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Abstract

We look at price formation in a retail setting, that is, companiessetprices, andconsumers
either accept prices or go someplaceelse.In contrastto mostothermodelsin this context,
weuseatwo-dimensional spatial structurefor information transmission,thatis, consumers
canonly learn from nearestneighbors.Many aspects of this canbe understood in terms
of generalized evolutionary dynamics.In consequence,we first look at spatial competition
andcluster formation without price. This leadsto establishementsizedistributions,which
we compare to reality. After sometheoretical considerations, which at leastheuristically
explain our simulation results, we finally return to price formation, wherewe demonstrate
that our simplemodelwith nearly no organizedplanning or rationality on the part of any
of theagents indeedleads to aneconomically plausibleprice.
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1 Intr oduction

Thereareseveral basicconceptswhich lie at the heartof economictheory. They
are the ”economicatom” which is usuallyconsideredto be the individual, prof-
its, money, price andmarketsandthe morecomplex organismthe firm. Much of
economictheory is basedon utility maximizing individualsandprofit maximiz-
ing firms. Theconceptof a utility functionattributesto individualsa considerable
amountof sophistication.Theproof of its existenceposesmany difficult problems�
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in observation andmeasurement.In this studyof market andprice formationwe
considersimplistic socialindividualswhomustbuy to eatandwho look for where
to shopfor the bestprice. In this foray into dynamicswe opt for a simplemodel
of consumerprice formation.Our firms areconcernedwith survival ratherthana
sophisticatedprofit maximization. Yetwerelatethesesimple behaviors to themore
conventionalandcomplex ones.

A naturalway to approachtheeconomicphysics of monopolistic competition is to
introducespaceexplicitly. For muchof economicanalysisof competitionspaceand
informationarecritical factors.The basicaspectsof marketsinvolve an intermix
of factors,suchastransportation costsanddelivery timeswhich dependexplicitly
on physical space.But for pure information, physical distanceis lessimportant
thandirect connection.For questionsconcerningthe growth of market areas,the
spatialrepresentationis appropriate.Considerationof spaceis sufficient to provide
a justification of Chamberlin’s model of monopolistic competition as is evident
from the work of Hotelling [1]. Furthermoreit is reasonablynaturalto consider
spaceonagrid with someform of minimaldistance.Many of theinstabilitiesfound
in economicmodelssuchastheBertrandmodelarenotpresentwith anappropriate
grid.

Wheninvestigatingthesetopics,onequickly finds thatmany aspectsof price for-
mationcanbeunderstoodin termsof generalizedevolutionarydynamics.In conse-
quence,our first modelsin this paperstudyspatialcompetition andclusterforma-
tion without the generationof price (Sec.3). This generatesclustersizedistribu-
tions,whichcanbecomparedto realworld data.Wespendsometimeinvestigating
theoreticalmodelswhichcanexplainoursimulation data(Sec.4). Wethen,finally,
move on to price formation,wherewe implementthepricedynamics“on top” of
thealreadyanalyzedspatialcompetition models(Sec.5). Thepaperis concluded
by adiscussionandasummary.

2 Relatedwork

The model is an openone relatedto the partial equilibrium modelsof much of
micro-economics.In particularmoney and its acceptancein trade is taken as a
primitive concept.Thereis a literatureon theacceptanceof money bothin a static
equilibrium context (seefor example[2]) andin a ”bootstrap”or dynamic context
(seefor example[3,4]). Theseare extremelysimpleclosedmodelsof the econ-
omy whereeachindividual is both a buyer andseller. Eventuallywe would like
to constructa reasonablemodelwheretheacceptanceof money, theemergenceof
competitive priceandtheemergenceof market structureall arisefrom thesystem
dynamics.Thiswill call for anappropriatecombinationof thefeaturesof themodel
presentedherewith theclosedmodelsnotedabove. We do not pursuethis further
here.Insteadby takingtheacceptanceof money asgivenourobservationsarecon-
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fined to the emergenceof markets and the natureof price. The staticeconomic
theoriesof monopoly andmasshomogeneouscompetitiveequilibrium providenat-
uralupperandlowerbenchmarksto gaugemarketbehavior. Theintermediatezone
between����� andvery many is coveredin the economicliteratureby various
oligopoly models,of which thoseof Cournot[5], Bertrand[6] andChamberlin[7]
serve asexemplars.TheChamberlinmodelunlike theearliermodelsstressesthat
all firmstradein differentiatedgoods.They areall in partdifferentiatedor partially
monopolistic. Whenoneconsidersboth informationandphysical locationthis is
a considerablesteptowardsgreaterrealism.Otherwork on evolutionaryor behav-
ioral learningin priceformationareRefs.[8–10].

3 Spatial competition

As mentioned in the introduction, we will startwith spatialmodelswithout price.
Wewill addpricedynamicslater.

3.1 Basicspatialmodel(domaincoarsening)

We usea 2-dimensional ��������� grid with periodicboundaryconditions. Sites
arenumbered !��"$#%#&� . Eachsite belongsto a cluster, denotedby ')(* ,+ . Initially,
eachsitebelongsto “itself ”, thatis, '-(. /+0�1 , andthusclusternumbersalsogofrom" to � .

