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Abstract

Thispaper describestheparallel implementationof theTRANSIMS traffic micro-simulation.
The parallelization method is domaindecomposition, which meansthat eachCPUof the
parallel computer is responsible for a different geographical areaof the simulatedregion.
We describe how information between domains is exchanged, andhow the transportation
network graphis partitioned. An adaptive schemeis usedto optimizeloadbalancing.

We thendemonstrate how computing speeds of our parallel micro-simulations canbe
systematically predictedoncethescenario andthecomputer architecture areknown. This
makesit possible, for example, to decide if a certain study is feasible with a certain com-
puting budget,andhow to invest that budget. The main ingredients of the prediction are
knowledge about the parallel implementation of the micro-simulation, knowledge about
the characteristicsof the partitioning of the transportation network graph, andknowledge
about the interaction of these quantities with the computer system.In particular, we in-
vestigatethedifferencesbetween switchedandnon-switchedtopologies,andtheeffectsof
10 Mbit, 100Mbit, andGbit Ethernet.

As oneexample,weshow that with acommontechnology– 100Mbit switched Ethernet
– onecanrun the20000-link EMME/2-network for Portland(Oregon) morethan20 times
faster thanrealtime on 16 coupledPentium CPUs.
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1 Intr oduction

It is by now widely acceptedthat it is worth investigatingif themicroscopicsim-
ulation of large transportation systems[7,42] is a usefuladdition to the existing
setof tools. By “microscopic”we meanthatall entitiesof thesystem– travelers,
vehicles,traffic lights, intersections, etc.– arerepresentedasindividual objectsin
thesimulation [15,33,16,32,13,21,44].

Theconceptualadvantageof a micro-simulation is that in principleit canbemade
arbitrarilyrealistic.Indeed,microscopicsimulationshavebeenusedfor many decades
for problemsof relatively smallscale,suchasintersectiondesignor signalphasing.
Whatis new is thatit is now possibleto usemicroscopicsimulationsalsofor really
largesystems,suchaswholeregionswith severalmilli onsof travelers.At theheart
of thisareseveralconvergingdevelopments:

(1) Theadventof fastdesktopworkstations.
(2) The possibility to connectmany of theseworkstationsto parallelsupercom-

puters,thusmultiplying the availablecomputing power. This is particularly
attractive for agent-basedtransportation simulationssincethey do not benefit
from traditional vectorsupercomputers.

(3) In our view, thereis a third observation that is paramountto make theseap-
proacheswork: many aspectsof a “correct” macroscopicbehavior canbeob-
tainedwith rathersimple microscopicrules.

The third point canactuallyberigorouslyproven for somecases.For example, in
physicstheidealgasequation,�
��������� , canbederivedfrom particleswithout
any interaction,i.e. they move through eachother. For traffic, onecanshow that
rathersimplemicroscopicmodelsgeneratecertainfluid-dynamicalequationsfor
traffic flow [26].

In consequence,for situations whereoneexpectsthat the fluid-dynamicalrepre-
sentationof traffic is realisticenoughfor thedynamicsbut onewantsaccessto in-
dividual vehicles/drivers/...,a simple microscopicsimulation maybethesolution.
In additionto this, with themicroscopic approachit is alwayspossible to make it
morerealisticat somelaterpoint. This is muchharderandsometimesimpossible
with macroscopicmodels.

The TRANSIMS (TRansportationANalysis and SIMulation System)project at
Los AlamosNationalLaboratory[42] is sucha micro-simulation project,with the
goal to usemicro-simulation for transportationplanning.Transportationplanning
is typically donefor large regional areaswith several milli ons of travelers,and
it is donewith 20 year time horizons.The first meansthat, if we want to do a
micro-simulation approach,we needto beableto simulatelargeenoughareasfast
enough.Thesecondmeansthatthemethodologyneedsto beableto pick upaspects
like inducedtravel, wherepeoplechangetheir activitiesandmaybetheir homelo-
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cationsbecauseof changedimpedancesof thetransportationsystem. As ananswer,
TRANSIMS consists of thefollowing modules:� Population generation. Demographicdatais disaggregatedso that we obtain

individual households andindividual householdmembers,with certaincharac-
teristics,suchasastreetaddress,carownership, or householdincome[4].� Activities generation. For eachindividual, a setof activitiesandactivity loca-
tionsfor a dayis generated[3,6].� Modal and route choice. For eachindividual, modesandroutesaregenerated
thatconnectactivitiesat differentlocations[19].� Traffic micro-simulation. Up to here,all individualshave madeplansabout
their behavior. The traffic micro-simulation executesall thoseplanssimultane-
ously. In particular, wenow obtaintheresultof interactionsbetweentheplans–
for examplecongestion. �

As is well known, suchan approachneedsto make the modulesconsistent with
eachother:For example,plansdependon congestion,but congestion dependson
plans.A widely acceptedmethodto resolve this is systematic relaxation[13] – that
is,makepreliminaryplans,runthetraffic micro-simulation,adapttheplans,runthe
traffic micro-simulation again,etc.,until consistency betweenmodulesis reached.
Themethodis somewhatsimilarto theFrank-Wolfe-algorithmin staticassignment.

The reasonwhy this is importantin the context of this paperis that it meansthat
themicro-simulationneedsto berunmorethanonce– in ourexperienceaboutfifty
timesfor a relaxationfrom scratch[34,35].In consequence,a computing time that
may be acceptablefor a singlerun is no longeracceptablefor sucha relaxation
series– thusputtinganevenhigherdemandon thetechnology.

Thiscanbemademoreconcreteby thefollowingarguments:� Thenumberof “aboutfifty” iterationswasgainedfromsystematiccomputational
experiments usinga scenarioin Dallas/Fort Worth. In fact,for routeassignment
alone,abouttwentyiterationsareprobablysufficient [34,35],but if onealsoal-
lowsfor otherbehavioral changes,moreiterationsareneeded[14]. Thenumbers
becomeplausiblevia thefollowing argument:Sincerelaxationmethodsrely on
the fact that the situation doesnot changetoo much from one iteration to the
next, changeshave to be small. Empirically, changingmore than 10% of the
travellerssometimesleadsto strongfluctuationsaway from relaxation[34,35].
A replanningfractionof 10%meansthatweneed10 iterationsin orderto replan� It is sometimesargued that TRANSIMS is unnecessarily realistic for the questions it

is supposedto answer. Although we tend to sharethe sameintuition (see,for example,
our work on the so-called queue model [39]), we think that this needsto be evaluated
systematically. We alsoexpectthat theanswerwill depend on theprecise question: It will
bepossibleto answercertain questionswith verysimplemodels,while other questionsmay
needmuchmorerealistic models.
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eachtraveller exactly once;andsinceduring the first coupleof iterationstrav-
ellersreactto non-relaxedtraffic patterns,we will have to replanthosea second
time, resultingin 15-20 iterations.Nevertheless,future researchwill probably
find methods to decreasethenumberof iterations.� We assumethatresultsof a scenariorun shouldbeavailable within a few days,
saytwo. Otherwiseresearchbecomesfrustratingly slow, andwe would assume
thatthesameis truein practicalapplications.Assumingfurtherthatweareinter-
estedin 24 hourscenarios,anddisregarding computingtime for othermodules
besidesthemicrosimulation,thismeansthatthesimulationneedsto run25times
fasterthanrealtime.

