*(\S)\s+(\S)/;

Example:

z h
A w
E S
F |
S e

A.5 villages.xml

This file is the output of ascii2villages.pl (see chapter 3.2). It contains a list of
zones with their id, their name and the coordinates of the center of the zone in
a structured XML-format.

<?xml version="1.0" ?>

<villages xml:lang="de-CH">
<village id="1" name="Aeugst am Albis" x="679257" y="236349" />
<village id="2" name="Affoltern am Albis" x="676549" y="236982" />
<village id="3" name="Bonstetten" x="678055" y="241570" />
<village id="4" name="Hausen am Albis" x="683119" y="232918" />
<village id="5" name="Hedingen" x="676396" y="239040" radius="416"/>
<village id="6" name="Kappel am Albis" x="681247" y="231079" />
<village id="7" name="Knonau" x="677523" y="230863" radius="1239" />
<village id="8" name="Maschwanden" x="674813" y="231983" />
<village id="9" name="Mettmenstetten" x="677702" y="233296" />
<village id="10" name="Obfelden" x="674502" y="235299" radius="875" />
<village id="11" name="Ottenbach" x="673216" y="237008" />
<village id="12" name="Rifferswil" x="680083" y="233127" />
<village id="13" name="Stallikon" x="679227" y="243112" />
<village id="14" name="Wettswil am Albis" x="678228" y="243405" />
<village id="21" name="Adlikon" x="694831" y="271059" />
<village id="22" name="Benken (ZH)" x="691299" y="278808" />

</villages>

A.6 population.xml

In this XML-file, the number of persons is stored which have not yet a day
plan assigned. The persons are already distinguished by activity patterns. This
makes it easy to chose a random person with a activity pattern. The numbers
decrease with every iteration of a main-process.

<?xml version="1.0" ?>
<villages xml:lang="de-CH">

A EXAMPLE FILES 44

<village id="1" name="Aeugst am Albis" x="679257" y="236349">
<pattern chain="hlh" count="193" />
<pattern chain="hwh" count="184" />
<pattern chain="hwlwh" count="22" />
<pattern chain="hslh" count="11" />

</village>
<village id="2" name="Affoltern am Albis" x="676549" y="236982">
<pattern chain="hlh" count="1288" />
<pattern chain="hwh" count="1226" />
<pattern chain="hwlwh" count="143" />
<pattern chain="hslh" count="73" />

</village>
<village id="3" name="Bonstetten" x="678055" y="241570">
<pattern chain="hlh" count="486" />

<Nillage>
<Nvillages>

A7 cityplans.xml

A preliminary plans-file containg the attributes cityid and home_city in-
stead of x- and y-coordinates. Secondary activities have no location assigned
yet. No <leg> -tags are created between activities, but the leg-mode is stored
as attribute of the person.

<?xml version="1.0" ?>
<IDOCTYPE plans SYSTEM "plans.dtd">
<plans xml:lang="de-CH">
<person id="1" home_city="1" leg_mode="car">
<plan pattern="hwh">
<act type="h" cityid="1" end_time="08:00:00" />

<act type="h" cityid="1" />
</plan>
</person>
<person id="2" home_city="1" leg_mode="car">
<plan pattern="hlislh">
<act type="h" cityid="1" end_time="08:00:00" />
<act type="I" dur="02:00" cityid="2" primary="true" />
<act type="s" dur="01:00" />
<act type="I" dur="02:00" />
<act type="h" cityid="1" />
</plan>
</person>

</plans>

A.8 pre-plans.xml

A preliminary plans-file, containing the attributes x100 and y100 in place of
cityid . This is the output of cityplans2plans with the option -cityid2xy

A EXAMPLE FILES 45

(see chapter 5.1). Secondary activities have the same coordinates as the home-
location. <leg> -tags exist between activities.

<?xml version="1.0" ?>
<IDOCTYPE plans SYSTEM "file:/full/path/to/plans.dtd">
<plans xml:lang="de-CH">
<plan>
<act type="h" x100="678753" y100="237424" end_time="08:00:00" />
<leg mode="car" />
<act type="w" x100="675549" y100="237156" dur="08:00" primary="true" />
<leg mode="car" />
<act type="h" x100="678753" y100="237424" />
</plan>
</person>
<person id="2">
<plan>
<act type="h" x100="678309" y100="236441" end_time="08:00:00" />
<leg mode="car" />
<act type="I" x100="676764" y100="237153" dur="02:00" primary="true" />
<leg mode="car" />
<act type="s" x100="678309" y100="236441" dur="01:00" />
<leg mode="car" />
<act type="I" x100="678309" y100="236441" dur="02:00" />
<leg mode="car" />
<act type="h" x100="678309" y100="236441" />
</plan>

</person>

A9 plans.xml

A complete, MATSIM-plans-file. This file validates against the document type
definition, plans.dtd (see A.10).

