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Abstract

We look at price formaton in aretail setting, thatis, companessetprices andconsimers
eithe accept prices or go someplaeelse.In cortrastto mostothermodelsin this context,

we useatwo-dimersiond spatal strudurefor information transmision,thatis, consimers
canonly learnfrom neaestneighbors. Many aspecs of this canbe undestod in terms
of genealized evolutionary dynamics.In congequerte, we first look at spatid compdition

andcluger formation without price. This leadsto estdlishementsizedistributions,which
we compae to reality. After sometheaeticd consderaions, which at leastheuristicaly

explain our simulation resuts, we finally return to price formaion, wherewe demorstrate
that our simple modelwith nearly no organizedplanring or rationality on the part of any

of theagernsindeedleads to anecoromically plausibleprice.
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1 Intr oduction

Thereare several basicconceptswvhich lie at the heartof economictheory They
are the "economicatom” which is usually consideredo be the individual, prof-
its, mongy, price and marketsandthe more complex organismthe firm. Much of
economictheoryis basedon utility maximizing individuals and profit maximiz-
ing firms. The conceptof a utility functionattributesto individualsa considerable
amountof sophisication. The proof of its existenceposesmary difficult problems
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in obsenation and measurementn this study of market and price formationwe
considersimplistic socialindividualswho mustbuy to eatandwho look for where
to shopfor the bestprice. In this foray into dynamicswe opt for a simple model
of consumerprice formation.Our firms are concernedvith survival ratherthana
sophistcatedprofit maximizatian. Yetwe relatethesesimde behaiorsto themore
conventionalandcomplec ones.

A naturalway to approactthe economigohyscs of monopolstic competiton is to
introducespacexplicitly. For muchof economianalysisof competiton spaceand
informationare critical factors.The basicaspectf marketsinvolve an intermix
of factors,suchastransportatio costsanddelivery timeswhich dependexplicitly
on physical space.But for pure informatian, physcal distanceis lessimportant
thandirect connectionFor questionsconcerningthe growth of market areasthe
spatialrepresentatiors appropriateConsideratiorof spacds sufficientto provide
a justification of Chamberlins model of monopolstic competition asis evident
from the work of Hotelling [1]. Furthermoreit is reasonablynaturalto consider
spaceonagrid with someform of minimaldistanceMany of theinstabiltiesfound
in economianodelssuchasthe Bertrandmodelarenot presentvith anappropriate
grid.

Wheninvestgatingthesetopics,onequickly finds thatmary aspectf price for-

mationcanbeunderstoodn termsof generalizeavolutionarydynamicsin conse-
guencepur first modelsin this paperstudyspatialcompetiton andclusterforma-
tion without the generatiorof price (Sec.3). This generate€lustersize distribu-

tions,which canbecomparedo realworld data.We spendsometime investgating

theoreticaimodelswhich canexplain our simulaton data(Sec.4). We then,finally,

move on to price formation,wherewe implementthe price dynamics‘on top” of

the alreadyanalyzedspatialcompetition models(Sec.5). The paperis concluded
by adiscusson anda summary.

2 Relatedwork

The modelis an openone relatedto the partial equilibrium modelsof much of
micro-economicsin particularmone/ and its acceptancen tradeis taken asa
primitive concept.Thereis a literatureon the acceptancef money bothin a static
equilibrium context (seefor example[2]) andin a”bootstrap”or dynamc context
(seefor example[3,4]). Theseare extremely simple closedmodelsof the econ-
omy whereeachindividual is both a buyer and seller Eventuallywe would like
to constructa reasonablenodelwherethe acceptancef money, the emegenceof
competitve price andthe emegenceof market structureall arisefrom the system
dynamicsThiswill call for anappropriateombirationof thefeaturesof themodel
presentedherewith the closedmodelsnotedabove. We do not pursuethis further
here.Insteadby takingthe acceptancef money asgivenour obsenationsarecon-



fined to the emegenceof markets and the natureof price. The staticeconomic
theoriesof monopdy andmasshomogeneousompetitve equilibrium provide nat-
uralupperandlower benchmarkso gaugemarketbehaior. Theintermediatezone
betweenn = 2 andvery mary is coveredin the economicliteratureby various
oligopoly models,of whichthoseof Cournot[5], Bertrand[6] andChamberlin[7]
sene asexempars. The Chamberlinmodelunlike the earliermodelsstresseshat
all firmstradein differentiatedyoods.They areall in partdifferentiatecor partially
monopoistic. Whenone considersoth informationand physcal locationthis is
a considerableteptowardsgreatemrealism.Otherwork on evolutionary or beha-
ioral learningin priceformationareRefs.[8—10].

