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Abstract

TheTRANSIMS(TRansportationANalysisandSIMulationSystem)projectis a largescaletransportation
systemproject producedby LosAlamosNational Laboratory for transportationplanning. In TRANSIMS,
all processesarerepresentedonthemicroscopic level. Theseprocessesrangefromdecisionsof individuals
abouttheirdaily activitiesall theway to signaloperationsandtraffic movements. TRANSIMS consistsof
severalmodules,someof whicharelistedhere:

� Routeplanner, whichgeneratestravel plansfor eachdriver.
� Micro-simulation, which executesall plans simultaneouslyandin consequencecomputestheinter-

actionbetweendifferent travelers,leadinge.g.to congestion.
� Feedback: The above modulesare interdependent. For example, plansdepend on congestionbut

congestiondepends on plans. This is solved via an iterative method, wherean initial plans set is
slowly adapteduntil it is consistentwith theresultingtravel conditions.

As part of the eventual goal of implementing the TRANSIMS software for all of Switzerland,we are
runningsimulationsonatest-casewith theSwitzerlandtransportationnetwork. Weuseasimilarsimulation
framework asfound in TRANSIMS,but with ourown, simplerversionsof thethreemodules.

We discusstheoperation andinteractionof thesemodules,andbring to light a combinedflaw in our
routeplanner andfeedback modules.This flaw initially causedseveral unrealisticsimulationresults,such
asfreewaysbeingavoidedby vehiclesin favorof lower-capacityroads.Weillustrateseveralimprovements
madeto themodeling logic of themodulesin aneffort to correcttheseproblems,andcomparesimulation
resultsfrom thevarious methods.

We alsodiscussthe resultsof our mostsubstantialimprovement,which is theadditionof a database
thatgiveseachdriver a “memory” of its pastroutesfrom earlieriterations,plustheperformanceof those
routes.Whena new plan-setis generated,eachdriver choosesa routefrom thosein its memory, basedon
their relativeperformance.Thissolutionappearsto beveryrobust,becauseit doesnotdependonhaving a
routeplanner thatworks perfectlyall thetime.

1 Intr oduction

There is an emerging consensusthat large scale transportation simulations consist of several cooperating
software modules,someof them being:

� Traffic simulation module – This is wheretravelersmove through thestreet network by walking, car,
bus, train, etc.

� Modal choice and route generation module – The travelers in the traffic simulation usually know
wherethey areheaded; it is the taskof this moduleto decidewhich modethey take (walk, bus, car,
bicycle, ...) andwhich route.

�
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� Activity generation module– Thestandardcausewhy travelersareheadedtowardacertaindestination
is that they wantto performaspecific activity atthatlocation, for examplework,eat,shop,pick someone
up,etc.Theactivity generationmodule generatessynthetic daily plans for thetravelers.

� Life style, housing, land use,fr eight, etc. – The above list is not complete; it reflectsonly the most
prominentmodules. For example, the whole important issueof freight traffic is completely left out.
Also, at the land use/housing level, there will probably be many modules specializing into different
aspects.

� In addition, thereneed to beinitializ ation modules, suchasthesyntheticpopulation generationmodule,
which takescensus dataandgeneratesdisaggregatedpopulations of individual people andhouseholds.
Similarly, it will probably be necessaryto generategooddefault layouts for intersections etc.without
always knowing theexactdetails.

Theabovemodulesinteract,andtheinteraction goesin bothdirections: for example, (theexecution of) plans
lead(s) to congestion, yet (the expectation of) congestioninfluences plans. Any large scaletransportation
packageneedsto resolve this logical deadlock in a meaningful way.

Realityseemsto approachtheissueof feedbackby a slow system-widelearning process: Peoplepre-plan
majorpiecesof their life (like whenandwherethey work) a long time in advanceandnormallyonly re-adjust
small pieces of their scheduleswhenneeded [1]. More precisely, they pre-plan andre-adjust on many time
scales,wherethetimescale is related to themagnitudeof theadjustment:workplacesandhomelocationsare
re-adjusted on time scales of several years, while the decision to make a detour to buy someice creammay
happenwithin seconds.In consequence,a simulation systemis facedwith two challenges:

1. Modeling adaptation andlearning on all time scales – In principle, a transportation simulation should
simulate several thousanddays in sequence,andthe decisionsof the individual people should unfold
on their particular time scales aspointed out above. In particular, travelersshould be able to replan
while en route. While this sounds simple in principle, it is difficult in practice, becauseone wants
to avoid a large monolithic softwarepackage andthusto separatethe traffic flow simulation from the
strategic decision-making of thetravelers.Thisbecomesparticularly relevantfor parallel transportation
simulations, sincenow thestrategic planning needs to beseparatedfrom thetraffic simulation alsofor
performancereasons.This is not thetopic of this paper; see[2, 3] for moreinformation.

2. Behavioral realism vs. fast relaxation – In practice, simulating several thousanddays in sequence is
difficult to do becauseof computational resourcelimitations. It is alsoquestionable if this would yield
useful resultswithoutadeepunderstanding of thelearningdynamics. As areactionto this, mathematical
modeling of transportation scenarios,aswell asof economics in general, in the pasthasrelied on the
notion of a Nashor User Equilibrium (UE). As is well known, in a UE no traveler can improve by
unilaterally changing her/his behavior. The advantageis that this prescribes a stateof the systemand
it doesnot matterhow the computational system finds it – asopposedto a realistic modeling of the
transient learning dynamics. Today, we however increasingly recognizethat socio-economic systems
do not operate at a UserEquilibrium point; for example,for thehousingmarket it is assumedthat the
systemis permanently in thetransients[4].

This second point is the focusof this paper. Our approachto the problem is to design a framework which
admitsall the different views to the problem. That is, the framework should aswell converge to the User
Equilibrium (assuming it is unique andanattractor – this is a difficult discussion but againoutside thescope
of this paper) asit should allow for experimentation with different behavioral hypotheses.We entirely con-
centrateon day-to-dayreplanning although our results will alsoapplyto within-day replanning. In particular,
we will demonstratethat the introduction of an agentdatabase,which keepstrack of agents’ paststrategies
andtheir performances,will greatly improve bothplausibility androbustness of thesystem.

