A Thread-Based Distributed Traffic

Micro-Simulation

Pedro G. Gonnet (pedro@vis.ethz.ch)

June 27, 2001

Abstract

This Term Paper presents a distributed Traffic Micro-Simulation. The design
goals were speed, realism, distributeability and simplicity. The speed goal was
clearly achieved. As for the others, further work/testing is necessary.

Contents

1 Introduction 2
1.1 Design Concepts i e 2

2 Traffic Model 3
2.1 Cars e 3
2.2 Streets e e e e e 3
2.3 Intersections. e e 4

3 Distributed Traffic Model 5
3.1 Partitioned the Network 5
3.2 VehiclePassing 5
3.3 Coordination e e 6

4 Implementation 7
41 Modules 7
4.1.1 TrafficModules 7

4.1.2 Communication Modules 8

4.1.3 Control Modules 9

4.1.4 Utility Modules 10

4.1.5 Other Modules 10

4.2 Functions and Data Structures 10
421 becaster 10

422 btree 11

423 car 12

424 commline e e 13

425 dispatcher 13

4.2.6 @rror i e e e e e e e e 13

427 handler i e e e e e e e 14

4.2.8 1listener 14

429 managerl 15

4.2.10 model e e e 15

4211 msgrl 16

4212 node e e e e e e e e e e e 16

4.2.13 route e e e e e 18

4.2.14 runner e e e e e e e e e e e e e e e e e

4.2.15 street e e
4216 vsim L e e e e e e e e e
4.3 Communication e
4.4 Algorithms
441 streetstep
442 mnodepass.ol e
4.5 File Formats
451 Nodes
452 CarsandRoutes
4.5.3 Street Travel Times
vsim — The Traffic Simulation
5.1 Running in Stand-Alone Mode
5.2 Runningin Server Mode
5.3 Runningin Client Mode
Performance Results
6.1 Gotthard Scenario,
6.2 Switzerland Scenario L L o
6.3 Notes o o i i e e e e e
6.3.1 Graph Partitioning oo
6.3.2 Threads
6.3.3 Useability
Outlook
7.1 What hasbeendone
7.1.1 Speed
7.1.2 Realism e
7.1.3 Distributeability 0.
7.1.4 Simplicity
7.2 What hasnot yet beendone
7.2.1 Signaled Intersections
7.2.2 Wait and Halt Conditions

Chapter 1

Introduction

A bit of blabla about why we do traffic simulation and what it is good for

1.1 Design Concepts
The main goals set for the vsim Traffic Simulation were

e Speed The Simulation should run faster than existing programs.

¢ Realism The Simulation should be accurate enough to simulate even
small traffic situations reliably.

e Distributeability The Simulation should be efficiently distributeable to
take advantage of computer clusters.

e Simplicity The Simulation should be simple enough for anybody with
basic computer science knowledge to extend.

To achieve this, a number of concepts were used, the most important four being;:

e Queue-Based Traffic Model Provides a more realistic traffic model,
where for each time-step the acceleration and not the displacement is
calculated.

e Multi-threaded Computer-Node Implementation Takes advantage
of multi-processor machines and amortizes time spent waiting on commu-
nication.

e Explicit, Asynchronous Inter-Node Communication Avoids over-
head inherent to MPI and other libraries.

e Multi-Constraint Graph Partitioning Gives better graph partitions
at the expense of more explicit node and street load data.

These four concepts and others will be explained in more detail further on.

Chapter 2

Traftlic Model

As mentioned earlier, realism was one of the primary design goals. For the vsim
Traffic Simulation, a classic particle simulation approach was taken where every
car is aware of it’s position and speed and its acceleration is calculated and
applied at every time-step.

Although this approach is more realistic, it is definitely more computation-
ally intensive than cell-based models. Furthermore, this model also requires
more network detail — i.e. definition of connectivity and priorities at nodes —
which is not always available.

2.1 Cars

As mentioned earlier, the cars in vsim are aware of their position (depth into
a street) and velocity. They have a route to follow, and a given start time.
For added realism, each car also has a bias factor that influences it’s driving
behavior — i.e. it’s tendency to speed and cut-off other vehicles.

Car acceleration is governed by a single procedure which, given an obstacle
and it’s velocity, the car will calculate — knowing its own velocity — its acceler-
ation for the next time-step.

Each car also decides on its own where and when to switch lanes, given
information on if it has to or can switch lanes and the distances to and velocities
of the cars ahead and behind on the neighboring lanes.

2.2 Streets

In vsim, streets are a collection of linked lists of cars, one for each lane. The
streets are uni-directional and have therefore distinct from- and to-nodes.

In each time-step, all lanes are traversed in parallel from the from- to the to-
end. Each car calculates its acceleration taking the car ahead of it as a moving
obstacle. For the last car in each lane, the intersection is queried for distance
and velocity on the destination street.

When a car leaves a street, it is passed over to the to-node which relays it
to the next street in its route.

2.3 Intersections

Intersections in vsim contain information about incoming and outgoing streets
and about the way their lanes are interconnected, which connection has priority
over which and which connections are activated in which time-steps (traffic
lights).

In each time-step, a node calls on all incoming streets to move their cars.
When it is queried by a street for a car to pass over, it first checks if there is
a connection open for the car in question (lane and route defendant). If not, it
will return an obstacle with distance and velocity 0. Otherwise, it queries the
destination street (which can also be on a different computer) and returns the
distance to and velocity of the first car there.

