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Tra�c simulations are made more realistic by giving individual drivers intentions, i.e.,

an idea of where they want to go. One possible implementation of this idea is to give

each driver an exact pre-computed path, that is, a sequence of roads this driver wants

to follow. This paper shows, in a realistic road network, how repeated simulations can

be used so that drivers can explore di�erent paths, and how macroscopic quantities such

as locations of jams or network throughput change as a result of this.

Keywords: Tra�c; Adaptation.

1. Introduction

It is by now clear that large-scale microsimulations of transportation systems, with

simulation speeds of 1 million or more vehicles in real time, are possible.1{5 It is less

clear how to \drive" these simulations, i.e., according to which rules the individual

vehicles know where they are headed.

Random turning choices at intersections, as they would probably be favored by

the Statistical Physics community, do not work well: They are already unable to

represent a simple situation where the tra�c in, say, North{South direction is more

important than tra�c in the other directions.

Tra�c science traditionally uses turning percentages (see, e.g., Ref. 6), i.e., a

table for each direction of each intersection which says which fraction of vehicles

would go left, straight, right, etc. Apart from the problem of how to collect all the

necessary data from the real world, this is only useful for representing the status

quo, but useless if one wants to study changes in the transportation system, because

the turning percentages change immediately.

The only way out seems to give individual drivers intentions, i.e., an idea of

where they want to go. One possible implementation of this idea is to give each
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driver an exact pre-computed \plan," i.e., a sequence of roads this driver has to

follow.3;7 See, e.g., Refs. 8 and 9 for an alternative method.

Pre-computed trip plans do not allow an adjustment during the trip. To make

up for this, the simulation can be run several times (periods/days), and simulated

drivers can make di�erent choices each day, until they settle down on a choice which

is favorable for them. This seems to be a reasonable approach for recurrent (e.g.,

rush-hour) congestion.10{12

This paper describes such a simulation using the freeway network of the Ger-

man Land Northrhine{Westfalia (NRW). There are many travelers with di�erent

origin{destination pairs. Travelers have route plans (paths) so that they know on

which intersections they have to make turns in order to reach their destinations.

In the simulation setup described in this paper, each traveler has a choice between

10 di�erent paths. Each traveler chooses a path, the tra�c microsimulation is exe-

cuted according to the plans of each traveler (no re-planning during the trip), and

each traveler remembers the performance of his/her option.

Each traveler tries each option once. Afterwards, she usually chooses the option

which performed best in the past, except that, with a small probability pother,

another option is chosen randomly, in order to update the information about these

other options.

This approach | giving each agent a set of options and letting each agent act on

the basis of the performances of these options | is a simpli�ed version of Holland's

classi�er systems.13 See Ref. 14 for an application of these ideas in an economic

context; and Refs. 15 and 16 for their use in much simpler transportation problems.

Section 2 describes the digital road network used for the simulations; Sec. 3

describes in detail the simulation setup. Section 4 describes simulation results for

the adaptation scheme; Sec. 5 discusses several variations of the basic simulation

to demonstrate the robustness of the results. Section 6 shows, as one measure

of e�ectiveness, the number of vehicles which reach their destination as a func-

tion of time. Maybe counter-intuitively, after everybody has settled down on a

choice of path convenient for herself, the overall network throughput is lower than

when everybody just drives the geometrically shortest path. A discussion concludes

the paper.

2. Network

The simulations are based on a digital version of the freeway network of NRW,

where some lower level highways (Bundesstra�en) are added in order to prevent free

ends inside the network. The code is written for parallel computers using message

passing, in principle for an arbitrary numbers of computational nodes (CPNs). In

practice, two Sparc10 workstations, coupled via optical link and using PVM 3.2,

were used. This indicates that experiments such as the one presented in this paper

are already possible with a still modest amount of hardware, and that the consistent

use of parallel supercomputers will allow systematic analysis of much larger systems.
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The network data which is used comes from Rickert,2 (see also Ref. 3) as an

intermediate step of his input data preparation. The original data is a list of nodes

and a list of edges, where the list of nodes contains all ramps, junctions, and inter-

sections, and edges are the connecting segments. In a �rst step, Rickert deletes all

nodes of degree two (e.g., ramps). The resulting network is then distributed on the

two workstations. The heuristic used for this simply cuts the network in east{west

direction such that the computational load on both workstations is approximately

the same. For details see Refs. 2, 3 and 17.