Throughoutthis paper weusethetermagent to referto anentity within thesimulation capable of making
decisionabout its actions (such astherouteto take from point � to point � ). Sinceour simulation doesnot yet
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involve landuseor other non-transportation activities,anagent is presentlyequivalentto a traveler, a person
using thetransportation network.

The structure of this paperis as follows: Section2 describesthe specific moduleswe areusing in this
study. Section3 introducesthe traffic scenarioswe areapplying thosemodules to. Following that, Sec.4
describessomeresults from theday-to-dayreplanning of our feedback system,which turned out to havesome
implausible implications. We continuethe section by describing somealterations we madeto the feedback
mechanism to try to resolve the problems, and the results of thosechanges. Next we present in Sec.5 the
agent database,a completely different andmorerobustapproachto solving theproblemsencounteredin the
previoussection. We finish with conclusions in Sec.6. For reference,we have providedAppendix A, which
lists someof thesourcecodeusedin our framework andwith theagentdatabase.

2 The Modules

Themodules which areimportant for this studyarethetraffic micro-simulation, therouter, andthefeedback
mechanism,which controls theinteractionbetweenthemicro-simulation andtherouter.

2.1 QueueMicr o-Simulation

As atraffic micro-simulationweuseanimprovedversion of aso-called “queuesimulation” [5]. Theimprove-
mentsrefer to an implementation on parallel computers,and to an improved intersection dynamics,which
ensuresa fair sharing of theintersection capacity amongincoming traffic streams[6]. Thedetails of thetraf-
fic simulation arenot particularly important for this paper; we expect many traffic simulationsto reproduce
similar results. Theimportant featuresare:

� Plansfollowing. Thefeedbackframework generatesindividual routeplans for eachindividual vehicle,
andthetraffic simulation needs to have travelers/vehicleswhich follow thoseplans.

This implies that thetraffic simulationneedsto bemicroscopic, that is, all individual travelers/vehicles
are resolved. Beyond that, it doeshowever not prescribethe dynamics; everything is possible from
smooth particle hydrodynamicswhereparticlesaremovedaccording to aggregatedandsmoothedquan-
tities (e.g.[7, 8]) to virtual reality micro-simulations (e.g.[9]).

� Computational speed. We needto run many simulations of 24-hour days– usually about 50 for a
single scenario. This meansthat a computational speedof 100timesfasterthanreal time on a network
with several thousandsof links and several millions of travelersis desirable. Our queuesimulation
demonstrates thatthis is feasible.

� Simulation output. Theframework needsa certain typeof simulation output to function. Theseoutputs
aresimpleanddo not require sophisticatedprogrammingskills or a sophisticatedoutput subsystemof
the micro-simulation (asopposedto, say, Ref. [9]). Theserequirementsarethat the traffic simulation
outputs(i) the time every time a vehicle/traveler leavesa link, and(ii) a dumpof the locationsof each
vehicle/traveler in thesystem in specified intervalsof time. Thefirst oneis theinformationfrom which
link travel timesarecomputed;thelatter is in factnecessaryfor debugging andvisualization only.

� Congestionbuild-up andqueue spillback.Although this is not a requirementfor theframework in gen-
eral, the results of the present paperdepend on the fact that congestionnormally startsat bottlenecks
(i.e. wheredemandis higher thancapacity), but thenspills backwardsinto thesystemandacross inter-
sections.Oncesuch congestionis there, it takes a largeamount of time to resolve it; in fact,if there are�

vehiclesin aqueueupstreamof abottleneck andthecapacity of thebottleneck is 	 , thentheamount
of time to clear the queue is

��
 	 . The modelshould reflect this, and it should reflect that physical
spacethatthequeuedvehiclesoccupy in thesystem.
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2.2 Router

In addition, we needa router, i.e. a module that generatespaths that guide vehicles/travelers through the
network from a givenorigin to a givendestination. In addition, thevehicles/travelershave starting times,and
therouter needsto besensitive to congestion in thesense that it tends to avoid congestedlinks.

Therouter we have used for the present study is basedon Dijkstra’s shortest-pathalgorithm, but “short-
ness” is measured by the time it takesan agent to travel down a link (roadsegment)in the network. These
timesdependon how congestedthelinks are,andsothey change throughout theday. This is implementedin
the following way: Theway a Dijkstra algorithm searchesa shortestpathis by expanding, from thestarting
point of the trip, a network-orientedversion of a wave front. In order to make thealgorithm time-dependent,
thespeedof this wave front along a link is madeto dependon whenthis wave front enters thelink.

That is, for eachlink � we needa function 
�������� which returns the link “cost” ( � link travel time) for a
vehicle entering at time � . This information is takenfrom a run of thetraffic simulation. In order to make the
look-up of 
�������� reasonably fast, we aggregateover 15-min bins, during which the function is kept constant.
That is, for exampleall vehicles/travelers entering a link between9am and 9:15am will contribute to the
averagelink travel time during thattime period.

2.3 Feedback

Finally, we needthe feedbackmechanism to couple router andtraffic simulation. Initially, we plan all trips
based on freespeed travel times,andfeedthetraffic simulationswith thoseplans. Fromthenon,every time a
traffic simulation run completes,theroute planner usesthetraffic simulation output to updatethetravel-time
(cost of utili zation) associatedwith eachlink in the network. After the routeplanner updatesits view of the
network, it generatesnew plansfor a subset (typically a randomly selected10%)of thedrivers,andtheentire
updatedplan-setis fed backinto themicro-simulation for anotherrun. We repeat this processasmany times
asnecessary(about 50) until the system “relaxes”. Relaxation is asof now not measured by a quantitative
criterion, but via judging visualizer output. This will eventually change.