Chapter 3

Distributed Traffic Model

explain what changes have to be made and how these can affect the efficiency /reliability
of the simulation.

3.1 Partitioned the Network

The network is partitioned by separating nodes and outgoing streets. A node
with all its incoming streets can be seen as the smallest unit of computation.

Communication is reduced to querying another computer only when a car
passes over a node into a foreign street.

conmputer 1 - -
—~

/ conputer 2

_ > !
comuni cati on /

3.2 Vehicle Passing

The process of passing a car from one computer to the other consists of only
two messages — a request and a response. For a node being queried, this looks
as follows:

|
|
send car data and |

di stance from node \
|

conputer 1 conputer 2

get space on street
and cal cul ate car
novenent

if the car would not
cross the node, send

/ fail and distance and
| vel ocity of next obstacle

nove the car

if the car would cross
the node, send ok and

|
|
|
/‘/ di stance and velocity of
car on street
|

renove the car

After sending a request, the node can remember the distance and velocity of
the next obstacle returned by the other computer an so avoid multiple queries
to the same street within the same time-step.

3.3 Coordination

The distributed simulation is controlled in a master/slave fashion. One machine
(master) controls the others who actualy run the simulation (slaves). The master
can run on the same machine as a slave.

Once the simulation has been started in slave mode, it waits for a connection
from a master. Once this connection is established, it recieves information on
where its input files resides an reads them. Once this has been done, it waits
for a ”tick” message, simulates one timestep and answers with either ”ok” or
" fail”.

When running the simulation, the master sends out a "tick” to all slaves and
waits until he has a response from all machines before continuing. A slave does
not need to have received a ”tick” before processing requests from other slaves.

Between timesteps the master can also request data, such as car positions
and velocities or street travel times.

Chapter 4

Implementation

This chapter explains how the above mentioned traffic model was implemented
for the vsim traffic simulation.
The program was entirely written in the C Programming Language.

4.1 Modules

Figure 4.1 shows the main modules in vsim and how they interact. Solid arrows
denote interaction in the form of function calls, dashed arrows through network
communication.
The modules runner, handler and msgr appear more than once, since vari-
ous instances of those objects can be active at the same time in different threads.
The modules bcaster, car, route and model are missing from the diagram.

4.1.1 Traffic Modules

The modules that actual simulate traffic are node, street, car, route and
model. As shown in Figure 4.2, the nodes, streets and routes are stored in

Figure 4.1: Main modules and their interactions. Solid arrows denote communication
in the form of function calls, dashed arrows through network communication.

street

T

Figure 4.2: Modules involved in simulating traffic. The arrows denote referencing
between modules.

a btree in the main module vsim. The cars are stored directly in vsim as a
linked listed, sorted by their departure times.

The nodes, streets, cars and routes can be read by the functions node_read,
street_read, car_read and route_read respectively. These functions take a file
descriptor (FILE *) as an argument and return a pointer to a structure of the
respective type or NULL if an error occurs.

These functions are called through the main module vsim through the func-
tions vsim readnodes, vsim readstreets, vsim readroutes and vsim readcars
respectively. All four procedures take the name of the file to be read (char *)
as an argument and return the number of objects read (int) or a negative value
if an error occurs.

The input functions in vsim must be called in the order given above for the
objects to be linked together correctly.

Each time-step is initiated by either the command-line (module commline)
or, in the case of a single slave in a distributed simulation, from the a network
(module handler) by calling vsim step. vsim_step first checks if any cars need
to be inserted, then calls node_step on all nodes (how this is node in detail will
be explained further in this text). node_step then calls street_step on each
incoming street.

In the event of a car driving towards or over a node, street_step will call
node_pass on its to-node with the car in question as an argument.

4.1.2 Communication Modules

As mentioned earlier, communication is done over TCP/IP using an explicit
protocol. When not running in stand-alone mode, the main module (vsim)

manager i stener

AATA

Figure 4.3: Control flow for each time-step (in red).

e e

Figure 4.4: Communication for distributed simulations. Solid arrows represent func-
tion calls in other modules. Dashed arrows represent communication over the network.

initializes a listener and a dispatcher as shown in Figure 4.4.

The listener, once initialized, runs in its own thread and waits for con-
nections on the port specified by the variable vsim port in the module vsim.
Once a connection is established, a new handler is created with the connection
socket as an argument. The handler then reads messages from the given socket
and processes them until program termination. If no messages are available, the
handler waits.

The dispatcher handles requests for communication with a given IP-address
(usual from a node) with the function dispatcher get, returning a msgr to
handle message passing. If no msgr exists for the given IP-address, a new one is
created with msgr_create. Once the client is done communicating, the msgr is
returned to the dispatcher with the function dispatcher put without closing
the network connection. The msgr can then be reused by any other thread
requesting communication with the same IP-address.

4.1.3 Control Modules

As could be seen in Figure 4.2, vsim uses the modules manager and runner.
When running in stand-alone or slave mode, the main module initializes a
manager which, in turn, will create a given number of runners (the exact num-
ber is given by the constant manager nrrunners), each with their own thread,
and gives each one a linked list of pointers to the nodes.

After being initialized, the runners wait at a barrier (manager wait). At
every time-step, the manager opens the barrier and waits. The runners then
call node_step on each of the nodes in their list and reenter the barrier. Once
all runners have finished, the manager is signaled and returns.