We will show in this paperthat the TRANSIMS microsimulation indeedcanbe
run with this computational speed,and that, for certainsituations, this can even
be doneon relatively modesthardware. By “modest” we meana clusterof 10-
20 standardPCsconnectedvia standardLAN technology(Beowulf cluster).We
find thatsuchamachineis affordablefor mostuniversity engineeringdepartments,
andwe alsolearnfrom peopleworking in the commercialsector(mostlyoutside
transportation) thatthis is notaproblem.In consequence,TRANSIMScanbeused
withoutaccessto a supercomputer. As mentionedbefore,it is beyondthescopeof
thispaperto discussfor whichproblemsasimulationasdetailedasTRANSIMSis
reallynecessaryandfor whichproblemsasimpler approachmightbesufficient.

Thispaperwill concentrateonthemicrosimulationof TRANSIMS.Theothermod-
ulesareimportant,but they arelesscritical for computing(seealsoSec.10). We
startwith a descriptionof the mostimportant aspectsof the TRANSIMS driving
logic (Sec.3). The driving logic is designedin a way that it allows domainde-
composition as a parallelizationstrategy, which is explainedin Sec.4. We then
demonstratethat the implementeddriving logic generatesrealistic macroscopic
traffic flow. Onceoneknows thatthemicrosimulationcanbepartitioned,theques-
tion becomeshow to partitionthestreetnetwork graph.This is describedin Sec.6.
Sec.7 discusses how we adaptthe graphpartitioning to the different computa-
tional loadscausedby different traffic on different streets.Theseandadditional
argumentsarethenusedto develop amethodology for thepredictionof computing
speeds(Sec.8). This is ratherimportant, sincewith this onecanpredictif certain
investmentsin one’scomputersystemwill makeit possibleto runcertainproblems
or not.We thenshortlydiscusswhatall this meansfor completestudies(Sec.10).
This is followedby asummary.

2 Relatedwork

As mentionedabove,micro-simulationof traffic, that is, the individualsimulation
of eachvehicle,hasbeendonefor quitesometime (e.g.[17]). A prominentexam-
ple is NETSIM [15,33],which wasdeveloped in the70s.Newer modelsare,e.g.,
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theWiedemann-model[45], AIMSUN [16], INTEGRATION [32], MITSIM [13],
HUTSIM [21], or VISSIM [44].

NETSIM was even tried on a vector supercomputer [23], without a real break-
throughin computingspeeds.But, aspointedout earlier, ultimately the inherent
structureof agent-basedmicro-simulation is atoddswith thecomputerarchitecture
of vectorsupercomputers,andsonotmuchprogresswasmadeonthesupercomput-
ing endof micro-simulationsuntil the parallelsupercomputersbecameavailable.
Oneshouldnotethat theprogramming modelbehindso-calledSingleInstruction
Multiple Data(SIMD) parallelcomputersis very similar to the oneof vectorsu-
percomputersandthusalsoproblematicfor agent-basedsimulations.In this paper,
whenwe talk aboutparallelcomputers,we meanin all casesMultiple Instruction
Multiple Data(MIMD) machines.

Early useof parallel computingin the transportationcommunity includesparal-
lelization of fluid-dynamical modelsfor traffic [10] andparallelizationof assign-
ment models[18]. Early implementations of parallel micro-simulations can be
foundin [9,29,1].

It is usuallyeasierto make anefficient parallelimplementation from scratchthan
to port existing codesto a parallelcomputer. Maybefor that reason,early traffic
agent-basedtraffic micro-simulationswhich usedparallel computerswere com-
pletelynew designsandimplementations[7,42,1,29].All of theseusedomainde-
composition as their parallelizationstrategy, which meansthat the partition the
network graphinto domainsof approximatelyequalsize,andtheneachCPU of
theparallelcomputeris responsible for oneof thesedomains. It is maybeno sur-
prisethat the first threeuse,at leastin their initial implementation,somecellular
structureof their roadrepresentation,sincethis simplifies domaindecomposition,
as will be seenlater. Besidesthe large body of work in the physics community
(e.g. [46]), such“cellular” modelsalsohave sometradition in the transportation
community [17,11].

Note that domaindecomposition is ratherdifferentfrom a functionalparallelde-
composition, asfor exampledoneby DYNAMIT/ MITSIM [13]. A functionalde-
composition meansthatdifferentmodulescanrun on differentcomputers.For ex-
ample,the micro-simulation could run on one computer, while an on-line rout-
ing module couldrun on anothercomputer. While thefunctionaldecomposition is
somewhateasierto implementandalsois lessdemandingonthehardwareto beef-
ficient,it alsoposesaseverelimitationontheachievablespeed-up.With functional
decomposition, the maximally achievable speed-upis the numberof functional
modulesonecancomputesimultaneously– for examplemicro-simulation, router,
demandgeneration,ITS logic computation,etc.Undernormalcircumstances,one
probablydoesnot have morethana handfulof thesefunctionalmodulesthatcan
truly benefitfrom parallelexecution,restrictingthespeed-upto fiveor less.In con-
trast,aswe will seethedomaindecomposition can,oncertainhardware,achievea
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morethan100-foldincreasein computationalspeed.

In themeantime,someof the“pre-existing” micro-simulationsareportedto paral-
lel computers.For example,this hasrecentlybeendonefor AIMSUN2 [2] andfor
DYNEMO [38,30], � andaparallelizationis plannedfor VISSIM [44] (M. Fellen-
dorf, personalcommunication).

3 Micr osimulation dri ving logic

TheTRANSIMS-1999� microsimulationusesacellularautomata(CA) technique
for representingdriving dynamics(e.g.[26]). The roadis divided into cells,each
of a lengththata car usesup in a jam – we currentlyuse7.5 meters.A cell is ei-
therempty, or occupiedby exactlyonecar. Movementtakesplaceby hoppingfrom
onecell to another;differentvehiclespeedsarerepresentedby differenthopping
distances.Usingonesecondasthetime stepworkswell (becauseof reaction-time
arguments[22]); this impliesfor examplethata hoppingspeedof 5 cellsper time
stepcorrespondsto135km/h.Thismodels“car following”; therulesfor carfollow-
ing in theCA are:(i) linearaccelerationup to maximum speedif no car is ahead;
(ii) if a car is ahead,thenadjustvelocity so that it is proportionalto the distance
betweenthecars(constanttimeheadway);(iii) sometimesberandomlyslowerthan
whatwould resultfrom (i) and(ii).