Figure1 givesanideaof theimprovement in thesystem brought aboutby theiterativescheme.Thefigure
shows two snapshotsof vehicle positions in the Gotthard scenario,describedin Sec.3. The left sideof the
figure showsa snapshotof the vehicles in the midst of the initial iteration (number 0), 2-3 hours after all
vehicleshaveleft their starting locations,for their commondestination. In this iterationdemand is notknown,
soeach traveler assumesfreespeed travel times,andchoosesa routeasif it is theonly driver in thenetwork.
Thus,the freewaysareall in use,andno alternative routeshave beenexplored. The right side of the figure
shows thesamesituation, but 49 iterationslater. Here,thedrivers take into account thecongestion caused by
other vehicleson theroadways, somany moreroutesareexplored. In the49th iteration, fewer travelerstake
the“middle” pathsthrough theAlps (such astheGotthardtunnel) thanin the0th iteration, insteadelecting to
take thewesternor eastern paths.

3 The Scenario

Thegoalof our work is a full 24-hoursimulationof all of Switzerland, includingtransit traffic, freight traffic,
andall modesof transportation. This will involve about 7.5 million travelers, andmorethan20 million trips
(includingshortpedestrian trips etc.). A moreshort-termgoal is a full 24-hoursimulation of all of car traffic
in Switzerland. For this, we will have about 10 million trips.

Our network consistsof 10572 nodesand 28622 links. This network is provided by the Swisstrans-
portationplanning authorities. Besides thestandardattributesfor geographical location andlength, the links
have speed, capacity, andtype attributes. As of now, no street layout, not even the numberof lanes, is part
of that information; also, no informationabout traffic signals is known. This makesusing the TRANSIMS
micro-simulation difficult sinceit needsthat information. This is oneof the reasons why we useour queue
simulation asdescribedabove.
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Figure1: Exampleof relaxation dueto feedback.LEFT: Iteration 0 at9:00 – all travelersassumethenetwork
is empty. RIGHT : Iteration 49 at 9:00– travelerstake morevariedroutesto try to avoid oneanother.

In order to testour modules andour framework, we usea so-calledGotthard scenario. In this scenario,
50’000 travelers/vehicles start, with a random starting time between 6amand7am,at random locationsall
overSwitzerland, andwith adestination in Lugano/Ticino. Although thisscenario hassomeresemblancewith
vacation traffic in Switzerland, its main purposeis to testthe congestion dynamics of the micro-simulation,
andits interaction with thefeedbackframework. This will becomeclearlater in thetext.

4 Link Travel Time Feedback

Evenwithin theframework asdescribedabove,thereis considerable flexibil ity in how to interpretthedifferent
pieces.Oneof thesepiecesis how to aggregatethelink travel times:While thetraffic simulationgenerateslink
entryandexit timesfor eachindividual vehicle, therouterneeds link traversal timesasafunction of link entry
time. As pointed out above, theselatter timesalsoneedto be aggregatedin order to reduce computational
overhead.

Oneissueis if to uselink entry or link exit timesasthebasisfor aggregation.Theway therouter works,
onewould like the average travel time of all vehicles entering during a specificperiod of time. In termsof
simulation logic, this is awkwardsinceoneneeds to keepinformationaboutwhenthe lastvehicle belonging
to sucha batchhasactually left thelink.

As a result, TRANSIMS averagesover vehicles leaving the link during a specific periodof time. This
hashowever thedisadvantagethatnow theaveragedinformationis no longer consistent with therouter– for
example, a link travel time for vehiclesexiting a link between9 and9:15 is not thesameasa link travel time
for vehiclesentering a link between9 and9:15.

This issuecanbeaddressedby “backdating” [10], thatis, onecalculatestherespective link entering times.
TRANSIMS doesthat after the averaginghastaken place. For example, assumethat the average link travel
time for vehicles exiting between 9 and9:15 is 10 min, andthe average link travel time for vehiclesexiti ng
between 9:15 and 9:30 is 15 min. By backdating, onewould arrive at the result that all vehicles entering
between 8:50 and 9:05 need 10 min, and all vehicles entering between 9:00 and 9:15 need 15 min. This
clearly leadsto gapsandoverlaps; TRANSIMS usespiece-wise linear functions to interpolate between the
periods.

In our approach, we decided to completely separatethe aggregation from the micro-simulation. That is,
themicro-simulation is askedto output eventinformationeverytimeavehicle leavesalink (this is information
that alsothe TRANSIMS traffic simulation cangenerate). A post-processing stepthenaggregatesthis data
into theinformationneededby therouter.

For thepost-processing, weuseapairof AWK scripts. Thefirst script, (seeSec.A.1 for listing), reads the
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Figure2: A freeway andsideroads with the original travel time feedbackstrategy at 19:00 (left) and20:00
(right). Thesideroadscontain many vehicleswhile thefreeway contains very few or none.

eventsfile producedby the micro-simulation, filters the eventsmarkingvehiclesexiting links, andcompiles
themtogetherinto an intermediate file that lists, for eachvehicle, the time it enteredandexited eachlink in
its plan. It also creates a second file that lists the arrival timesof eachvehicle at its destination. Coupled
with the (already known) starting timesof the travelers’ routes, this second output file enableseach traveler
to calculatethetotal travel time of its plan. Thesecond script (seeSec.A.2 for listing), aggregatestheoutput
of the first script, to determine the averagetravel-time on the links. For eachlink in the network, this script
keepsa running count of thenumber of vehicleswho entered thelink during eachtime bin of theday;aswell
asa running sumof the total amountof time that groupof entering vehiclesspent on the link. Dividing the
sumby thecountfor eachlink andtime bin combination givestheaveragetravel time for thatlink during that
time bin.

4.1 Initial Results

We rantheabove setupwith theGotthard scenario. In this section we present the initial results of thatsimu-
lation.

For the following, we concentrateon an about 50 km � 100 km section north of Lugano. For better
exposition, theorientationof theplotswill berotated by 90degrees,sothatLuganonow is to theright andthe
Alps areto theleft. Fig.2 showssnapshotsof thesituationat19:00 andat20:00. Theseandall other snapshots
areafter 49 feedback iterations. In general, the vehicles arejammedup becausethere arebottlenecks inside
Luganofor thevehicles to reach their destination.

The implausible feature of theseplots is that therearetraffic jamson thesideroads while the freeway is
empty. Notethatthereis no en-routereplanning, andsotheplan-following vehiclesarestuckwith their plans
for thewholeduration of their trips.

