
Distributed intelligence in large scale traffic
simulations on parallel computers

Kai Nagel∗

Dept. of Computer Science, ETH Zürich
CH-8092 Zürich, Switzerland

August 14, 2002

Abstract

Transportation systems can be seen as displaying meta-intelligence, in the sense
that intelligent actors (travelers) conspire to make the system function as a whole.
In simulations one can model this by resolving each traveler individually, and giv-
ing each traveler rules according to which she/he generates goals and then attempts
to achieve them. The system as a whole has no goal of its own except to “func-
tion”, i.e. to be a metropolitan region where people’s lives are good enough so they
do not move away.

This paper approaches this question from an extremely pragmatic point – how
can a large scale simulation of such a system be implemented on a parallel com-
puter? In particular, we concentrate on Beowulf clusters, which are clusters of
regular PCs connected by regular relatively slow local area network. Our work-
ing hypothesis is that the imbalance of the computational system –fast CPUs, slow
communication– resembles the real system, and that a good simulation of the real
system will take advantage of these parallels. The paper focuses both on what is
actually implemented and working, and on future plans.

1 Introduction

The real world, we assume, is an example for distributed intelligence. In the archetyp-
ical example, the anthill, many agents with limited intelligence –the ants– interact and
via this interaction make the whole system –the anthill– function. Similarly, we assume
that humans interact to make the whole system –our society– function. We assume that
this is achieved by many people making autonomous decisions, i.e. without central
control.

The transportation system is a sub-system of this global socio-econo-political sys-
tem. As we will see, in this system do we not only have agents drive or walk through
a networks of roads or walkways, but they also make tactical and strategic decisions,
from skipping lunch to relocating their household. That is, the actions of individuals in

∗nagel@inf.ethz.ch

RCSfile: sfi-distrib-intelligence.tex,v , August 14, 2002 p. 1



the transportation system are strongly coupled to how these individuals live their daily
lives, and how they adjust that daily life in reaction to obstacles. In terms of a practi-
cal example, a new highway to the subways will often trigger the following reactions:
(1) congestion relief; (2) people making additional trips (called induced traffic) and/or
more people relocating to the subways; and in consequence (3) congestion coming
back.

There is an emerging consensus that transportation simulations for planning pur-
poses should consist of the following modules (Fig. 1):

• Traffic simulation module – This is where travelers move through the street
network by walking, car, bus, train, etc.

• Modal choice and route generation module – The travelers in the traffic simu-
lation usually know where they are headed; it is the task of this module to decide
which mode they take (walk, bus, car, bicycle, ...) and which route.

• Activity generation module – The standard cause why travelers are headed to-
ward a certain destination is that they want to perform a specific activity at that
location, for example work, eat, shop, pick someone up, etc. The activity gener-
ation module generates synthetic daily plans for the travelers.

• Life style, housing, land use, freight, etc. – The above list is not complete;
it reflects only the most prominent modules. For example, the whole important
issue of freight traffic is completely left out. Also, at the land use/housing level,
there will probably be many modules specializing into different aspects.

• Feedback – The above modules interact, and the interaction goes in both di-
rections: activities and routes generate congestion, yet (the expectation of) con-
gestion influences activities and routes. This is typically solved via a relaxation
method, i.e. modules are run sequentially assuming that the others remain fixed,
until the results are consistent.

In addition, there need to be initialization modules, such as the synthetic population
generation module, which takes census data and generates disaggregated populations
of individual people and households. Similarly, it is necessary to generate good default
layouts for intersections etc. without always knowing the exact details.

Real-world scenarios often consist of many millions of travelers, and also it seems
(without hard evidence) that our multi-agent methods work best on large problems
and the corresponding macroscopic questions. For such large problems, parallel com-
puting is an absolute necessity. The first thing to compute in parallel is the traffic
micro-simulation – and this is achieved via “standard” domain decomposition, i.e. the
geographical region is cut into pieces, and each CPU is responsible for one such piece.
Running the other modules in parallel is straightforward as long as the agents do not
interact at those levels, as is currently the case for all operational implementations.
However, the above relaxation method does not reflect reality – agents do in fact make
decisions and change plans during travel, and not just before they start. Yet, in a paral-
lel traffic micro-simulation, one cannot have agents go through the cognitive motions
of replanning on the same CPU as the traffic simulation is running, since this would

2



analysis
performance

(e.g. pollution,
economical)

route and

planning

microsimulationmodal
activities

synthetic

population

generation

data (demographic, transportation infrastructure, ...)

planning

Figure 1: TRANSIMS modules

lead to inefficient load balancing. Thus, the method of choice is to make the intelli-
gence of the travelers external to the micro-simulation – in some sense, to have the
traffic micro-simulation represent the “real world” and to have one additional, external,
computer for each brain in the simulation.

It should be noted again that this view of distributed intelligence is not oriented to-
wards the solution of any well-defined problem. There is not even a definition of what
is meant by intelligence, and if it is each individual agent who is intelligent, or the
system as a whole, or both. The only assumption is that the system manages to “func-
tion”, in the sense that each individual manages to end up with a list of activities which
enables him or her to survive, and hopefully to live a good life (in the sense that he or
she does not relocate to a different city). This view of distributed intelligence is rather
different from a computer science view of distributed intelligence, which takes on the
task to achieve a computational speed-up to solve a well-defined problem (e.g. [1]) –
although there is certainly overlap, especially in the methods.

We will start with a short discussion of the traditional method (Sec. 2). Next, we
present agent-based traffic simulation as an alternative (Sec. 3), and describe the mod-
ules mentioned above in more detail. In Sec. 4 we describe how these modules are
coupled in order to make the agents adapt and learn. As pointed out above, for large
scenarios, parallel computing is a necessity, and it has interesting consequences for the
distribution of intelligence in the simulation (Sec. 5). Finally, the state of the art is
discussed (Sec. 6), followed by a conclusion.