Lanechangingis doneaspuresidewaysmovementin a sub-time-stepbeforethe
forwardsmovementof thevehicles,i.e. eachtime-stepis subdividedinto two sub-
time-steps.Thefirst sub-time-stepis usedfor lanechanging,while thesecondsub-
time-stepis usedfor forward motion. Lane-changingrules for TRANSIMS are
symmetric andconsistof two simple elements:Decidethat you want to change
lanes,andcheckif thereis enoughgapto “get in” [37]. A “reasonto changelanes”
is eitherthattheotherlaneis faster, or thatthedriverwantsto makeaturnattheend
of thelink andneedsto getinto thecorrectlane.In thelattercase,theacceptedgap
decreaseswith decreasingdistanceto the intersection,that is, the driver becomes
moreandmoredesperate.� DYNEMO is notstrictly amicro-simulation – it hasindividual travelersbut usesamacro-
scopic approachfor thespeedcalculation. It is mentionedherebecauseof theparallelization
effort.� Therearetwo versionsof TRANSIMSwith thenumber“1.0”: Onefrom 1997,“TRAN-
SIMSRelease1.0” [5], which wewill referto as“TRANSIMS-1997”, andonefrom 1999,
“TRANSIMS–LANL–1.0” [41], whichwewill refer to as“TRANSIMS-1999”. From1997
to 1999,many featureswereadded,suchaspublic transit with a differentdriving logic, or
theoptionof using continuouscorrectionsto thecellular structure.For thepurposesof this
paper, the differences arenot too important, except that computational performancewas
alsoconsiderably improved.
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Two otherimportantelementsof traffic simulationsaresignalizedturnsandunpro-
tectedturns.Thefirst of thoseis modeledby essentiallyputting a “virtual” vehicle
of maximumvelocity zeroat theendof the lanewhenthe traffic light is red,and
to removeit whenit is green.Unprotectedturnsgetmodeledvia “gapacceptance”:
Thereneedsto be a large enoughgapon the priority streetfor the car from the
non-prioritystreetto acceptit [43].

A full descriptionof theTRANSIMS driving logic would go beyondthescopeof
thepresentpaper. It canbefoundin Refs.[28,41].

4 Micr o-simulation parallelization: Domain decomposition

An important advantageof the CA is that it helpswith the designof a parallel
andlocal simulation update,that is, the stateat time step ����� dependsonly on
informationfrom time step � , andonly from neighboring cells.(To becompletely
correct,onewould have to considerour sub-time-steps.)This meansthat domain
decomposition for parallelizationis straightforward, sinceonecancommunicate
theboundariesfor timestep� , thenlocally oneachCPUperformtheupdatefrom �
to ��� � , andthenexchangeboundaryinformationagain.

Domaindecompositionmeansthatthegeographicalregionisdecomposedintosev-
eraldomainsof similar size(Fig. 1), andeachCPUof theparallelcomputercom-
putesthesimulation dynamicsfor oneof thesedomains.Traffic simulationsfulfill
two conditionswhichmake thisapproachefficient:� Domainsof similar size:Thestreetnetwork canbepartitionedinto domainsof

similar size.A realisticmeasurefor sizeis theaccumulatedlengthof all streets
associatedwith adomain.� Short-rangeinteractions: For driving decisions,the distanceof interactionsbe-
tweendriversis limited.In ourCA implementation,onlinksall of theTRANSIMS-
1999rulesetshaveaninteractionrangeof !#"%$'& meters( � 5 cells)whichis small
with respectto theaveragelink length.Therefore,thenetworkeasilydecomposes
into independentcomponents.

We decidedto cut thestreetnetwork in themiddle of links ratherthanat intersec-
tions(Fig. 2); THOREAU doesthesame[29]. Thisseparatesthetraffic complexity
at the intersectionsfrom the complexity causedby the parallelizationandmakes
optimizationof computationalspeedeasier.

In the implementation,eachdivided link is fully representedin bothCPUs.Each
CPU is responsible for onehalf of the link. In order to maintainconsistency be-
tweenCPUs,theCPUssendinformationaboutthefirst fivecellsof “their” half of
thelink to theotherCPU.Fivecellsis theinteractionrangeof all CA driving rules
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ona link. By doingthis, theotherCPUknowsenoughaboutwhatis happeningon
theotherhalf of thelink in orderto compute consistenttraffic.

Theresultingsimplifiedupdatesequenceon thesplit links is asfollows(Fig. 3): (� Changelanes.� Exchangeboundaryinformation.� Calculatespeedandmovevehiclesforward.� Exchangeboundaryinformation.

TheTRANSIMS-1999microsimulationalsoincludesvehiclesthatenterthesimu-
lation from parkingandexit thesimulation to parking,andlogic for public transit
suchasbuses.Theseadditions areimplementedin a way thatno furtherexchange
of boundaryinformationis necessary.

The implementation usesthe so-calledmaster-slave approach.Master-slave ap-
proachmeansthat the simulation is startedup by a master, which spawnsslaves,
distributes the workload to them, and keepscontrol of the generalscheduling.
Master-slaveapproachesoftendonot scalewell with increasingnumbersof CPUs
sincetheworkloadof themasterremainsthesameor evenincreaseswith increas-
ing numbersof CPUs.For thatreason,in TRANSIMS-1999themasterhasnearly
notasksexceptinitializationandsynchronization.Eventheoutputto file is donein
adecentralizedfashion.With thenumbersof CPUsthatwehave testedin practice,
wehaveneverobservedthemasterbeingthebottleneckof theparallelization.

The actualimplementation wasdoneby definingdescendentC++ classesof the
C++ baseclassesprovidedin a Parallel Toolbox. The underlyingcommunication
library hasinterfacesfor bothPVM (ParallelVirtual Machine[31]) andMPI (Mes-
sagePassingInterface[25]). The toolbox implementationis not specificto trans-
portationsimulationsandthusbeyond the scopeof this paper. More information
canbefoundin [34].

5 Macroscopic(emergent) traffic flow characteristics

In our view, it is as leastas importantto discussthe resultingtraffic flow char-
acteristicsas to discussthe detailsof the driving logic. For that reason,we have
performedsystematicvalidationof thevariousaspectsof theemergingflow behav-
ior. Sincethemicrosimulationis composedof car-following, lanechanging,unpro-
tectedturns,andprotectedturns,we havecorrespondingvalidationsfor thosefour
aspects.Although weclaimthatthis is a fairly systematicapproachto thesituation,( Insteadof “split links”, theterms“boundarylinks”, “sharedlinks”, or “distributed links”
aresometimesused. As is well known, somepeople use“edge” insteadof “link ”.
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CPU link

CPU 2

CPU 3

CPU 1
CPU 2

CPU 1

Master Slave

edge
boundary edge

intersection CPU
tile boundary

CPU 0 CPU 0

Fig.1. Domaindecompositionof transportation network. Left: Global view. Right:View of
a slave CPU.Theslave CPUis only awareof thepart of thenetwork which is attachedto
its local nodes.This includeslinks which areshared with neighbordomains.

CPN 1
CPN 2

boundary boundary

active Range [0.5, 1.0]

localremote

0.0 1.00.5

active Range [0.0, 0.5]

remotelocal

Fig. 2. Distributedlink.

wedonotclaimthatourvalidationsuiteis complete.For example,weaving [40] is
animportantcandidatefor validation.

It shouldbe notedthat we do not only validateour driving logic, but we validate
the implementation of it, including the parallelaspects.It is easyto addunreal-
istic aspectsin a parallel implementation of an otherwiseflawlessdriving logic;
andtheauthorsof this paperarescepticaboutthefeasibilityof formal verification
proceduresfor large-scalesimulationsoftware.
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At beginning of time step:

CPU 1

CPU 2

CPU 1

CPU 2

After lane changes:

CPU 1

CPU 2

After boundary exchanges (parallel implementation):

CPU 1

CPU 2

CPU 1

CPU 2

After movements:

After 2nd exchange of boundaries:

Fig.3. Exampleof parallel logic of asplit link with two lanes. Thefigureshowsthegeneral
logic of onetimestep. Rememberthatwith asplit link, oneCPUis responsible for onehalf
of the link andanotherCPUis responsible for theotherhalf. Thesetwo halvesareshown
separatelybut correctly lined up.Thedotted part is the“boundaryregion”, which is where
the link storesinformation from the other CPU.The arrowsdenote when information is
transferredfrom oneCPUto theothervia boundaryexchange.