Apart from the network and the individual trip plans, the simulation is kept as

simple and straightforward as possible. This includes oversimpli�ed ramps16 and

single directional lanes, i.e., one lane in each direction. The point of this paper

is to show the application of simulated individual decision making in a simpli�ed

transportation context; a more realistic large-scale, path-following tra�c simulation

is for example documented in Ref. 3.

3. Speci�c Simulation Setup

A simulation run consists of a simulation initialization and daily iterations. During

the simulation initialization, at each boundary segment 2000 vehicles are queued up

to enter the simulation. (Boundary segments are all segments which lead through

the border of NRW and which are thus connected to the rest of the network only

at one end.) Each car randomly chooses a destination, which is one of the other

boundary segments. The probability to choose a certain destination is proportional

to the fourth power of the Cartesian distance between the origin and the destination

segment: P (destination) / (distance)4. Obviously, taking the fourth power biases

this selection towards long trips. Still during simulation initialization, each vehicle

gets a list of 10 di�erent paths to reach its destination. These lists have been pre-

calculated for all occurring origin-destination pairs, and contain the 10 geometrically

shortest paths which do not use the same node twice.18�20

After this general simulation initialization, the daily iterations are started. Each

daily iteration consists of a preparation phase and a tra�c microsimulation phase.

During each daily preparation phase, each vehicle individually decides which

path to use. In the �rst day, each vehicle uses the shortest path; during the sub-

sequent nine days, each vehicle randomly selects one of the not yet tested options.

Starting at day 10, it usually selects, as mentioned in the introduction, the option

with the best remembered performance (i.e. with the lowest tarriv as de�ned be-

low). Sometimes, with probability pother = 5%, it selects one of the other options

to re-test it.

Now, the tra�c microsimulation phase of the daily tra�c dynamics starts. Vehi-

cles are updated according to the Nagel-Schreckenberg driving logic,21;22 segments

when they are at a junction or an intersection. Each vehicle follows its plan until

it reaches its destination segment, and when it reaches the end of that segment, it
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notes the arrival time tarriv, i.e. the current iteration step of the simulation, which

is used as performance criterion for this speci�c path.

After all vehicles have reached their destinations and recorded the above infor-

mation, the next day is started, where all vehicles have the same initial position

and the same destination as before, but may choose, in the daily preparation phase,

a di�erent path according to the adaptation rules described above.

4. Adaptation Results

Figure 1 shows an example of a simulation after 400 and 1400 seconds. One clearly

sees how the initially empty network is �lled by vehicles coming in from the bound-

ary segments. Each pixel in the plot corresponds to a small region of 30 sites

(225 m). Green dots denote that there is at least one car in the region, orange stars

mark slightly over-critical regions, where at least one car has velocity zero, and red

triangles mark jams: The density here is above 0:4.

Figure 2 demonstrates the result of the adaptation algorithmof taking the fastest

path. Both the top and the bottom graph use exactly the same initial con�guration

of cars with their individual destinations. Both graphs are snapshots of the situation

after 6000 sec (100 min). The top �gure shows the situation when every driver

follows the geometrically shortest path. The bottom �gure shows the situation on

day 15, when drivers act according to their previous experiences, i.e., they usually

use the path where they were fastest in the past. Note some important di�erences

between the �gures (the geographical names are shown in the �gures):

� Drivers start using A43 between Wuppertal and the Ruhrgebiet. A43 is not

contained in any shortest long-distance path.

� Around K�oln, after the learning also the freeway west of K�oln is crowded.

� A1 between Wuppertal and Kamen is much more crowded after the adaptation,

with densities above 0.4 at many places.

� At Kamen, there is now not only a jam for people coming from Hannover, but

also for people coming from the Ruhrgebiet.

Generally speaking, people \learn" according to the programmed adaptation rules

to equilibrate the jams, i.e., fast ways around congested areas vanish.

5. Robustness Results

One of the general questions of a simulation like this is how independent the results

are from the speci�c setup. For that reason, we tested several variations of the

simulation.