2 The Four step process and Static assignment

For people with a Complex Systems background it is clear what to do here: Program
a version of the real-world spatial substrate, consisting of roads and intersections, and
then populate it with agents which follow increasingly sophisticated rules. And in fact,
this is what we will describe in the next section. Before we do this, we will however
glance at the traditional approach to the problem. This is instructive since it many
similarities to a steady-state solution in physics and an equilibrium in economics.

The traditional method of traffic prediction for transportation planning is based on
the four step process [2]:

3



1. Trip generation: This module generates, for each traffic zone, the number of
trips starting there and the number of trips ending there. This can be done for
arbitrary time slices, but is often done for a typical 24-hour weekday.

2. Trip distribution: Trip generation results in sources and sinks, but not how they
are connected. This is done in the trip distribution module. The result is an
origin-destination matrix, which has, at row i and column j, the number of
trips going from zone i to zone j.

3. Modal choice: In this module, the trips are split between the modes of trans-
portation.

4. Route assignment: For each trip, a path is found through the network so that
no other path is faster. Congestion is taken into account via the link travel time
being a function of the trips using that link.

Route assignment has traditionally achieved a lot of attention as a mathematical
programming problem. In fact, it can be shown that the solution to a certain version of
the above route assignment problem can also be obtained as the solution of a certain
non-linear minimization problem. For that reason, many standard methods for non-
linear minimization can be used, although certain simplifications are possible because
of the structure of the problem [2].

The problem is in fact very similar to a non-linear static network flow problem
in physics, where the link “cost” (voltage differential) is given via U = R I with a
non-constant R(I), and where sources and sinks are given via the result of the trip
generation. The only (but important) difference is that in assignment “particles know
where they go”, meaning that one cannot in general exchange particles as one can, in
electrical networks, do with electrons.

Static assignment has many shortcomings. Most importantly, it does not correctly
represent dynamic effects such as queue build-up, and it does not have enough mi-
croscopic information to do, for example, emission calculations. It also de-couples
decisions from individual actors. For example, the only decision available for modal
choice is the origin and the destination of the trips; important aspects such as income,
car ownership, additional trips during the day, etc. are not used. These latter aspects
could however be overcome by a different software design. What cannot be overcome
are the shortcomings in the representation of dynamic effects – or, differently stated:
when reformulating the dynamics so that it becomes more realistic, most if not all the
known mathematical results become invalid, meaning that one loses all the mathemat-
ical guidance which has made static route assignment so attractive.

3 Agent-based traffic simulation modules

We will now move on to an agent-based modeling of traffic. In this section, we will
describe the fundamental modules of a traffic simulation package, as already presented
in the Introduction. As pointed out before, for people with a Complex Systems back-
ground it is clear what to do here: Program a version of the real-world spatial substrate,

4



consisting of roads and intersections, and then populate it with agents which follow in-
creasingly sophisticated rules. We will however also point out one case where the op-
timal computer-science soluation works better than a complex systems heuristic; and
we will describe the standard solutions on which researchers have settled down. In this
section, these modules are presented as stand-alone; the issues of module interaction,
which results in adaptation and learning, is then treated in the following section.

3.1 Traffic micro-simulation

In order to define a simulation, one first needs to define the spatial substrate. In
the case of transportation simulations, this is conventionally a network, consisting of
links/edges (roads) and vertices/nodes (intersections).

On these elements, one will have dynamics. There should be pedestrians and cars
and buses, etc., and they should drive around according to plausible rules. For car
driving alone, the set of absolutely necessary rules is not very large [3], but when
including other modes, quite a lot of work is necessary. As a result of this process, one
can imagine a virtual reality micro-simulation, such as depicted in Fig. 2.

Sometimes, such an implementation is too much work, and it becomes computa-
tionally too slow. It is then possible to replace the virtual reality micro-simulation by
something much simpler, which just takes care of moving the travelers through the
system and to compute some minimal congestion effects [4, 5].

For the purpose of this paper, the exact nature of the micro-simulation does not
matter, as long as it will fulfill some minimum specifications, the most important ones
being: (1) vehicles in the traffic micro-simulation follow plans; and (2) the traffic
micro-simulation runs computationally fast also on large problems. Although these
specifications are currently fulfilled by only very few micro-simulations, let us never-
theless put that problem aside and move on to the other modules.

3.2 Route generation

Having travelers move around randomly is not enough. For example, if a car ap-
proaches an intersection, the driver needs to decide the turning direction. A traditional
method is to use turn counts, meaning that there is empirical data with the information
about what fraction of the traffic goes into which direction. For any kind of transporta-
tion planning question, this is not enough information. The most drastic example is the
addition of a new road: There would be no information available of how the traffic at
the connecting intersection redistributes when the new road becomes connected. One
would also assume that turn counts at other intersections change, since some of the
traffic would adapt to use the new road.

This means that for transportation planning simulations it is indispensable to know
the destinations, and to have routes for each vehicle. In this way, when a new road or a
railway connection is added, every traveler can consider to adapt their routing in order
to use this new connection. The route generation module of the transportation planning
simulation should be multi-modal (i.e. include other modes besides cars), although
some of the mode decision is better done in the demand generation module (see next).

5



agent x,
replanning route

agent y,
replanning 
schedule

Figure 2: Virtual reality representation of simulated traffic in Portland/Oregon. Includ-
ing visualization of plans server capability, see Sec. 5.2.

A typical method for route generation is a time-dependent fastest path algorithm.
Given a starting time t0, an origin i and a destination j, and, for each link, information
how long it will take to traverse the link when entering at a specific time, this algorithm
will compute the fastest path from i to j when starting at time t0. The time-dependent
Dijkstra algorithm, which solves this problem, is with a heap implementation of com-
plexity M log N , where M is the number of links and N is the number of nodes
(intersections). This is in fact a very fast algorithm, and it is difficult to construct a
heuristic which is significantly faster [6].