Weshow examplesfor thefour categories(Fig.4): (i) Traffic in a1-lanecircle,thus
validatingthetraffic flow behavior of thecarfollowing implementation.(ii) Results
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of traffic in a3-lanecircle,thusvalidatingtheadditionof lanechanging.(iii) Merge
flows througha stopsign,thusvalidating theadditionof gapacceptanceat unpro-
tectedturns.(iv) Flows througha traffic light wherevehiclesneedto bein thecor-
rectlanesfor their intendedturns– it thussimultaneouslyvalidates“lanechanging
for planfollowing” andtraffic light logic.

In our view, our validationresultsarewithin therangeof field measurementsthat
onefinds in the literature.Whengoingto a specificstudyarea,anddependingon
the specificquestion,morecalibrationmay becomenecessary, or in somecases
additionsto thedriving logic maybenecessary. For moreinformation,see[28].
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(b) 3-lanefreeway. (c) Flow throughstopsignonto2-laneroadway. (d) Flow throughtraffic
signal that is 30 secredand30 secgreen, scaled to hourly flow rates.

6 Graph partitioning

Oncewe areableto handlesplit links, we needto partition thewhole transporta-
tion network graphin an efficient way. Efficient meansseveralcompetingthings:
Minimize the numberof split links; minimize the numberof otherdomainseach
CPUshareslinks with; equilibratethecomputational loadasmuchaspossible.
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One approachto domaindecomposition is orthogonalrecursive bi-section.Al-
thoughlessefficient thanMETIS (explainedbelow), orthogonalbi-sectionis useful
for explainingthegeneralapproach.In ourcase,sincewecut in themiddleof links,
the first stepis to accumulatecomputationalloadsat the nodes:eachnodegetsa
weight correspondingto the computational load of all of its attachedhalf-links.
Nodesarelocatedat their geographicalcoordinates.Then,a vertical straightline
is searchedso that, asmuchaspossible, half of the computational load is on its
right andtheotherhalf on its left. Thenthe largerof thetwo piecesis pickedand
cut again,this time by a horizontalline. This is recursively doneuntil asmany do-
mainsareobtainedasthereareCPUsavailable,seeFig. 5. It is immediately clear
thatundernormalcircumstancesthis will bemostefficient for a numberof CPUs
thatis apowerof two.With orthogonal bi-section,weobtaincompactandlocalized
domains,andthenumberof neighbordomainsis limited.

Anotheroption is to usethe METIS library for graphpartitioning (see[24] and
references therein).METIS usesmultilevel partitioning. What that meansis that
first thegraphis coarsened,thenthecoarsenedgraphis partitioned,andthenit is
uncoarsenedagain,while usinganexchangeheuristicat every uncoarseningstep.
Thecoarseningcanfor examplebedonevia randommatching,which meansthat
first edgesarerandomlyselectedsothatnotwoselectedlinkssharethesamevertex,
andthenthe two nodesat the endof eachedgearecollapsedinto one.Oncethe
graphis sufficiently collapsed,it is easyto find a goodor optimalpartitioning for
thecollapsedgraph.Duringuncoarsening,it is systematicallytried if exchangesof
nodesat theboundariesleadto improvements.“Standard”METIS usesmultilevel
recursivebisection:Theinitial graphis partitionedinto two pieces,eachof thetwo
piecesis partitionedinto two pieceseachagain,etc.,until thereareenoughpieces.
Eachsuchsplit usesits own coarsening/uncoarsening sequence., -METIS means
that all , partitions are found during a singlecoarsening/uncoarseningsequence,
which is considerablyfaster. It alsoproducesmoreconsistentandbetterresultsfor
large , .
METIS considerablyreducesthe numberof split links, -/.1032 , asshown in Fig. 6.
Thefigureshows thenumberof split links asa functionof thenumberof domains
for (i) orthogonalbi-sectionfor aPortlandnetwork with 200000links, (ii) METIS
decomposition for the samenetwork, and(iii) METIS decomposition for a Port-
landnetwork with 20024links.Thenetwork with 200000links is derivedfrom the
TIGER censusdatabase,andwill beusedfor thePortlandcasestudyfor TRAN-
SIMS. The network with 20024 links is derived from the EMME/2 network that
Portlandis currentlyusing.An exampleof thedomainsgeneratedby METIS canbe
seenin Fig. 7; for example,thealgorithmnow picksup thefact thatcuttingalong
theriversin Portlandshouldbeof advantagesincethisresultsin asmallnumberof
split links.

Wealsoshow datafits to theMETIS curves, -4.10526��78&:9;�=<?> �A@ for the200000links
network and -B.C052D�E�GF#9;�=<?> �A@IH �JF#9 for the 20024 links network, where � is the
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numberof domains. We arenot awareof any theoreticalargumentfor theshapes
of thesecurvesfor METIS. It is however easyto seethat,for orthogonalbisection,
thescalingof -K.1052 hasto be L �6<?> � . Also, the limiting casewhereeachnodeis on
a differentCPU needsto have the same-B.C052 both for bisectionandfor METIS.
In consequence,it is plausible to usea scalingform of �;M with NEOP9Q$'& . This
is confirmedby thestraightline for large � in the log-log-plot of Fig. 6. Sincefor�R�S� , thenumberof split links -T.1032 shouldbezero,for the20024linksnetworkwe
usetheequationUV� MWH U , resulting in -4.C052=�S�GF#9;�=<?> �A@XH �JF#9 . For the200000links
network, theresultingfit is sobadthatwedid notaddthenegative term.This leads
to a kink for thecorrespondingcurvesin Fig. 13.

Suchan investigationalsoallows to computethe theoreticalefficiency basedon
the graphpartitioning. Efficiency is optimal if eachCPU getsexactly the same
computational load.However, becauseof thegranularityof theentities(nodesplus
attachedhalf-links) thatwe distribute, load imbalancesareunavoidable,andthey
becomelargerwith moreCPUs.We definetheresultingtheoreticalefficiency due
to thegraphpartitioning asYGZA[]\T^ � loadonoptimalpartition

loadon largestpartition _ (1)

wheretheloadon theoptimalpartitionis just thetotal loaddividedby thenumber
of CPUs.We thencalculatedthis numberfor actualpartitionings of both of our
20024 links and of our 200000 links Portlandnetworks, seeFig. 8. The result
meansthat,accordingto this measurealone,our 20024 links network would still
run efficiently on 128CPUs,andour 200000links network would run efficiently
onup to 1024CPUs.

