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Abstract

Transpaetation systemsarecomplex dynamicalsystemavhosedynamicsunfolds
onnetworksasthespatialsubstrateEarly approachsto theproblemhave similar-

itiesto thecompuationof equilibriumcurrentflow in electricalnetworks, with the
main differencethatin traffic the particleshave fixed destinations.Thesesteady
stateapprachesareunrealisticwhendescribingmore complex aspectof the dy-

namics,which is why time-dependnt microscopicmodelsareintroduceal. Such
modelsresembletypical moleculardynamicssimulations,except that the spatial
substrates a graphinsteadof flat space andparticlesare“intelligent”. Both as-
pectsare discussedn detail, the latter meaningthat one hasto go far beyond
physicsandinto the areaof humanbehaior and humanlearning. Anothernet-
work aspecis thenetwork of interactionbetweerobjectsin the simulation,where
theseobjectsare not only travelers, but also traffic signals,traffic managemen
centersetc. For fastlarge scalesimulations,one employs distributed computers,
and mappirg theseinteractionson the computatioml systemis critical for high

compuing performance.

1 Intr oduction

Much of this book on networks is aboutthe dynamics of networks. The questim
thereis how networks form or chang@. Examplescomefrom mary different areas,
from electricalnetworks to the the blood system,or from the Interret to the networks
of socio-&ononic interaction This contrikution concetrateson anotter aspect:on
dynamicson networks. In the particularexamge of traffic, this meanghatthereis an
uncerlying network, theroadnetwork, andthe dynamics of the systemunfdds on this
network. Although thisis alsotruefor othernetworkedsystemssuchasfor electrical
networks or for biological networks (nene systemploodtranspet system)thetraffic
dynamicson links is relatively comgdex andthusvery interesting Thereasorfor this
is thatthe particles,or agetts, in thetraffic simulationare“intelligent”, which means
thatthey have strataic, long-termgoals.
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Thecortext for thework reviewedin this cortributionis in transpotationplannng.
This meanghe predictio of traffic pattern20 or moreyearsinto thefuture. Let us,as
anexanple, considethequestion(relevant for Switzerland)}o build asecond>otthad
tunrel throughtheAlps. Initially, suchanew tunrel would justrelieve congestion(and
increasesafety).However, on a someavhatslowver time scaleof days to montts, peope
who previously took adifferentroutebecaseof congestionwill switchto the Gotthad
route. On anagan longer time scale,peope will mayke make additioral trips which
usesthis routewhich they may not have made before. And finally, it is possiblethat
land usechargesin reactionto suchchangs— in this casefor exanple in termsof a
leisureparkor industry southof the Alps which needsasyaccesso or from thenorth
In othercasespeope’s housingdecisionswill dependon accesdo theirworkplace.

In corsequencehereis anemeging consensuthattranspetationsimulationsfor
planring purposesshouldconsistof thefollowing modues (Fig. 1):

e Traffic simulation — Thisis wheretravelersmove throughthe streetetwork by
walking, car, bus,train, etc.

e Modal choiceand route generaion module— Thetravelessin thetraffic simu-
lationusuallyknow wherethey areheadedlit is thetaskof thismodule to decide
which modethey take (walk, bus,car, bicycle,...) andwhichroute.

o Activity generaion module — The standadl causewhy travelers areheadedo-
warda certaindestinatio is thatthey wantto perfom a specificactiity atthat
location,for exanple work, eat,shop pick someonaip, etc. Theactvity gene-
ationmodue geneatessyntheticdaily plansfor thetravelers.

o life style, housing, land use,freight, etc. — The above list is not compete; it
reflectsonly the mostprominent moddes. For examge, the whole important
issueof freighttraffic is completelyleft out. Also, atthelanduse/hosinglevel,
therewill probably bemary moduesspecializingnto differert aspects.

e Feedback- The abore modules interact,andthe interaction goesin both di-
rections:activities androutesgenerateongestion, yet (the expectaion of) con-
gestioninfluenesactvities androutes. This is typically solvedvia a relaxation
methodi.e. modulesarerun sequetially assuminghatthe othes remainfixed,
until theresultsareconsistent.

In addition thereneedto be initialization modules,suchasthe synthetic population
generaion module, which takescensuglataandgenerateslisaggegatedpopulations
of individual peope andhouwseholds Similarly, it will probably benecessaryo gene-
ategooddefaultlayousfor intersectios etc.withoutalwaysknowing the exactdetails.

In this review, we will look at this techndogy specificallyfrom the view of net-
works. Therearefour aspectshatwe will discuss:

1. Dynamicson networks (Sec.2) — As pointedout at the beginning of theintro-
duction thetransporttion systenis anetwork of roads andotherlinks connectd
at intersectims, train stations,etc. Thesenetworks have interestingdynanics,
bothonthelinks andattheintersections.
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2. Particles are intelligent (Sec.3) — Not strictly beinga network aspect,it is
however still importantto notethat travelers are “intelligent”, whencompared
to, say molecuesor bloodcells. This aspecmeanghattravelers have stratgjic
goals,andthey have interral representation®f the world arouind themwhich
they useto reachthesegoals.Thismeanghattwo travelersin identicalsituations
will in gereralmale differert decisions.

3. The network of interactions and distrib uted computing (Sec.4) — Travelers
andotherobjectsin atranspotationsysteminteract.For exanple, congestionis
formedby travelersbeingin eachothets way; ride sharingnecessitatesavel-
ersto meetat a comnon pick-up location;adaptve traffic lights reactto traffic
conditins; etc. This network of interactims is geneally sparseandit is also
oftenlocal althoudn the mechanicf transmissiorare different from a physi-
cal force field — consicr e.g.a sensorfor an adaptve signal. At the opposite,
noniocal end thereareglobal radiobroadasts.Thele arealsoincreasinglynet-
worked serviceswhich are both sparseandnon-lacal — for exampe electroric
routeguidarce systemavhereonly very few travelels communicatewith a cen-
ter. We will review this aspectogethewith consegencedor distributedlarge
scalecomptationin Sec.4.

4. Dynamicsof networks (Sec.5) — Finally, peope can,via the political process,
changethe transpotation network. Although it appeardifficult if notimpossi-
ble to malke ary reliablepredctions here,it maybeworthwhile to explore such
modelsto understandhe mechaismsbehindit, in particdar the effectsof self-
reinforcing decisionsandpositive feedlack. We will look atthisaspectn Sec5.

Thepagerwill beconcludedby ashortsummay.