3.3 Activity generation

For many questions, having the routes adaptive while the activities remain fixed is not
enough. For example, making travel faster usually results in people making more trips.
This is called induced traffic. Conversely, increasing congestion levels will eventually
suppress trips which would otherwise be made, although it is not always clear which
trips are suppressed and what congestion level is necessary to have that effect.

In order to deal with these and other effects, one has to make demand generation
adaptive to congestion. A recent method for this is activity generation, meaning that,
for each individual in the simulation, one generates a list of activities (such as sleeping,
eating, working, shopping) plus locations and times (Fig. 3). Since in this method
each traveler is treated individually, it is possible to use arbitrary decision rules, which
means that arbitrary methods can be investigated. The currently best-accepted methods
are based on random utility theory and are called discrete choice models [7]. These

6



HOME

WORK
LUNCH

WORK

DOCTOR

SHOP

HOME

HUSBAND’S ACTIVITIES

Figure 3: Example of a sequence of activities for a person in Portland/Oregon. From
R.J. Beckman.

models lead typically to a form of

pi ∝ exp
(

−
~b · ~xi

)

for the probability to choose option i, where ~x i is a vector of attributes. The attributes
can refer to the person – e.g. income, gender, marital status, etc. – or to the option
– e.g. time spent waiting, time on bus or car, cost of option, etc. They can also be
combinations of both; in fact, time on bus or car, say, will depend on where I live.
The parameter vector ~b weighs those different attributes; in general the entries of ~b
are obtained via estimation from surveys and remain fixed for a typical study, while
the entries for ~xi are taken from the person under consideration and the option under
consideration.

As stated above, activity generation needs to be done in conjunction with mode
decisions. For example, having a car clearly changes the list of preferable destinations
for a given activity, or may even make other activities more desirable. In general,
there are no completely clear dividing lines between modules – often, decisions can
reasonably be placed in more than one module. It is the task of adaptation and learning
(Sec. 4) to consolidate possible inconsistencies between modules.

3.4 Housing, land use, freight, life style, et al

Transportation planning does not stop at activities. For example, making commut-
ing roads faster by increasing capacity usually results in more people moving to the
suburbs. That is, housing decisions are closely related to transportation system perfor-
mance. Similarly, questions of land use (e.g. residential vs. commercial vs. industrial)
clearly influence and interact with transportation. Freight traffic needs to be consid-
ered. Life style choices (e.g. urban life style, often without car ownership, vs. rural life
style, usually with car ownership) need to be considered; such long-term commitments
have strong influence on activity selection and modal/route choice.

7



4 Adaptation and learning in traffic simulation sys-
tems

In Sec. 3, we have defined the modules of a multi-agent traffic simulation. What is
important is that the agents are not just particles that are moved through the system via
some force field, but that they have tactical and strategic goals – tactical for example
being the decision to change lanes, strategic for example being to eat three times a day.
Sec. 3 has laid out what the corresponding modules do, but not how they interact. This
is the topic of this section.

4.1 Day-to-day learning, feedback, and relaxation

The interaction between the modules can lead to logical deadlocks. For example, plans
depend on congestion, but congestion depends on plans. A widely accepted method to
resolve this is systematic relaxation (e.g. [8]) – that is, make preliminary plans, run the
traffic micro-simulation, adjust the plans, run the traffic micro-simulation again, etc.,
until consistency between modules is reached. Fig. 4 shows an example. The method
is similar to a standard relaxation technique in numerical analysis.

Fig. 4 shows an example of the effect of this. The scenario here is that 50 000 trav-
elers, distributed randomly throughout Switzerland, all want to travel to Lugano, which
is marked by the circle. The scenario is used as a test case, but it has some resemblance
with vacation traffic in Switzerland,

The left figure shows traffic when every driver selects the route which would be
fastest on an empty network. The micro-simulation here uses the so-called queue
model [9], which is a queueing model with an added link storage constraint. That is,
links are characterized by a service rate (capacity), and a maximum number of cars on
the link. If the link is full, no more vehicle can enter, causing spill-back. Compared to
the original version of Ref [9], our model has an improved intersection dynamics [10].
After the initial routing and the initial micro-simulation, iterations are run as follows:

1. During the micro-simulation, one collects link travel times, averaging over, say,
15 minutes. That is, all vehicles entering a link between, say, 8am and 8:15am,
will contribute to the average for that time period.

Now, for a randomly selected fraction of, say, 10% of the travelers, the old routes
are replaced by new routes which are generated based on these averaged link
travel times.

2. For a randomly selected fraction of, say, 10% of the travelers, new routes are
generated based on the averaged link travel times. As described in Sec. 3.2, this is
achieved by running a time-dependent Dijkstra algorithm. The time-dependency
is included by using the time-dependent averaged link travel times every time a
link is considered.

3. The traffic micro-simulation is run again based on the new set of routes

4. Another 10% of the travelers obtains new routes.

8



5. Etc., until some kind of convergence criterion is fulfilled.

Fig. 4 right shows the result after 49 such iterations. Quite visibly traffic has spread out
over many more different routes.

Such iterated simulations can be treated as very high dimensional time-discrete
dynamical systems. A state is the trajectory of the simulation through one day; an
iteration is the update from one day (period) to the next (Fig. 5). As such, one can
search for properties like fix points, steady state densities, multiple basins of attraction,
strange attractors, etc. Typically, one would first analyze the steady state behavior,
and then the transients. Under certain conditions the existence of a unique steady state
can be proven [11], although for the computationally feasible number of iterations the
possible occurrence of “broken ergodicity” [12] needs to be taken into account. Broken
ergodicity is the property of a system to be mathematically ergodic but to remain in
parts of the phase space for long periods of time.