7 Adaptive Load Balancing

In thelastsection,weexplainedhow thestreetnetwork is partitionedinto domains
thatcanbeloadedontodifferentCPUs.In orderto beefficient, theloadsondiffer-
entCPUsshouldbeassimilar aspossible. Theseloadsdo however dependon the
actualvehicletraffic in the respective domains.Sincewe aredoing iterations,we
arerunningsimilar traffic scenariosover andoveragain.Weusethis featurefor an
adaptiveloadbalancing:Duringruntimewecollecttheexecutiontimeof eachlink
andeachintersection(node).Thestatisticsareoutputto file. For thenext runof the
micro-simulation,thefile is fedbackto thepartitioning algorithm.In thatiteration,
insteadof using the link lengthsas load estimate, the actualexecution timesare
usedasdistribution criterion.Fig. 9 shows thenew domains aftersucha feedback
(compareto Fig. 5).

To verify the impactof this approachwe monitored theexecution timesper time-
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Fig. 5. Orthogonal bi-section for Portland 20024links network.

stepthroughoutthe simulation period.Figure10 depictsthe resultsof oneof the
iterationseries.For iteration1, theloadbalancerusesthelink lengthsascriterion.
The execution timesarelow until congestionappearsaround7:30 am.Then,the
executiontimesincreasefivefold from 0.04secto 0.2 sec.In iteration2 the exe-
cution timesarealmostindependentof the simulation time. Note that dueto the
equilibration, theexecution timesfor earlysimulationhoursincreasefrom 0.04sec
to 0.06sec,but thiseffect is morethancompensatedlateron.

Thefigurealsocontainsplotsfor lateriterations(11,15,20,and40).Theimprove-
mentof executiontimesis mainly dueto therouteadaptationprocess:congestion
is reducedandtheaveragevehicledensityis lower. Onthemachinesizeswherewe
havetried it (up to 16CPUs),adaptive loadbalancingled to performanceimprove-
mentsup to a factorof 1.8.It shouldbecomemoreimportantfor largernumbersof
CPUssinceloadimbalanceshaveastrongereffect there.

8 Performanceprediction for the TRANSIMS micro-simulation

It is possibleto systematicallypredict the performanceof parallel micro-simu-
lations(e.g.[20,27]).For this,severalassumptionsaboutthecomputerarchitecture
needto bemade.In thefollowing, wedemonstratethederivationof suchpredictive
equationsfor coupledworkstationsandfor parallelsupercomputers.
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Themethodfor this is to systematically calculatethewall clock time for onetime
stepof themicro-simulation.We startby assuming that thetime for onetime step
hascontributionsfrom computation, �]j [ 0 , andfrom communication,�kj [l[ . If these
donotoverlap,asis reasonableto assumefor coupledworkstations,wehave�Bmn�
op�q�rj [ 0smt�
ok�u�rj [][ mt�
o _ (2)

where� is thenumberof CPUs.v
Timefor computation is assumedto follow

�Wj [ 0smn�
op� � 	�xw y �z�|{~}�����mn�
ok��{ ZA[l\ mn�6o��K$ (3)

v For simplicity, wedonot differentiatebetweenCPUsandcomputational nodes.Compu-
tational nodes canhave morethanoneCPU — an example is a network of coupled PCs
whereeachPChasDual CPUs.
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Fig. 7. Partitioning by METIS. Compareto Fig. 5.

Here,� 	 is thetimeof thesamecodeononeCPU(assuming aproblemsizethatfits
on availablecomputermemory);� is thenumberof CPUs; {#}���� includesoverhead
effects(for example,split links needto be administeredby both CPUs); { ZA[]\ ��~� YGZA[l\ H � includestheeffectof unequaldomainsizesdiscussedin Sec.6.

Time for communicationtypically hastwo contributions:Latency andbandwidth.
Latency is thetime necessaryto initiate thecommunication,andin consequenceit
is independentof themessagesize.Bandwidthdescribesthenumberof bytesthat
canbecommunicatedpersecond.Sothetime for onemessageis

� [ .��I�q�r2������ [ .��� _
where�r2�� is thelatency, � [ .�� , is themessagesize,and

�
is thebandwidth.

However, for many of today’s computerarchitectures,bandwidthis given by at
leasttwo contributions:nodebandwidth, andnetwork bandwidth.Nodebandwidth
is thebandwidthof theconnectionfrom theCPUto thenetwork. If two computers
communicatewith eachother, this is themaximum bandwidth they canreach.For
thatreason,this is sometimesalsocalledthe“point-to-point” bandwidth.

The network bandwidth is given by the technologyandtopology of the network.
Typical technologies are 10 Mbit Ethernet,100 Mbit Ethernet,FDDI, etc. Typ-
ical topologies arebus topologies, switchedtopologies, two-dimensional topolo-
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gies(e.g.grid/torus),hypercubetopologies,etc.A traditionalLocal AreaNetwork
(LAN) uses10 Mbit Ethernet,and it hasa sharedbus topology. In a sharedbus
topology, all communicationgoesover thesamemedium; thatis, if severalpairsof
computerscommunicatewith eachother, they have to sharethebandwidth.

For example,in our 100Mbit FDDI network (i.e. a network bandwidthof
� \G� �I���989 Mbit) atLosAlamosNationalLaboratory, wefoundnodebandwidthsof about� \GZ � F#9 Mbit. That meansthat two pairs of computerscould communicateat

full nodebandwidth,i.e. using80 of the 100 Mbit/sec,while threeor morepairs
werelimitedby thenetwork bandwidth.For example,fivepairsof computerscould
maximally get ��989#�8&���7:9 Mbit/seceach.

A switchedtopology issimilartoabustopology, exceptthatthenetworkbandwidth
is given by the backplaneof the switch.Often, the backplanebandwidthis high
enoughto have all nodescommunicatewith eachother at full nodebandwidth,
andfor practicalpurposesonecanthusneglect the network bandwidtheffect for
switchednetworks.
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Fig. 9. Partitioning after adaptive loadbalancing.Compareto Fig. 5.

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

5 6 7 8 9 10 11 12

ex
ec

ut
io

n 
tim

e 
on

 s
lo

w
es

t C
P

N
 [s

]

�

simulation time [h]

it 1
it 2
it 5

it 11
it 15
it 20
it 40
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If computers becomemassively parallel,switcheswith enoughbackplaneband-
width becometoo expensive. As a compromise,suchsupercomputersusuallyuse
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a communications topologywherecommunication to “nearby” nodescanbedone
at full nodebandwidth, whereasglobalcommunicationsufferssomeperformance
degradation.Sincewepartitionour traffic simulationsin awaythatcommunication
is local, we canassumethatwe do communication with full nodebandwidth on a
supercomputer. That is, on a parallelsupercomputer, we canneglect thecontribu-
tion comingfrom the

� \J� � -term.Thisassumes,however, thattheallocationof street
network partitionsto computationalnodesis donein someintelligentway which
maintainslocality.