After further investigation, we found thattheproblemwascaused by thefactthattherouter will not react
“f ast enough” if traffic is moving well at thebeginning of thetime bin, but not at its end. Carsthatareon that
link at thebeginning of the time bin will leave sooner thanthe router expects, but those placed at theendof
thetime bin will leave laterthanexpected.

As anexample, supposea link � hasa free-speedtravel-timeof 3 minutes, andtherouter is considering
routing two agents � and � on thatlink during thetimebin from 7:00to 7:15.Supposefurther that � is close
to free-flowing at7:00, but getscongestedby 7:15. Its averagetravel-timeduring this timebin is calculatedto
be5 minutes.

If agent � starts out on thelink nearthebeginningof thetime bin, say7:03, it hasa clear ride andwill be
off the link in, say, 4 minutes. If agent � startsout on the link closer to theendof the time bin, say7:10, it
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Figure3: A freeway andsideroadswith the offset time bins strategy at 19:00 (left) and20:00 (right). The
sideroads contain many vehicles while thefreeway contains very few or none.

getsinto thatcongestionandhasa longertravel time,say9 minutes. Theresultis thatagent � is oneminute
ahead of therouter’s schedule for it, while � is 4 minutesbehind schedule.

Overall, therearefour cases:

� Congestion building up, andvehicle early in time bin. Thenthe vehicle will be fasterthanthe router
thinks. Thevehicle will befaster, andsince congestion is just building up, it will alsobefaster in other
parts of thesystem,thusamplifying theinitial error.

� Congestion building up, andvehicle late in time bin. The the vehicle will be slower than the router
thinks. The vehicle will fall behind, andsince congestion is building up, it will fall behind further in
other partsof thesystem,thusamplifying theinitial error.

� Congestion going away, andvehicleearly in time bin. Thenthe vehiclewill beslowerthanthe router
thinks. The vehiclewill fall behind, but by falling behind will encounter lesscongestion, which will
limit how muchit falls behind.

� Congestion going away, andvehicle late in time bin. Then the vehicle will be fasterthan the router
thinks. Thevehicle will befaster, but by being fasterit will encountermorecongestion, whichwill limit
how far ahead of scheduleit is.

Fromthis description it is clearthat in particular thefirst two casesarea problem sincethedynamics tendsto
amplify theerrors. In order to testourhypothesis,wedescribetwo modificationsto therouter in thefollowing.

4.2 Offsetting the Time Bins

How do we fix this problem? Sincetheproblem seemsto be the router’s reaction to a link’s transition from
free-flowing to congestion, we consider giving the router an “early warning” about impending congestion
build up. We do this by simply offsetting all the time bin dataso that it is ahead of reality by onebin. This
causes the router to usethe 7:15-7:30 time bin information when it is calculating link costs between7:00
and7:15. That way, it will start instructing agents to avoid congestedlinks before those links actually get
congested. Thisstrategy will alsocausetherouterto placemorevehicleson linksundergoing transitionsfrom
congestedto free-flowing at anearlier time. Basedon thereasoningabove,however, this situation should not
cause too muchof a problem.

Figure3 showstheoutcomeof this strategy. We canseethatthefreeway is still emptying earlier thanthe
sideroads. This strategy, by itself, does not seemto helpusat all in this case.
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Figure4: A freeway andsideroadswith the maximumtravel time strategy at 19:00(left) and20:00(right).
At 19:00 thesideroads contain somevehicles while thefreeway is mostlyempty. At 20:00 thesideroadsare
now emptywhile thefreeway contains a few vehicles.

4.3 Maximum vs. AverageTravel-Time

Another issuewith the datausedby the router is that it is an average of the travel timesexperiencesby the
vehicles. As statedabove, if the router under-predictsthe travel-time for an agent on a link during a time
bin, thatagentwill bebehind schedule. But, if the router over-predicts, thenit is not a big problem. Instead
of giving the router anearlywarning, we alter the router’s view of the links sothat it paysmoreattention to
the travel timesof thosevehicles who experiencedcongestion on the links. In otherwords,we biasthedata
against congestedlinks. Thesimplest way to do this is to take themaximumtravel-timeexperiencedon each
link during eachtime bin, ratherthantheaverage.

Figure4 shows theresult of this strategy. This strategy alsodoesnot fix theproblem becausethefreeway
still practically emptiesearlier thanthesideroads. In this case,however, wenotice thata few vehiclesusethe
freeway afterthesideroadsareclear. But thenumber of vehicleson thefreeway is too smallcomparedto the
sideroad. Weseemto begetting someimprovement, at least.

4.4 Combining Maximum and Offset

Neitheroffsetting the travel timesdata,nor biasing it toward the maximumreported travel time seemedto
completely fix theproblemof the implausible results. We now try, asa new strategy, thecombinationof the
two. We take themaximumtravel timesinsteadof theaverage,pluswe offset the resulting travel timesdata
by onebin. This should improve the“early warning” to theroutergivenby theoffsetmethod, since only the
mostdelayeddrivers will betheonesreporting their experiencesto therouter.

Figure5 shows theoutput from this result. As wecansee,thesideroadsfinally emptybefore thefreeway
does, asweexpectedfrom thebeginning.

4.5 Conclusion

After enough analysis, “combining maximumandoffset” finally solved the problem. We essentially hadto
greatly exaggeratetherouter’sview of thelinks undergoingtransition from free-flowing to congestedregimes,
sothat it could reactin time to move travelersaway from thoselinks to avoid thecongestion.

This solution wastailoredfor this specific problem,however. If there areotherrouting problemsthat we
discoveratalatertime,wemayhaveto adjust our travel timereporting strategy again.Suchadjustmentscould
conflict with thecurrent method,bringingbacktheproblemof emptyfreewayswith congestedsideroads.We
would like a morerobust solution, which canwork evenif flawsexist in therouteror thefeedbacksystem.
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Figure5: A freeway andsideroadswith thecombined offset time binswith maximumtravel time strategy at
19:00 (left) and20:00(right). Thesideroadsarefinally empty, while thefreewaynow containsvehicles.This
is whatis expectedfrom thescenario.