2 Dynamicson networks

As pointed out above, traffic unfolds its dynanics on a gragh, andthe dynamics on
the links (roads)andnodes (intersections)of this graphare complex andinteresting
This sectionwill con@ntrateon thesedynamic aspects. The sectionwill startby a



shortreview of the traditioral staticassignmenhmethodandthenprocesdto particle-
basedmicro-simulations. As onewill see,the staticassignmenmethodresemblesa
steadystatecurrert distributionin afusenetwork while themicro-simdationsresemble
molecdar dynanics simulationof particlesflowing throudh agragh. Thus,transpota-
tion scienceollows physicson the pathto more andmoremicroscojic simulationsin
theattemptto go beyond steady-statphenomera.

2.1 The four stepprocessand static assignment

Thetraditioral methodof traffic prediction for transpaetation plannirg is basedon the
four stepprocess:

1. Trip generation: This modde geneates,for eachtraffic zone,the nurber of
trips startingthereandthe nunber of trips endingthere. This canbe donefor
arbitrarytime slices,but is oftendore for atypical 24-rour weekdy.

2. Trip distribution: Trip generatio resultsin sourcesandsinks,but nothow they
are conrected. This is donein the trip distribution module The resultis an
origin-destination matrix, which has,at row i and column j, the nunmber of
trips going from zonei to zonej.

3. Modal choice: In this modue, the trips are split betweenthe modes of trans-
portation

4. Route assignment: For eachtrip, a pathis found through the network so that
no otherpathis faster Congestioris takeninto account via thelink travel time
beingafunction of thetrips usingthatlink.

Routeassignmentanbe formalizedin the following way: Let r;; bethe numker
of tripsfromy to j. Routesromy to j arenumbeedby k; in consequece,r ;;; > 0is
the numter of trips usingthe k-th route. Let 6 ;5 x,, anindicatorif routeij, k usesink
a. Thenumter of trips usinglink a thenis

Ty = E E Tijk Oij k,a -
ij

Thelink travel time (link cost)is normdly definal via a function ¢ ,(z,). It makes
sensdo assumehatthis function is strictly morotonicallyincreasing Thetrip time of
aroutein conseganceis

Tijk = Y ta(Ta) 6ijihya -
a
Theprablemspecificatiomow is thatr;; , needto befound suchthat
Z Tij,k = Tij
k

andsuchthatall usedrouteshave the sametravel time andno unusedoutehasafaster
(= betten)travel time.



Thisis typically solvedby makirg ther;; », continuous,meaninghatalsotrip gen-
eration trip distribution, andmodal choicecanbe madeon realnumters. With real
nunmbersandwith the assumptiorthatt,(z,) is strictly mondonically increasing it
canbe proventhatthe abose prodem hasa unique solutionin termsof thex ,. The
prablem canin factbe written asa minimizatian problem, makingit amenale to the
toolsof noninearoptimization In consegence sophisticatedlgorithms exist which
comptenumeri@l appraimatiors to the unique solution[1, 2].

The above prodem is very similar to a nonlinear staticnetwork flow problem in
physics, wherethe link resistanceés givenvia a nonlinearU = R(I) I, andwhere
sourcs and sinks are given via the resultof the trip generéion. The only (but im-
portant) differenceds thatin assignmen‘particlesknow wherethey go”, meaninghat
onecanna in generalexchange particlesasonecan, in electricalnetworks, do with
electrors.

Staticassignmenthasmary shortcanings.For examge, it doesnotcorredly repre-
sentdynamiceffectssuchasqueuebuild-up, andit doesnothave enoudp microscojc
informationto do, for example,emissioncalculatiors. It alsode-coyles decisions
from individual actors. For example the only decisionavailablefor modalchoiceis
the origin andthe destinatiorof thetrips; importantaspectsuchasincome,carown-
ership(!), additioral trips during the day, etc.arenot used.Note, however, thatthese
latteraspectxoud be overcomeby a differentsoftwaredesign.Whatcannad be over-
comearethe shortconngsin therepresentatiorof dynramic effects,which aretreated
in moredetailin thenext section.

2.2 Simplelink dynamicsand the queue model

In static assignmen one assumes function ¢,(z,) for eachlink. In practice,this
function is parametized by a few numters,suchasthefree speedandthe capacityof
thelink. The capacityis the maximum nunber of vehiclesthat cantraversea given
locationon the link pertime unit; i.e., it is the maximum throudhput or maximum
currentfor thatlink. Froma physicspersgctive, it is clearthatsuchnumbe mustbe
anaverage andthatary realizationof traffic candeviatefrom thatnumbe, especially
for shorttimes. Nevertheless,it shouldbe clearthat, if a link hasa capacityof C,,
then,in theaverag nomorethanC , vehclescantraversethelink.

Now imaginea scenariasin Fig 2, with aroadl with a capacityof 4000vehicles
perhourconnetedto aroad2 with acapacityof 200 vehiclesperhou, andademal
zerofor t < 0 andof 3000perhou for ¢t > 0. After onehour, 10 carswill bequeuel
up attheentryto thebottlereck,andthe quauewill grow by anothe 1000 carsin each
hou. Thatis, the steadystatesolutionof a demandn excessof capacitycorresponds
to aninfinitely long quete upsteamof the overloadedlink. Staticassignmentvould
have to repesentthis via its link travel time functionst; (z1) andts(x2). It would
shaw link 2 asoverloadedandcongested,which is dynamically incorrect, sinceit is
link 1 (andevertually additioral upstreanlinks) which bearthe consegancesaswe
justsaw.

It would bepossibleto avoid this situationin staticassignmenby settingt ,(z,) =
oo assoonasz, exceed capacityC,,, sincetherouteassignmentvould thenavoid to
putmorethanC, trips onthatlink. This, however, alsodoesnot correspndto reality,



sincewaiting queus at the entryto bottleneck clearly exist. Alternatively, onecoud
attemptto formulatea mathenaticalmode which includes queaues. Although this is
in principlefeasible not enaigh mathemé#cal factsareknowvn abou sucha mocel to
malke it usefulin practice(see,e.g.,[3]). In addition with every level of additioral
compgexity the situationlooks more hopelessFor example,someting like individual
preferencesor different link travel speedge.g.carsvs. trucks),or the effectsof turn
poclkets/megelanes,or emissionsesultingfrom accelerationaredifficult to repesent
in the staticassignmentramework.