As aresultof thisdiscussion,weassumethatthecommunicationtimepertimestep
is �Wj [l[ mt�
op��-�.��3� w y�� \ �3mn�
o%�r2��Q� -B.C052�mt�
o� � � \JZ� \JZ ��-�.C052�mn�6o � � \GZ� \G� � � _
which will be explainedin the following paragraphs.-/.��3� is the numberof sub-
time-steps.As discussedin Sec.4, we do two boundaryexchangesper time step,
thus -K.��3����7 for the1999TRANSIMS micro-simulationimplementation.� \ � is thenumberof neighbordomainseachCPUtalks to. All information which
goesto thesameCPUis collectedandsentasa single message,thusincurringthe
latency only onceper neighbordomain.For ����� , � \ � is zerosincethereis no
otherdomainto communicatewith. For �R��7 , it is one.For ���   andassuming
that domainsare always connected,Euler’s theoremfor planargraphssaysthat
theaveragenumberof neighborscannotbecomemorethansix. Basedona simple
geometricargument,weuse� \ �3mn�
op��7¡m�!s¢ � H ��okmA¢ � H ��o?�3� _
which correctlyhas

� \ �£m��~o��x9 and
� \ �¤� ¥ for �¦�   . Note that the METIS

library for graphpartitioning (Sec.6) doesnotnecessarilygenerateconnectedpar-
titions,makingthispotentially morecomplicated.�W2g� is thelatency (or start-uptime)of eachmessage.�k2g� between0.5and2 milli sec-
ondsaretypicalvaluesfor PVM onaLAN [34,12].

Next arethetermsthatdescribeourtwo bandwidth effects.-§.C052�mn�
o is thenumberof
split links in thewholesimulation; thiswasalreadydiscussedin Sec.6 (seeFig.6).
Accordingly, -B.C052�mn�
o��3� is the numberof split links per computational node. � � \GZis the size of the messageper split link.

� \GZ and
� \J� � are the nodeand network

bandwidths, asdiscussedabove.

In consequence,thecombinedtime for onetimestepis�Bmn�
op� � 	� y �z�|{~}�����mn�6ok�|{ ZA[l\ mt�
o��¨�
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-B.��©� w ª � \ �5mn�6o%�W2g�Q� -B.1052�mt�
o� � � \GZ� \JZ �¦-B.1032�mt�
o � � \GZ� \J� �Q« $
Accordingto whatwe have discussedabove, for �¬�   thenumberof neighbors
scalesas

� \ �RL®­3¯ �;° � and the numberof split links in the simulation scalesas-B.1032�L ¢ � . In consequencefor {�}���� and { ZA[l\ smallenough,wehave:� for asharedor bustopology,
� \J� � is relatively smallandconstant,andthus

�Bmn�
opL �� �q�z� �¢ � � ¢ �R� ¢ �R±� for a switchedor a parallelsupercomputertopology, we assume
� \J� �²�³  and

obtain�Bmn�
opL �� �q�z� �¢ � � �i$
Thus,in a sharedtopology, addingCPUswill eventually increasethe simulation
time, thusmakingthe simulation slower. In a non-sharedtopology, addingCPUs
will eventuallynot make thesimulationany faster, but at leastit will not bedetri-
mentalto computationalspeed.Thedominanttermin asharedtopologyfor �R�  
is the network bandwidth; the dominantterm in a non-sharedtopologyis the la-
tency.

The curves in Fig. 11 are resultsfrom this predictionfor a switched100 Mbit
EthernetLAN; dotsandcrossesshow actualperformanceresults.The top graph
shows thetime for onetime step,i.e. �Bmn�
o , andtheindividual contributions to this
value.Thebottomgraphshowstherealtimeratio (RTR)´ � ´ mn�6o ^ � µ ��Bmt�
o � � ° Y ­�Bmn�
o _
which sayshow muchfasterthanreality thesimulation is running. µ � is thedura-
tion a simulation time step,which is � ° Y ­ in TRANSIMS-1999.Thevaluesof the
freeparametersare:� Hardware-dependentparameters. Weassumethattheswitchhasenoughband-

width so that the effect of
� \G� � is negligeable.Other hardware parametersare�W2g�;��9Q$�¶ msand

� \GZ ��&:9 Mbit/s. ·� Implementation-dependent parameters. The numberof messageexchanges
pertimestepis -4.��3�]��7 .· Ourmeasurementshaveconsistently shownthatnodebandwidthsarelowerthannetwork

bandwidths. Even CISCOitself specifies 148000 packets/sec, which translatesto about
75 Mbit/sec, for the100Mbit switchthatweuse.
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� Scenario-dependentparameters. Exceptwhennoted,ourperformancepredic-
tionsandmeasurementsrefer to thePortland20024links network. We use,for
thenumberof split links, -T.1052�mn�
op���JF#9 w �=<?> �A@DH �GF#9 , asexplainedin Sec.6.� Other Parameters.The messagesizedependson the plansformat (which de-
pendsonthesoftwaredesignandimplementation),onthetypicalnumberof links
in a plan,andon thefrequency per link of vehiclesmigratingfrom oneCPUto
another. Weuse� � \JZ ��7X989¡¸B¹s� Y ° . This is anaveragenumber;it includesall the
information thatneedsto besentwhena vehiclemigratesfrom oneCPUto an-
other. Thenew TRANSIMS multi-modalplansformateasilyhas200entriesper
driver andtrip, resultingin 800bytesof informationjustfor theplan.In addition,
thereis informationaboutthevehicle(ID, speed,maximumacceleration,etc.);
however, not in every timestepavehicleis migratedacrossaboundaryonevery
split link. In principle it is however possible to compresstheplansinformation,
so improvementsarepossible herein the future.Also, we have not explicitely
modelled simulation output,which is indeeda performanceissueon Beowulf
clusters.

Theseparameterswereobtainedin thefollowing way: First,weobtainedplausible
valuesvia systematiccommunication testsusingmessagessimilar to theonesused
in the actualsimulation [34]. Then,we ran the simulation without any vehicles
(seebelow) andadaptedour valuesaccordingly. Runningthe simulation without
vehiclesmeansthat we have a muchbettercontrol of � � \GZ . In practice,the main
resultof this stepwasto set �?2�º�� to 0.8 msec,which is plausiblewhencompared
to thehardwarevalueof 0.5 msec.Last,we ran thesimulationswith vehiclesand
adjusted� � \GZ to fit thedata.— In consequence,for theswitched100Mbit Ethernet
configurations,within thedatarangeour curvesaremodelfits to thedata.Outside
thedatarangeandfor otherconfigurations,thecurvesaremodel-basedpredictions.

Theplot (Fig.11)showsthatevensomethingasrelatively profaneasacombination
of regular PentiumCPUsusinga switched100Mbit Ethernettechnology is quite
capablein reachinggoodcomputational speeds.For example, with 16 CPUsthe
simulation runs40 times fasterthan real time; the simulation of a 24 hour time
periodwould thustake 0.6hours.Thesenumbersrefer, assaidabove, to thePort-
land20024links network. Includedin theplot (blackdots)aremeasurementswith
a compute clusterthat correspondsto this architecture.The triangleswith lower
performancefor the samenumberof CPUscomefrom usingdual insteadof sin-
gleCPUson thecomputationalnodes.Notethatthecurve levelsoutat aboutforty
timesfasterthanreal time, no matterwhat the numberof CPUs.As onecansee
in thetop figure,thereasonis thelatency term,which eventually consumesnearly
all the time for a time step.This is oneof the importantelementswhereparallel
supercomputersaredifferent:For example theCrayT3D hasa morethana factor
of tenlower latency underPVM [12].