In thenext section wepresentanalternativesolution to themaximumand/or offsetstrategies,whichmoves
away from adjusting thetravel timesreporting, to adjustingthebehaviorof thetravelers.

5 The Agent Database

5.1 Concept

In theabove methods,all agentsforgot their previousplans whennew ones werecreated,on theassumption
that the new ones were always better than the old ones. But, if the router is flawed, or not obtaining the
proper information, this might not (always) betrue. So,we now give theagents a memoryof their pastplans
(decisions), andtheoutcome(performanceof plans) of thosedecisions. We allow themto choose their new
planbasedontheperformanceof theroutesin theirmemory. New, untestedroutesfrom therouter iteration are
giventop priority, but if anagent hastried all of his/herplansbefore, thenhe/she choosesoneby comparing
their performancevalues. This strategy meansthat more than our original 10% replanning fraction of the
agents will changetheir plans at a given iteration. Thesechangeswill be“informed” decisions,though – not
random exploration.

By giving theagentsamemory, wemustgive them away to select rememberedroutes.For agivenplan–
asa whole– we canfind thetotal time takento traversetheroute.This will bea measureof theperformance
of theroute. Agentscancompare performanceof rememberedroutes,andchooseonebased on performance
information,without knowinganything elseabouttheroutes.

Theideahereis thatwedon’t needto fix therouter to beperfect,aslong asit generatesreasonable routes
mostof thetime. Wecanusetheoriginal routerandtravel timereporting strategies(averagedtravel timesand
non-offsettime bins),andstill getbehavior thatmakessense.

In comparison,TRANSIMSalsousesadatabase,called the“IterationDatabase,” whichstoresinformation
about agents and their experiencesfrom previous iterations. This database is meantto be usedto choose
specific setsof agents for replanning, but to our knowledge, doesnot store previously discardedroutes for
laterre-use.[9]

5.2 Implementation of the Agent Database

We introducea databaseinto the iteration framework to give the agents memoryof their plans. Currently,
this databaseis implemented in MySQL, an open-source relational databasemanagementsystem.Eachtime
the router generatesa new (initial or updated) plan-set, those plans are added to the database,along with
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plans table:
agent plan num is new start time plan

1 1 0 25200 � text string 1 �
1 2 1 25200 � text string 2 �
2 1 0 25380 � text string 3 �
...

...
...

...
...

travel timestable:
agent plan num travel time

1 1 462
1 2 0
2 1 1047
...

...
...

flagstable:
agent plan num flag

1 1 1
1 2 0
2 1 1
...

...
...

Figure6: Exampletables in the agentdatabase. The “agent” and“plan num” fields arecombined into the
primary key for all three tables. The “plan” field of the planstablecontains a text string consisting of link
identifiers andother informationthattherouter requires.

the identifying numberof their corresponding agent, and the starting time of the plan. The databasealso
stores, for eachplan, themostrecently measured travel time (performancemeasurement)madeby theagent
for thatplan; anda flag that,whentrue,markstheplanasbeingtheoneusedby its agentin themostrecent
micro-simulation. For new, untried plansgeneratedby therouter, thetravel-time is considered to bezero,and
the agent is forced to alwayschoosethat plan next. SeeFig. 6 for an exampleof how the databasestores
information,andSec.A.4 for theactualMySQL codeused to interactwith thedatabase.

Oncethenew setof planshasbeenenteredinto thedatabase,thetravel timestable is joinedwith theflags
tableandoutput into a file. This file is readby a script which usesthe travel-timesinformationto make the
choice for eachagent of its next plan. SeeSec.A.3 for the listing of this script. The script writes a new
file with updatesto the flagstable, which is thenwritten into the database.The flagsindicatethat the plan
is chosenin thecurrent iteration. Oncethedatabaseknowswhich plans to choose,it writes thatsetof plans
(only theoneswith flag � 1) to theinput file for themicro-simulation, andthemicro-simulation is executed.

After the simulation is finished, its eventsoutput is parsed into entry andexit times for eachagent on
eachlink of their route. Theseentryandexit timesareaggregatedinto the15minutetimebinnedtravel-times,
whichareused by therouter to generateits next 10%planset. (PleaseseeSec.4 for amoredetailed description
of thesescripts,or Secs.A.1 andA.2 for thelistingsof them.)At this timeanotherfile is created thatindicates
thearrival timeof eachagent at its destination link. Thisfile is readbackinto thedatabase,theplanstarttimes
aresubtractedfrom thearrival times,andthe travel-timesareupdated.This only occurs for plans which are
flaggedin theflagstable ashaving beenusedin the last iteration. In other words,only oneplanperagentis
updatedwith thetravel time.

At this point, thedatabaseis readyfor thenext iteration, whentherouter will againgeneratea new setof
plans thatmustbeenteredinto thedatabase.

5.3 How plans are actually chosenbasedon performance

Theonly detail left outof theaboveexplanationis how theperformance(total travel-time) information is used
by theagentsto choosetheir plan for thenext iteration.

Eachagentusesthe following model to compare the utilit y functions of its remembered plans. This
function is definedastherelativeprobability, � , of choosinga givenplan � (out of  plans)for anagent� :

�����!�!"$# %&�(')�+*-,/.0�2143657�!�!"$# %&� (1)
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where 3 is an empirical constant, and �!�8"7# % is the total travel time known by agent � for its plan � . This
resemblesboth a Boltzmanndistribution in physicsanda logit modelin discretechoicetheory[11].

Equation1 is only a relativeprobability ; in order to have theprobabilities for all  plansof agent� sumto
1, we mustnormalize theprobabilities.Let �:9 bethenormalizedprobability :

� 9 ����� "7# % �(')� �;���!"$# %&�<>= %8?0@ �����2"7# %A� (2)

Next, we calculatethecumulative probability sums:

B 	("7# %C')�
%D
E ?0@

� 9 ���2"7# E � (3)

Agent � next draws a random number, FHGJI KML$NO� . It thenchoosesplan � suchthat
B 	 "7# % is as large as

possible, but is lessthan F :
B 	("$# %C�PFRQ B 	("7# %TS0@ (4)

The end result of these calculations is that agents are most likely to choose the plan with the highest
performance,second-mostlikely to choose theplanwith thesecond highestperformance,etc. Sincea plan’s
performanceis overwritten by new triesof thatplan, if theplanimprovesits performance,it is morelikely to
bechosen in thefuture. If it’s performancedegradesuponreuse, it will betried lessoftenin thefuture.