To guaranty an even load distribution between the runners, the nodes must
be redistributed according to the time it takes to process them. The time spent
on each node is measured every runner_clockstep seconds (since this implies
a system call for every node, it is not done every time-step) and the nodes are
redistributed every manager rschedrate seconds.

To avoid the hassle of redistribution, one could make all runners get their
nodes from a common linked list. This however would require us to control
access to this list (concurrency), which causes an enormous loss of performance
on multi-processor machines.

10

4.1.4 Utility Modules

The only utility module used in the simulation is the btree module. This is a
generic, 16-way B-Tree with a 1024-entry cache of the last accessed members by
hash-value.

4.1.5 Other Modules

The commline module acts as a front end for a user in stand-alone or server
mode. after being initialized with commline init, it reads commands from
standard input an delegates them to the vsim module. A description of the
commands can be found in Chapter 5.

The bcaster module is used by the simulation when running in server mode
and broadcasts messages to a number of clients. Clients can be added with
bcaster_add, yet only before connection is established with bcaster_open.

model

4.2 Functions and Data Structures

The following sections describe how the above mentioned modules were imple-
mented and what types, variables and functions are available.

4.2.1 Dbcaster

The bcaster’s job is to maintain a number of connections to simulation clients
and broadcast commands and requests (i.e. for travel time data) to them.

| struct bcaster |

struct conn conn[] | the connections
int nr_conns number of connections

struct conn

int socket the connection socket (for I/0)
unsigned int ip | IP-address of the machine connected

int bcaster_init (struct bcaster *b)
Initialize the given bcaster. On error, a negative value is returned.

int bcaster_add (struct bcaster *b , unsigned int ip)
Add the given IP-address to the list of clients. This may only be done
before becaster_open is called. On error, a negative value is returned.

int bcaster remove (struct bcaster *b , unsigned int ip)
Remove an TP-address from the list of clients. This may only be done
before bcaster_open is called. On error, a negative value is returned.

11

int bcaster_open (struct bcaster *b)
Open connections to all clients. On error, a negative value is returned.

int bcaster_close (struct bcaster *b)
Close connections to all clients. On error, a negative value is returned.

int bcaster_cast (struct bcaster *b , char *msg , int msg.size , char
xxpct , int xpct_size)
Cast the given message to all clients and compare the response to the
given expected message. On error, or if a different response is given, a
negative value is returned.

int bcaster_pos (struct bcaster *b , FILE *out)
Ask all clients for their car positions and velocities and dump them to the
given file. On error, a negative value is returned.

int bcaster_stimes (struct bcaster *b , FILE *out)
Ask all clients for the street travel times and dump them to the given file.
On error, a negative value is returned.

4.2.2 Dbtree

The btree is used to store nodes, streets and routes. It is generic in the sense
that it can store any structure, as long as it starts with a unique integer value.

struct btree |

struct btree_node *xfirst first node in the tree
struct btree_leaf *cache[] | cache of last accesses

struct btree_node
int £ill nr of subnodes/leafs
int leaf am i a leaf?

struct btree_leaf *cont[] leaves within node
struct btreenode *nodes[] | subnodes

struct btree_leaf |

int key | leaf key |

struct btree *btreenew ()
Create a new btree. On error, NULL is returned.

struct btree_leaf *btree find (struct btree *t , int key)
Search for the element with the given key. On error, or if nothing is found,
NULL is returned.

int btree_insert (struct btree *t , struct btree_leaf *1)
Insert an element into the tree. On error, a negative value is returned.

12

int btreemap (struct btree *t , int (*func)(struct btree_leaf *
, void *) , void *cont)
Apply the given function to all the elements in the btree with the given
argument. The applied function should return a negative value on error
to interrupt execution. On error, a negative value is returned.

int btree_count (struct btree *b)
Return the number of elements in this btree. On error, a negative value
is returned.

4.2.3 car

The car data structure contains data relative to the car state (position and
velocity), as well as route and timing data. The next_step field is there for
speed purposes only, as it could be looked up in the route. The end field is
(mis)used for timing the car on each street.

| struct car |

int id id of this car

struct car *next next car for linked list

float length length of this car

float bias car bias (for driving behaviour)
float pos current position in street
float vel current velocity in m/s

int start, end start and end time for route
int step position in route

int next_step id of next street in route
struct route *route | route used

struct car *car create (int id , float length , float bias , int route_id
, int start)
Create a car from with the given values. If the first street on the car’s
route is not local, NULL is returned. On error, NULL is returned.

struct car *car_read (FILE *in)
Read a car from the given file. If the first street on the car’s route is not
local, NULL is returned. On error, NULL is returned.

struct car *car rebuild (int id , float length , float bias , int
route_id , int start , int step)
Rebuild a car with the given values. This function is called by handler pass.
On error, NULL is returned.

13

4.2.4 commline

The commline reads commands from standard input, parses them and passes
them on to the main module (vsim).

| struct commline |

FILE *in commandline input

char *prompt commandline prompt

int nr_tokens number of tokens in last line
struct token tokens[] | tokens from last line

int commline init (struct commline *c , FILE *in , char *prompt)
Initialize the given commline with the given input file and prompt. On
error, a negative value is returned.

int commline run (struct commline *c)
Read and execute commands until the user terminates. On error, a nega-
tive value is returned.