Puttingtheseargumentstogeher, it makessenseo consigr microscopicappraches.
In microscic appoachesall individual objectssuchasvehiclesor travelerswill be
repesentedndividually. Here,we will startwith a simplemicroscgic modelwhich
is calledthe queuemockl. In the quaue model,links arerepresentedy simple FIFO
(first-in first-ou) quewes. Vehiclesenteringa link at time ¢, are assumedo travel
alongthelink with freespeedV,, meanirmy thatthey canrot leave thelink befae time
t2 = t1 + Lo /V,, whereL, is thelink length.At theendof thelink thereis acapacity
constraim, meanirg that at mostC, vehcles canleave thelink pertime step. Non-
integer C, areresohed by usingprobabilities. Sofar, thisis indeeda standardjueuing
mockl [4]. An importantaddtion is theintroduction of a storageconstraim, meanimg
thatthereis a limitation of the number of vehiclesthatonecanputonalink. It is the
link storageconstrént whichwill evertually malkethelink “full” andthuscausequete
build-up andcongestionspill-back.

In spiteof their aestheti@ppealndtheir compuationalspeedtherearea numker
of prodemswith quele models.Somearerelatively simplegeonetricalshortcanings,
suchasthe factthat, althowgh for city networks it makes senseto have the capacity
constraim at theend,in othersituationslik e for freavays or in Fig. 2, they areat the
beginning. Othersare more severe, suchasthe fact thatintersectio designhasnot
beensolvedsatishctorily with this model. Thedifficulty stemsfrom thefactthatboth
the capacityandthe storageconstraih needto be satisfied. Especiallyat high con-
gestionlevels, therearetypically at eachintersectionmary vehiclesfrom incomirg
links competimg for the samefew slotson outgadng links. In reality, this is solved via
explicit prioritization, eitherbasedon traffic lights or stop/yieldsigns,or on explicit
legd rulessuchas‘right befae left”. For transpotation planring however, this infor-
mationis often not available,andit is alsosubsumedn the capacities.Although this
problemseemssolvale, somemore systematiavork will be necessarjere. Finally,
it is difficult to consistentlyhardle different vehicle speedsyehicletypes,or vehicle
classesAn exampe for vehicleclasseswhichin this casediffer by destinatiorlink at
anintersectionis depictedn Fig. 4.

2.3 Virtual reality micro-simulations

An alternatve to thequetle mocel, avoiding theproblens whichcomefrom thereducel
geonetrical repesentationare micro-simulationswhich run on correct streetlayouts,
includng meming, turning, andweaving lanes,correctsignalschedles etc. In terms
of driving rules,suchsimulationsconsistof four majorelements:

1. Carfollowing. This describesown onevehiclefollows another(or mary others)



For time t<0:

cap = 4000/h cap = 2000/h

demand

0 time At time t=1h:

(1000 veh waiting)

Figure2: Exampleof failure of staticassignmehin the representatiorof dynamics.
The scenarids a streetwith a capacityof 4000vehs/lour leadinginto a streetwith
a capacityof 2000vehs/harr. The demanl is zerobefae ¢t = 0 and300 vels/hour
afterward. In eachhour, an additioral 1000vehswill be waiting in upstreanof the
bottlereck.

Figure3: Queuemodeldynamics

onasinglelaneroad

2. Lanecharging. This describs how vehicleschangdaneson multi-lane roads.
Reasondo chang lane canbe speedmprovement, or anticipatedturns in the
future (a vehcle thatwantsto male a left turn need to getinto the left lane).
Passingaganst oncaning traffic alsobelong here.

3. Protectedurns. This describeow vehiclesbehae atfully signalizedntersec-
tions. For transmrtationplanring purpaesit is enowghto simply make vehicles
stopatredandgoatgreen

4. Unprdectedturns. Often, movementsacrossintersectios arenot pratectedby
signals suchasaleft turnagainsonconing traffic, or atayield sign. Also, there
may be specialrulessuchasthatthelight rail alwayshaspriority.

Suchmicroscopicsimulationshave theadartagethat,atleastin principle, they canbe
madearbitrarily realisticby addingmoreandmorerules. In addition,they look very

convincing to a non-tetnicalaudence(Fig. 5), animportantaspectincethe results
of transpetationplanning simulationsareof interestto all citizens.
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Figure 4: Limited geonetric represetation with quewe model: The white vehicles
canrot move (to theright) becauseheblackvehicle,whichis stuck,is in theway.

2.4 CA implementationsof virtual reality micro-simulations

The mayle simplestapprachto implementtheserulesare cellular autonata micro-
simulatiors. In thesemicro-simulationsyoads aresegmentel into cells,eachtypically
of the size that a single vehicle occupiesin a jam (e.g. 7.5 meters). Movementis
performedvia jumpsfrom onecell to anothey for exampe, aspeedf 5 cellspertime-
stepcorrespondgo a jump of 5 cells. In order to translatethoseunits into the real
world, a time stepof oneseconds customay (becase of reactiontime arguments),
meanimg that“5 cellspertime-step”correspndsto

5 cells/time-stepx 7.5 meters/cellx 1 second/tine-step

= 37.5 meters/secah= 135 km/h . In sucha cell-basedsystem,a simplerule setto
achiere theabove functiorality is asfollows.

1. Carfollowing.
For all carsdoin parallel

e v' = min[v(t) + 1, gap(t), Vmaz], Wherev' is atempoary vaiiable,v(t) is
the currentvelocity, gap(t) is the numker of emptycellsaheadandv ,, 4
is themaximum speedfor exanple given by the speedimit.
gap modds theeffectthatonehasto slow down if thereis avehicleahead;
notethatthis simpleformulationassumefinite braking capality .

o With probaility preise, v(t + 1) = max[v’ — 1,0], elsev(t + 1) = v'.

After thisis dore for all vehicles gachvehicleis movedforwardaccordhg to its
speed.

This mockel [5] hasbeeninvestigatedn muchdetailin theliterature;seeRef. [6]
for areview. Its mainfeatue is thatat high enaugh densitiesdistinctive traffic
jamsform whichwouldbeinterpgretedasstart-stograffic by anindividual driver.



Figure5: Virtual reality representatiorof simulatedraffic in PortlandOregon.

2. Lanechangng. Beforethe speeccalculatian, do thefollowing:
For all carsdoin parallel

e Set‘reasonto-chame-lanestotrueif thevehicleevertually wantsto make
a correspondimy turn. Also setit to trueif the otherlaneis fasterthanthe
current lane.

o Setthesafetycriterionto trueif thereis sufiiciert spaceontheotherlane.

After thisis donefor eachvehicle all vehiclesfor whichbothcriteriaarefulfilled
changdanes.