3 Spatial competition

As mentioredin theintroducton, we will startwith spatialmodelswithout price.
We will addpricedynamicdater.

3.1 Basicspatialmodel(domaincoarsening)

We usea 2-dimensonal N = L x L grid with periodicboundaryconditions Sites
arenumbered = 1..N. Eachsite belongsto a cluster denotedby ¢(7). Initially,
eachsitebelonggo “itself”, thatis, ¢(i) = 4, andthusclusternumbersalsogo from
1to V.

The dynamicsis suchthatin eachtime stepwe randomlypick a cluster delete
it, andthe correspondingsitesare taken over by neighboringclusters.Sincethe
details,in particularwith respecto the time scaling,make a differencewe give a
moretechnicalversionof the model.In eachtime step,we first selecta clusterfor

deletionby randomlypicking a numberC betweenl and N. All sitesbelonging
to thecluster(i.e. ¢(i) = C) aremarked as“dead”. We thenlet adjoiningclusters
grow into the “dead” area.Becauseof the interpretationater in the paper in our
modelthe“dead”sitesplaytheactiverole.In parallel,they all pick randomlyoneof

their four nearesneighborsif thatneighboris notdead(i.e. belongsto a cluster),
thenthe previously deadsite will join that cluster This stepis repeatedver and
over, until no deadsitesareleft. Only then,timeis advancedandthenext clusteris

selectedor deletion.

In phystcsthis is calleda domaincoarseningschemge.g.[11]): Clustersare se-
lectedanddeleted andtheir areais takenover by the neighborsThis happensvith
a total separatiorof time scalesthatis, we do not pick anotherclusterfor dele-
tion beforethe distribution of the lastdeletedclusterhasfinished.Fig. 1 shovs an
example. We will call aclusterof sizelargerthanzero“active”.
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Fig. 1. Snapsbt of basicdoman coasenirg process.LEFT: The black spacecomesfrom

a cluste that hasjust beendelded. RIGHT: The bladk space is being taken over by the
neighbors — Colors/grayscalesare usedto help the eye; clugers which have the same
color/grayscalearestill differentclusters Systemsize256*.

Notethatit is possibé to pick a clusterthathasalreadybeendeletedIn thatcase,
nothinghappengxceptthatthe clock advancedy one.Thisimpliesthatthereare
two reasonablelefinitionsof time:

e Natural time t: Thisis thedefinitionthatwe have usedabove. In eachtime step,
the probability of any given clusterto be picked for deletionis a constantl /N,
whereN = L? isthesystensize.Notethatit is possble to pick a clusterof size
zero,which meanghatnothinghappengxceptthattime advancedy one.

e Cluster time #: An alternatveis to chosebetweertheactiveclustersonly. Then,
in eachtime step,the probabilty of any given clusterto be picked for deletion
is1/n(t), wheren(t) = N — t is thenumberof remainingactive clustersin the
system

Althoughthe dynamicscanbe describednorenaturallyin clustertime, we prefer
naturaltime becausét is closerto oureconomicsnterpretation.

At ary particulartime step,thereis a typical clustersize.In fact,in clustertime,
sincetherearen(t) = N — # clusters,the averageclustersize as a function of
clustertime is S(f) = N/n(t) = 1/(1 — #/N). However, if one averages over
all time steps we find a scalinglaw. In clustertime, it is numerically closeto
n(s) ~ s 3orn(>s) ~ s, wheres is the clustersize,n(s) is the numberof
clustersof sizes, andn(> s) is the numberof clusterswith sizelargerthans.® In
naturaltime,thelargeclustershave moreweightsincetime movesmoreslowly near
the endof the coarseningrocessTheresultis againa scalinglaw (Fig. 2 (left)),

5 In this pape, we will alsouseN (s) = sn(s) for thecluster sizedistribution in logarith-
mic bins, in particular for thefigures
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Fig. 2. LEFT: Clustersizedistribution of the basicmodelwithout injection, in natural time.
Numberof clusters per logarithmic bin, divided by numbe of clugersin first bin. The
straight line hasslope —1, correspondng to n(s) ~ s~2 becawseof logaithmic bins. Sys-
tem size 5122. As explainedin the text, this is not a steay statedistribution, but a dis-
tribution which emegeswhenaveragng over the complée evolution from N clustes of
sizeoneto onecluster of size N. RIGHT: Clustersize distribution for random injection.
Numberof clustersperlogarithmic bin, divided by numberof clustersin first bin. The plot
shavs p;,; = 0.01 andsysemsizes64?, 1282, 2562, and5122. Theline is alog-normalfit.