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE plans SYSTEM "file:plans.dtd">
<plans xml:lang="de-CH">
<person id="1">
<plan selected="no">
<act type="h" x100="678753" y100="237424" end_time="08:00:00"/>
<leg mode="car"/>
<act type="w" x100="675549" y100="237156" dur="08:00" primary="true"/>
<leg mode="car"/>
<act type="h" x100="678753" y100="237424"/>
</plan>
</person>
<person id="2">
<plan selected="no">
<act type="h" x100="678309" y100="236441" end_time="08:00:00"/>
<leg mode="car"/>
<act type="I" x100="676764" y100="237153" dur="02:00" primary="true"/>
<leg mode="car"/>
<act type="s" x100="683250" y100="249450" dur="01:00" />

A EXAMPLE FILES

<leg mode="car"/>

<act type="I" x100="683750" y100="247850" dur="02:00" />

<leg mode="car"/>

<act type="h" x100="678309" y100="236441"/>

</plan>
</person>

</plans>

A.10 plans.dtd

The Document Type Definition for plans files (plans.xml, see A.9).

<?xml version="1.0" encoding="utf-8"?>

<IELEMENT plans
<IATTLIST plans

xml:lang
>

<IELEMENT demand

<IATTLIST demand
name

>

<IELEMENT segment
<IATTLIST segment
id
name
>

<IELEMENT model
<IATTLIST model

name
>

<IELEMENT param
<IATTLIST param
name
mean
type
stddev
>

<IELEMENT person
<IATTLIST person
id
seg_id
>

<l-- possible future person attributes: age, gender, income, ...

<IELEMENT plan
<IATTLIST plan
score

(demand|person)*>

NMTOKEN "de-CH"

(segment)*>

CDATA #IMPLIED

(model)*>

CDATA #REQUIRED
CDATA #IMPLIED
(param)*>

CDATA #REQUIRED

EMPTY>

CDATA #REQUIRED

CDATA #REQUIRED
CDATA #IMPLIED
CDATA #IMPLIED

(plan)+>

CDATA #REQUIRED
CDATA #IMPLIED

(#PCDATA|act|leg)*>

CDATA #IMPLIED

>

A EXAMPLE FILES

age
selected
>

<IELEMENT act
<IATTLIST act
type
x100
y100
link
zone
start_time
end_time
dur
primary
>

<IELEMENT leg
<IATTLIST leg
num
mode
dep_time
trav_time
>

<IELEMENT route

47

CDATA #IMPLIED
(yes|no) "no"

EMPTY>

CDATA #REQUIRED
CDATA #REQUIRED
CDATA #REQUIRED
CDATA #IMPLIED
CDATA #IMPLIED
CDATA #IMPLIED
CDATA #IMPLIED
CDATA #IMPLIED
CDATA #IMPLIED

(route)?>
CDATA #IMPLIED
CDATA #REQUIRED

CDATA #IMPLIED
CDATA #IMPLIED

(#PCDATA)>

A.11 demand-matrix.fma

A file containing a OD-matrix in the ASCII-format written by VISEM [13]. It
contains information about the time of the contained trips, the size of the ma-
trix, and the number of trips in the cells of the matrix.

$V;d8

* G:\VISEM_work\output\output_Pkw.fma Pkw

* Zeitintervall

8 9
* Anteil
1.00
* Anzahl VZellen
182
* BezirksNummer
1 3 4 5
6 8 9 10
11 12 13 14 21
22 23 24 25
* 1
0.27343810 20.58377457 1.88410282 3.79979420 3.20691514
1.13177490 1.00508618 0.84048206 2.58526707 4.16495275
1.89059031 2.67430234 2.60731125 1.27563977
* 2
20.52584076 3.29715800 15.68585110 10.78690243 1.88618815
6.06036186 12.18537617 11.14492035 24.58188629 17.51260948

17.95108032 12.05580044

5.67500639 13.17440796

A EXAMPLE FILES

* 3

2.21606994 16.17108154 0.21675503 0.81266505 0.74204993
0.47230765 1.05071044 0.99901491 2.87136698 4.76392365
3.44822097 1.42674959 259337425 0.17184621

* 4

7.40430689 16.96325302 1.77726710 0.16218220 3.11874604
6.06747580 2.82219243 2.63983226 6.06062365 3.89462209
1.90754700 11.24550915 1.68430972 0.98741281

* 5

A12 config.xml

48

The configuration file used for the three main processes, fima2trips, fma2persons
and fma2plans. It contains mainly the file paths of input- and output-file for
running the calculations.