Therearemore technicaldetailsherethanwith carfollowing. For exanple, the
above criterianeedto befilled with quaritative rules,andcareneed to betaken
thattwo vehiclesdonotendupin thesamecell duringthe parallelupdate. Also,
the lanechangng in anticipationof turning movementsrequires care,because
vehiclescanchang lanestoo early, meanimy they may getstuckin a queuefor
adifferentturn, or too late, meaningthey may not be ableto malke theintende
turn. For moreinformationseee.g.,Ref.[7, 8].

3. Protectedurns.As statedabove, thisis relatively simple.As longasthemodele
vehicleshave infinite brakng capaliity, aredlight canbe mockledby avirtual
carof speedzerobeinginsertedandremovedat thelocationof thetraffic signal.

4. Unprdectedturns.A simpleruleis (seeFig. 6):
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Figure 6: lllustration of gap acceptane for a left turn againstoncaming traffic.
From|[8]

For eachinterferirg lane(mearing alanewhich haspriority), checkif theggpin
front of theinterfeling vehicleis largeenoud. If yes,acceptheturn, otherwise
wait.

Bothwith protec¢edandwith unprotectedurns, thereneedgo bespacevailable
ontheoutgang link.

Theabove is simplifiedin mary respectsin particdar with respecto complicatel
intersectiordesignswhich areherereplace by the assumptiorthata vehide makes
the compete decisionat the waiting position,and oncethe decisionfor a movement
hasbeenmade,it canmove freely acrosgheintersection Ancther simplificationcon-
cernsthe useof the cellularautomataCA) techniqie. CA areeasyto codefor such
applicatins, sincemostdriving rulesneedspatially-aganizedaccesgo data,for ex-
ampleto neigtboring cells, andthe CA techniqie providesthat. It is however also
possibleto codevehiclesas individual particleswith continwus positionand speed
(e.g.[9, 10, 11]), similar to a molealar dynamcs technige [12]. Suchcodesare
harcer to program efficiently sinceone needsto keeptrack of spatialneightors, but
whendonecorrectly they arecomputationallyasfastasCA codes.This is helpedby
thefactthatfor traffic, takingthelimit of At — 0 whereAt is thecompuationaltime
stepis notusefulsincehumanreactiontime need to bemockled.

The trick with using suchmicrosc@ic modes for transpotation plannirg is to
make them compuationally fastby making themon the micro-level barelyrealistic
enolgh to obtaingoodinformation on the macrelevel. Thisis consistentvith a Sta-
tistical Physics approach,wheremary macrascopiclaws canbe obtaina from mud
simplified microscojic models. Much progesson this aspecthasemeged in recent
times. For examge, from Monte Carloruns it hasbecane clearthatmodelsassimple
asthe onesdescriled abore aremacroscpically reasoable. They geneateplausible
fundamentabiagrams,bothon closedlinks andat intersectios (Fig. 7, alsosee[13]),
andthey candisplaythe emegenceof the infamots jam-ou-of-nowhere(Fig. 8) al-
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thowghthereis discussiorabod its realworld importtance[14].

In termsof theory somesimple CA modelscanbe provably relatedto acceptd
macracopictheories of traffic: The continwuslimit of the Asymmaeric Stochastic
ExclusionProcesgASEP)is the Burgers equation

Oip + Oup — 2p0zp = D &?p

whichimpliesarelationof ¢ = p (1 — p) betweerdensityp andflow ¢ (seeg.qg.,[15]).

This, in return mears a speeddensityrelationof v = 1 — p, which is known asthe
Greensleldsrelation(see[16]) in traffic flow theok. For deteministic continlousmi-
crosc@ic modéds, it hasbeenshown, in certaincaseanathemécally andin othersby
computer simulation,thatthe mechaism of traffic flow brealdown (i.e. thetransition
fromhomogneos “laminar’ traffic to inhonogeneastraffic with stop-aml-gowaves)
is the sameasfor Navier-Stdkes mockls for traffic flow [17, 11]. Kinetic theorycan
build an, albeitstill fragle, mathematicabridgefrom microscgic dynamcs to fluid-
dynamicequatios [18, 19]. For anexhatstive review of modelsfor traffic, see[6, 20].

Interestingly the precisemechaismfor traffic brealdown in stochastianodelsis still

uncer discussior21, 22]. In particdar, under certaincircunstanceghe bourdary of
jamsis weaklyfractal[23] (look at Fig. 8 for animpression)while uncer othersit is
not [10], andthis is relatedto a discussiorabou a possiblephasetransitionandits
order.

A disadwantageof a “virtual reality micro-simulation”is thatit need rathera lot
of input data. For exanple, mary aspectof the streetnetwork are neededsuchas
meirge or turn poclets,signalplans,graces,speedimits, or laneconrectvities. Fig. 9
shavsanexampge of thelast: thearrowvs denotewhichincoming lanesareconrectedo
which outgoing lanes,andthe micro-simudation need this informationto inducelane
charging asdescribe above.

Sincethesedataareusuallynotreadilyavailable,goad “defaultgenerates” shoud
be developed. They would for examge generge plauwsible intersectiondesignsand
signalscheduledasedon otherdata,suchaslink capacitie{maximun houly flows)
which are often available. Suchsyntheticdefadts coud thenbe used(with care)un-
til real databecameavailable. Also, the simulationcould be usedto detectohvious
implausibilities, which couldthenbe corre¢ed on a case-byeasebasis.

Sincemacoscopicquariities suchashourlyflow are“emeigent”, thereis nometha
to systematicallyconstrct the neededmicroscopic from the available macroscoje
data.In conseqence theonly methal availableis to runsystematid¢estswith mary in-
tersectionayous andto recordtheresultingbehaior. Fromsuchsimulationsjookup
tablescould be corstructedwhich then generatethe microscgic designsfrom the
macracopicdata.

Finally, goodcareneed to betakento clearly differeniate betweersyntheticand
field datain thedatabasesThisis oftennotdone,or it is notdoneautoratically by the
systemyesultingin questionabledataentriesnecessitatingostlymanual corredion.

2.5 Traffic in networks

In the abore, we have startedfrom staticassignmenandpointedout its similarity to
equilibrium flow in physicalnetworks. In both systemswhenthe dynamicalaspects
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Figure7: Fundanentaldiagran (flow vs. density;LEFT) anddiagamfor unpiotected
yield (unprotectedlow vs. majorflow; RIGHT).

becane important, the steady-statequilibrium appoachis no longervalid. Similar
to physicalnetworks, progesscanbe madeby a microscojic appr@ch,which means
to representparticles(travelers) individually insteadof as part of somesteadystate
rateor steadystateflow. We have thenpresentedwo possiblemicrosimulationspone
relatively simple,basednasmallbutimportantextensio of standardjueuirg models,
andonerelatively advaned, with the ability to be extended toward a virtual reality
micro-simulation.