As mentionedabove, we also ran the samesimulation without any vehicles.In
the TRANSIMS-1999implementation,the simulation sendsthe contentsof each
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CA boundaryregion to the neighboringCPU even when the boundaryregion is
empty. Withoutcompression,this is five integersfor fivesites,timesthenumberof
lanes,resultingin about40bytespersplit edge,which is considerablylessthanthe
800bytesfrom above.Theresultsareshown in Fig. 12.Shown arethecomputing
timeswith 1 to15single-CPU slaves,andthecorrespondingrealtimeratio.Clearly,
we reachbetterspeed-upwithoutvehiclesthanwith vehicles(compareto Fig. 11).
Interestingly, this doesnot matterfor themaximum computational speedthatcan
be reachedwith this architecture:Both with andwithout vehicles,the maximum
real time ratio is about80; it is simply reachedwith a highernumberof CPUsfor
thesimulation with vehicles.Thereasonis thateventually theonly limiti ng factor
is thenetwork latency term,which doesnot have anything to do with theamount
of informationthatis communicated.

Fig. 13 (top) shows somepredictedreal time ratiosfor othercomputing architec-
tures.For simplicity, we assumethat all of themexcept for onespecialcaseex-
plainedbelow usethe same500 MHz Pentiumcomputenodes.The differenceis
in thenetworks:We assume10Mbit non-switched,10Mbit switched,1 Gbit non-
switched,and1 Gbit switched.Thecurvesfor 100Mbit arein betweenandwere
left out for clarity; valuesfor switched100Mbit Ethernetwerealreadyin Fig. 11.
Oneclearlyseesthat for this problemandwith today’s computers,it is nearlyim-
possible to reachany speed-upon a 10 Mbit Ethernet,even whenswitched.Gbit
Ethernetis somewhatmoreefficient than100Mbit Ethernetfor smallnumbersof
CPUs,but for largernumbersof CPUs,switchedGbit Ethernetsaturatesatexactly
thesamecomputational speedastheswitched100Mbit Ethernet.This is dueto the
factthatweassumethatlatency remainsthesame– afterall, therewasnoimprove-
mentin latency whenmoving from 10 to 100Mbit Ethernet.FDDI is supposedly
evenworse[12].

The thick line in Fig. 13 correspondsto the ASCI Blue Mountainparallelsuper-
computeratLosAlamosNationalLaboratory. Onaper-CPUbasis,thismachineis
slower thana500MHz Pentium.Thehigherbandwidthandin particularthelower
latency make it possible to usehighernumbersof CPUsefficiently, andin factone
shouldbe able to reacha real time ratio of 128 accordingto this plot. By then,
however, thegranularityeffectof theunequaldomains (Eq.(1), Fig. 8) wouldhave
setin, limit ing thecomputationalspeedprobablyto about100timesrealtimewith
128CPUs.We actuallyhave somespeedmeasurementson thatmachinefor up to
96 CPUs,but with a considerablyslower codefrom summer1998.We omit those
valuesfrom theplot in orderto avoid confusion.

Fig. 13 (bottom) shows predictionsfor the higherfidelity Portland200000 links
network with thesamecomputerarchitectures.The assumption wasthat the time
for onetime step,i.e. � 	 of Eq. (3), increasesby a factorof eight dueto the in-
creasedload.This hasnot beenverified yet. However, the generalmessagedoes
not dependon the particulardetails:When problemsbecomelarger, then larger
numbersof CPUsbecomemore efficient. Note that we againsaturate,with the
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switchedEthernetarchitecture,at 80 timesfasterthanreal time, but this time we
needabout64 CPUswith switchedGbit Ethernetin order to get 40 timesfaster
thanrealtime — for thesmallerPortland20024links network with switchedGbit
Ethernetwe would need8 of thesameCPUsto reachthesamereal time ratio. In
shortandsomewhat simplified: As long aswe have enoughCPUs,we canmicro-
simulateroadnetworksof arbitrarily largesize, with hundredsof thousandsof links
andmore,40 timesfasterthanreal time, even without supercomputer hardware.
— Basedon our experience,we areconfidentthat thesepredictionswill be lower
boundson performance:In thepast,we havealwaysfoundwaysto make thecode
moreefficient.

9 Speed-up and efficiency

We have castour resultsin termsof the real time ratio, sincethis is themostim-
portantquantitywhenonewantsto geta practicalstudydone.In this section,we
will translateour resultsinto numbersof speed-up,efficiency, andscale-up,which
allow easiercomparisonfor computingpeople.

Let usdefinespeed-upas

� mn�
o ^ � �Bm��~o�Bmn�
o _
where � is againthe numberof CPUs, �Bm��~o is the time for onetime-stepon one
CPU,and �Bmn�
o is the time for onetime stepon � CPUs.Dependingon theview-
point, for �Bm��~o oneuseseithertherunningtime of theparallelalgorithmon a sin-
gle CPU,or thefastestexisting sequentialalgorithm. SinceTRANSIMS hasbeen
designedfor parallelcomputing andsincethereis no sequentialsimulation with
exactly thesameproperties,�Bm��~o will betherunningtimeof theparallelalgorithm
on a single CPU.For time-steppedsimulationssuchasusedhere,thedifferenceis
expectedto besmall.@
Now noteagainthat the real time ratio is ´ � ´ mt�
o��®� ° Y ­©���Bmn�
o�$ Thus,in order
to obtainthe speed-upfrom the real time ratio, onehasto multiply all real time
ratiosby �Bm��~o���m�� ° Y ­©o . On a logarithmic scale,a multiplication correspondsto a
linear shift. In consequence,speed-upcurvescanbe obtainedfrom our real time
ratiocurvesby shifting thecurvesupor down sothatthey startat one.

This alsomakesit easyto judgeif our speed-upis linear or not. For examplein@ An event-drivensimulation couldbea counter-example:Depending on theimplementa-
tion, it could beextremely faston asingleCPUup to mediumproblemsizes,but slow ona
parallel machine.
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Fig. 11. 100 Mbit switched EthernetLAN. Top: Individual time contributions. Bottom:
Corresponding RealTime Ratios.The black dotsrefer to actually measured performance
whenusing oneCPUpercluster node; thecrosses refer to actually measured performance
whenusingdual CPUsper node(the ½ -axis still denotesthe numberof CPUsused). The
thick curveis thepredictionaccording to themodel. Thethin linesshow theindividual time
contributionsto thethick curve.

Fig. 13 bottom, the curve which startsat 0.5 for 1 CPU shouldhave an RTR of
2 at 4 CPU,an RTR of 8 at 16 CPUs,etc.Downward deviations from this mean
sub-linearspeed-up.Suchdeviationsarecommonlydescribedby anothernumber,
calledefficiency, anddefinedas¾ mt�
o ^ � �Km��~o?�5��Bmn�
o $
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Fig. 14containsanexample.Notethatthisnumbercontainsnonew information; it
is just a re-interpretation.Also notethat in our logarithmic plots,

¾ mn�
o will just be
thedifferenceto thediagonal�¡�Bm���o . Efficiency canpointoutwhereimprovements
wouldbeuseful.
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Fig.13.Predictionsof realtimeratio for other computerconfigurations.Top: With Portland
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Note that for the switchedconfigurations and for the supercomputer, the saturating real
time ratio is the samefor both network sizes, but it is reached with different numbersof
CPUs.Thisbehavior is typical for parallel computers:They areparticularly goodatrunning
larger andlarger problemswithin the samecomputing time. — All curvesin both graphs
arepredictions from our model.We have someperformancemeasurementsfor the ASCI
maschine,but sincethey weredonewith anolderandslower version of thecode, they are
omittedin order to avoid confusion.