Fig. 6 shows the relaxation behavior for a scenario in Dallas [13, 14]. The plot
shows the sum of all travel times as a function of the iteration number. From this plot
and from other observations it seems that here, broken ergodicity is not a problem,
and all relaxation methods go to the same state, although with different convergence
speeds.

The result is in fact similar to a fixed strategy Nash Equilibrium: for a single run in
the relaxed state, it is approximately true that no traveler could improve by changing
routes. The players follow essentially a “best reply” dynamics (i.e. find the best answer
to yesterday’s traffic), and for some systems it can even be proven that this converges
to a Nash equilibrium [15]. In our case, we have been able to show for a scenario in
Dallas that in a relaxed congested system, the strategy landscape is much flatter than in
an uncongested system [16]. This is a signature of a (population-based) mixed strategy
Nash Equilibrium.

The relaxed solution is typically better than the initial one, but also worse than
some system-optimized solution; in fact, it is relatively easy to construct such scenarios
(e.g. [17]). Again, one recognizes that our system finds a “workable” solution, but does
not optimize in any way.

4.2 Individualization of knowledge

4.2.1 Classifier System and Agent Database

Knowledge of agents should be private, i.e. each agent should have a different set of
knowledge items. For example, people typically only know a relatively small subset of
the street network (“mental map”), and they have different knowledge and perception
of congestion.

This now completely opens the door for the use of Complex Adaptive Systems
methods (e.g. [19]). Each agent has a set of strategies from which to choose, and
indicators of past performance for these strategies. The agent normally choses a well-
performing strategy. From time to time, the agent choses one of the other strategies, to
check if its performance is still bad, or replaces a bad strategy by a new one.

This approach divides the problem into two parts (see also [20]):

9



Figure 4: Result of day-to-day learning in a test example. LEFT: Situation at 9:00am
in the initial run. RIGHT: Situation at 9:00am in the 49th iteration. Each pixel on the
road is a car (by overlapping in the graphics they form the traffic streams); the circle
denotes where they are going. Clearly, the system has found a better solution after
49 iterations.

• Plans evaluation. In this phase, plans (or strategies) are evaluated. In our context
this means that travelers try out all their different strategies, and the strategies
obtain scores. Finally, the agents settle down on the better-performing strategies.

As usual, the challenge is to balance exploration and exploitation. This is partic-
ularly problematic here because of the co-evolution aspect: If too many agents
do exploration, then the system performance is not representative of a “normal”
performance, and the exploring agents do not learn anything at all. If, however,
they explore too little, the system will relax too slowly (cf. “run 4” and “run 5”
in Fig. 6).

• Plans generation. In this phase, new plans (or strategies) need to be generated.
Since they will be evaluated later, the challenge is to generate a large diversity of
strategies, which covers as much as possible the space of possible strategies.

A major advantage of this approach is that it becomes more robust against artifacts of
the router: if an implausible route is generated, the simulation as a whole will fall back
on a more plausible route generated earlier. Fig. 7 shows an example. The scenario is
the same as in Fig. 4; the location is slightly north of the final destination of all trips.
We see snapshots of two relaxed scenarios. The left plot was generated with a standard
relaxation method as described in the previous section, i.e. where individual travelers
have no memory of previous routes and their performance. The right plot in contrast
was obtained from a relaxation method which uses exactly the same router but which
uses an agent data base, i.e. it retains memory of old options. In the left plot, we see
that many vehicles are jammed up on the side roads while the freeway is nearly empty,
which is clearly implausible; in the right plot, we see that at the same point in time, the
side roads are empty while the freeway is just emptying out – as it should be.

The reason for this behavior is that the router miscalculates at which time it expects
travelers to be at certain locations – specifically, it expects travelers to be much earlier

10



n −> n+1

time−of−day time−of−day

ph
as

e 
sp

ac
e

ph
as

e 
sp

ac
e

X_n X_{n+1}

Figure 5: Schematic representation of the mapping generated by the feedback itera-
tions. Traffic evolution as a function of time-of-day can be represented as a trajectory
in a high dimensional phase space. Iterations can be seen as mappings of this trajectory
into a new one.

at the location shown in the plot. In consequence, the router “thinks” that the freeway
is heavily congested and thus suggests the side road as an alternative. Without an agent
data base, the method forces the travelers to use this route; with an agent data base,
agents discover that it is faster to use the freeway.

This means that the true challenge is not to generate exactly the correct routes, but
to generate a set of routes which is a superset of the correct ones [20]. Bad routes
will be weeded out via the performance evaluation method. For more details see [21].
Other implementations of partial aspects are [22, 23, 24, 25].

4.2.2 Individual plans storage

The way we have explained it, each individual needs computational memory to store
his/her plan or plans. The memory requirements for this are of the order of O(N people×

Ntrips ×Nlinks ×Noptions), where Npeople is the number of people in the simulation,
Ntrips is the number of trips a person takes per day, N links is the average number of
links between starting point and destination, and Noptions is the number of options
remembered per agent. For example, for a 24-hour simulation of all traffic in Switzer-
land, we have Npeople ∼ 7.5 mio, Ntrips ∼ 3, Nlinks ∼ 50, and Noptions ∼ 5, which
results in

7.5 · 106 persons × 3 trips per person × 50 links per trip

× 5 options × 4 bytes per link = 22.5 GByte

of storage if we use 4-byte words for storage of integer numbers. Let us call this agent-
oriented plans storage.