Wheninspectingthe two presenteagystemspnewill noticethatfor thefirst one
(the quete simulation)nearlyall the dynanics happensat the intersection while for
the secondonethereis anequalshareof link andintersectiondynamics. Many prac-
titionersbelieve that for traffic in urbannetworks, the intersectio dynamicsis muc
more importantthanthelink dynamics. This motivatesa muchsimplifying approg&hto
traffic in networks, whichis to mocel traffic onatwo-dimersionalgrid [24, 25, 26, 27].
Suchsimulationsshaw interestingpheromenasuchas phaseransitionsto grid-ock.
It is an openquestionin how far theseobserationscanbe translatedo more realis-
tic traffic networks, with their more comgicated (and more “forgiving”) intersectim
dynamics.

3 Particles areintelli gent

We havearguedin theintrodictionthattranspetationplannirg toolsneedo includeef-
fectsrangirg fromtraffic flow via humandecisioamakingupto land-tseplannirg. We
have thenpresentedhe staticassignmenappoachto transpotationplannirg, whee a
restrictedrepresentatiorof thetraffic dynamicsmadeit impossibleor uselesso make
the othermodulesmorerealistic. Following that, we have describedwo alternadives
for the traffic dynamicswhich “repair’ theseprodems. Both traffic simulationsthat
we describeare dynanic (i.e. time-dgendet) and microscopic(i.e. eachtraveleris
individually repesented)which arethe minima pre-regisitesfor the following ar
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Figure8: Traffic jam out of nowhere. The plot shavs a space-tine plot, spacebeing
holizontal, andtime increasingfrom top to bottom. In consegence thelines of the
plot shav consective time steps. The jam emeges spontaneusly, andit shavs a
fragmented weakly fractal structure. Traffic movesfrom left to right; the jam moves
agairstthetraffic direction.

guents. We have preseted the two appr@chesto make clearthat thereis a wide
range of modelswhich fulfill thesecriteria, rangng from relatively simple (suchas
the queuesimulation) to extremely realistic; the only restrictionis that computation
need to befastenoudn. Clearly, thereareothermodelswhich fulfill thesespecifica-
tions[28, 29, 30, 31, 32, 33, 34].

Giventhat, it is now possibleto improve the otheraspect®f thefour stepprocess.
As in thetraffic flow simulation insteadof gracual improvemen we will focusona
bottan-upapproah from first (or microscojc) principles.Again, the microscic ac-
torsof thesystemarethetravelers.As pointel out, the maindifferenceo a simulation
of, say electrors in anelectricnetwork is the interral intelligenceandadaptabity of
traveless. In contrastto water molecues, two travelersin exadly the sameexterral
situationcanmale different decisiors.

3.1 Routegeneration

Having travelersmove arourd rancdmly is not enoudp. For example if a car ap-
proachesanintersectionthedriver needso decidetheturning direction.A traditioral
methd is to useturn counts meaninghatthereis empitical datawith theinformation
abou whatfractionof thetraffic goesinto whichdirection For ary kind of transpota-
tion plannirg questionthisis notenoud information. Themostdrasticexanpleis the
addition of anew road There would be no informationavailableof how thetraffic at
the conneting intersectiorredistributeswhenthe nev roadbecomesonrected.One
would also assumehat turn courts at otherintersectios charge, sincesomeof the
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Figure9: Lanecomectvities

traffic would adaptto usethe new road

This meanghatfor transpetationplannirg simulationst is indispensale to know
thedestinationsandto have routesfor eachvehicle. In thisway, whenanew roador a
railway connetionis added everytravelercanconsidetto adapttheir routingin order
to usethis new connetion. Theroute gengationmoduleof thetranspatationplannirg
simulationshoud be multi-modal (i.e. include other modes besidescars), althoudh
someof themodk decisionis betterdonein the demandyeneationmodue (seenext).

A typical methodfor routegeneationis a time-degndentfastestpathalgorithm
Givenastartingtime tq, anorigin ¢ anda destinationyj, and,for eachlink, information
how longit will taketo traversethelink whenenterirg ata specifictime, thisalgorithm
will compue thefastespathfrom s to j whenstartingattime t,. Thetime-dependat
Dijkstra algoiithm which solvesthis probdem is, with a heapimplemertation, of com-
plexity M log N, where M is the numter of links and NV is the nunber of nodes
(intersectims). Thisis in facta very low compleity, andit is difficult to constructa
heuistic whichis significantlyfaster[35].

3.2 Activity generation

For mary questioss, having theroutesadaptie while the activities remainfixedis not
enowh. For exampe, makingtravel fasterusuallyresultsin pegle making moretrips.
Thisis calledinducedtraffi c. Corversely, increasingcorgestionlevelswill eventually
suppesstrips which would otherwisebe made,althowgh it is not alwaysclearwhich
trips aresuppressedndwhatcongestionlevel is necessaryo have thateffect.

In order to dealwith theseandothereffects,onehasto make demandgereration
adapive to congestion A recentmethal for thisis actiity gereration,meaningthat,
for eachindividual in thesimulation,onegeneatesalist of actvities (suchassleeping
eating,working, shoppng) plus locationsandtimes (Fig. 10). Sincein this methal
eachtraveleris treatedndividually, it is possibleto usearbitrarydecisionrules,which
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HUSBAND’S ACTIVITIES

Figure10: Exampe of a sequene of actwities for a personin Portland/Oegon From
R.J.Beckman

meanghatarbitrary methalscanbeinvestigated.Thecurrently best-accejgedmethals
arebasednrandaon utility theoryandarecalleddiscretechdce models[36].

As statedabove, activity generatio needsto be donein conjunction with mode
decisiors. For examge, having a carclearlychangsthelist of preferabledestinations
for a givenactiity, or may even make otheractivities moredesiralte.