The dynamicsis suchthat in eachtime stepwe randomlypick a cluster, delete
it, and the correspondingsitesare taken over by neighboringclusters.Sincethe
details,in particularwith respectto thetime scaling,make a difference,we give a
moretechnicalversionof themodel.In eachtime step,we first selecta clusterfor
deletionby randomlypicking a number 2 between" and � . All sitesbelonging
to thecluster(i.e. '-(. /+3�42 ) aremarkedas“dead”. We thenlet adjoiningclusters
grow into the “dead” area.Becauseof the interpretationlater in the paper, in our
modelthe“dead”sitesplaytheactiverole.In parallel,they all pick randomlyoneof
their four nearestneighbors. If thatneighboris not dead(i.e. belongsto a cluster),
thenthe previously deadsite will join that cluster. This stepis repeatedover and
over, until nodeadsitesareleft. Only then,time is advancedandthenext clusteris
selectedfor deletion.

In physics this is calleda domaincoarseningscheme(e.g.[11]): Clustersarese-
lectedanddeleted,andtheirareais takenoverby theneighbors.Thishappenswith
a total separationof time scales,that is, we do not pick anotherclusterfor dele-
tion beforethedistribution of thelastdeletedclusterhasfinished.Fig. 1 shows an
example.Wewill call a clusterof sizelargerthanzero“active”.
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Fig. 1. Snapshot of basicdomain coarsening process.LEFT: Theblackspacecomesfrom
a cluster that hasjust beendeleted. RIGHT: The black space is being taken over by the
neighbors. — Colors/grayscalesare usedto help the eye; clusters which have the same
color/grayscalearestill differentclusters.Systemsize 57678 � .

Notethat it is possible to pick a clusterthathasalreadybeendeleted.In thatcase,
nothinghappensexceptthattheclock advancesby one.This impliesthatthereare
two reasonabledefinitionsof time:

9 Natural time : : This is thedefinitionthatwehaveusedabove.In eachtimestep,
theprobability of any givenclusterto bepickedfor deletionis a constant"�;<� ,
where�=�>� � is thesystemsize.Notethatit is possible to pick aclusterof size
zero,whichmeansthatnothinghappensexceptthattimeadvancesby one.9 Cluster time ?: : An alternativeis to chosebetweentheactiveclustersonly. Then,
in eachtime step,theprobability of any givenclusterto bepicked for deletion
is "�;-�@( ?:A+ , where �@( ?:B+C�D�=E ?: is thenumberof remainingactiveclustersin the
system.

Althoughthedynamicscanbedescribedmorenaturallyin clustertime,we prefer
naturaltimebecauseit is closerto oureconomicsinterpretation.

At any particulartime step,thereis a typical clustersize.In fact, in clustertime,
sincethereare �@(A?:A+F�G�HEI?: clusters,the averageclustersizeas a function of
clustertime is JK( ?:A+F�H�L;M�N( ?:O+P� "�;Q(R"SE ?:A;<�T+ . However, if oneaveragesover
all time steps, we find a scaling law. In cluster time, it is numericallycloseto

?�N(VUM+XW�U-Y � or ?�0([Z\U�+SW�U-Y �^] where U is the clustersize, �@(_U�+ is the numberof
clustersof size U , and �@(RZ`U�+ is thenumberof clusterswith sizelargerthan U . a In
naturaltime,thelargeclustershavemoreweightsincetimemovesmoreslowly near
theendof thecoarseningprocess.Theresultis againa scalinglaw (Fig. 2 (left)),

a In this paper, wewill alsouse bTced<fhgidkjlcedmf for theclustersizedistribution in logarith-
mic bins, in particular for thefigures.
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Fig. 2. LEFT: Clustersizedistribution of thebasicmodelwithout injection, in natural time.
Numberof clusters per logarithmic bin, divided by number of clusters in first bin. The
straight line hasslope prq , corresponding to jlcedmftsud Y � becauseof logarithmic bins.Sys-
tem size 6$q	5 � . As explainedin the text, this is not a steady statedistribution, but a dis-
tribution which emergeswhenaveraging over the complete evolution from b clusters of
sizeoneto onecluster of size b . RIGHT: Clustersizedistribution for random injection.
Numberof clustersperlogarithmic bin, divided by numberof clustersin first bin. Theplot
shows vxwzy.{Cg}|$~�|�q andsystemsizes8<� � , q	57� � , 57678 � , and 6$q	5 � . Theline is a log-normalfit.
This is a steady statedistribution.

but with exponentsincreasedby one:

�N(VUM+0WDU Y � or �N(RZ�U�+0WDU Y � # (1)

It is importantto notethatthis is notasteadystateresult.Theresultemergeswhen
averagingover thewhole time evolution, startingwith � clustersof sizeoneand
endingwith oneclusterof size � .