The configuration file usually contains full file-paths. This imposes prob-
lems when the processes need to be run on different machines with different
directory structures. Thus the configuration file is created from a template-
file by invoking make config . The template-file contains only relative paths
based on the cvs root-directory.

<?xml version="1.0" ?>
<IDOCTYPE config SYSTEM "config.dtd">

<config>

<module name="peopleGenerator">

<param
<param
<param
<param
<param
</module>

name="leg_mode" value="car" />
name="input_population" value="datalN/poplist.xml" />
name="input_plans" value="datalN/plans.xml" />
name="output_population" value="dataOUT/poplist.xml" />
name="output_plans" value="dataOUT/plans.xml" />

<l-- peopleGenerator -->

<module name="cityid2xy">

<param
<param
<param
<param
<param
<param
<param
<param
</module>

</config>

name="minX" value="630000" />

name="minY" value="200000" />

name="maxX" value="730000" />

name="maxY" value="300000" />

name="plansDTD" value="file:src/masim/resources/plans.dtd" />
name="input_plans" value="datalN/plans.xml" />
name="input_villages" value="datalN/villagesXY.xml" />
name="output_plans" value="dataOUT/plans.xml" />

<l-- cityid2xy -->

A.13 config.dtd

The Document Type Definition for MATSIM [8] configuration files (see A.12
for an example).

A EXAMPLE FILES 49

<?xml version="1.0" encoding="utf-8"?>

<l-- Allow config to be within config so that included files may be -->
<l-- standalone. -->

<IELEMENT config (configlinclude|module)*>
<IATTLIST config
xml:lang NMTOKEN "de-CH"

>
<IELEMENT module (param)*>
<IATTLIST module
name CDATA #REQUIRED
>
<I[ELEMENT param EMPTY>
<IATTLIST param
name CDATA #REQUIRED
value CDATA #REQUIRED
>
<IELEMENT include EMPTY>
<IATTLIST include
file CDATA #REQUIRED
>

A14 settings.xml

The settings in this file are accessed by more than one process. Because the
stored information in this file are dependent on the input data rather then the
computing process, the informations are not stored in the configuration file
(A12).

<?xml version="1.0" ?>
<IDOCTYPE config SYSTEM "config.dtd">

<config>

<module name="primaryActs">
<param name="hlh" value="|" />
<param name="hwh" value="w" />
<param name="hsh" value="s" />
<param name="heh" value="e" />
<param name="hwlwh" value="w" />
<param name="hllh" value="I" />
<param name="hwswh" value="w" />
<param name="hslh" value="I" />
<param name="hlslh" value="I" />
<param name="hwwh" value="w" />
<param name="hssh" value="s" />
<param name="hlsh" value="|" />
<param name="hlwh" value="w" />
<param name="hwlh" value="w" />
<param name="hwsh" value="w" />
<param name="helh" value="e" />

A EXAMPLE FILES 50

<param name="hswh" value="w" />
<param name="heeh" value="e" />
<param name="hleh" value="e" />
<param name="hweh" value="w" />
<param name="hesh" value="e" />
</module> <!-- primaryActs -->

<module name="actDurations"> <!-- duration in minutes -->
<param name="w" value="480" /> <!-- 8h -->
<param name="e" value="240" /> <!-- 4h -->
<param name="I" value="240" /> <!-- 4h -->
<param name="s" value="60" /> <!-- 1h -->
</module> <!-- ActDurations -->
</config>

A.15 landuse.xml

An XML-file containing information about the utility of activities in map squares.
This file is used by LocationChoice (see 5.2) to determine the location of sec-
ondary activities.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE landuse SYSTEM "file:/path/to/landuse.dtd">
<landuse>
<cell x100="641300" y100="213900">
<activity type="home" capacity="1"/>
</cell>
<cell x100="641300" y100="214500">
<activity type="home" capacity="3"/>
</cell>

<cell x100="641300" y100="218400">
<activity type="home" capacity="11"/>
<activity type="work" capacity="3" start_time="07:00" end_time="19:00"/>
</cell>
<cell x100="641300" y100="266600">
<activity type="shop" start_time="18:30" end_time="22:30"/>
</cell>
<cell x100="645900" y100="249100">
<activity type="home" capacity="30"/>
<activity type="work" capacity="645" start_time="07:00" end_time="19:00"/>
<activity type="leisure" start_time="18:30" end_time="22:30" capacity="1000"/>
</cell>

</landuse>

A.16 landuse.dtd
The Document Type Definition for landuse.xml (see A.16).