4.2.5 dispatcher

The dispatcher manages a list of open connections to different clients as a
hashtable over their TP-addresses.

| struct dispatcher |

struct msgr *msgrs[] | the msgrs
pthread mutex t mutex | mutex for synchronising access to the
msgr list

int dispatcher_init (struct dispatcher *d)
Initialize the given dispatcher. On error, a negative value is returned.

struct msgr *dispatcher get (struct dispatcher *d , unsigned int ip
)
Get a msgr for the given IP-address. If none is available, a new one is
created. On error, NULL is returned.

int dispatcher put (struct dispatcher *d , struct msgr *m)
Return a msgr to the dispatcher after use. On error, a negative value is
returned.

4.2.6 error

The error module is used by all other modules and manages a stack of error
messages which can be dumped or reset. In most modules, there is a macro
error which maps to the function error register with the appropriate mes-
sage and __LINE__ and _FILE__ as parameters.

14

int error register (int id , char *msg , int line , char *file)
Add a new error message to the stack. The parameter id is returned.

void error_dump (FILE *out)
Dump the error stack to the given file.

void error_reset ()
Reset the error stack.

4.2.7 handler

A handler, once created, runs in its own thread reading and processing com-
mands from the network. handlers are spawned by the listener.

struct handler

int socket I/0 socket

pthread t thread | thread in which this handler is running
char buff[] input buffer

int bytes nr of bytes in input buffer

struct handler *handler _create (int socket)
Create a new handler for the given socket. The handler will spawn its
own thread and start receiving and processing commands. On error, NULL
is returned.

int handler kill (struct handler *h)
Tell the given handler to close its socket and terminate execution. On
error, a negative value is returned.

4.2.8 1listener

The listener runs in its own thread and waits for network connections on the
port specified by vsim port. Once a connection is received, it creates a new
handler.

struct listener |

struct sockaddr_in addr | the address im listening on

int sock the socket bound to this address for
listening

pthread_t thread the thread in which the listener is run-
ning

int listener_init (struct listener *1)
Initialize the given listener. This will also start it. On error, a negative
value is returned.

15

4.2.9 manager

The manager handles control of the runners. It’s main task is synchronizing
the runners and distributing the nodes over them evenly.

| struct manager |

struct runner runners[] the runners

struct node *nodes[] node queues for the runners

int count nr of runners that have reached
the barrier

pthread cond_t done_cond condition to signal when all the

runners are finnished

pthread mutex_t barrier mutex | mutex to access the barrier
pthread cond_t barrier_cond condition variable associated to
the barrier mutex

int manager_init (struct manager *m)
Initialize the given manager. On error, a negative value is returned.

int manager wait (struct manager *m)
Wait at the barrier. This function is called by the runners once they have
finished processing their node-list. On error, a negative value is returned.

int manager nodes (struct manager *m)
Tell the manager to make a list of local nodes and distribute them over
the runners. On error, a negative value is returned.

int manager step (struct manager *m)
Tell the manager to simulate one time-step by opening the barrier and
waiting for all runners to return. On error, a negative value is returned.

4.2.10 model

The model module implements the driver behavior for each car. It has no data
type, only three functions that govern acceleration and lane switching.

float model drive (float speed , float dist , float obst_speed , float
bias , float limit)
Calculate the acceleration for a car driving at the given speed with an
obstacle at dist meters with the given velocity. bias is the car-specific
behavior value and 1imit is the speed limit on the current street.

int model fit (float speed , float bias , float dist_back , float
vel_back , float dist_front , float vel_front)
Judges if the car will switch lanes or not, assuming it must. dist_back
and vel_back refer to the first car behind on the lane to be switched to.

16

int model pass (float speed , float bias , float dist_front , float
vel_front , float limit)
Decides if a car will switch lanes to pass the car with the given distance
and velocity ahead of him, assuming his route allows it.

4.2.11 msgr

The msgr is in charge of communication with other machines in a distributed
simulation.

| struct msgr |

struct msgr *next | link pointer for dispatcher

unsigned int ip IP-address this msgr is connected to

int socket I/0 socket through which this msgr is com-
municating

struct msgr *msgr_create (unsigned int ip)
Create a new msgr and connect to the given IP-address. On error, NULL
is returned.

int msgr_pass (struct msgr *m , int street , struct car *c , float
*dist , float *vel)
Attempt to pass the given car to the given street (in compressed form).
The position and velocity to the next obstacle on the street are written
into *dist and *vel respectively. On error, a negative value is returned.

4.2.12 node

The module node represents a local intersection in the network. When reading
nodes in a distributed simulation, the node module will return either a struct
node or a struct node _foreign, depending on the node being on the current
machine or elsewhere.

17

struct node

int id

id nr of this node

unsigned int ip

ip of the location of this node

float x_coord, y_coord

x and y coordinates

struct street *in[]

incomming streets

struct street *out[]

outgoing streets

struct node *next

next-pointer for linked list

int nr_links

nr of links in this node

struct link links[]

the links

int nr_steps

nr of steps in schedule (lights)

node masktype sched[]

the schedule. this is a bitmask for the
links active at each schedule step

int curr_step

the current step in the schedule

int decay

seconds remaining until schedule switch

struct node_foreign

int id

id nr of this node

unsigned int ip

ip of the location of this node

float x_coord, y_coord

x and y coordinates

struct street *in[]

incomming streets

struct street *out[]

outgoing streets

struct link

int in, out
form

incomming and outgoing street/lane in compressed

int waitl[]

street/lanes this link has to wait for (priority)

int halt[]

street/lanes this link has to halt on (stop)

struct node *node create (int id , float x_coord , float y_coord ,

The compressed for for street /lane values can be decompressed with the func-
tions street_getstreet and street_getlane and compressed with street_compact.

unsigned int ip)

Create a new node with the given values. On error, NULL is returned.

struct node *node_read (FILE *in)

Read anode from the given file. This function may also return anode_foreign

if the node is not local. On error, NULL is returned.

struct node *node_read noip (FILE *in)

Read a node from the given file and assume that no IP-addresses have been
specified. This is used in stand-alone mode. On error, NULL is returned.

int node_step (struct node *n)

Simulate one time-step on this node. On error, a negative value is re-

turned.