Since this is a large storage requirement, many approaches do not store plans in
this way. They store instead the shortest path for each origin-destination combination.
This becomes affordable since one can organize this information in trees anchored at

11



0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

4.5e+08

0 20 40 60 80 100 120

V
T

T
 u

nt
il 

10
:0

0 
A

M
 [s

ec
]

iteration

run 1
run 2
run 4
run 5
run 7
run 8

run 10
run 11
run 12

Figure 6: Different relaxation paths in day-to-day replanning. The plot shows the
sum of all travel times VTT (Vehicle Time Traveled) as a function of the iteration for
different relaxation methods. All methods relax to the same value of VTT. From [18].

each possible destination. Each intersections has a “signpost” which gives, for each
destination, the right direction; a plan is thus given by knowing the destination and
following the “signs” at each intersection. The memory requirements for this are of the
order of O(Nnodes ×Ndestinations ×Noptions), where Nnodes is the number of nodes
of our network, and Ndestinations is the number of possible destinations. Noptions is
again the number of options, but note that these are options per destination, so differ-
ent agents traveling to the same destination cannot have more than N options different
options between them.

Traditionally, transportation simulations use of the order of 1000 destination zones,
and networks with of the order of 10 000 nodes, which results in a memory requirement
of

1 000 destinations × 10 000 nodes × 5 options per destination × 4 bytes per node

= 200 MByte, considerable less than above. Let us call this network-oriented plans
storage.

The problem with this second approach is that it explodes with more realistic repre-
sentations. For example, for our simulations we usually replace the traditional destina-
tions zones by the links, i.e. each of typically 30 000 links is a possible destination. In
addition, we need the information time-dependent. If we assume that we have 15-min
time slices, this results in a little less than 100 time slices for a full day although some
of the information can be recycled [26]. The memory requirements for the second
method now become

30 000 links × 10 000 nodes × 100 time slices

× 5 options × 4 bytes per entry ≈ 600 GByte ,

12



Figure 7: Individualization of plans and interaction with router artifacts. LEFT: All
vehicles are re-planned according to the same information; vehicles do not use the
freeway (arrrows) although the freeway is empty. As explained in the text, this happens
because the router makes erroneous predictions about where a vehicle will be at what
time. RIGHT: Vehicles treat routing results as additional options, that is, they can revert
to other (previously used) options. As a result, the side road now empty out before the
freeway. – The time is 7pm.

already more than for the agent-oriented approach. In contrast, for agent-oriented plans
storage, time resolution has no effect. The situation becomes worse with high resolu-
tion networks (orders of magnitude more links and nodes), which leaves the agent-
oriented approach nearly unaffected while the network-oriented approach becomes im-
possible. As a side remark, we note that in both cases it is possible to compress plans
by a factor of at least 30 [27].

4.3 Within-day re-planning

Day-to-day replanning assumes, in a sense, “dumb” particles. Particles follow routes,
but the routes are pre-computed, and once the simulation is started, they cannot be
changed, for example to adapt to unexpected congestion and/or a traffic accident. In
other words, the strategic part of the intelligence of the agents is external to the micro-
simulation. In that sense, such micro-simulations can still be seen as, albeit much more
sophisticated, version of the link cost function ca(xa) from static assignment, now ex-
tended by influences from other links and made dynamic throughout time. And indeed,
many dynamic traffic assignment (DTA) systems work exactly in that way (e.g. [8]).
In terms of game theory, this means that we only allow unconditional strategies, i.e.
strategies which cannot branch during the game depending on the circumstances.

Another way to look at this is to say that one assumes that the emergent properties
of the interaction have a “slowly varying dynamics”, meaning that one can, for exam-

13



ple, consider congestion as relatively fixed from one day to the next. This is maybe
realistic under some conditions, such as commuter traffic, but clearly not for many
other conditions, such as accidents, adaptive traffic management, impulsive behavior,
stochastic dynamics in general, etc. It is therefore necessary that agents are adaptive
(intelligent) also on short time scales not only with respect to lane changing, but also
with respect to routes and activities. It is clear that this can be done in principle, and
the importance of it for fast relaxation [28, 18] and for the realistic modeling of certain
aspects of human behavior [29, 30] has been pointed out.

4.4 Smart agents and non-predictability

A curious aspect of making the agents “smarter” is that, when it goes beyond a cer-
tain point, it may actually degrade system performance. More precisely, while average
system performance may be unaffected, system variance, and thus unpredictability, in-
variably goes up. An example is Fig. 8, which shows average system performance
in repeated runs as a function of the fraction f of travelers with within-day replan-
ning capability. While average system performance improves with f increasing from
zero to 40%, beyond that both average system performance and predictability (vari-
ance) of the system performance degrade. In other words, for high levels of within-day
replanning capability, the system shows strong variance between uncongested and con-
gested. From a user perspective, this is often not any better than bad average system
performance – for example, for a trip to the airport or to the opera, one usually plans
according to a worst case travel time. Also, if the system becomes non-predictable,
route guidance systems are no longer able to help with efficent system usage. The
system “fights back” against efficient utiliziation by reducing predictability.

Results of this type seem to be generic. For example, Kelly reports a scenario where
many travelers attempt to simultaneously arrive at downtown for work at 8am [31]. In
this case, the mechanism at work is easy to see: If, say, 2000 travelers want to go
to downtown, and all roads leading there together have a capacity of 2000 vehicles
per hour, then the arrival of the travelers at the downtown location necessarily will be
spread out over one hour. Success or failure to be ahead of the crowd will decide if
one is early or late, very small differences in the individual average departure time
will result in large differences in the individual average arrival time, and because of
stochasticity there will be strong fluctuations in the arrival time from day to day even
if the departure time remains constant. Ref. [32] reports from a scenario where road
pricing is used to push traffic closer towards the system optimum. Also in this case, the
improved system performance is accompanied by increased variability. Both results
were obtained with day-to-day replanning.

14



660

680

700

720

740

760

780

0 20 40 60 80

ac
cu

m
ul

at
iv

e 
av

er
ag

e 
tr

av
el

tim
e 

un
til

 1
1:

07
am

 [s
ec

]

market saturation [%]

Figure 8: Predictability as function of within-day rerouting capabilities. The result
was obtained in the context of a simulation study of route guidance systems. The
x-axis shows the fraction of equipped vehicles; the y-axis shows average travel time
of all vehicles in the simulation. For each value of market saturation, five different
simulations with different random seeds were run. When market saturation increases
from zero to 40%, system performance improves. Beyond that, the average system
performance, and, more importantly, also the predictability (variance) of the system
performance degrade. From [18].