3.3 Housing,land use,freight, life style, et al

Transrtation planring doesnot stop at actiities. For exanple, makingcommu-
ing roads fasterby increasilg capacityusuallyresultsin more pegle moving to the
sulurbs. Thatis, howsingdecisionsarecloselyrelatedto transpaotation systemperfa-
mance Similarly, questionf land use(e.g.residentialvs. comnercial vs. industrial
areas)clearly influenceand interactwith transpotation. Freighttraffic need to be
consideed. Life style choices (e.g.urbanlife style, oftenwithout car ownership,vs.
rurd life style,usuallywith carownerstip) needto be consicred;asalreadyalluded
to above, suchlong-termcommitrrentshave stronginfluenceon activity selectionand
modhl/routechoice

3.4 Day-to-daylearning, feedback, and relaxation

There is stronginteradion betweerthe above modues. For exanple, plansdepenl on
congestion, but congestiordepeis on plans. A widely acceptednethodto resohe
thisis systematicelaxation (e.g [37]) —thatis, make preliminay plans,runthetraffic
micro-simulation,adjustthe plans,run the traffic micro-simulationagan, etc., until

15



X_{n+1}

phase space
phase space

time-of-day time—of-day

\/

n->n+l

Figurell: Schematiaepresentationof the mappirg geneatedby the feedbak itera-
tions. Traffic evolution asa function of time-of-day canbe repesentedsa trajectoy
in ahighdimensioml phasespacelteratimscanbeseerasmappirgsof thistrajectoy
into anew one.

consisteng betweemmoduesis reacted. Themethods somevhatsimilarto astandad
relaxation technigee in numercal analysis.

Suchiteratedsimulatiors canbe treatedasdiscretedynanical systemgSec.5.3).
A stateis the trajectoryof the simulationthrough oneday; aniterationis the update
from oneday (peiiod) to the next (Fig. 11). As such,onecansearchfor things like
fix points, steadystatedensitiesmultiple basinsof attraction strang attractorsetc.
Typically, onewould first analyz the steadystatebehaior, andthenthe transients.
Under certainconditiors the existenceof a unique steadystatecan be proven [38],
althowh for the computationallyfeasiblenumbe of iterationsthe possibleoccurence
of “broken ergodicity” [39] needsto be takeninto accoum. Broken ergodicity is the
property of a systemto be mathemécally ergodic but to remainin partsof the phase
spaceor long periadsof time.

3.5 Within-day re-planning

All the above lines of thoudht still assumejn somesense,'dumb’ particles. Parti-
clesfollow routes but theroutesarepre-canputed andoncethe simulationis started,
they canna be changd, for examge beingadaptedo unexpectedcongestionand/a a
traffic acciden. In otherwords,theintelligenceof the agentss exterral to the micro-
simulation In thatsensesuchmicro-simulationscanstill beseeras,albeitmuchmore
sophisticategversionof thelink costfunctionc,(z,) from staticassignmentow ex-
tendedoy influercesfrom otherlinks andmadedynanic throughattime. And indeed
mary dynamictraffic assignmen(DTA) systemswork exactly in thatway (e.g.[37]),
in spiteof several prodemsin particularwith quick congestionbuild-up [40].
Anotherwayto look atthisis to saythatoneassumeshatthe emegentproperties
of theinteradion have a“slowly varying dynamcs”, meaningthatonecan,for exam
ple, considercorgestionasrelatively fixed from onedayto the next. This is mayle
realistic under someconditins, suchas commuer traffic, but clearly not for mary
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otherconditins, suchasaccidets, adaptve traffic managment,impusive behaior,
stochastiadynamicsin gereral, etc. It is therefae necessaryhat agentsareadaptve
(intelligent) alsoon shorttime scalesnot only with respecto lanechangng, but also
with respecto routesandactiities. It is clearthatthis canbe donein principle, and
theimportanceof it for fastrelaxdion [41, 42] andfor therealisticmodelirg of certain
aspectsof humanbehaior [43, 44] hasbeenpointedout. Nevertheless,we are not
awareof opegationalimplementationsof this aspect.

3.6 Individualization of knowledge

Another aspectof intelligent agentsis that their “knowledge” shouldbe private, i.e.
eachagentshouldhave a different setof knowledge items. For examge, peopletypi-
cally only know arelatively smallsubsebf the streetnetwork, andthey have different
knowledgeandperceptio of congestion This is called“mental maps”; someexpeti-
mentalimplementationsareRefs.[45, 46, 47, 48]. Wewill comebackto computational
aspectsn Sec.4.2.

3.7 Stateof the art

No simulationpackag currently integratesall the aspectshatarediscussedTRAN-
SIMS [49] comesfrom the transpotation plannirg side andis mayhe the mostad-
vanedin termsof usingadwancedcompuing method for large scalescenarig. The
TRANSIMS researctprogramis reachirg compléion in 20@, with a full-scale sim-
ulation of a scenarioin Portlard/Orggon, with a network of 200000 links and ser-
eral million traveles. We ourseles are in the processof using TRANSIMS for a
full-scalesimulationof all of Switzerland50], seeFig. 12. DYNAMIT [29] andDY-
NASMART [30], originally startedastranspaotationsimulationtoolsfor theevaluatian
of ITS (Intelligent TrarsportationSystem)Techndogy, alsoadwarce into the areaof
transpotationplannirg by theadditionof thedemandyeneationmodules. Somecom-
parisonbetweerfield dataandsimulationresults obtairedfrom aqueuemodelmicro-
simulationandmuchsimplifieddemaid gereration,canbefoundin [51]. METROPO-
LIS [28] is a packag designedo replae staticassignmenby a simulation-fasedbut
very simpledynamicappoach. It allows the userthe specifyarbitray link-cost func-
tionsbut in its curren version still doesnot allow the quete build-up asdiscussedn
Sec.2.2. Its strengthlies in the self-corsistentcomputationof depature time chace.
A morecompléde overview of regional transpotation simulationmockels canbe found
in [52].

4 Distributed computing and the network of interac-

tions
Sofar, this text hasassumedhatagentsdo their “strategic plannirg” indepeiently of
eachother andinteractiors occurin thetraffic micro-simulationalone.Theseinterac-

tionsareentirelylocal, sincecars/drvers reactto the situationarourd them,including
othercars,signals,speedimits, etc. In conseqance,the network of interadions is
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Figure12: Microscofc simulationof all of Switzerland Preliminay result

similar to, say a molealar dynamics simulationwith short-angeinteradions, where
thenetwork of interactimsreflectsthe spatialdimensiomlity of the scenario

We have also seenthat the resultsof interaction, suchas congestion, for mary
reasos canna assumedo be fixed from onerun to the next, andthatan onine (or
within-day) replanning capabilityshouldbeincluded. Fromhere,it is easyto seethat
long-rangeinteradions clearly play a role, for exanple the telephom call to anotter
howseholdmembeto pick upthechild from thekindergatensinceoneis running late.
Otherexanplesfor long+angeinteradion are:

¢ Interaction of agentswith thetranspotationinfrastricture,for examge atadap
tive traffic lights

e Reactionto radiobroadcastdrom atraffic managmentcenter
e Reactionto repats from friends

e Carsharing

e Coordiration(ride sharing householdactuities)

Thegrapts of theseinteractiors canbe seenas (meta-hetworks. Thesenetworks are
sparseanddynanic, meaninghatin spiteof thelong-rangedessonly asmallnumker
of particlesinteracts(in contrastto longrang forcesin somemolecudar dynamics
simulatiors), andthatthe network links re-oigarize over time.