18

int node_pass (struct node *n , struct car *c , struct street *s,
int lane , int to)
Try to pass the car c from the given street and lane into the street/lane to
in compressed format. Returns 1 if the car could be passed, 0 otherwise
(negative on error). The car’s velocity and position are updated.

int link read (FILE *in)
Read a 1link from the given file. This will update the affected nodes. On
error, a negative value is returned.

int timing read (FILE *in)
int phaseread (FILE *in)
int sign read (FILE *in)
These functions read timing, phase and sign data for the nodes. This data
is currently ignored by the simulation.

4.2.13 route

The route data structure is nothing more than a list of street ids. route hoptype
is defined either as an int or a short int. The id of last street in the route is
-1.

struct route |
int id id of this car

int nr_steps nr of steps in this route
route hoptype stepl[] | ids of the streets in this route

struct route *route_create (int id , int hops)
Create a new route with the given number of hops. On error, NULL is
returned.

struct route *route read (FILE *in)
Read a route from the given file. On error, NULL is returned.
4.2.14 runner

A runner runs in its own thread and calls node_step on every node in its
node-list every time-step.

| struct runner |

struct manager *man | the manager who controls this runner
struct node *first | first node in this runner’s node-list
pthread_t thread the thread in which this runner is running

19

int runner_init (struct runner *c , struct manager *m)

Initialize the given runner with the given manager. On error, a negative

value is returned.

int runner run (struct runner *c)

4.2.15

The street data type describes a unidirectional street. As with the nodes, we

Start the given runner. The runner will spawn its own thread and wait
at the manager’s barrier until the next time-step. On error, a negative

value is returned.

street

distinguish between street and street_foreign.

struct street

int id

id of this street

unsigned int ip

ip address of the machine where this
street resides

struct node *to, *from

nodes at both ends of the street

struct lane *lanes[]

the lanes in this street

float length

street length in meters

float speed

speed limit

pthread mutex_t mutex

mutex to control access to this
street

int last_update

time of last pass

struct slot times[]

slots for collecting statistical data
(street travel times)

struct street_foreign

int id

id of this street

unsigned int ip

ip address of the machine where this
street resides

struct node *to, *from

nodes at both ends of the street

int nr_lanes

nr of lanes in street

float dists[], vels[]

distance and velocity of next obsta-
cle on each lane

struct lane

struct car xfirst, last

first and last cars in lane (first is
the value that has to be protected
by the street mutex)

int exits[]

ids of the streets on which this lane
exits (for fast lookup)

20

struct slot |

int count | nr of cars that have passed through in this time-slot
int acc accumulated time required by cars passing through in
this time-slot

struct street *street_read (FILE *in)
Read a street from the given file. This function can also return a
street_foreign if the street is not local. On error, NULL is returned.

int street_step (struct street *s)
Simulate one time-step on the given street. On error, a negative value is
returned.

int lane push (struct street *s , struct lane *1 , struct car *c
Push the given car onto the given lane on the given street. This function
is called by node_pass and by handler_pass. On error, a negative value
is returned.

4.2.16 vsim

The vsim module is the main module in the simulation. It has no data types, but
a number of variables and functions through which all operations and structures
can be accessed.

struct btree *vsim nodes
A btree containing all local and foreign nodes in the simulation.

struct btree *vsim streets
A btree containing all local and foreign streets in the simulation.

struct btree *vsim_routes
A btree containing all routes in the simulation.

struct car *vsim cars
A linked list of cars waiting to enter the simulation.

struct car *vsim_cars_out
A linked list of cars that have already left the simulation.

struct manager vsim_manager
The simulation manager.

struct listener vsim_listener
The simulation listener.

struct dispatcher vsim dispatcher
The simulation dispatcher.

21

struct bcaster vsim_bcaster

The simulation bcaster.

unsigned int vsim_ip

int

int

int

int

int

int

int

int

int

4.3

The IP-address of the current machine.

vsim readnodes (int with_ip , char *path)

Read the nodes from the file with the given name. with_ip specifies if the
IP-addresses of the nodes should be ignored or not. On error, a negative
value is returned.

vsim readstreets (char *path)
Read the streets from the file with the given name. On error, a negative
value is returned.

vsim readlinks (char *path)
Read the links from the file with the given name. On error, a negative
value is returned.

vsim readsigns (char *path)
Read the signs from the file with the given name. On error, a negative
value is returned.

vsim readroutes (char *path)
Read the routes from the file with the given name. On error, a negative
value is returned.

vsim readcars (char *path)
Read the cars from the file with the given name. On error, a negative
value is returned.

vsim step ()
Run the simulation through one time-step. On error, a negative value is
returned.

vsim dump (char *name)
Dump the car positions and velocities to a file with the given name. On
error, a negative value is returned.

vsim_stimes (char *name)
Dump the street travel times to a file with the given name. On error, a
negative value is returned.