Thevalueof 3 determineshow likely it is that a“non-best”planwill bechosen. For theGotthardscenario,
we chosethe valueof 3 so that about90%of the agents, in the initial iterationsat least, would choosetheir
bestpossible plan. In otherwords, we allowedonly 10%(of the90%who werenot replannedin thecurrent
iteration) to retry “non-best” plans. Specifically, we set 3 to be @U�V�W . This allows the relaxation to progress
rapidly in theearly iterations,andgivesagents theability to occasionally give “non-best” plans thechanceto
improve.

5.4 Resultsof Agent Databaseon the Gotthard Scenario

Figure 7 shows the results of using the original strategy from Sec.4 plus the agent database,with plans
selectedasdescribedabove. As onecansee,thefreewayproblemis avoidedwhentheagentshavememoryof
their plans. If therouter starts putting too many agents on thesideroads, somewill eventually try out anold
planthatusedthefreeway andfind that it hasa goodperformance, sowill likely usethatplanagain. As long
asthey rememberoneor moreplansthat utilize the freeway, the agents candecidefor themselvesto useit,
bypassingthesideroadchoiceof therouter. Thus,theagent databasegivesanaddedflexibil ity androbustness
to thesystem,sothatevenwith a flawedrouter or feedbackmechanism,theresults comeout satisfactorily.

This valueof 3 wechoseseemedto work well, but futurework will likely needto exploretheoutcomeof
other valuesfor this constant.

6 Conclusion

The purposeof this paperandthis studyis to demonstratethat for multi-module transportation simulations,
not only is the functionality of the single modulesimportant, but also how they interact. In particular, an
agent-based implementationof theinterfaces betweenthemodules is capable of correcting for artifacts in the
modules. An agent-basedrepresentation meansthattravelersareconsidered asagents,which have a memory
of different strategies and their respective performances. In general, they chose the strategy with the best
performance,but from time to time re-try oneof the other strategies just to checkif its performanceis still
unchanged. Also from time to time,new strategiesaregeneratedandadded to thepool.

In this particular example, we apply this approachto route feedbackfor dynamic traffic assignment.The
problem wasthat the router usesaggregatedfeedback information from the micro-simulation, andthat this
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Figure7: A freeway andsideroadswith theagent databasestrategy at 19:00 (left) and20:00 (right). As with
the “max andoffset” strategy, thesideroads areemptying, while the freeway containsvehicles. This shows
theagent databaseis a solution to thefreeway problem.

aggregationwith mostplausible algorithms lead to artifacts in the resulting traffic. Specifically, the router
under-estimatedlongdistancetravel times,leading to thefactthattherouterassumedtheexistenceof conges-
tion for laterpartsof the trip while in fact thecongestionwaslong gone. This resulted in travelersusing the
sideroadswherethefreewaywouldhavebeenmuchbetter. Theuseof theagentdatabasesolvesthisproblem
without anychangesin therouter. Thatis, evenwhentherouterconsistently generatesfaulty plans, theagent
databaseapproachwill compensatefor this aslong asat least someof theroutesareplausible.

Theapproachwasimplementedusing MySQL asadatabase, andperl/awk asscripting languages.Further
details aregivenin thetext.
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A SourceCode

A.1 read events.awk

This script readsthe events output of the micro-simulatorandconvertsit into entry time andexit time pairs
for eachvehicle on eachlink. It alsooutputs thearrival timesof theagentsat their destinations.

Interface:
Type Name Comment
Input File events.trv traveler eventsfile from micro-simulator
OutputFile events.startend thestarting andending timesfor each

vehicle on each link in its plan
OutputFile END TIMES whenvehicles finishedtheir routes

#!/bin/awk -f

# This script reads a SINGLE (consolidated) SORTED events file and
# figures out when each car entered and exited each link in its plan.

BEGIN {
OFS = "\t";
print "VEHICLE", "LINK", "ENTRY", "EXIT";

}

# main pattern -- executed for each line of input file
{

# Skip header line(s)
if ( $1 == "TIMESTEP" ) {

next;
}

timestep = $1 + 0;
vehicleid = $2;
link = $3;
fromnode = $4; # ignored for now
flag = $5;

# Assuming file is sorted by timestep.

# Store information for END_TIMES output
if ( first_time[vehicleid] == "" ) {

first_time[vehicleid] = timestep;
last_time[vehicleid] = timestep;

} else if ( timestep > last_time[vehicleid] ) {
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last_time[vehicleid] = timestep;
}

if ( last_time[vehicleid] < first_time[vehicleid] ) {
print "Something is wrong! ABCDEFG" > "/dev/stderr";

}

# Ignoring initial link entry, since we do not know where the
# parking accessory really is on the link.

# flag == 2 means a "normal" link exit.
if ( flag == 2 ) {

if ( older_time[vehicleid] != "" ) {

print vehicleid, old_link[vehicleid],
older_time[vehicleid],
old_time[vehicleid];

if ( old_time[vehicleid] <= older_time[vehicleid] ) {
print "Something is wrong! ZYEW" > "/dev/stderr";

}

}

older_time[vehicleid] = old_time[vehicleid];
old_time[vehicleid] = timestep;
old_link[vehicleid] = link;

}

}

END {
for ( v in last_time ) {

print v, last_time[v] > "END_TIMES";
}

}

A.2 parse link times entry.awk

Interface:
File Type Filename Comment
Input File events.startend thestarting andending timesfor eachvehicle

on eachlink in its plan, from readevents.awk
OutputFile summary.tim travel-timesfile for therouter

#!/bin/awk -f

# Read the output of read_events.awk, and transform it into something
# resembling a TRANSIMS travel-times summary file, for reading by the
# router.