Thisis asteaq statedistribution.

but with exponentdancreasedy one:

n(s) ~s2orn(>s)~s 1. 1)

It is importantto notethatthisis not a steadystateresult. Theresultemegeswhen
averagingover the whole time evolution, startingwith N clustersof sizeoneand
endingwith oneclusterof size V.

3.2 Randominjectionwith space

In view of evolution, for exampk in economicor in biology, it is realisticto inject
new smallclusters A possibilty is to inject themat randompositions.Soin each
time step,beforethe clusterdeletiondescribedabore, in additionwith probability
pinj We pick onerandomsite ¢ andinject a clusterof sizeoneat:. Thatis, we set
c(i) to4. Thisis followedby the usualclusterdeletion.It will beexplainedin more
detailbelowv whatthis meansn termsof systerwide injectionanddeletionrates.

This algorithm maintainsthe total separatiorof time scalesbetweenthe cluster
deletion(slow time scale)and clustergrowth (fasttime scale).Thatis, no other
clusterwill bedeletedaslong astherearestill “dead” sitesin the systemNotethat
thedefinitionof time in this sectioncorrespond$o naturaltime.

The probability that the injectedclusteris really new is reducedby the probabil-



ity to selecta clusterthatis alreadyactive. The probability of selectinganalready
active clusteris n(t) /N, wheren(t) is againthe numberof active clustersin con-
sequencethe effective injection rateis

Tinj,eff = Pinj — N(t)/IN . (2)

Similarly, the effective clusterdeletiondependson the probability of picking an
active cluster whichis n(t)/N. In consequencehe effective deletionrateis

Tdel,eﬁ = n(t)/N . (3)

This meansthat, in the steadystate,thereis a balanceof injection and deletion,
n.«/N = pinj — n./N, andthusthe steadystateaverageclusternumberis

Ny = N Dinj /2 . (4)

In consequencehe steadystateaverageclustersizeis

The clustersizedistribution for the modelof this sectionis numericallycloseto a
log-normaldistribution, seeFig. 2 (right). Indeed,the posiion of the distribution

moves with 1/p,,; (notshawvn). In contrastto Sec.3.1, this is now a steadystate
result.

3.3 Injectiononaline

It is maybeintuitively clearthattheinjectionmechanisnof themodeldescribedn
Sec.3.2destrgsthescalinglaw from the basicmodelwithoutinjection(Sec.3.1),
sinceinjectionat randomposiionsintroducesatypical spatialscale.Oneinjection
processthat actually generatesteady-statescalingis injection alonga 1-d line.
Insteadof therandominjectionof Sec.3.2,we now permanentlyset

c(i) =i (6)

for all sitesalongaline. Fig. 3 (left) shavs a snapshobf this situaton.

In thiscasewe numericallyfind astationaryclustersizedistribution (Fig. 3 (right))
with

n(s) ~ s orn(>s) ~ s, (7)
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Fig. 3. LEFT: Injection along a line. Systemsize 256>. RIGHT: Scalingplot for basic
modelplus injection on aline. Numberof clugersperlogarithmic bin, divided by number
of clustersin first bin. The straight line hasslope —1/2 correpondng to n(s) ~ s3/2,
Systemsize10242. Thisis asteaq statedistribution.

Sincethe injectionmechanisnheredoesnot dependn time, andsincethe cluster
sizedistribution itself is statiorary; it is independentrom the specificdefinition of
time.

3.4 Randomnjectionwithoutspace

One could ask what would happenwithout space.A possble translationof our
modelinto “no space’is: Do in parallel:Insteadof picking oneof your four nearest
neighborsyou pick an arbitraryotheragent(randomneighborapproximatbn). If
that agentis not dead,copy its clusternumber Do this over and over againin
parallel,until all agentsare part of a clusteragain.A clusteris now no longera
spatiallyconnectedstructure put just a setof agentsin thatcase we obtainagain
power laws for the size distribution, but this time with slopesthat dependon the
injectionratep;,; (Fig. 4); seeSec.4.4for details.

3.5 Realworld companysizedistributions

Fig. 5 shavs actualretail compaly sizedistributionsfrom the 1992U.S.economic
censug12], usingannuakalesasaproxyfor compary size.We usetheretail sector
becauseve think thatit is closesto our modellingassumpons— thisis discussed
attheendof Sec.6. We shav two curves:establisimentsize,andfirm size.® It is

6 An estalishmert is “a single physial location at which businessis conducted. It is not
necessarilyidertical with acompary or enterprise, which may conskstof oneestattishment
ormore’ [12].
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Fig. 4. Steadystatecluger sizedistributionsfor differentnon-gatial simulaions. Number
of clustersperlogarithmic bin, divided by numberof clustersis first bin. Systemsizes 64
t0 5122. LEFT: pj; = 0.1. RIGHT: ps; = 0.01.

clearthatin orderto be comparablevith our modelassumptns,we needto look
atestablishrantsizeratherthanatcompaly size.