3.2 Randominjectionwith space

In view of evolution, for example in economicsor in biology, it is realisticto inject
new smallclusters.A possibility is to inject themat randompositions.So in each
time step,beforetheclusterdeletiondescribedabove, in additionwith probability� wzy.{ we pick onerandomsite  andinject a clusterof sizeoneat  . That is, we set')(* ,+ to  . This is followedby theusualclusterdeletion.It will beexplainedin more
detailbelow whatthismeansin termsof system-wide injectionanddeletionrates.

This algorithmmaintainsthe total separationof time scalesbetweenthe cluster
deletion(slow time scale)andclustergrowth (fast time scale).That is, no other
clusterwill bedeletedaslongastherearestill “dead”sitesin thesystem.Notethat
thedefinitionof time in thissectioncorrespondsto naturaltime.

The probability that the injectedclusteris really new is reducedby the probabil-

5



ity to selecta clusterthat is alreadyactive.Theprobabilityof selectinganalready
activeclusteris �N(e:A+O;<� , where �@(*:A+ is againthenumberof active clusters.In con-
sequence,theeffective injection rateis

� wzy.{	����� � � wzy.{ E��N(*:A+A;<��# (2)

Similarly, the effective clusterdeletiondependson the probability of picking an
activecluster, which is �N(e:A+O;<� . In consequence,theeffectivedeletionrateis

�)� �V������� ���N(e:A+O;<�=# (3)

This meansthat, in the steadystate,thereis a balanceof injection anddeletion,���	;<��� � w&y.{ E����	;�� , andthusthesteadystateaverageclusternumberis

���C�>� � wzy.{ ;$��# (4)

In consequence,thesteadystateaverageclustersizeis

U7���>�L;M���C���$; � wzy.{ # (5)

Theclustersizedistribution for themodelof this sectionis numericallycloseto a
log-normaldistribution, seeFig. 2 (right). Indeed,the position of the distribution
moves with "�; � w&y.{ (not shown). In contrastto Sec.3.1, this is now a steadystate
result.

3.3 Injectionona line

It is maybeintuitively clearthattheinjectionmechanismof themodeldescribedin
Sec.3.2destroys thescalinglaw from thebasicmodelwithout injection(Sec.3.1),
sinceinjectionat randompositionsintroducesa typicalspatialscale.Oneinjection
processthat actually generatessteady-statescalingis injection alonga 1-d line.
Insteadof therandominjectionof Sec.3.2,wenow permanentlyset

')(* ,+0�1 (6)

for all sitesalonga line. Fig. 3 (left) showsasnapshotof thissituation.

In thiscase,wenumericallyfind astationaryclustersizedistribution(Fig.3 (right))
with

�N(VUM+0WDU Y �,� a or �N(RZ�U�+0WDU Y�� � a # (7)
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Fig. 3. LEFT: Injection along a line. Systemsize 57678 � . RIGHT: Scalingplot for basic
modelplus injection on a line. Numberof clustersper logarithmic bin, divided by number
of clusters in first bin. The straight line hasslope p�q��m5 corresponding to jlced<f�s�d Y �[�/� .
Systemsize q |�5<� � . This is a steady statedistribution.

Sincetheinjectionmechanismheredoesnot dependon time,andsincethecluster
sizedistribution itself is stationary, it is independentfrom thespecificdefinitionof
time.

3.4 Randominjectionwithoutspace

One could ask what would happenwithout space.A possible translationof our
modelinto “no space”is: Do in parallel:Insteadof pickingoneof your four nearest
neighbors,you pick anarbitraryotheragent(randomneighborapproximation). If
that agentis not dead,copy its clusternumber. Do this over and over againin
parallel,until all agentsarepart of a clusteragain.A clusteris now no longera
spatiallyconnectedstructure,but just a setof agents.In thatcase,we obtainagain
power laws for the sizedistribution, but this time with slopesthat dependon the
injectionrate� wzy.{ (Fig. 4); seeSec.4.4for details.

3.5 Realworld companysizedistributions

Fig. 5 showsactualretail company sizedistributionsfrom the1992U.S.economic
census[12], usingannualsalesasaproxyfor company size.Weusetheretailsector
becausewethink thatit is closestto ourmodellingassumptions— this is discussed
at theendof Sec.6. We show two curves:establishmentsize,andfirm size.¡ It is

¡ An establishment is “a single physical location at which businessis conducted. It is not
necessarilyidentical with acompany or enterprise,whichmayconsistof oneestablishment
or more.” [12].
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Fig. 4. Steadystatecluster sizedistributionsfor differentnon-spatialsimulations.Number
of clustersper logarithmic bin, divided by numberof clustersis first bin. Systemsizes 8<� �
to 6$q	5 � . LEFT: v¢w&y.{Cg}|$~£q . RIGHT: v¢wzy.{¤g�|$~�|�q .
clearthat in orderto becomparablewith our modelassumptions,we needto look
at establishmentsizeratherthanat company size.

Censusdatacomesin unequallyspacedbins; theprocedureto convert it into use-
abledatais describedin theappendix.Also, the last four datapoints for firm size
(not for theestablishmentsize,however) wereobtainedvia adifferentmethodthan
theotherdatapoints;for details,againseetheappendix.