Communication

Communication between machines in a distributed simulation consists, in most
cases, of a request with a single answer. The first byte in a message specifies
the message type. The message headers are stored in the handler module.

22

Messages

0x0 error reply

0x1 ok reply

0x3 {char}* 0x0 read nodes from the given path, ok or
error

0x4 {char}* 0x0 read streets from the given path, ok or
error as an answer

0x5 {char}* 0x0 read links from the given path, ok or
error as an answer

0x7 {char}* 0x0 read cars from the given path, ok or
error as an answer

0x8 {char}* 0x0 read routes from the given path, ok or

error as an answer

0x9 time[4]

set the simulation time to the given value
in seconds, ok or fail as an answer

Oxa simulate one timestep (tick), ok or error
as an answer
Oxb street[4] try to pass a car into the given street

car_id[4] length[4]
bias[4] dist[4]
vel[4] route_id[4]
step[4] start[4]

(compressed form with lane). the dist,
vel, length and bias arguments are
floats, the rest integers.

(0x10 | 0xc) pass_ok or fail reply for a pass request.
dist[4] vell4] the dist and vel arguments are floats.
0xd request street travel times

(id[4] (acc[4]
count[4]) *)* 0x0

reply for street travel times. one message
consists of the street id and the accumu-

0x0 0x0 0x0 lated time and car count for each time
slot.

0xf request for car positions and velocities

(car_id[4] reply for car positions and velocities re-

street_id[4]
dist[4] vel[4])=*
0x0 0x0 0x0 0x0

quest. one line is emitted for each car.
the dist and vel parameters are floats.

4.4.1

4.4 Algorithms

street_step

Since most of the implementation is quite straight-forward, only a few interesting
algorithms are presented here.

This is the function that simulates one time-step on a given street. Instead of
processing one lane at a time and performing a linear search for lane neighbors,
all the lanes are processed in parallel. Two arrays, prev and next, contain the

23

current

-

before

prev
I
next

current

R

— - - — ,I—>
after ,

prev
next

Figure 4.5: prev and next arrays for processing all lanes simultaneously

first and last cars in a sliding window over the street, making neighbor access a
constant time operation (Figure 4.5, Algorithm 1).

4.4.2 node_pass

The node_pass algorithm (Algorithm 2) decides if a car can cross a node and if
so, delegates the car to the appropriate street — local or foreign.

4.5 File Formats

The vsim Traffic Simulation uses, with some exceptions, the same file formats
as the TRANSIMS Traffic Simulation. It is however possible to convert the
differing formats from one program to the other with the help of some small
scripts.

4.5.1 Nodes

The nodes-file is identical to that of TRANSIMS with one small detail: if the
simulation is to run in a distributed way, then the IP-address of the machine
where the node is to reside must be added to the "NOTES” column as an
unsigned integer.

24

Algorithm 1 street_step

fill prev array with NULL
fill next array with first car in each lane

while next not empty do
current = car with smallest pos in next
pos = lane nr. of current
next[pos] = current->next

if current has a next street and
this lane does not exit on that street then
if switching to the right will get me where i want to go and
i have enough room to switch lanes then
prev[pos]->next = next[pos]
current->next = next[pos - 1]
prevlpos - 1]->next = current
else if switching to the left will get me where i want to go and
i have enough room to switch lanes then
prev[pos]->next = next[pos]
current->next = next[pos + 1]
prevlpos + 1]->next = current
end if
else if i have a lane to my right where i fit then
prev[pos]->next = next[pos]
current->next = next[pos - 1]
prevlpos - 1]->next = current
end if

if current must leave the simulation and
current->pos > half the street length then
prev[pos]->next = next[pos]
vsim_out (current)
else
if current has a car in front then
accel = model_drive(...)
current->pos += current->vel + accel * 0.5
current->vel += accel

prev[pos] = current
else
if node pass(...) == 1 then
prev[pos]->next = current->next
else
prev[pos] = current
end if
end if
end if
end while

25

Algorithm 2 node_pass

Require: car c, street/lane from, street/lane to
if no link from from to to or
link has unfulfilled wait or halt condition then
accel = model_drive(...) {act as if node were a dead end}
return 0
end if

if to is local then
accel = model drive(...) {next obstacle is first car on to}
c->pos += c->vel + accel * 0.5
c->vel += accel

{did the car cross over the node?}
if c->pos > from->length then
c->pos -= from->length
lane_push(to,c)
return 1
else
return 0
end if
else
msgr = dispatcher_get(to->ip)
dist = from—>length - c->pos
vel = c->vel

{does the car leave us?}
if msgr_pass(msgr,to,c,dist,vel) == 0 then
accel = model_drive(...) {use dist and vel as next obstacle}
c->pos += c->vel + accel * 0.5
c->vel += accel
return 0O
else
free c
return 1
end if

end if

26

4.5.2 Cars and Routes

The cars- and routes-files used in the vsim Traffic Simulation depart from the
TRANSIMS plans-format completely.

The cars-file contains a list with three entries: the car id, its start time in
seconds and the id of the route to take. The route-file contains a list of routes
specified by id, number of steps and the steps themselves. The route steps are
node ids.

| cars-file
car id integer | id by which the car will be referenced
start time | integer | departure time in seconds
route id integer | route this car will take

routes-file

route id | integer | id by which the route will be referenced
nr steps | integer | nr of steps in this route
steps* integer | ids of the nodes on this routed

4.5.3 Street Travel Times

The vsim Traffic Simulation can generate a file containing information on street
useage. The file has one line per street and contains the number of cars and
the sum of their travel times per time-slot. The number of time-slots per day is
defined in the variable street_slotsize.

| street travel times |

street id integer | id of the street
[count,total time]* | integer | nr of cars and total time spent on
this street per time-slot

27

Chapter 5

vsim — The Traffic
Simulation

This chapter describes how to use the vsim Traffic Simulation in it’s different
modes and presents some results obtained with the implementation described
here.