Censuglatacomesin unequallyspacedins; the procedureo convertit into use-
abledatais describedn the appendix Also, the lastfour datapoints for firm size
(notfor theestablishrantsize,however) wereobtainedvia a differentmethodthan
the otherdatapoints;for details,againseetheappendix.

From both plots one can seethat thereis a typical establifmentsize around
$400000 annualsales;andthe typical firm sizeis a similar number This number
intuitively makessenseWith, say incomeof 10% of sales smallerestablishrants
will notprovide areasonabléncome.

Onecanalsoseefrom the plotsthattheregion aroundthattypical sizecanbefitted
by alog-normal We alsosee however, thatfor largernumbersf annuakalessuch
afit is impaossiblesincethetail is muchfatter A scalinglaw with

1

n(>s) ~ s~! correspondingo n(s) ~ s72 (8)

is analternatve here.”

Thisis, however, atoddswith invegigationsin theliterature For example Ref.[13]
find alog-normal,andby usinga Zipf plot they shav thatfor large companieghe
tail is lessfat thanalog-normal.However, thereis a hugedifferencebetweenour
andtheir data:They only usepublicelytradedcompaniesyhile our datarefersto
all companiesn the censusindeed,onefinds that their plot hasits maxinum at
annualsalesof $108, which is alreadyin thetail of our distribution. This implies

” Remembengain,thatslopes from log-log plotsin logarithmic bins aredifferent by one
from the exporentin thedistribution. Son(s) ~ s~ 2 correpondsto aslope —1 bothin the
accunulateddistribution n(> s) andwhenplotting logarithmic bins N (s) /N (1).
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firms per logarithmic bin as function of anrual sales RIGHT: Number of estalish-
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thatthe small scalepart of their distribution comesfrom the fact that small com-
paniesaretypically not publicely traded.In consequencat reflectsthe dynamics
of companiegnteringandexiting from the stockmarket, not entry andexit of the
compaly itself.

We concludehatfrom available data,compaly sizedistributionsarebetweeralog-
normalanda power law with n(s) ~ s72 or n(>s) ~ s~ '. Furtherinvestgationof
this goesbeyondthe scopeof this paper

4 Theoretical considerations
4.1 Spatialcoarseningmodel(slope-2 in natural time)

We arelooking againat the “basicmodel”. In clustertime this was:randomlypick
oneof theclustersandgiveit to theneighborsThefollowing heuristicmodelgives
insight

(1) We startwith N clustersof sizel.

(2) We needN/2 time stepsto delete N/2 of themandwith thatgenerateV/2
clustersof size?2.

(3) In generalwe needN/2* time stepsto move from N/2*~! clustersof size
251 to N/2* clustersof size2*.

(4) If we sumthisovertime,thenin eachlogarithmicbin ats = 2* thenumberof
contributionsis N/2% x N/2k,i.e.~ s72.

(5) Sincetheseare logarithric bins, this correspondso 7(s) ~ s=2 or 7a(>
s) ~ s—?  whichwasindeedthe simulatonresultin clustertime.

(6) In naturaltime, we needa constanamountof time to move from k£ — 1 to &,
andthusobtainvia thesameargumentn(s) ~ s™2 or n(>s) ~ s~', which



wasthe simulatian resultin naturaltime.
4.2 Randoninjectionin space(log-norma)

At themoment,we do not have a consistenexplanationfor the log-normaldistri-
bution in the spatialmodel. A candidates the following: Initially, mostinjected
clustersof size one are within the areaof somelarger and older cluster Eventu-
ally, that surroundingclustergetsdeleted,and all the clustersof size one spread
in orderto occupy the now empty space.During this phaseof fastgrowth, the
speedof growth is proportionalto the perimeter andthusto /s, wheres is the
area.Therefore, /s follows a biasedmultiplicative randomwalk, which means
thatlog(y/s) = log(s)/2 follows a biasedadditive randomwalk. In consequence,
oncethatfastgrowth processstops,log(s) shouldbe normally distributed, result-
ing in alog-normaldistribution for s itself. In orderfor thisto work, oneneedghat
this growth stopsat approximatelythe sametime for all involved clusters.Thisis
apprixomatelytrue becausef the“typical” distancebetweerinjectionsiteswhich
is inverselyproportionalto the injection rate.More work will be necessaryo test
or rejectthis hypotesis.

4.3 Injectiononaline (slope-3/2)

If onelooksat a snapshoof the 2D picturefor “injection onaline” (Fig. 3), one
recognizeshatonecandescribethisasa structureof crackswhich areall anchored
attheinjectionline. Thereare L suchcracks(someof lengthzero);cracksmeige
with increasingdistancerom theinjectionline, but they do notbranch.