5 Distributed computing and truly distributed intelli-
gence

5.1 Parallel micro-simulations

The most compute-intensive part of current implementations is usually the traffic micro-
simulation. A simple calculation gives an approximate number: Assume a 24-hour
simulation (∼ 105 sec) and a one second time step, 107 travelers, and a 1 GHz CPU
(109 CPU-cycles per sec). Further assume that the computation of one time step for
each traveler needs 100 CPU-cycles – remember the driving rules (car following, lane
changing, protected turns, unprotected turns) and include overhead for route following
etc. The result is that such a simulation takes about (105

× 107
× 102)/109 = 105

seconds or approximately 1 day on a single CPU. This is indeed approximately correct
for a TRANSIMS simulation of a corresponding Switzerland scenario (5 mio travelers;
network with 28 622 links); the queue simulation is 10–100 times faster [10].

The simulations can be accelerated by using parallel computers. This becomes
indispensable for large applications when including feedback learning as discussed
in Sec. 4.1 since this multiplies the computing times by a factor of 50, resulting in

15



50 days of computing time for the above scenario when using the TRANSIMS micro-
simulation. We focus on so-called Beowulf architectures, since they are the most prob-
able ones to be available to prospective users (metropolitan planning organizations;
traffic engineering consulting companies; academics). Beowulf clusters consist of reg-
ular workstations (such as Pentium PCs running Linux) coupled by regular local area
network (such as 100-Mbit Ethernet).

The idea is to divide the simulation area into many pieces, each of which is given
to a different CPU. The CPUs communicate e.g. via message passing. In principle,
using, say, 100 CPUs should result in a speed-up of 100. In practice, there are many
limiting factors coming from the hardware and from the operating system. For traffic
micro-simulations, the most important limiting factor is the latency of the Ethernet,
which (in an off-the-shelf system without tuning) is of the order of 1 msec [33]. Since
each CPU in the average needs to communicate with six other CPUs, this means that
each time step needs approx. 6 msec for communication. This limits the speed-up to
1 sec/6 msec ≈ 167, independent of the number of CPUs that one uses. In practice,
“100 times faster than real time” is a good rule of thumb [10, 34]. This domain decom-
position approach is similar to a parallel computing approach to “standard” particle
dynamics, for example in molecular dynamics [35], with the maybe only distinction
that molecular dynamics simulations rarely use a graph instead of regular Cartesian
space as spatial substrate.

Unfortunately, in contrast to many other computing aspects, latency does not seem
to improve in commodity hardware: is has been virtually unchanged from 10 Mbit
Ethernet to 100 Mbit Ethernet to Gbit Ethernet; FDDI is even slower. This has some
interesting consequences:

• The above result refers to the speed-up with given system size when using more
and more CPUs. Alternatively, one can run larger and larger systems when using
more and more CPUs. As is well known, scale-up is much less problematic on
parallel computers than speed-up. In consequence, it is possible to run scenarios
of virtually arbitrary size 100 times faster than real time.

• Alternatively, one can make the micro-simulations more realistic while still being
able to compute 100 times faster than real time.

• It should be noted that parallel supercomputers do not have the same limita-
tion since they employ special purpose hardware for the communication between
CPUs. This results in an improvement by a factor of 100 for latency, meaning
that for practical scenarios other factors play a more important role.

While a parallel Beowulf costs of the order of 2000-3000 U.S.-$ per node, a par-
allel supercomputer is about 20 times more expensive. Since this makes super-
computers irrelevant for the expected users of transportation simulation systems,
even when considering the use of a supercomputing center, we have done little
research in that direction.

It is however possible to use more advanced communication hardware for Be-
owulf clusters, for example Myrinet (www.myri.com). This should improve la-
tency and thus maximum speed-ups by a factor of 10-50.

16



• Finally, it should be mentioned that, while for 10 Mbit Ethernet the main limiting
factor was the hardware, for Gbit Ethernet this is no longer true: Special purpose
implementations [36] bring Gbit Ethernet in the range of Myrinet. It is unclear
if these improvements will make it into the mainstream.

Alternatively, one can consider other means of speeding up the computation. A
possibility is to replace day-to-day replanning by within-day replanning, as discussed
in Sec. 4.3. Experiments have shown that this reduces the number of necessary itera-
tions considerably [18]. Possible distributed implementations of this are discussed in
Sec. 5.2.

5.2 Truly distributed intelligence

Once the traffic micro-simulation is parallelized, it becomes considerably more diffi-
cult to add within-day replanning. As long as one runs everything on a single CPU, it is
in principle possible to write one monolithic software package. In such a software, an
agent who wants to change plans calls a subroutine to compute a new plan, and during
this time the computation of the traffic dynamics is suspended. On a parallel com-
puter, if one traveler on one CPU does this, all other CPUs have to suspend the traffic
simulation since it is not possible (or very difficult) to have simulated time continue
asynchronously (Fig. 9 left).

A better approach is to have the re-planning module on a different CPU. The trav-
eler then sends out the re-planning request to that CPU, and the traffic simulation keeps
going (Figs. 2 and 9 right). Eventually, the re-planning will be finished, and its re-
sult will be sent to the simulated traveler, who picks it up and starts acting on it. An
experimental implementation of this using UDP (User Datagram Protocol) for com-
munication shows that it is possible to transmit up to 100 000 requests per second per
CPU [24], which is far above any number that is relevant for practical applications.
This demonstrates that such a design is feasible and efficient.