The vsim Traffic Simulation is started with the command ./vsim.out and
accepts the following command-line arguments:

command-line arguments |

-d path | use path as the default path

-n file | use file as the default node-file

-s file | use file as the default street-file

-r file | use file as the default route-file

-c file | use file as the default car-file

-1 file | use file as the default link-file

-i <p set the IP-address to ip

-m mode | set the mode in which to run. mode must be one of
stdalone, server or client. stdalone is the default.

If you started in stand-alone or server mode, you will get a command prompt
from which you can control the simulation. The commands are described in the
following sections.

5.1 Running in Stand-Alone Mode

When running in stand-alone mode, the -i parameter will have no effect. Nei-
ther will any IP-addresses in the node-file.

28

stand-alone mode

time print the current simulation time
time int set the current time to int seconds
step simulate one timestep

step int simulate int timesteps

view open or update the viewer

view int update the view every int seconds
prefix print the prefix used for all files

prefix "path"

set the file prefix to path

nodes

load the nodes from the default file

nodes "file"

load the nodes from file

streets

load the streets from the default file

streets "file"

load the streets from file

cars

load the cars from the default file

cars "file"

load the cars from file

routes

load the routes from the default file

routes "file"

load the routes from file

count

print the nr of cars currently in the simulation

dump dump the car positions and velocities to
a file in a TRANSIMS-compatible for-
mat with an automaticaly generated name
(?dump/vsim. [time] .dump”).

dump "file" dump the car positions and velocities int file

dump int automaticaly dump car positions and velocities

all int seconds

stimes "file"

dump the street travel times into file

quit

don’t know — the program keeps shutting down
when I do this. ..

A typical simulation session will look as follows:

vsim - distributed traffic simulation
(c) 2001 by pedro gonnet (pedro@vis.ethz.ch)
vsim_stdalone: running in stdalone-mode...

[vsim_stdalone] prefix "files/"
commline: current directory set to files/

[vsim_stdalone] nodes
commline: read 10564 nodes from file files/nodes.data.

[vsim_stdalone] streets

commline: read 28622 streets from file files/streets.data.

[vsim_stdalone] routes

29

commline: read 49980 routes from file files/routes.data.

[vsim_stdalone] cars
commline: read 49980 cars from file files/cars.data.

[vsim_stdalone] time 21600
commline: current time set to 06:00:00 (21600s)

[vsim_stdalone] dump 600
commline: dumpstep set to 600.

[vsim_stdalone] step 3600
commline: 344 seconds elapsed (10.47 ratio)...

[vsim_stdalone] view
[vsim_stdalone] quit

The session tells the simulation where to look for its file (prefix "files/"),
reads first the nodes, then the streets, routes and cars. This order must always
be observed for the simulation to work. The time is then set to 06.00 (time
21600). The simulation is told to produce dumps every 600 seconds (dump 600)
and is let run for one hour (step 3600). Finaly, a viewer is opened and the
simulation is quit.

5.2 Running in Server Mode
To run the vsim Traffic Simulation in server mode, one must first create a node-
file with the TP-addresses of all client machines. Furthermore, the vsim Traffic

Simulation must be running in client mode on all client machines with the -i
flag specifying the IP-address.

30

server mode

client "<p"

adds a client with the IP-address ip in dot no-
tation

connect connects to all clients

disconnect close all open connections to clients
time print the current simulation time
time int set the current time to int seconds
step simulate one timestep

step int simulate int timesteps

prefix print the prefix used for all files

prefix "path"

set the file prefix to path

nodes

load the nodes from the default file

nodes "file"

load the nodes from file

streets

load the streets from the default file

streets "file"

load the streets from file

cars

load the cars from the default file

cars "file"

load the cars from file

routes

load the routes from the default file

routes "file"

load the routes from file

count

print the nr of cars currently in the simulation

dump dump the car positions and velocities to
a file in a TRANSIMS-compatible for-
mat with an automaticaly generated name
(?dump/vsim. [time] .dump”).

dump "file" dump the car positions and velocities int file

dump <nt automaticaly dump car positions and velocities

all int seconds

stimes " file"

dump the street travel times into file

quit

don’t know — the program keeps shutting down
when I do this...

A typical session would look like a normal stand-alone session, yet with a
few client lines and a connnect at the beginning.

5.3 Running in Client Mode

Running the vsim Traffic Simulation in client mode is trivial, since there is no
direct interaction with the user. The simulation must be started with the -i
parameter specifying the IP-address through which the machine will be called.

31

Chapter 6

Performance Results

The vsim Traffic Simulation was tested with two different traffic scenarios:

e Gotthard Scenario: 50’000 cars trying to cross the swiss alps. The
cars start between 06.00 and 07.00, get stuck at the Gotthard tunnel until
about 06.00 the next day

e Switzerland Scenario: 6’000°000 cars travelling in, out and arround
Switzerland. Traffic starts at 00.00 and accumulates until about 21.00
and disperses two days later. This scenario was designed as a stress test
for large-scale microsimulations.