The network aspectsof interaction becomeparticdarly clearwhenonelooks at
computationalaspects As long asonerunseverything on a single CPU, it is in prin-
ciple possibleto write onemorolithic softwarepacka@. In sucha software,anagent
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whowantedo chang planswould call asubrotine to compue anew plan,andduring
this time the compuation of thetraffic dynamicswould be suspendd. However, sin-
gle CPUsaretoo slow for large scalesimulatiors, andso oneusesparallelcompuers,
typically large clustersof comectedPCs. In sucha cluster the regional areaof the
simulationis distributedacrossthe PCsso thateachPC only dealswith a small part
(domaindecompsition). OtherPCsdealwith, say the computationof routesor of ac-
tivities. This apprachmeanghatinteractions betweersimulationobjectsoftenresult
in interactiors betweenPCs,which needto be explicitly coded, usuallyvia message
passing.

4.1 Distrib uted computing of the traffic micro-simulation

Themostcompute-intersive partof currenimplemertationsis usuallythetraffic micro-
simulation A simple calculationgives an appoximatenumnber: Assumea 24-hour
simulation(~ 10° sec)anda onesecondime step,107 travelers, anda 1 GHz CPU
(10° CPU-g/clespersec). Furtherassumehat the compuation of onetime stepfor

eachtravelerneed 100 CPU-g/cles— rememler thedriving rules(carfollowing, lane
chamging, protectedurns, ungrotectedurns)andincludeoverheadfor routefollowing

etc. Theresultis thatsucha simulationtakesabou

10° x 107 x 10*
10° B

secondor apprximately1 dayonasingleCPU.Thisis indeedapprximatelycorrect
for aTRANSIMS simulationof acorrespondig Switzerlandscenarid5 mio travelers;
network with 28622links); the queuesimulationis 10-100timesfaster{53].

The simulationscan be acceleratedy using parallel computers. This becanes
indispersablefor large applicatios whenincluding feedlack learring as discussed
in Sec.3.4 sincethis multiplies the compuing times by a factorof 50, resultingin
50 daysof computing time for theabove scenariovhenusingthe TRANSIMS micro-
simulation We focuson so-calledBeowulf architectues,sincethey arethe mostprob
able onesto be available to prospetive users(metrgolitan planring organizdions;
traffic engineeing consultingcompanies;academics)Beowulf clustersconsistof reg-
ular workstatiors (suchasPentiumPCsrunring Linux) coupledby regularlocal area
network (suchas100-Mbit Ethenet).

Theideais to divide the simulationareainto mary pieceseachof which is given
to a different CPU. The CPUscommunicatee.g. via messagepassing. In princige,
using,say 100 CPUsshoud resultin a speeddp of 100 In practice therearemary
limiting factos comirng from the hardware andfrom the operting system.For traffic
micro-simulations,the mostimportant limiting factoris the lateng of the Etherret,
which (in anoff-the-shelfsystemwithouttuning) is of theorder of 1 msec[54]. Since
eachCPUin the average needso comnunicatewith six otherCPUSs,this meanghat
eachtime stepneedsapprx. 6 msecfor communication. This limits the speed-upo
1 se¢/6 mseca 167, independentof the numter of CPUsthatoneuses.In practice,
“100timesfasterthanrealtime” is agoad rule of thumb[53, 55]. Thisdoman decom
positionapprachis similar to a parallelcomputing appoachto “standard particle
dynamics,for examge in molecuar dynanics [12], with the maybeonly distinction

10°
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that molecuar dynanics simulationsrarely usea graphinsteadof reguar Cartesian
spaceasspatialsubstrate.

Unfortunately in contiastto mary otherconputingaspectslateny doesnotseem
to improve in comnodity hardvare: is hasbeenvirtuadly unchangedfrom 10 Mbit
Etherret to 100 Mbit Etherret to Gbit Etherret; FDDI is evenslower. This hassome
interestingconseqences:

e Theaboveresultrefers to the speed-p with givensystenmsizewhenusingmore
andmore CPUs.Alternatively, onecanrunlarger andlarger systemsvhenusing
moreandmore CPUSs. As is well known, scale-ugs muchlessprobleamatic on
parallelcompuersthanspeed-upln corsequencsi is possibleto run scenarios
of virtually arbitrarysize100timesfasterthanrealtime.

¢ Alternatively, onecanmakethemicro-simuationsmorerealisticwhile still beirg
ableto compute 100timesfasterthanrealtime.

e |t shouldbe notedthat parallel supercanputes do not have the samelimita-
tion sincethey employ specialpumposehardvarefor thecommunicationbetween
CPUs. Thisresultsin animprovemer by a factorof 100 for lateng, meaniry
thatfor practicalscenaris otherfactorsplay a moreimportart role.

While a parallel Beowulf costsof the orderof 2006300 U.S.-$per nocke, a
parallelsupercenputeris abou 20 timesmoreexpersive. Sincethis makessu-
perconputersirrelevantfor theexpectedusersgvenwhenconsideriig the useof
asupercmputirg centeywe have dore little researctin this direction

It is however possibleto usemore advan@d communicationhardvare for Be-
owulf clustersfor exarmple Myrinet (www.myri.com). This shoud improve la-
teng andthusmaximumspeed-psby afactorof 10-5Q

¢ Finally, it shouldbementioredthat,while for 10 Mbit Ethernéthemainlimiting
factorwasthehardvare,for Gbit Etherretthisis nolongertrue: Specialpurpose
implemenations[56] bring Gbit Etherretin the range of Myrinet. It is unclear
if thesemprovemerts will make it into themainstream.

Alternatively, one canconsiderother meansof speedig up the computation. A
possibilityis to replaceday-teday replaming by within-day replaming, asdiscussed
in Sec.4. Experinentshave shavn thatthis rediwcesthe numkber of necessarytera-
tions consideably [42]. Possibledistributedimplementationsof this arediscussedn
Sec.4.2.