Day-to-day variations of the general tra�c jam patterns are low after day 15. As

an example, Fig. 3 top shows the same situation as in Fig. 2 bottom one simulated

day later.
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Fig. 1. Situation after 400 iterations (top) and after 1400 iterations (bottom).
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Fig. 2. Top: Situation at the \�rst day" after 6000 iterations (100 min), when trips through the

network are chosen with a fourth order preference for long trips, and when all drivers follow the

geometrically shortest path. | Bottom: Situation at \day 15" after 6000 iterations (100 min), for

the same initial conditions as for the top �gure, but where drivers have \learned."
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Fig. 3. Top: Same as Fig. 2 (bottom), except that it is one \day" later. | Bottom: Same as

Fig. 2 (bottom), except that the distance distribution is linear.
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It has been reported from other tra�c simulations that it is important how

the individual agents remember past information. For example, a driver which only

remembers the last instance of a trial of a route instead of some average performance

may induce more oscillations into the system.23 However, in the simulation setup as

described here, using di�erent memory rules did not lead to any noticeable di�erence

in the simulations. The author's intuition is that the stochasticity of the underlying

microscopic driving logic introduces already enough \fuzziness" into the system

to avoid such oscillations. Traditional route choice models often bundle multiple

drivers from the same origin to the same destination in one packet and do thus not

allow for variability between these.11

Also, using a smaller bias towards longer distance destinations (Fig. 3 bottom,

after adaptation) does not change the overall tra�c jam structure.

Obviously, it will be necessary to replace the arbitrary origin{destination{

pattern of these simulations by more realistic data. Yet, some of the network

bottlenecks seem generic with respect to transit tra�c through NRW: Heavy tra�c

and congestion between Wuppertal and Kamen are well known, and, as one sees,

a consequence of the missing extension of the freeway A4 beyond Olpe. This ex-

tension has since long been planned; but it leads through environmentally sensitive

areas, and it is thus under discussion if it will ever be built. Note that the simu-

lation methodology presented here can be used to evaluate the utility of such an

extension, or what is needed to replace it by improvements along existing paths.

Fig. 4. Accumulated number of cars which have reached their destination. \Days" 1 and 15

are shown. In day 1, all vehicles drive according to their geometrically shortest path, whereas in

day 15 everybody has some knowledge of the travel time on di�erent paths and usually chooses the

fastest one. | Interestingly, the network throughput decreases during the relaxation, indicating

that indeed something like grid-lock occurs not only in urban tra�c, but can also occur in a

freeway network.
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Or, which tra�c streams have to be reduced in order to manage with the currently

existing infrastructure, and how this can be achieved.

The problems near Krefeld are due to the same bottleneck in North{East/South{

West direction. It is also known that the area around K�oln presents a bottleneck.

Reference 19 contains more detailed descriptions.

6. Network Throughput

As a quantitative measure, the accumulated number of cars which have reached

their destination is counted as a function of time. Figure 4 shows one result, for the

fourth order distance distribution. Interestingly, the network performance decreases

after drivers have learned. The probable explanation is that the network becomes

crowded in a \balanced" way after drivers learn, whereas before, some parts are

overcrowded and some are rather empty. It is, for example, reasonable to believe

that, in Fig. 2 (top), a path from the south | westward around K�oln{Wuppertal{

Kamen{Hannover has higher throughput than in Fig. 2 (bottom). References 15,

24 and 25 contain other examples of unexpected or counter-intuitive behavior of

tra�c systems.

7. Discussion

The simulations of this paper use individual learning and route selection in a simu-

lated tra�c system. This produces a reasonable distribution of the tra�c streams,

given the initial origin{destination{assumptions. Thus, this method is capable to

do the equivalent of the static equilibrium assignment26 also for a dynamic and

congested situation.

It cannot be expected that the simple assumptions yield a completely realistic

picture of tra�c streams; and for an exact comparison with reality no data was

available. More realistic simulations are the topic of current work.7;27 Neverthe-

less, it is perhaps astonishing that already such a simple model leads to a reason-

able distribution of tra�c streams. Moreover, the tra�c patterns after adaptation

are robust against di�erent statistical distributions for the origin{destination pairs,

di�erent learning rules, and di�erent days. This supports the expectation that al-

ready relatively few information on realistic trip generation will yield rather realistic

results.
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