# this is for where tt is time_bin of ***ENTRY*** time, not exit time

# figure out which 15-minute time bin to store data into
function calc_time_bin(time) {

# want times to map like so:
# ...21600 => 21600
# 21601...22500 => 22500
# 22501...23400 => 23400

# this is the original time-binning strategy; subtract 1 to get
# offset (so that 7:15 read from the input file goes into 7:00’s
# bin
if ( ( time % 900 ) == 0 ) {
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return int(time / 900) - 1;
} else {

return ( int( time / 900 ));
}

}

function print_data() {

print ll , -1 , (tt+1) * 900 , count[ll, tt]+0 , sum[ll, tt]+0 ,
-1 , -99 , -1 , 0 , 0 , -1;

}

BEGIN {
OFS = "\t";
SUBSEP = OFS;

min_time_bin = 10000.0;
max_time_bin = -10000.0;

min_link = 100000000.0;
max_link = -1.0;

# expected format of TRANSIMS travel times files
# we aren’t using most of these fields
print "LINK" , "NODE" , "TIME" , "COUNT" , "SUM" , "SUMSQUARES" ,

"TURN" , "LANE" , "VCOUNT" , "VSUM" , "VSUMSQUARES" ;
}

NR > 1 {

vehid = $1;
link = $2 + 0.0;
entry_time = $3 + 0.0;
exit_time = $4 + 0.0;

travel_time = exit_time - entry_time;

time_bin = calc_time_bin(entry_time);

## For MAXIMUM strategy, replace the 2 lines below with
## if ( travel_time > max[link, time_bin] ) {
## max[link, time_bin] = travel_time;
## count[link, time_bin] = 1;
## }
## ... and replace "sum" everywhere with "max"

count[link, time_bin] ++;
sum[link, time_bin] += travel_time;

# sumsquared[link, time_bin] += ( travel_time * travel_time );

links_seen[link] = 1;
time_bins_seen[time_bin] = 1;

if ( link > max_link ) { max_link = link; }
if ( link < min_link ) { min_link = link; }

if ( time_bin > max_time_bin ) { max_time_bin = time_bin; }
if ( time_bin < min_time_bin ) { min_time_bin = time_bin; }

# let user keep track of how far into the input file we are
if ( NR % 100000 == 0 ) {

print "line: "NR >> "/dev/stderr";
}

}
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END {

# go through the time bins of the day
for ( tt = min_time_bin ; tt <= max_time_bin ; tt ++ ) {

# go through the links of the network
for ( ll = min_link ; ll <= max_link ; ll++ ) {

if ( ( ll, tt ) in count ) {

print_data();
# once a link is outputted, it should continue to be
# outputted, to show that it is empty
output_link[ll] = 1;

} else if ( ll in output_link ) {

# deal with links that have vehicles on them for more than 15
# minutes
count[ll,tt] = count[ll,tt-1];
sum[ll,tt] = sum[ll,tt-1] - count[ll,tt]*900;

if ( sum[ll, tt] <= 0 ) {
sum[ll, tt] = 0;
count[ll,tt] = 0;

}
# (the logic behind the above is that, as soon as the queue should be
# resolved, we report zero vehicle entries so the link is unreported.)
# (The router uses free-speed travel-times for links during time bins
# they are unreported for a time bin.)
# the router also ignores links with 0 count

print_data();
}

}
}

}

A.3 pick plans.exp-Bt.awk

Thisscript performsthedecision-making of theagents. Foreachagent, it choosesoneof theplansremembered
by thatagentbasedon theperformanceof theremembered plans. SeeSec.5.3 for thedecision description.

Interface:
File Type Filename Comment
Input File travel times.out travel timesandflagsoutput from

database
Input Parameter seed seedfor therandom generator
OutputFile flag update.in update of flagstablefor database

#!/bin/awk -f

# Reads a file of agent, plan_num, travel_time, and flag.
# Chooses a new plan_num for each agent based on the travel_time.

# The probabilistic version -- chooses plan_num based on utility
# function exp(-beta*travel_time).

BEGIN {
#1 beta = 1.0/3600.0/6.0;
#2 beta = 1.0/3600.0;
#3 beta = 1.0/1000.0;

beta = 1.0/360.0;
OFS = "\t";
assert( (seed != ""), "I need a seed value!");
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srand(seed);
}

function assert(is_true, msg) {
if ( ! is_true ) {

print "ERROR (agent="old_agent"): "msg > "/dev/stderr";
error = 1;
exit(1);

}
}

function choose_plan_num(chosen_last,p) {

assert( ( ( 1 in tt ) && ( 1 in fl ) ), "No plans?");

sum = 0;
chosen_last = 0;

p = 1;
while ( p in tt ) {

if ( tt[p] == 0 ) {
return p; # ALWAYS choose brand-new plans (tt=0)

}
prob[p] = exp(-beta * tt[p]);
sum += prob[p];
assert( ( p in fl ), "Plan " p " is in tt but not fl!");
if ( fl[p] == 1 ) {

assert( (chosen_last == 0) , "Too many chosen plans!");
chosen_last = p;

}
p++;

}
max_p = p - 1;

assert( ( chosen_last != 0 ), "No chosen plans!");

p = 1;
sum_list[0] = 0;
while ( p in tt ) {

norm_prob[p] = prob[p] / sum;
sum_list[p] = sum_list[p-1] + norm_prob[p];
p++;

}

if ( sum_list[max_p] != 1 ) {
sum_list[max_p] = 1;

}

r = rand();
p = 1;
while ( r >= sum_list[p] && ( (p+1) in sum_list) ) {

p++;
}

assert( (p <= max_p && p > 0),
"final p ("p") is out of bounds; max_p="max_p);

return p;
}

function update_flags(pn,p,q) {
pn = choose_plan_num();
for ( p in tt ) {

print old_agent, p, p == pn;
}
delete tt;

}

NR == 1 {
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old_agent = $1;
}

# Assuming input is sorted by agent ($1) then by plan_num ($2)

{
agent = $1;
plan_num = $2;
travel_time = $3;
flag = $4;

if ( agent != old_agent ) {

# choose a plan_num for the agent and print its new flags
update_flags();

}

tt[plan_num] = travel_time;
fl[plan_num] = flag;

old_agent = agent;
}

END {

if ( error == 1 ) {
exit(1);

}

# choose a plan_num for the agent and print its new flags
update_flags();

}

A.4 SQL codefor Agent Database

A.4.1 CreateDatabase
# Create the database and set up the tables
# To be executed just once, at the beginning of the iteration.