Accordingto Ref.[14], thisleadsnaturallyto a sizeexponentof —3/2, asfoundin
the simuations.The argumentis thefollowing: Thewholearea,L?, is coveredby

/dssn(s) : 9)

wheren(s) is thenumberof clustersof sizes onalinearscale We assumea(s) ~
s~ 7, however the normalizationis missing. If all clustersareanchoredht a line of
sizeL, thenadoublingof thelengthof theline will resultin twice asmary clusters.
In consequencehe normalizationconstanis oc L, andthusn(s) ~ Ls 7. Now
we balancethetotal area,L?, with whatwe justlearnedaboutthecoveringclusters:

L2N/dssLs’T:L/dssl’TwLSQ’Th‘?. (10)
Assumng thatT < 2, thenthe integral doesnot corverge for S — oo, andwe

10



needto take into accounthow the cut-off S scaleswith L. This dependson how
thecracksmovein spaceasafunctionof thedistanceérom theinjectionline. If the
cracksareroughlystraightthenthesizeof thelargestclusteris ~ L2. If thecracks
arerandomwalks, thenthe sizeof thelargestclusteris ~ L3/2. In consequence:

e For“straight’lines:L? ~ L (L*)* ™ = 2=1+4+2(2-7) = 7=3/2.
e Forrandomwalk:2 =1+3/2(2—-7) = 7=4/3.

Sinceoursimulatbnsresultin 7 ~ 3/2, weconcludethatourlinesbetweerclusters
arenotrandomwalks. Thisis intuitively reasonableéWWhena clusteris killed, then
the growth is biasedtowardsthe centerof the deletedcluster thus resultingin

randomwalkswhich areall differentlybiased.This biasthenleadsto the “straight
line” behaior. — This implies thatthe ~ s~3/? steadystatescalinglaw hinges
ontwo ingredientgin a 2D system):(i) Theinjectioncomesfrom a 1D structure.
(i) Theboundariebetweerclustersfollow somethinghatcorrespondso straight
lines. As we have seen the biasingof a randomwalk is alreadyenoughto obtain
this effect.

4.4 Injectionwithoutspace(variableslope)

Without spaceclustersdo notgrow via neighborsput via randomselectionof one
of theirmembersThatis, we pick a cluster remove it from the systemandthen
give its membergo the other clustersone by one. The probabilty thatthe agent
chosesa cluster: is proportionalto that clusters size s;. If for the moment we
assumehattime advanceswith eachmembemwhich is given back,we obtainthe
rateequation

dn(s)
dt

= (s—1)n(s—1) — sn(s) — en(s) — €pinj n(s) + €Pinj n(s+1) . (11)

Thefirst andsecondermon the RHS representlustergrowth by additionof an-
othermemberthethird termrepresentsandomdeletion;the fourth andfifth term
the decreasdy onewhich happensf oneof the memberds corvertedto a start-
up via injection. e is the rate of clusterdeletion;sincewe first give all members
of a deletedclusterbackto the populationbeforewe deletethe next cluster it is
proportionatlto theinverseof the averageclustersizeandthusto theinjectionrate:
€ ~ 1/(s) ~ pin;. Thisis similar to anurn processwith additionaldeletion.

Viathetypicalapproximatnss n(s)—(s—1) n(s—1) ~ < (sn(s)) etc.weobtain,
for the steadystate thedifferentialequation

dn dn
Oz—n—sa—en—kepmj%. (12)

11



Thisleadsto

n(s) o< (s — epmj)_(”f) ~ g (1te) (13)

Thatis, the exponentdependson theinjection rate,andin thelimit of p,,; — 0 it
goesto —1. Thisis indeedtheresultfrom Sec.3.4 (seeFig. 4).%

5 Price formation

Whatwe will do now is to addthe mechanisnof price formationto our spatial
competiton model.For this, we identify siteswith consuners/customer<lusters
correspondo domainf consumersvhogoto thesameshop/compa Intuitively,
it is clearhow this shouldwork: Companiesvhich arenot competitive will go out
of businessandtheir customerswill be taken over by the remainingcompanies.
The reductionin the numberof companieds balancedoy the injection of start-
ups.Companiegango out of busines for two reasonstosingtoo muchmoney, or
losingtoo mary customersThe first correspondso a price which is too low; the
secondcorrespondso a pricewhichis too high.