From both plots, one can seethat there is a typical establishment size around
$400000annualsales;andthe typical firm sizeis a similar number. This number
intuitively makessense:With, say, incomeof 10%of sales,smallerestablishments
will notprovidea reasonableincome.

Onecanalsoseefrom theplotsthattheregionaroundthattypicalsizecanbefitted
by alog-normal.Wealsosee,however, thatfor largernumbersof annualsales,such
afit is impossiblesincethetail is muchfatter. A scalinglaw with

�N([Z¥U�+0WDU Y � correspondingto �@(_U�+0WDU Y � (8)

is analternativehere.¦
Thisis,however, atoddswith investigationsin theliterature.For example,Ref.[13]
find a log-normal,andby usinga Zipf plot they show thatfor largecompaniesthe
tail is lessfat thana log-normal.However, thereis a hugedifferencebetweenour
andtheir data:They only usepublicelytradedcompanies,while our datarefersto
all companiesin the census.Indeed,onefinds that their plot hasits maximum at
annualsalesof §�"7¨$© , which is alreadyin the tail of our distribution. This implies

¦ Rememberagain,thatslopes from log-log plots in logarithmic binsaredifferent by one
from theexponentin thedistribution. So jlced<fhsid Y � correspondsto aslope p�q both in the
accumulateddistribution jlc/ª�dmf andwhenplotting logarithmic bins bTced<f,�ObTc/q�f .
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Fig. 5. 1992 U.S. EconomicCensus data.LEFT: Numberof retail establishments/retail
firms per logarithmic bin as function of annual sales. RIGHT: Number of establish-
ments/firmswhich have moresalesthana certainnumber.

that thesmall scalepart of their distribution comesfrom the fact thatsmall com-
paniesaretypically not publicely traded.In consequence,it reflectsthedynamics
of companiesenteringandexiting from thestockmarket,not entryandexit of the
company itself.

Weconcludethatfrom availabledata,company sizedistributionsarebetweenalog-
normalandapower law with �N(_U�+0WDU Y � or �N([Z¥U�+0WDU Y � . Furtherinvestigationof
thisgoesbeyondthescopeof thispaper.

4 Theoretical considerations

4.1 Spatialcoarseningmodel(slope-2 in natural time)

Wearelookingagainat the“basicmodel”. In clustertime thiswas:randomlypick
oneof theclusters,andgiveit to theneighbors.Thefollowing heuristicmodelgives
insight:

(1) Westartwith � clustersof size1.
(2) We need �L;$� time stepsto delete �L;$� of themandwith that generate�L;$�

clustersof size2.
(3) In general,we need �L;$�M­ time stepsto move from �L;$�®­ Y � clustersof size� ­ Y � to �L;)� ­ clustersof size � ­ .
(4) If wesumthisover time,thenin eachlogarithmicbin at U¯�>� ­ thenumberof

contributionsis �L;$� ­ �T�L;$� ­ , i.e. WDU)Y � .
(5) Sincetheseare logarithmic bins, this correspondsto ?�@(_U�+°W±U Y � or ?�N(RZUM+0WDU Y � ] whichwasindeedthesimulation resultin clustertime.
(6) In naturaltime,we needa constantamountof time to move from ²³E´" to ² ,

andthusobtainvia thesameargument�N(VUM+0WDU Y � or �@(RZ�U�+NWµU Y � ] which
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wasthesimulation resultin naturaltime.

4.2 Randominjectionin space(log-normal)

At themoment,we do not have a consistentexplanationfor the log-normaldistri-
bution in the spatialmodel.A candidateis the following: Initially, most injected
clustersof sizeonearewithin the areaof somelarger andolder cluster. Eventu-
ally, that surroundingclustergetsdeleted,andall the clustersof sizeonespread
in order to occupy the now empty space.During this phaseof fast growth, the
speedof growth is proportionalto the perimeter, andthus to ¶ U , where U is the
area.Therefore, ¶ U follows a biasedmultiplicative randomwalk, which means
that ·¹¸$ºk( ¶ UM+��»·¼¸$ºk(VUM+A;$� follows a biasedadditive randomwalk. In consequence,
oncethat fastgrowth processstops,·¹¸$ºk(VU�+ shouldbenormallydistributed,result-
ing in a log-normaldistribution for U itself. In orderfor this to work, oneneedsthat
this growth stopsat approximatelythesametime for all involvedclusters.This is
apprixomatelytruebecauseof the“typical” distancebetweeninjectionsiteswhich
is inverselyproportionalto the injectionrate.More work will benecessaryto test
or rejectthishypothesis.

4.3 Injectionona line (slope-3/2)

If onelooksat a snapshotof the2D picturefor “injection on a line” (Fig. 3), one
recognizesthatonecandescribethisasastructureof crackswhichareall anchored
at the injection line. Thereare � suchcracks(someof lengthzero);cracksmerge
with increasingdistancefrom theinjectionline, but they donotbranch.