DROP DATABASE IF EXISTS agent_db ;

CREATE DATABASE IF NOT EXISTS agent_db ;

USE agent_db ;

# store the plans themselves; we have some minimal information about
# the plan plus the actual plan stored as a text string (which is what
# the simulator reads and the router outputs)

# is_new tells us that the plan has not been tried yet; its default is
# 1, so that newly added plans are automatically marked is_new

CREATE TABLE plans (
agent INT UNSIGNED NOT NULL DEFAULT 0,
plan_num INT NOT NULL AUTO_INCREMENT,
is_new TINYINT UNSIGNED NOT NULL DEFAULT 1,
start_time INT UNSIGNED NOT NULL DEFAULT 0,
plan TEXT NOT NULL,
PRIMARY KEY ( agent, plan_num )

) ;

# store the most recent performance (utility?) of the plans
CREATE TABLE travel_times (

agent INT UNSIGNED NOT NULL DEFAULT 0,
plan_num INT NOT NULL DEFAULT 0,
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travel_time INT NOT NULL DEFAULT 0,
PRIMARY KEY ( agent, plan_num )

) ;

# the flag tells whether or not the plan has been chosen by the agent
# for this iteration
CREATE TABLE flags (

agent INT UNSIGNED NOT NULL DEFAULT 0,
plan_num INT NOT NULL DEFAULT 0,
flag TINYINT UNSIGNED NOT NULL DEFAULT 0,
PRIMARY KEY ( agent, plan_num )

) ;

The “flag” and “travel time” attributesarestored in separate tablesbecauseMySQL doesn’t allow the
databaseto update a tableusing information from that table. So,either large temporary tablesmustbeused,
or theinformationused to update a table mustbestored in a separatetable.

A.4.2 ReadPlansinto Database

After creating thedatabase,therouter is run to generatesomeplans. Plansareconvertedinto a formatsuitable
for reading andsavedunderthefile “plans.for.db”.

# Read (new/initial) plans into database

UPDATE plans SET is_new = 0 WHERE is_new <> 0;

LOAD DATA LOCAL INFILE ’plans.for.db’
INTO TABLE plans
FIELDS TERMINATED BY ’,’
LINES TERMINATED BY ’\n\n’

( agent,
start_time,
plan ) ;

# The plans are automatically marked as new (default of is_new is 1)

# Add entries to flags that correspond to the new plans.

INSERT INTO flags
SELECT agent, plan_num, 0
FROM plans
WHERE is_new = 1;

# Add entries to travel_times that correspond to the new plans.

INSERT INTO travel_times
SELECT agent, plan_num, 0
FROM plans
WHERE is_new = 1;

A.4.3 Output Travel Times
# Output entire (updated) travel-times table, so the external script
# can choose the new set of plans.

# Also, output the flag so we know which plan was chosen last time (if
any)

LOCK TABLES travel_times READ, flags READ ;

SELECT
travel_times.agent,
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travel_times.plan_num,
travel_time,
flag

INTO OUTFILE ’/iteration/output/location/travel_times.out’
FROM

travel_times,
flags

WHERE
travel_times.agent = flags.agent AND
travel_times.plan_num = flags.plan_num

GROUP BY
agent,
plan_num ;

# not unlocking here -- that will be done when we read the flags.

Theoutput of theabove is thenprocessedby pick plans.exp-Bt.awk to update theflags(seenext sub-section).
(seeSec.A.3).

A.4.4 Update Flagsand Output Plans
# Choose new set of plans based on performance, and update flags

CREATE TEMPORARY TABLE tmp (
agent INT UNSIGNED NOT NULL DEFAULT 0,
plan_num INT NOT NULL DEFAULT 0,
flag TINYINT UNSIGNED NOT NULL DEFAULT 0,
PRIMARY KEY ( agent, plan_num )

) ;

# READ lock of travel_times is overridden here

LOCK TABLES flags WRITE , plans READ ;

LOAD DATA LOCAL INFILE ’flag_update.in’ INTO TABLE tmp ;

REPLACE INTO flags
SELECT *
FROM tmp ;

DROP TABLE tmp ;

# Output chosen plans

SELECT plan
INTO OUTFILE ’/iteration/output/location/plans.out’
FIELDS TERMINATED BY ’,’
ESCAPED BY ’’
LINES TERMINATED BY ’\n\n’
FROM

plans,
flags

WHERE
plans.agent = flags.agent AND
plans.plan_num = flags.plan_num AND
flags.flag = 1 ;

UNLOCK TABLES ;

A.4.5 Update Travel Times

After themicro-simulatoris run, theeventsfilesareparsed.TheEND TIMES file createdby readevents.awk
(seeSec.A.1) is usedhereto update travel timesof theplansin thedatabase.
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# Update travel-times

# First run read_events.awk to create END_TIMES file

CREATE TEMPORARY TABLE end_times (
agent INT UNSIGNED NOT NULL DEFAULT 0,
end_time INT NOT NULL DEFAULT 0

) ;

LOAD DATA LOCAL INFILE ’END_TIMES’ INTO TABLE end_times ;

LOCK TABLES travel_times WRITE , flags READ , plans READ ;

# We’re overwriting old travel times with new ones; we could also
# average or something to not lose the old information completely

REPLACE INTO travel_times
SELECT

flags.agent,
flags.plan_num,
( end_times.end_time - plans.start_time ) AS travel_time

FROM
flags,
plans,
end_times

WHERE
flags.agent = plans.agent AND
flags.agent = end_times.agent AND
flags.plan_num = plans.plan_num AND
flags.flag = 1 ;

DROP TABLE end_times ;
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