We modeltheseaspectasfollows: We againhave N sitesonan N = L x L grid
with periodicboundaryconditions(torus).On eachsite,we have aconsumeanda
firm. Thesearenot connectedn ary way exceptby the spatialposition — onecan
imaginethatthefirm is located‘downstirs” while the consumetives“upstairs”.
Firms with customersare called“active”, the otherones‘inactive”. A time step
consistof the following sub-steps:

Tradesareexecuted.

Companiesvith negative profit go out of business
Companieshangeprices.

New companiesreinjected.
Consumerganchangewherethey shop.

Thesestepsaredescribedn moredetailin the following:

Trade: All customershave an initial amountM of mongy, which is completely
spentin eachtime stepandreplenishedn the next. Every customer; alsoknows
whichfirm j = f(i) he/sheébuysfrom. Thus,he/sheordersanamountQ); = M/ P;

8 Notethatthe appioachin this secton correspordsto measunng the cluster sizedistribu-
tion every time we give anagentbackto the systemwhile in the simulaionswe measued
theclustersizedistribution only justbefore acluserwaspicked for deldion. In how farthis
is importantis anopenguedion; preliminary simulaion resuls indicatethat it is important
for the spatid casewith injection but notimportantfor the non-spatid casein this secton.

12



at his/hercompary, where P; is thatcompauty’s price. The companiegproduceto
order andthentradesare executed.Thatis, a compaly thathasn; customersand
price P; will produceandsell Q; = n,;M/P; unitsandwill collectn;M units of
money.

Company exit: We assumeanexternallygivencostfunctionfor productionC(Q),
which is the samefor everybody If profitII; := n; M — C(n; M/P;) is lessthan
zero,thenthecompary is losingmoney andwill immediatelygo out of busiress.?
Thepricesof suchacompary is setto infinity. We will useC(Q) = @, correspond-
ing to alinearcostof production.With this choice,companiesvith pricesP; < 1
will exit accordingto thisrule assoonasthey attractatleastonecustomer

Price changes:With probability one,pick arandominteger numberbetweenl and
N. If thereis anactive compaly with thatnumbery its priceis randomlyincreased
or decreasety 6.

Company injection: Companiesare madeactive by giving them one customer:
With probability p;,;, pick arandomsite: andmake theconsumei go shoppimg at

compay :. The price of theinjectedcompaly is setto the price thatthe customer
haspaidbefore,randomlyincreasedr decreasetyy §.

Consumeradaptation: All customersvhosepricesgotincreasedeithervia“com-
pary exit” or via “price changes”will searchfor anew shop!® Thesé‘searching”
consumersorrespondo deadsitesin thebasicspatialmodels(Sec.3), andthedy-
namicsis essentiallya translationof that: All searchingconsumersn parallelpick
arandomnearesneighbor If thatneighboris alsosearchingnothinghappensif

thatneighboris however notsearchingandif thatneighboris payingalower price,
our consumemvill acceptheneighbors shop.Otherwisethe customemill remain
with herold shop,andshewill nolongersearchWe keeprepeatingthis until no
consumers searchingarny more.

This modeldoesnotinvestmuchin termsof rationalor organizedbehaior by any
of the entities.Firmschangepricesrandomly;andthey exit withoutwarningwhen
they losemoney. New companiesreinjectedassmallvariationsof existing com-
paniesConsumer®nly make moveswhenthey cannotavoid it (i.e. theircompalry
wentout of businesandthey needa new placeto go shoppng) or whenpricesjust
wentup. Only in the last casethey actively comparesomeprices.It will turn out
(seebelow) thateventhatprice comparisons not necessary

In the abore model, price corvergesto the unit costof production,which is the
competetie price. In Fig. 6 (left, bottomcurve) we shov how aninitially higher

9 In this modelno accumuétion of asses s allowed. This simplification will berelaxedin
future work.

10 The simplification that customes reactto price changsonly is usefu becauseit leads
to the sepaation of time scdesbetwe@ consumerbehaviorandfirm behavior.
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price slowly decreasetowardsa price of one.Thereasonfor thisis that,aslong
aspricesarelargerthanone,therewill be companieghat,via randomchangeor
injection,have alower pricethantheir neighborsEventually, theseneighborgaise
prices,thusdriving their customersaway andto the companiesith lower prices.
If, however, a compalry lowersits price belov one,thenit will immediagly exit
afterit hasattractecht leastonecustoner. !*

As alreadymentionedabove, it turns out that the price comparisonby the con-
sumerss not neededht all. We canreplacetherule “if pricegoesup, try to find a
betterprice” by “if price goesup, go to a differentshopno matterwhatthe price
there”. In both caseswe find the alternatve shopvia our neighborsaswe have
donethroughoutthis paper The top curve in Fig. 6 shows the resultirg price ad-
justment Clearly, thepricestill movestowardsthecritical valueof one but it moves
moreslowly andthetrajectorydisplaysmorefluctuationsThisis whatonewould
expect,andwe think it is typical for the situaton: If we reducethe amountof “ra-
tionality”, we getslower corvergenceandlargerfluctuations.