Accordingto Ref. [14], this leadsnaturallyto asizeexponentof E�½�;$� , asfoundin
thesimulations.Theargumentis thefollowing: Thewholearea,� � , is coveredby

¾�¿ UÀUl�@(_U�+ ] (9)

where�N(VUM+ is thenumberof clustersof size U ona linearscale.Weassume�@(_U�+NWU Y®Á , however thenormalizationis missing. If all clustersareanchoredat a line of
size � , thenadoublingof thelengthof theline will resultin twiceasmany clusters.
In consequence,thenormalizationconstantis ÂÃ� , andthus �@(_U�+ÄWÃ�¥UÅY®Á . Now
webalancethetotalarea,� � , with whatwejustlearnedaboutthecoveringclusters:

� � W ¾ ¿ UÀUl�¥U Y®Á ��� ¾ ¿ UtU � Y®Á W���U � Y®ÁQÆ�Ç� # (10)

Assuming that È�ÉÊ� , thenthe integral doesnot converge for JÌË Í , andwe
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needto take into accounthow the cut-off J scaleswith � . This dependson how
thecracksmovein spaceasa functionof thedistancefrom theinjectionline. If the
cracksareroughlystraight,thenthesizeof thelargestclusteris W�� � . If thecracks
arerandomwalks,thenthesizeof thelargestclusteris W�� �[�/� . In consequence:

9 For “straight” lines: � � W��Î(.� � + � Y®ÁiÏ �^��"�Ðu��(_�¯E�Èk+FÏ È��>½�;$�Ä#9 For randomwalk: ���µ"�Ð\½�;$��(_�3EÑÈk+�Ï È¥�1Ò�;)½^#
Sinceoursimulationsresultin È¥Ó�½�;$� , weconcludethatourlinesbetweenclusters
arenot randomwalks.This is intuitively reasonable:Whena clusteris killed, then
the growth is biasedtowardsthe centerof the deletedcluster, thus resultingin
randomwalkswhichareall differentlybiased.Thisbiasthenleadsto the“straight
line” behavior. — This implies that the W±U Y �[�/� steadystatescalinglaw hinges
on two ingredients(in a 2D system):(i) Theinjectioncomesfrom a 1D structure.
(ii) Theboundariesbetweenclustersfollow somethingthatcorrespondsto straight
lines.As we have seen,thebiasingof a randomwalk is alreadyenoughto obtain
thiseffect.

4.4 Injectionwithoutspace(variableslope)

Withoutspace,clustersdonotgrow via neighbors,but via randomselectionof one
of their members.That is, we pick a cluster, remove it from thesystem,andthen
give its membersto the otherclustersoneby one.The probability that the agent
chosesa cluster  is proportionalto that cluster’s size U-Ô . If for the moment we
assumethat time advanceswith eachmemberwhich is given back,we obtainthe
rateequation¿ �N(_U�+¿ : �Õ(VUkEÖ"�+Q�N(VUOE0"�+tE\Ul�@(_U�+tEi×x�N(VU�+ÀEi× � w&y.{ �N(VUM+hÐ\× � w&y.{ �N(VU,Ð�"�+¤# (11)

Thefirst andsecondtermon theRHSrepresentclustergrowth by additionof an-
othermember;thethird termrepresentsrandomdeletion;thefourth andfifth term
thedecreaseby onewhich happensif oneof themembersis convertedto a start-
up via injection. × is the rateof clusterdeletion;sincewe first give all members
of a deletedclusterbackto the populationbeforewe deletethe next cluster, it is
proportionalto theinverseof theaverageclustersizeandthusto theinjectionrate:×�WI"7;ÙØ/U�Ú0W � w&y.{ . This is similar to anurnprocesswith additionaldeletion.

Via thetypicalapproximations UÛ�N(VUM+�E¥(VUÙEÖ"�+Q�@(_UÙE³"�+�Ó ÜÜRÝ (VUl�@(_U�+O+ etc.weobtain,
for thesteadystate,thedifferentialequation

¨X��E��PE\U
¿ �¿ U Ei×k�³Ð\× � w&y.{

¿ �¿ U # (12)
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This leadsto

�N(VUM+0Â4(VUrEi× � wzy.{ + YxÞ �VßÙàeá WDU YxÞ �VßÙàeá # (13)

That is, theexponentdependson the injection rate,andin the limit of � w&y.{ Ë ¨ it
goesto E^" . This is indeedtheresultfrom Sec.3.4(seeFig. 4). ©

5 Price formation

What we will do now is to add the mechanismof price formation to our spatial
competition model.For this,we identify siteswith consumers/customers.Clusters
correspondtodomainsof consumerswhogoto thesameshop/company. Intuitively,
it is clearhow this shouldwork: Companieswhich arenot competitive will go out
of business,andtheir customerswill be taken over by the remainingcompanies.
The reductionin the numberof companiesis balancedby the injection of start-
ups.Companiescangooutof business for two reasons:losingtoomuchmoney, or
losing too many customers.Thefirst correspondsto a pricewhich is too low; the
secondcorrespondsto apricewhich is toohigh.