Both simulations use a traffic network consisting of 10’564 nodes and 28’622
streets. The network represents a rough roadmap of europe with more detail in
Switzerland.

The distributed tests were run on the Institute of Computer Systems’ CoPs
Cluster [CoPs] consisting of 16 dual-Pentium IIT 1GHz machines with switched
gigabit ethernet.

6.1 Gotthard Scenario

The simulation was run on only 8 machines in the CoPs cluster. This was not
for performance reasons, but more due to the fact that the whole cluster could
only be reserved over the weekend and not all test could be run on time.
Furthermore, the simulation was run using 10 runners. The exact number
is rather arbitrary, but it produced better results than 5 or 20 threads.
The results are summed up as simulated seconds per wall-clock seconds over
six hour timespans.

32

| Gotthard Scenario |
06.00 — 12.00 | 155.40 s/s
12.00 — 18.00 | 209.71 s/s
18.00 — 24.00 | 191.15 s/s
00.00 — 06.00 | 245.45 s/s

| geom. avg. [197.74s/s

6.2 Switzerland Scenario

For this simulation, all 16 machines were used, each running 5 threads. As with
the last scenario, the simulation time / real time ratio was measured for six
hour time intervals.

| Switzerland Scenario |
00.00 — 06.00 | 136.71 s/s
06.00 — 12.00 | 67.71s/s
12.00 — 18.00 | 52.94 /s
18.00 — 24.00 41.54 s/s

| geom. avg. | 67.17s/s

6.3 Notes

6.3.1 Graph Partitioning

One of the greatest speedup factors was, without doubt, the partitioning of the
traffic network. This was done with the METIS graph partitioning package
[MET].

The input for the graph partitioning was generated from the street travel
times data collected after one simulation run. For each time-slot, a node is

Figure 6.1: Multi-Constaint Partitioning: The values in square brackets for each node
denote the load over two different time-slots. If the average load over both time-slots
is considered, then both partitions (green and red) are equaly good. Yet if we consider
both loads separately, the green partitioning is far better than the red.

33

assigned the sum of the accumulated travel times in seconds for each incomming
street (i.e. the number of car-seconds it has to process). The streets are weighted
by the number of cars that entered the street per time-slot (i.e. the number of
transactions necessary if we were to cut that street).

For both simulations partitions were created using the data from eight time-
slots as multiple constraints. This produced much better results than the par-
titioning used by TRANSIMS which divides the network according to one set
of constraints. Figure 6.1 shows how and why this can go wrong.

6.3.2 Threads

It is rather difficult to quantify the number of threads needed for a given simu-
lation. The overhead involved in task-switching has to be less than time spent
on un-amortized communication.

For both scenarios, the best numbers of runners was calculated experimen-
taly.

6.3.3 Useability

Although the speed results of the vsim Traffic Simulation are rather impressive,
the results produced are completely useless. Since no information on street
priorities or traffic lights were available for the network, the realism of the
traffic model quickly became a major drawback, creating pileups at almost every
unsignalized crossing.

There are many ways this could be fixed, yet defining a better network would
be preferrable.

34

Chapter 7

Outlook

7.1 What has been done

The best way to quantify what has been achieved is to compare the end results
with the design goals mentioned at the beginning of this text.

7.1.1 Speed

The speed criteria is probably the easiest to quantify, since the results can be
measured and compared. Since no reference numbers were available for either
one of the scenarios tested, there is no direct comparison to previous work.

The only reference available is the theoretical limit of 100 simulated seconds
per second with a similar cluster configuration postulated in [ParTS] for the
parallel implementation of the TRANSIMS micro-simulation.

7.1.2 Realism

As mentioned earlier, the results of the vsim Traffic Simulation are completely
unuseable. The question, wether this is a problem with the simulation itself or
the network, would require running the simulation on a more complete network.

7.1.3 Distributeability

The vsim Traffic Simulation is easily distributeable and the distributed traffic
model seems works. No real analysis was made of the useage of network resources
or on the amount of time waiting on I/O, making it difficult to make a concrete
statement.

7.1.4 Simplicity

The whole source of the vsim Traffic Simulation is less than 6’000 lines of c-
code. The modularity of the system allows the user to modify parts of the

35

system without needing to be completely familiar with the rest. The separation
of the model module should be especially usefull for those testing new driver
behaviour models.

7.2 What has not yet been done

There are still a number of features that were originaly planed, yet not yet
implemented into the vsim Traffic Simulation. Since the simulation was designed
asuming their existence, it should be possible to add them without too many
problems.

7.2.1 Signaled Intersections

Although the node module can read intersection data, it is not regarded in
node_pass. One big problem here would be how to handle yellow phases. The
easiest solution would be to add one function to the model module which decides
if to pass or brake.

7.2.2 Wait and Halt Conditions

This information is read but not used by node_pass. Tere are comments in the
source indicating where to insert eventual code. Unfortunately, the information
in the TRANSIMS files only tells us where a stop or yield sign stands, and not
which lanes or links it pertains to.

36

Bibliography

[CoPs] Research Group for Parallel and Distributed Systems — Cluster
http://www.cs.inf.ethz.ch/stricker/lab/

[MET] METIS: Serial Graph/Mesh Partitioning & Sparse Matrix Ordering
http://www-users.cs.umn.edu/ "karypis/metis/metis/

[ParTS] Parallel implementation of the TRANSIMS micro-simulation.
Kai Nagel and Marcus Rickert

37