In termsof clustersizedistribution, the price modelis similar to the earlier spa-
tial competiton modelwith randominjection. They would becomehe sameif we
separatethankrupty andprice changes.

In Fig. 6 (right) we alsoshawv thatour modelis ableto track slowly varying costs
of production For this,we replaceC(Q) = @ by asinus-functbn which oscillates
around@®. Theplotimpliesthatpriceslag behindthe costsof production.

I |f all pricesin the systemaremorethans belav one,thenthe modelis notwell-defined.
In thelimit of large sysemsandwhenstating with pricesabove one sucha stae camot
bereadhedvia the dynamics.— Also notethatif the modelallowed credt, the exit of such
acompaty would bedelayed, allowing lossesfor limited periodsof time.
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crosgorrdation valuesmirrored atthe r = 0 axis.

Thisis alsovisible in theasymnetry of the crosscorrelationfunctionbetweerboth
seriesln orderto beableto comparewith non-statioary realworld serieswe look
atrelativechangesR, (t) = z(t)/x(t — 1). Thecrosscorrelationfunctionbetween
priceincreasesndcostincreaseshenis

Xcorr(t) = (Rp(t) Re(t — 7)), (14)

where(.) averagesverall . In Fig. 7 (left) onecanclearly seethatpricesarein-
deedlaggingbehindcostsfor our simulations.In orderto stresgheasymmetrywe
alsoplot XCorr(—7). In Fig. 7 (right) we shav thesameanalysidor the Consumer
Pricelndex vs.the ProductiorPricelndex (seasonallyadjusted) Although thedata
is muchmorenoisy; it is alsoclearlyasymnetric.

6 Discussionand outlook

Themodellng approactwith respecto economicsn this paperns admittedlysim-
plistic. Someobviousandnecessarymprovementsconcerncreditandbankrupty
(i.e. rulesfor companiedo operatewith a negatve amountof cash).Insteadof
those we wantto discusssomeissuesherethat arecloserto this paper Theseis-
suesareconcernedvith time, spaceandcommunicatn.

In this paper in orderto reacha cleanmodelwith possibé analyticsolutiors, we
have describedhe modelsin a languagewhich is ratherunnaturalwith respecto
economicsFor example,insteadof “one compaly pertime step” which changes
pricesonewould userates(for examplea probability of p., for eachcompary to
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changepricesin a giventime step).However, in the limiting caseof p., — 0, at
mostoneandusuallyzerocompanieghangepricesin agiventime step.If onealso
assumeshat consumersadaptations fastenoughso thatit is always completed
beforethe next price changeoccurs,thenthis will resultin the samedynamics
asour model. Thus,our modelis not “dif ferent” from reality, but it is a limiting

casefor the limit of fastcustomeradaptatiorandslon compary adaptationOur
approachis to understandheselimiting casedfirst beforewe move to the more
generakases.

Similar commentseferto the utilizationof spaceWe have alreadyseenthatmov-
ing from a spatialto a non-spatiamodelis ratherstraightforvard. Thereis aneven
more systenatic way to malke this transition which is the increaseof the dimen-
sions.In two dimensonsonasquareyrid, everyagentasfour nearesheighborsin
threedimensios, therearesix nearesheighborsin generaljf D isthedimenson,
thereare2D nearesnheighborslf we leave the numberN of agentsconstantand
keepperiodicboundaryconditions(D-dimensioml torus),thenat D = (N — 1)/2
everybodyis a nearesteighborof everybody Thus, a non-spatialmodelis the
D — oo limiti ng caseof a spatiaimodel.'?

Theseconceptanbe generalizedeyond grids andnearesheighbors- the only

two ingredientsoneneedss that (i) the probability to interactwith someoneelse
decreasefastenoughwith distanceandthat(ii) if onedoubksdistancerom r to

2r, thenthe numberof interactionsup to 2r is 2P timesthe numberof interactions
upto distancer.

This shoud also make clearthat spacecan be seenin a generalizedvay if one
replacesdistanceby generalizeccost. For exampk, how mary more peoplecan
you call for “20 centsa minute or less”thanfor “10 centsa minuteor less™?If the
answerto thisis “two timesasmary”, thenfor the purpose®f this discusgn you
livein aone-dimensinal world.

Giventhis, it is importantto notethatwe have usedspaceonly for the communi-
cationstructure,.e. theway consumersquireinformation (by askingneighbors).
Thisis aratherweakinfluenceof spaceasopposedo, for example transportation
costs[1];it however also assumes not very sophisicatedinformation structure,
asfor examplein contrastto todays internet.The detailsof this needto beleft to
futurework.