We modeltheseaspectsasfollows: We againhave � siteson an �â���Î�ã� grid
with periodicboundaryconditions(torus).Oneachsite,wehaveaconsumeranda
firm. Thesearenot connectedin any way exceptby thespatialposition – onecan
imaginethat thefirm is located“downstairs” while theconsumerlives“upstairs”.
Firms with customersarecalled “active”, the otherones“inactive”. A time step
consistsof thefollowingsub-steps:

9 Tradesareexecuted.9 Companieswith negativeprofit gooutof business.9 Companieschangeprices.9 New companiesareinjected.9 Consumerscanchangewherethey shop.

Thesestepsaredescribedin moredetail in thefollowing:

Trade: All customershave an initial amount ä of money, which is completely
spentin eachtime stepandreplenishedin thenext. Every customer alsoknows
whichfirm åS��æ@(* ,+ he/shebuysfrom. Thus,he/sheordersanamountçSÔ���ä�;)è¢é
© Notethattheapproachin this section correspondsto measuring thecluster sizedistribu-
tion every time wegive anagentbackto thesystem,while in thesimulationswemeasured
theclustersizedistribution only justbeforeaclusterwaspicked for deletion. In how far this
is importantis anopenquestion; preliminary simulation results indicatethat it is important
for thespatial casewith injection but not importantfor thenon-spatial casein this section.
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at his/hercompany, where è�é is that company’s price.The companiesproduceto
order, andthentradesareexecuted.That is, a company thathas �ké customersand
price èêé will produceandsell ç¯éë�»�Ùé�ä�;)èêé unitsandwill collect �ìé�ä unitsof
money.

Companyexit: Weassumeanexternallygivencostfunctionfor production,2Ö(Vç^+ ,
which is thesamefor everybody. If profit íîéXï����Ùéhä Eð2Ö(.�Qé�ä�;-èêé�+ is lessthan
zero,thenthecompany is losingmoney andwill immediatelygooutof business.ñ
Thepricesof suchacompany is setto infinity. Wewill use2�(.çX+0�1ç , correspond-
ing to a linearcostof production.With this choice,companieswith prices èNé^ÉI"
will exit accordingto this ruleassoonasthey attractat leastonecustomer.

Price changes:With probability one,pick arandomintegernumberbetween" and� . If thereis anactive company with thatnumber, its price is randomlyincreased
or decreasedby ò .
Company injection: Companiesare madeactive by giving themonecustomer:
With probability � wzy.{ , pick a randomsite  andmaketheconsumer goshopping at
company  . Thepriceof theinjectedcompany is setto thepricethat thecustomer
haspaidbefore,randomlyincreasedor decreasedby ò .
Consumeradaptation: All customerswhosepricesgotincreased(eithervia “com-
pany exit” or via “price changes”)will searchfor anew shop.

� � These“searching”
consumerscorrespondto deadsitesin thebasicspatialmodels(Sec.3), andthedy-
namicsis essentiallya translationof that:All searchingconsumersin parallelpick
a randomnearestneighbor. If thatneighboris alsosearching,nothinghappens.If
thatneighboris howevernotsearching,andif thatneighboris payingalowerprice,
our consumerwill accepttheneighbor’sshop.Otherwisethecustomerwill remain
with her old shop,andshewill no longersearch.We keeprepeatingthis until no
consumeris searchingany more.

Thismodeldoesnot investmuchin termsof rationalor organizedbehavior by any
of theentities.Firmschangepricesrandomly;andthey exit withoutwarningwhen
they losemoney. New companiesareinjectedassmallvariationsof existing com-
panies.Consumersonly makemoveswhenthey cannotavoid it (i.e. theircompany
wentoutof businessandthey needanew placeto goshopping)or whenpricesjust
wentup. Only in the last casethey actively comparesomeprices.It will turn out
(seebelow) thateventhatpricecomparisonis notnecessary.

In the above model,price convergesto the unit costof production,which is the
competetive price. In Fig. 6 (left, bottomcurve) we show how an initially higher

ñ In this modelno accumulationof assets is allowed.Thissimplification will berelaxedin
future work.� � The simplification that customers reactto price changesonly is useful becauseit leads
to theseparationof time scalesbetween consumerbehaviorandfirm behavior.
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Fig. 6. LEFT: Priceadjustment.Bottomcurve:whensearchingconsumerscompareprices.
Topcurve:whensearchingconsumersacceptpricesnomatterwhatthey are.RIGHT: Prices
tracking thecost of production.

price slowly decreasestowardsa price of one.The reasonfor this is that,aslong
aspricesarelarger thanone,therewill becompaniesthat,via randomchangesor
injection,havea lowerpricethantheirneighbors.Eventually, theseneighborsraise
prices,thusdriving their customersaway andto thecompanieswith lower prices.
If, however, a company lowers its price below one,thenit will immediately exit
afterit hasattractedat leastonecustomer.

�,�
As alreadymentionedabove, it turns out that the price comparisonby the con-
sumersis not neededat all. We canreplacetherule “if pricegoesup, try to find a
betterprice” by “if price goesup, go to a differentshopno matterwhat the price
there”. In both cases,we find the alternative shopvia our neighbors,aswe have
donethroughoutthis paper. The top curve in Fig. 6 shows the resulting price ad-
justment. Clearly, thepricestill movestowardsthecriticalvalueof one,but it moves
moreslowly andthetrajectorydisplaysmorefluctuations.This is whatonewould
expect,andwe think it is typical for thesituation: If we reducetheamountof “ra-
tionality”, wegetslowerconvergenceandlargerfluctuations.