Some readers may have noticed that success of the re-planning operation is not
guaranteed. For example, the new plan may say to make a turn at a specific intersec-
tion, and by the time the new plan reaches the traveler, she/he may have driven past
that point. Such situations are however not unusual in real life – how often does one
recognize that a different decision some time ago would have been beneficial. Thus, in
our view the key to success for large scale applications it to not fight asynchronous ef-
fects but to use them to advantage. For example, once it is accepted that such messages
can arrive late, it is also not a problem to not have them arrive at all, which greatly
simplifies message passing.

An additional advantage of such a distributed design is that the implementation
of a separate “mental map” (Sec. 4.2) for each individual traveler does not run into
memory or CPU-time problems. Specific route guidance services can be simulated in
a similar way. Also, non-local interaction between travelers becomes a matter of direct
interaction between the corresponding “strategic” CPUs, without involving the rest of
the computational engine. This occurs for example for ride sharing, or when family
members re-organize the kindergarten pick-up when plans have changed during the
day, and will necessitate complicated negotiations between agents. However, neither

17



tim
e

CPU 1 CPU 2 CPU 3 ...

timestep n timestep n timestep n

n+1 n+1 n+1

n+2 n+2 n+2

n+3 n+3 n+3

n+4

n+5

n+4

n+5

n+4

n+5

replanningidle idle
n+4

n+5

n+6

n+7

n+4

n+5

n+6

n+7

n+4

n+5

n+6

n+7

tim
e

CPU 1 CPU 2 CPU 3 ...

timestep n timestep n timestep n

n+1 n+1 n+1

n+2 n+2 n+2

replanning

n+3 n+3 n+3

Figure 9: Parallel implementation of within-day replanning. LEFT: Implementation
as subroutine of parallel traffic simulation. RIGHT: Implementation via separate plans
server.

the models nor the computational methods for this are developed.
This design is similar to many robot designs, where the robots are autonomous on

short time scales (tactical level) while they are connected via wireless communication
to a more powerful computer for more difficult and more long-term time scales (strate-
gic level); see, e.g., Ref. [37] for robot soccer. Also, the human body is organized along
these lines – for example, in ball catching, it seems that the brain does an approximate
pre-“computation” of the movements of the hands, while the hands themselves (and
autonomously) perform the fine-tuning of the movements as soon as the ball touches
them and haptic information is available [38]. This approach is necessitated by the
relatively slow message passing time between brain and hands, which is of the order of
1/10 sec, which is much too slow to directly react to haptic information [39].

That is, in summary we have a design where there is some kind of “real world dy-
namics” (the traffic simulation), which keeps going at its own pace. Agents can make
strategic decisions, which may take time, but the world around them will keep going,
meaning that they will have to continue driving, or deliberately park the car. As pointed
out, such an architecture is very well supported by current distributed computers, al-
though the actual implementation still needs to be done.

6 State of the art

No simulation package currently integrates all the aspects that are discussed. TRAN-
SIMS [40] comes from the transportation planning side and is maybe the most ad-
vanced in terms of using many of the concepts. The TRANSIMS research program
is reaching completion in 2002, with a full-scale simulation of a scenario in Port-
land/Oregon, with a network of 200 000 links and several million travelers. TRAN-
SIMS uses an agent-based approach to how the travelers make decision, including
an agent data base and a selector which selects agents for replanning. TRANSIMS
does however not implement any of the “within-day replanning” aspects discussed in
Sec. 4.3. We ourselves are in the process of using TRANSIMS for a full-scale sim-
ulation of all of Switzerland [41]. We also have prototypes for the “truly distributed

18



intelligence” as discussed above [24], and for genetic algorithm usage for plans gen-
eration [42]. DYNAMIT [43] and DYNASMART [44], originally started as trans-
portation simulation tools for the evaluation of ITS (Intelligent Transportation System)
Technology, also advance into the area of transportation planning by the addition of
the demand generation modules. METROPOLIS [45] is a package designed to replace
static assignment by a simulation-based but very simple dynamic approach. It allows
the user to specify arbitrary link-cost functions but in its current version is does not
allow the queue build-up which is important for congested systems. The strength of
METROPOLIS lies in the self-consistent computation of departure time choice. Very
few projects use individual plans. Instead, they use shortest-path trees as described in
Sec. 4.2. A collection of articles about regional transportation simulation models can
be found in [46].

Thus, for real world implementations, there is still a long way to go until the agent-
based approach is truly implemented, let alone tested. As an example of the few ex-
isting comparisons to real world data, Fig. 10 shows such a comparison for a Portland
(Oregon) scenario done within the TRANSIMS project. The compared data are hourly
flows, i.e. the number of cars crossing certain measurement locations during an hour.
For both plots, the x-coordinate of a point is given by the field data value, while the
y-coordinate is given by the model result. In consequence, the deviation from the di-
agonal is a measure of how much field data and simulation result disagree. Each point
denotes a different measurement location. The left plot shows results of our simulation,
while the right plot shows results from a model run done by the Portland transportation
planning authority using more traditional technology. The result says that agent-based
simulations in transportation currently are, in terms of the quality of the result, compa-
rable to the more traditional technology; this statement can be quantified [47]. When
interpreting this result, one should consider that our result was preliminary, with a
much simplified micro-simulation and a much simplified demand generation, while
on the other hand the Portland transportation authority has a reputation for excellent
modeling work. For further details, see [47].

7 Conclusion

Socio-economic systems are systems with distributed intelligence: Each agent makes
decisions on her/his own, which together makes the system function as a whole. In con-
trast to many other distributed intelligence approaches, there is however no overarching
problem to solve or to optimize – it is enough if the system “works”.