Last, one needsto considerwhich part of the economyone wantsto model. For
example,a stockmarlet is a centralizednstitution, andspaceplaysa weakrole at
best.In contrastwe hadthe retail marketin mind whenwe developedthe models
of this paper In fact,we implicitely assumeerishablegoods sinceagentshave no

12 Furthemore, modelssuch as the ones discussedin this paper often have a so-caled

uppe critical dimenson, wheresomeaspecs of the modelbecomethe sameasin infinite
dimensons. This uppe critical dimenson often is rather low (below10).
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memoryof whatthey boughtandconsumedhe day before.Also, we assumehat
consumerspendittle effort in selectingthe“right” placeto shop,which excludes
majorpersonalnvestnentssuchascarsor furniture. Also notethatour companies
have no fixed costs,which implies that there are no capital invegments,which
excludesfor examplemostmanugcturing.

7 Summary

Price formationis an importantaspectof economicactity. Our interestwasin
price formationin “everyday” situations suchasfor retail prices.For this, we as-
sumedhatcompaniesrepricesettersandagentsarepricetakers,in the sensehat
their only stratey optionis to go somephceelse.Iln our abstractedituation this
meanghatcompaniesvith toolow priceswill exit becaus¢hey cannotcover costs,
while companiesvith too high priceswill exit becausehey losetheir customers.

We usespacean orderto simplify andstructuregheway in whichinformationabout
alternatve shoppingplacesis found. This preventsthe singularity of “Bertrand-
style” models,wherethe market shareof eachcompaury is independentrom his-
tory, leadingto potentiallyhugeandunrealisticfluctuations.

By doing this, one noticesthat the spatialdynamicscan be separatedrom the
price formationdynamicstself. This makesintuitively sensesince,in generalized
terms,we are dealingwith evolutionary dynamics,which often doesnot depend
on the detailsof the particularfithessfunction. We have thereforestartedwith an
investgation of a spatialcompetiton model without prices. For this model, we
have looked at clustersizedistributions,andcomparedhemwith realworld com-
pary size distributions. In contrastto investgationsin the literature,which find
log-normaldistributions, we find a scalinglaw a betterfit of our data.In the mod-
els, we find log-normaldistributionsor scalinglaws, dependingon the particular
rules.

We thenaddedprice formationto our spatialmodel.We shavedthatthe price, in
simple scenariosgornvergestowardsthe competitve price (which is herethe unit
costof production, andthatit is ableto track slowly varying productioncosts,
asit should.This predictsthat pricesshouldlag behindcostsof production.We
indeedfind this in the dataof consumeiprice index vs. productionprice index for
the United Statessincel1941.
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A Converting the aggregatedcensusdata

Non-equidistantbins Thesizedatain the 1992U.S. economiccensusomesn
non-equiditant bins. For example,we obtainthe numberof establismentswith
annualsalesabove 25000k$, betweenl0000k$ and25000k$, etc. For anaccu-
mulatedfunction,suchasFig. 5 (right), thisis straighforwardto use.For distribu-
tions, suchasFig. 5 (left), this needsto be normalized We have donethis in the
following way: (1) We first divide by theweightof eachbin, whichis its width. In
theabove example we would divide by (25 000 £$ — 10 000 £$) = 15000 £$. Note
thatthisimmediatey impliesthatwe cannotusethe datafor thelargestcompanies
sincewe do not know wherethatbin ends.(2) For thelog-normaldistribution

o) o<~ exp [~ (In(x) ~ ()’ (A1)

(notethefactor1/x), onetypically usedogarithmic bins,sincethenthefactor1 /x
cancelsout. This corresponds$o a weightof z of eachcensugdatapoint. (3) Now
we have to decidewherewe plot the datafor a specificbin. We usedthe arithmic
meanbetweerthe lower andthe upperend.In our examplecase, 17 500k$. (4) In
summary saythe numberof establishrentsbetweens; ands;,; is N;. Thenthe
transformechumberN; is calculatedaccordingto

N; Si + Sit1

Ni -
Si+1 — Si 2

(A.2)

The largestfirms  For thelargestfirms (but not for the large establishrants),the

censuslsogives the combinedsalesof the four (eight, twenty; fifty) largestfirms.

We usedthe combinedsalesof the four largestfirms divided by four asa (bad)
proxy for the salesof eachof thesefour companiesWe thensubstactedthe sales
of the four largestfirms from the salesof the eight largestfirms, divided again,
etc. Thosedatapoints shouldthus be seenasanindicationonly, andit probably
explainsthe“kink” near2 x 10? in Fig. 5.
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