In termsof clustersizedistribution, the price model is similar to the earlierspa-
tial competition modelwith randominjection.They wouldbecomethesameif we
separatedbankruptcy andpricechanges.

In Fig. 6 (right) we alsoshow thatour modelis ableto trackslowly varyingcosts
of production. For this,we replace2Ö(Vç^+¤��ç by asinus-functionwhichoscillates
aroundç . Theplot impliesthatpriceslagbehindthecostsof production.

�,�
If all prices in thesystemaremorethan ô below one,thenthemodelis not well-defined.

In the limit of large systemsandwhenstarting with pricesabove one, sucha state cannot
bereachedvia thedynamics.– Also notethat if themodelallowedcredit, theexit of such
a company would bedelayed,allowing lossesfor limited periodsof time.
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priceindex for priceandProducer price index for cost.Filled boxesarethecrosscorrelation
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crosscorrelation valuesmirrored at the ��g}| axis.

This is alsovisible in theasymmetryof thecrosscorrelationfunctionbetweenboth
series.In orderto beableto comparewith non-stationaryrealworld series,welook
at relativechanges,� ý (e:A+0���t(*:A+A;��t(*:�E\"7+ . Thecrosscorrelationfunctionbetween
priceincreasesandcostincreasesthenis

��������� (*Èx+¤�IØ � � (e:A+!� � (*:tE�Èx+OÚ ] (14)

where ØA#�Ú averagesover all : . In Fig. 7 (left) onecanclearlyseethatpricesarein-
deedlaggingbehindcostsfor oursimulations.In orderto stresstheasymmetry, we
alsoplot

��"#����� (RE�Èk+ . In Fig.7 (right) weshow thesameanalysisfor theConsumer
PriceIndex vs.theProductionPriceIndex (seasonallyadjusted).Althoughthedata
is muchmorenoisy, it is alsoclearlyasymmetric.

6 Discussionand outlook

Themodellingapproachwith respectto economicsin thispaperis admittedlysim-
plistic. Someobviousandnecessaryimprovementsconcerncreditandbankruptcy
(i.e. rules for companiesto operatewith a negative amountof cash).Insteadof
those,we want to discusssomeissuesherethatarecloserto this paper. Theseis-
suesareconcernedwith time,space,andcommunication.

In this paper, in orderto reacha cleanmodelwith possible analyticsolutions, we
have describedthemodelsin a languagewhich is ratherunnaturalwith respectto
economics.For example,insteadof “one company per time step” which changes
pricesonewould userates(for examplea probability of � ø%$ for eachcompany to
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changepricesin a given time step).However, in the limit ing caseof � ø%$ Ë ¨ , at
mostoneandusuallyzerocompanieschangepricesin agiventimestep.If onealso
assumesthat consumersadaptationis fastenoughso that it is alwayscompleted
beforethe next price changeoccurs,then this will result in the samedynamics
asour model.Thus,our model is not “dif ferent” from reality, but it is a limit ing
casefor the limit of fastcustomeradaptationandslow company adaptation.Our
approachis to understandtheselimit ing casesfirst beforewe move to the more
generalcases.

Similarcommentsreferto theutilizationof space.Wehavealreadyseenthatmov-
ing from aspatialto anon-spatialmodelis ratherstraightforward.Thereis aneven
moresystematic way to make this transition, which is the increaseof the dimen-
sions.In twodimensionsonasquaregrid,everyagenthasfournearestneighbors.In
threedimensions,therearesix nearestneighbors.In general,if & is thedimension,
thereare �'& nearestneighbors.If we leave thenumber� of agentsconstantand
keepperiodicboundaryconditions( & -dimensional torus),thenat & ��(V�ÃE�"�+A;$�
everybodyis a nearestneighborof everybody. Thus,a non-spatialmodel is the
&ÌË Í limiti ngcaseof aspatialmodel.

�.�
Theseconceptscanbegeneralizedbeyondgridsandnearestneighbors– theonly
two ingredientsoneneedsis that (i) theprobability to interactwith someoneelse
decreasesfastenoughwith distance,andthat(ii) if onedoublesdistancefrom � to� � , thenthenumberof interactionsup to � � is �)( timesthenumberof interactions
up to distance� .
This should alsomake clear that spacecan be seenin a generalizedway if one
replacesdistanceby generalizedcost.For example, how many morepeoplecan
youcall for “20 centsa minute or less”thanfor “10 centsa minuteor less”?If the
answerto this is “two timesasmany”, thenfor thepurposesof this discussion you
live in aone-dimensionalworld.

Giventhis, it is importantto notethatwe have usedspaceonly for thecommuni-
cationstructure,i.e. theway consumersaquireinformation (by askingneighbors).
This is a ratherweakinfluenceof space,asopposedto, for example,transportation
costs[1];it however alsoassumesa not very sophisticatedinformationstructure,
asfor examplein contrastto today’s internet.Thedetailsof this needto beleft to
futurework.