<?xml encoding="UTF-8" ?>

<l-- Created by fmarchal on June 26, 2003, 6:32 PM -->

B SVG-SCALABLE VECTOR GRAPHICS 51

<IELEMENT landuse (cell|activity)+>
<IATTLIST landuse

xml:lang NMTOKEN "de-CH"
>

<IELEMENT cell (activityref|activity)*>
<IATTLIST cell
x100 CDATA #REQUIRED
y100 CDATA #REQUIRED

>

<IELEMENT activityref EMPTY>

<IATTLIST activityref
id IDREF #REQUIRED
capacity CDATA #IMPLIED
start_time CDATA #IMPLIED
end_time CDATA #IMPLIED
>

<IELEMENT activity EMPTY>

<IATTLIST activity
id ID #IMPLIED
type CDATA #REQUIRED
capacity CDATA #IMPLIED
start_time CDATA #IMPLIED
end_time CDATA #IMPLIED

B SVG - Scalable Vector Graphics

SVG is an XML-based file-format for two-dimensational vector graphics. The
SVG file-format is an official standard of the World Wide Web Consortium
(http:/fwww.w3.0rg). Most web browsers can display SVG graphics, ei-
ther natively or by use of a plugin. The graphics even support animations and
interactions without loss of quality by integrating proven standards like CSS
(Cascaded Style Sheets) and JavaScript.

Because the graphics are vector-based, zooming into images to see details
is no problem. Many features known from the PostScript-Language and pro-
fessional illustration tools (e.g. Bezier-Curves, Splines, special text-formatting,
masks and opacity) are part of SVG, allowing to programmatically create stun-
ning graphics often not possible with other graphic libraries. Many GIS-Appli-
cations already started to support SVG, either via converters or as a native file
format.

One drawback is that large graphics with a lot of details can take quite
some time to load and display. But with the advance of faster computers and
with the use of intelligent algorithms (like only drawing those elements in the
visible area), this problem is no roadblock.

http://lwww.w3.0rg/Graphics/SVG/ The official SVG site from W3C. Con-
tains links to official resources as well as general news about SVG.

http://www.w3.org
http://www.w3.org/Graphics/SVG/

B SVG-SCALABLE VECTOR GRAPHICS 52

http://www.w3.0rg/TR/SVG/ The official specifications from W3C. Con-
tains detailed specifications with DTDs and very basic examples.

http://www.w3schools.com/svg/svg_examples.asp Some basic exam-
ples. Good for learning the basics by looking at examples.

http://svg.tutorial.aptico.de/ A very good and detailed introduc-
tion with a lot of easy-to-follow examples. My personal favorite!

http://www.w3.org/TR/SVG/
http://www.w3schools.com/svg/svg_examples.asp
http://svg.tutorial.aptico.de/

	Introduction
	Overview
	Terminology
	Input Data
	Processes
	Output Data

	Preprocessing
	File Formats
	ascii2villages.pl
	ascii2population.pl

	Generating Day Plans
	Introduction to Day Plans
	fma2trips
	fma2persons
	fma2plans
	Choosing persons for trips
	Speed Optimizations
	Other Characteristics

	Postprocessing
	cityplans2plans
	Location Choice for Secondary Activities
	Introduction
	Modifications
	Usage

	Model Verification and Results
	Used Data
	Population and Activity Patterns
	OD-matrices

	Scenarios
	Number of Generated Day Plans
	fma2trips
	fma2persons
	fma2plans

	Number of Trips Generated
	fma2trips
	fma2persons
	fma2plans

	Execution Time
	Comparison with Counting Stations
	Travel Time Analysis

	Conclusions
	Future Work
	Acknowledgements
	References
	Example files
	villages.txt
	population.txt
	patterns.txt
	translation.txt
	villages.xml
	population.xml
	cityplans.xml
	pre-plans.xml
	plans.xml
	plans.dtd
	demand-matrix.fma
	config.xml
	config.dtd
	settings.xml
	landuse.xml
	landuse.dtd

	SVG -- Scalable Vector Graphics