4.2 Distrib uted computing of plans generation

Additional compgicationscomein with within-dayreplaming (Sec.3.5 andwith non
localinteractian. Two exanples:

¢ Re-planniig. OnasingleCPU,atravelercalling there-planningsubraitinewill
justsuspendhetraffic simulation Onaparallelcomputer, if onetraveleronone
CPU doesthis, all CPUshave to suspendhe traffic simulationsinceit is not
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possible(or very difficult) to have simulatedtime continte asynchonausly. A
moreplausibleappoachis to have the re-plaaning mocule on a different CPU.
Thetravelerthensendsout the re-danningrequestto that CPU, andthe traffic
simulationkeepsgoing Eventually, there-plaming will befinished andit will
be sendto thetraveler who picksit up andstartsactingonit. An experimental
implemenation of this using UDP (User Datagam Proto®l) for communica-
tion shaws thatit is possibleto transmitup to 100000 reqestsper secondoer
CPU [47], whichis far abose ary numbe thatis relevart for practicalapgica-
tions. This demamstrateghatsucha designis feasibleandefficient.

An additional adventageof suchadesignis thattheimplemenationof aseparate
“mental map” (Sec.3.6) for eachindividual traveler doesnot run into memoy
or CPU-timeprdblems. Specificroute guidanceservicescanbe simulatedin a
similar way.

e Non-local interactionbetweertravelers. Sofar, everything assumeshattravel-
ersmake autoromots decisionsandthey interactin the micro-simulationonly.
Thisis however notalwaysthecasefor exanplefor ride sharing or whenfamily
membes re-oiganze the kindeigaten pick-up whenplanshave change during
theday Thiswill necessitateomplicatechegatiationsbetweeragentsandnei-
therthemodelsnorthe computationalmethod for this aredeveloped.

Somereades may have noticedthat, in particdar in the first exanple, succes®f the
re-danningopertionis notguarateed.For exanple, the new planmaysayto make a
turn at a specificintersectionandby thetime the new planreaclesthetraveler, she/he
may have driven pastthat point. Suchsituationsare however not unusual in reallife
— how often does onerecanizethat a differentdecisionsometime agowould have
beenbeneficial. Thus,in our view the key to succesdor large scaleapplicatiors it to
not fight asynchroouseffeds but to usethemto adwartage. For example,onceit is
acceptedhatsuchmessagesanarrive late, it is alsonot a prodem to not have them
arrive atall, which greatlysimplifiesmessag@assing.

This designis similar to mary roba designs,wherethe robots are autonanous
on shorttime scaleqtacticallevel) while they areconrectedvia wirelesscommunica-
tion to a more powerful computer for more difficult andmorelong-tem time scales
(stratgjic level); see,e.qg.,Ref. [57] for robot soccer Also, it seemshatthe human
body is organizedalongtheselines — for exanple, in ball catchimg, it seemghatthe
brain doesan appoximatepre-“canputation” of the movementsof the hand, while
thehardsthemseles(andautoromotsly) perfam thefine-turing of themovementsas
soonasthe ball touchesthemandhagic informationis available[58]. This appoach
is necessitatetly the relatively slov messag@assingime betweerbrainandhards,
which is of the orde of 1/10sec,which is muchtoo slow to directly reactto haptic
information[59].

5 Outlook: Dynamicsof networks

A further stepfor transpatation simulatiors could be to make infrastructurecharges
(suchastheadditionof roadsor trainconnectios)end@eneosto thesimulationpack
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age. This would meanthat onewould enablethe simulationsystemto autanomotsly
find outwherechangsto thetransporttion systemshouldbedone,andinclude them
into thesystem Onthesimplerlevel of trail selectionthis hasbeendore by themethal
of active walkers[60]; Yaminsetal investigae method to grow urbanroads[61]. For
urban planring, onewould have to make assumptias aboutpolitical power distribu-
tionsandrelatedpolicies,but basednthoseit shoud bepossibleto runsucha mocel.
If it would yield anything usefulwill remainan openquestionfor the foreseeabldu-
ture.

6 Conclusion

For mary systemsthe dynamicsdoesnot unfdd on “flat space”,but on a gragh or
network. Although mary conceptof dynamicalsystemsstill apply they needto be
adapedfor dynanics onagrafh. As anonimathematicaéxamge, look at the visual-
izationof dynamcsonagraph whichis ratherdifferentfrom visualizationof dynamics
in two- or three-dmensionakpace.

Transpeotation simulationis a prime exanple of a real-world dynamical system
onagraph It is particdarly interesting sincethe one-dmensionaldynamicson the
links interactswith the networks aspect.For exampe, kinematic waves,asdescribe
by the Burgersequationor by anAsymmetricStochasti&xclusionProcessgantravel
throughanintersectioncausingcomgicateddynanicsthere]62, 63). In fact,very little
seemdo beknown of thesdink-network-interactionsespeciallyfor largesystemswith
mary links (roads) andvertices(intersectios).

In additin, theparticles/agets in traffic systemsare“intelligent”. Thismeanghat
they have stratgjic, long-term goals, with the consegencethat no two particlesare
interchangeale, andthatdifferent particles, whenconfrantedwith the samesituation,
can malke differentdecisions. In practica terms, for transpotation simulationsthis
“intelligence” involves aspectdik e route choice mocde choice, or activity geneation.
Moreover, agernts adap or learn which mears thatthey shouldbe ableto rememler
pastbehaior andpastperfamanceto construcihew plans,andto try themout.

For large scalescenaris, distributedcomputing is a necessity Thetypical starting
point is doman decanpositionof thetraffic micro-simulation,which meanghateach
CPU runs themicrosimulationon a pieceof the network. For efficiency reasonsthis
impliesthatthe “intelligence” modues needto be separatdrom the traffic simulation
itself. Mappirg theresultingsystemwell on parallelcomputerarchitectuesseemso
beanecessityfor efficientlarge scaletranspeotationsimulatiors.

Finally, onecanlook atthere-oigarization of thetranspaetationnetwork asa con-
sequene of apolitical processThis aspecis touchedonly very briefly.

In summay, transpetation simulationscombire elementfrom mary areasyang
ing from dynamicalsystemsvia networks andgraphtheoy to socio-ecaomichuman
behaior. Thecurren techndogy is advarcedenaighto starthelpingwith policy de-
cisions,yetmary aspectsemainunsohed andoffer challerging problemsfor yearsto
come.
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