Last, oneneedsto considerwhich part of the economyonewantsto model.For
example,a stockmarket is a centralizedinstitution, andspaceplaysa weakrole at
best.In contrast,we hadtheretail market in mind whenwe developedthemodels
of thispaper. In fact,we implicitely assumeperishablegoods,sinceagentshaveno
�.�

Furthermore, modelssuchas the ones discussedin this paper often have a so-called
upper critical dimension,wheresomeaspects of themodelbecomethesameasin infinite
dimensions.This upper critical dimension often is rather low (below10).
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memoryof what they boughtandconsumedthedaybefore.Also, we assumethat
consumersspendlitt le effort in selectingthe“right” placeto shop,whichexcludes
majorpersonalinvestmentssuchascarsor furniture.Also notethatourcompanies
have no fixed costs,which implies that thereare no capital investments,which
excludesfor examplemostmanufacturing.

7 Summary

Price formation is an importantaspectof economicactivity. Our interestwas in
price formationin “everyday”situations, suchasfor retail prices.For this, we as-
sumedthatcompaniesarepricesettersandagentsarepricetakers,in thesensethat
their only strategy option is to go someplaceelse.In our abstractedsituation, this
meansthatcompanieswith toolow priceswill exit becausethey cannotcovercosts,
while companieswith toohighpriceswill exit becausethey losetheir customers.

Weusespacein orderto simplify andstructuretheway in whichinformationabout
alternative shoppingplacesis found. This preventsthe singularityof “Bertrand-
style” models,wherethemarket shareof eachcompany is independentfrom his-
tory, leadingto potentiallyhugeandunrealisticfluctuations.

By doing this, one noticesthat the spatialdynamicscan be separatedfrom the
priceformationdynamicsitself. This makesintuitively sensesince,in generalized
terms,we aredealingwith evolutionary dynamics,which often doesnot depend
on thedetailsof theparticularfitnessfunction.We have thereforestartedwith an
investigation of a spatialcompetition model without prices.For this model,we
have lookedat clustersizedistributions,andcomparedthemwith realworld com-
pany size distributions. In contrastto investigationsin the literature,which find
log-normaldistributions,we find a scalinglaw a betterfit of our data.In themod-
els,we find log-normaldistributionsor scalinglaws, dependingon the particular
rules.

We thenaddedprice formationto our spatialmodel.We showedthat theprice, in
simplescenarios,convergestowardsthe competitive price (which is herethe unit
costof production), and that it is able to track slowly varying productioncosts,
as it should.This predictsthat pricesshouldlag behindcostsof production.We
indeedfind this in thedataof consumerprice index vs. productionprice index for
theUnitedStatessince1941.
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A Converting the aggregatedcensusdata

Non-equidistant bins Thesizedatain the1992U.S.economiccensuscomesin
non-equidistant bins.For example,we obtainthe numberof establishmentswith
annualsalesabove 25000k$, between10000k$ and25000k$, etc.For anaccu-
mulatedfunction,suchasFig. 5 (right), this is straightforwardto use.For distribu-
tions,suchasFig. 5 (left), this needsto be normalized.We have donethis in the
following way: (1) We first divide by theweightof eachbin, which is its width. In
theaboveexample,wewoulddivideby (_�+*N¨$¨)¨K²Ù§@ET"7¨0¨$¨$¨�²Q§$+N��",*N¨$¨$¨î²Ù§ . Note
thatthis immediately impliesthatwecannotusethedatafor thelargestcompanies
sincewedonot know wherethatbin ends.(2) For thelog-normaldistribution

- (%�¢+0Â "
�/.�021

3 E1(*·54h(6�¢+ÀE�·54�(87Û+A+ �
9 (A.1)

(notethefactor "�;�� ), onetypically useslogarithmicbins,sincethenthefactor "�;,�
cancelsout.This correspondsto a weightof � of eachcensusdatapoint. (3) Now
we have to decidewherewe plot thedatafor a specificbin. We usedthearithmic
meanbetweenthe lower andtheupperend.In our examplecase,",:;*)¨)¨�²Ù§ . (4) In
summary, saythe numberof establishmentsbetweenU)Ô and UmÔ ß¢� is �^Ô . Thenthe
transformednumber ?��Ô is calculatedaccordingto

?��Ôê� ��Ô
U<Ô ß¢� E\U<Ô

U<ÔQÐðU<Ô ß¢�
� # (A.2)

The largestfirms For thelargestfirms (but not for thelargeestablishments),the
censusalsogives thecombinedsalesof thefour (eight,twenty, fifty) largestfirms.
We usedthe combinedsalesof the four largestfirms divided by four asa (bad)
proxy for thesalesof eachof thesefour companies.We thensubstractedthesales
of the four largestfirms from the salesof the eight largestfirms, divided again,
etc.Thosedatapointsshouldthusbe seenasan indicationonly, andit probably
explainsthe“kink” near �ë�}"7¨$ñ in Fig. 5.
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