10 Other modules

As explainedin the introduction, a micro-simulation in a softwaresuitefor trans-
portationplanningwould have to berun many times(“feedbackiterations”)in or-
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der to achieve consistency betweenmodules.For the microsimulation alone,and
assumingour 16 CPU-machinewith switched100Mbit Ethernet,we would need
about30hoursof computingtimein orderto simulate24hoursof traffic fifty times
in a row. In addition,we have the contributions from the othermodules(routing,
activitiesgeneration).In thepast,thesehave never beena largerproblemthanthe
micro-simulation, for severalreasons:� Thealgorithmsof theothermodulesby themselvesdid significantly lesscompu-

tationthanthemicro-simulation.� Evenwhenthesealgorithms startusingconsiderableamountsof computer time,
they are “tri vially” parallelizableby simply distributing the households across
CPUs.

	 <� In addition,during the iterationswe never replanmorethanabout10% of the
population,saving additional computertime.

In summary, the TRANSIMS modulesbesidesthe traffic micro-simulation cur-
rentlydonot contribute significantly to thecomputationalburden;in consequence,
thecomputationalperformanceof the traffic micro-simulation is a goodindicator
of theoverall performanceof thesimulationsystem.

	 < This is possiblebecauseof thespecific purposeTRANSIMS is designedfor. In realtime
applications,whereabsolute speed betweenrequestandresponsematters,the situation is
different[8].
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11 Summary

Thispaperexplainstheparallelimplementationof theTRANSIMSmicro-simulation.
Sinceothermodulesarecomputationally lessdemandingandalsosimplerto par-
allelize,theparallelimplementationof themicro-simulationis themostimportant
andmostcomplicatedpieceof parallelizationwork.Theparallelizationmethodfor
the TRANSIMS micro-simulation is domaindecomposition, that is, the network
graphis cut into asmany domainsasthereareCPUs,andeachCPUsimulatesthe
traffic onits domain.Wecutthenetwork graphin themiddleof thelinks ratherthan
at nodes(intersections),in orderto separatethetraffic dynamicscomplexity at in-
tersectionsfrom thecomplexity of theparallelimplementation.Weexplainhow the
cellularautomata(CA) or any techniquewith a similar time depencency schedul-
ing helpsto designsuchsplit links, andhow themessageexchangein TRANSIMS
works.

Thenetwork graphneedsto bepartitionedinto domainsin a way thatthetime for
messageexchangeis minimized.TRANSIMSusestheMETIS library for thisgoal.
Basedonpartitioningsof two differentnetworksof Portland(Oregon),wecalculate
thenumberof CPUswherethisapproachwouldbecomeinefficient justdueto this
criterion.For anetwork with 200000links, wefind thatdueto thiscriterionalone,
up to 1024CPUswould beefficient.We alsoexplainhow theTRANSIMS micro-
simulation adaptsthepartitionsfrom onerun to thenext duringfeedbackiterations
(adaptive loadbalancing).

Wefinally demonstratehow computing timefor theTRANSIMSmicro-simulation
(andthereforefor all of TRANSIMS) canbesystematically predicted.An impor-
tantresultis thatthePortland20024links network runsabout40 timesfasterthan
realtimeon16dual500MHz Pentiumcomputersconnectedvia switched100Mbit
Ethernet.Theseareregulardesktop/LANtechnologies.Whenusingthenext gener-
ationof communicationstechnology, i.e. Gbit Ethernet,we predictthesamecom-
putingspeedfor a muchlargernetwork of 200000links with 64CPUs.

12 Acknowledgments

This is a continuationof work thatwasstartedat LosAlamosNationalLaboratory
(New Mexico) andat theUniversity of Cologne(Germany). An earlierversionof
someof the samematerialcanbe found in Ref. [36]. We thankthe U.S. Federal
Departmentof Transportation and Los Alamos National Laboratoryfor making
TRANSIMSavailablefreeof chargeto academicinstitutions.Theversionusedfor
thiswork was“TRANSIMS-LANL Version1.0”.

28



References

[1] A. Bachem,K. Nagel, and M. Rickert, Ultraschnelle mikroskopische Verkehrs-
Simulationen,in: R. FliegerandR. Grebe(eds.),Parallele DatenverarbeitungAktuell
TAT (1994).

[2] J. Barcelo, J. Ferrer, D. Garcia, M. Florian, and E. Le Saux, Parallelization of
microscopictraffic simulation for ATT systems,in: P. Marcotte andS.Nguyen(eds.),
Equilibrium and advancedtransportation modelling (Kluwer AcademicPublishers,
1998), 1–26.

[3] C. e. a. Barrett, Activity generator module, chap 3 of vol 3 of transims-2.1
documentation, Los Alamos Unclassified Report (LA-UR) 00-1725, Los Alamos
National Laboratory, Los AlamosNM (2001),seetransims.tsasa.lanl.gov.

[4] R. J. Beckman, K. A. Baggerly, and M. D. McKay, Creatingsynthetic base-line
populations,Transportion Research Part A – Policy andPractice 30 (1996) 415–429.

[5] R. Beckmanet al, TRANSIMS–Release1.0– TheDallas-Fort Worth casestudy, Los
AlamosUnclassified Report(LA-UR) 97-4502,seetransims.tsasa.lanl.gov (1997).

[6] J. L. Bowman,The day activity schedule approachto travel demand analysis,Ph.D.
thesis, Massachusetts Instituteof Technology, Boston, MA (1998).

[7] G. D. B. Cameronand C. I. D. Duncan, PARAMICS — Parallel microscopic
simulation of road traffic, J.Supercomputing10(1)(1996) 25.

[8] I. Chabini, Discretedynamic shortest path problemsin transportation applications:
Complexity andalgorithms with optimal run time, Transportation Research Records
1645 (1998) 170–175.

[9] G. Chang,T. Junchaya,andA. Santiago, A real-timenetwork traffic simulationmodel
for ATMS applications:PartI — Simulation methodologies, IVHS Journal 1 (1994)
227–241.

[10] A. Chronopolous and P. Michalopoulos, Traffic flow simulation through parallel
processing. Final research report, Tech. rep., Center for Transportation Studies,
MinnesotaUniversity, Minneapolis, MN (1991).

[11] M. Cremerand J. Ludwig, A fast simulation model for traffic flow on the basis of
Booleanoperations, MathematicsandComputersin Simulation28 (1986) 297–303.

[12] J. Dongarra, I. Duff, D. Sorensen, andH. vanderVorst,Numerical linear algebra for
high-performancecomputers,Software,Environments,andTools (SIAM Society for
Industrial andApplied Mathematics,Philadelphia, 1998).

[13] DYNAMIT /MITSIM (1999), Massachusetts Institute of Technology, Cambridge,
Massachusetts.Seeits.mit.edu.

[14] J. Esserand K. Nagel, Census-based travel demandgeneration for transportation
simulations, in: W. Brilon, F. Huber, M. Schreckenberg,andH. Wallentowitz(eds.),
Traffic and Mobilit y: Simulation – Economics – Environment, Aachen, Germany
(1999).

29



[15] Federal Highway Administration, Washington, D.C., Traffic Network Analysis with
NETSIM—A UserGuide(1980).
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