The transportation system is a part of the socio-economic system, and it functions
according to the same principles: travelers make autonomous decisions, and somehow
the system conspires to “work”, i.e. fulfill the transportation needs of each individual.
New agent-based simulation approaches to transportation use the same principles: the
simulation is composed of agents, and besides driving they also make decisions on
the strategic level such as planning their daily activities and choosing their mode and
route. Although it is not yet universally accepted and very few implementations exist,
it seems that in future these simulations will have an agent database where each agent
collects several strategies and corresponding performance knowledge, and in conse-

19



100

1000

100 1000

field data 1994

sim-80

100

1000

100 1000

1994 field data

Portland METRO study

Figure 10: Comparison between field data and model results. LEFT: Our method.
RIGHT: Portland transportation planning authority

quence, each agent will have only a partial and individualized view of the situation.
In addition, simulation systems will allow for with-day replanning, i.e. that agents are
able to change their plans spontaneously and not just over night.

For large scenarios, parallel computing is a necessity. The arguably cleanest way to
do this is to have two structures: (1) A parallel traffic micro-simulation, where a regular
daily traffic dynamics unfolds according to the tics of some clock. Agents in this sim-
ulation are autonomous on the tactical level. (2) Distributed modules which compute
strategic decisions of the agents. These modules will compute and update strategies
while the dynamics keeps unfolding. Once they have settled down on a strategy, this
is communicated to the agent in the micro-simulation, which will implement it if it is
still consistent with what has happened in the meantime.

Acknowledgments

Los Alamos National Laboratory makes the TRANSIMS software available to aca-
demic institutions for a small charge.

The Swiss Federal Administration provides the input data for the Switzerland stud-
ies.

I thank my collaborators N. Cetin and B. Raney for providing valuable input and
their most recent results, and we all thank our collegues at the Insitute for Trans-
portation, Traffic, Highway- and Railway- Engineering, in particular K. Axhausen and
M. Vrtic, for considerable help with the “real world” aspects of the Switzerland project.

20



References

[1] G. Weiss, editor. Multiagent Systems. A modern approach to distributed artificial
intelligence. The MIT Press, 1999.

[2] Y. Sheffi. Urban transportation networks: Equilibrium analysis with mathemati-
cal programming methods. Prentice-Hall, Englewood Cliffs, NJ, USA, 1985.

[3] K. Nagel, P. Stretz, M. Pieck, S. Leckey, R. Donnelly, and C. L. Barrett. TRAN-
SIMS traffic flow characteristics. Los Alamos Unclassified Report (LA-UR) 97-
3530, Los Alamos National Laboratory, see transims.tsasa.lanl.gov, 1997.

[4] C. Gawron. An iterative algorithm to determine the dynamic user equilibrium in
a traffic simulation model. International Journal of Modern Physics C, 9(3):393–
407, 1998.

[5] P. M. Simon and K. Nagel. Simple queueing model applied to the city of Portland.
International Journal of Modern Physics C, 10(5):941–960, 1999.

[6] R. R. Jacob, M. V. Marathe, and K. Nagel. A computational study of routing
algorithms for realistic transportation networks. ACM Journal of Experimental
Algorithms, 4(1999es, Article No. 6), 1999.

[7] M. Ben-Akiva and S. R. Lerman. Discrete choice analysis. The MIT Press,
Cambridge, MA, 1985.

[8] J.A. Bottom. Consistent anticipatory route guidance. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, 2000.

[9] C. Gawron. An iterative algorithm to determine the dynamic user equilibrium
in a traffic simulation model. In International Journal of Modern Physics C [4],
pages 393–407.

[10] N. Cetin and K. Nagel, submitted. See www.inf.ethz.ch/personal/nagel/papers.

[11] E. Cascetta and C. Cantarella. A day-to-day and within day dynamic stochastic
assignment model. Transportation Research A, 25A(5):277–291, 1991.

[12] R. Palmer. Broken ergodicity. In D. L. Stein, editor, Lectures in the Sciences of
Complexity, volume I of Santa Fe Institute Studies in the Sciences of Complexity,
pages 275–300. Addison-Wesley, 1989.

[13] M. Rickert and K. Nagel. Experiences with a simplified microsimulation for the
Dallas/Fort Worth area. International Journal of Modern Physics C, 8(3):483–
504, 1997.

[14] R.J. Beckman et al. TRANSIMS–Release 1.0 – The Dallas-Fort Worth case study.
Los Alamos Unclassified Report (LA-UR) 97-4502, Los Alamos National Labo-
ratory, see transims.tsasa.lanl.gov, 1997.

21



[15] J. Hofbauer and K. Sigmund. Evolutionary games and replicator dynamics. Cam-
bridge University Press, 1998.

[16] T. Kelly and K. Nagel. Relaxation criteria for iterated traffic simulations. Inter-
national Journal of Modern Physics C, 9(1):113–132, 1998.

[17] H.S. Mahmassani and S. Peeta. Network performance under system optimal
and user equilibrium assignments: Implications for advanced traveler informa-
tion systems. Transportation Research Record, 1408:83–93, 1993.

[18] M. Rickert. Traffic simulation on distributed memory computers. PhD thesis, Uni-
versity of Cologne, Germany, 1998. See www.zpr.uni-koeln.de/˜mr/dissertation.

[19] J.D. Holland. Adaptation in Natural and Artificial Systems. Bradford Books,
1992. Reprint edition.

[20] M. Ben-Akiva. Route choice models. Presented at the Workshop on “Human
Behaviour and Traffic Networks”, Bonn, December 2001.

[21] B. Raney and K. Nagel. Iterative route planning for modular transportation sim-
ulation. In Swiss Transport Research Conference, Monte Verita, Switzerland,
March 2002. See www.strc.ch.

[22] H. Unger. An approach using neural networks for the control of the behaviour
of autonomous individuals. In A. Tentner, editor, High Performance Computing
1998, pages 98–103. The Society for Computer Simulation International, 1998.

[23] H. Unger. Modellierung des Verhaltens autonomer Verkehrsteilnehmer in einer
variablen staedtischen Umgebung. PhD thesis, TU Berlin, 2002.

[24] Chr. Gloor. Modelling of autonomous agents in a realistic road network (in Ger-
man). Diplomarbeit, Swiss Federal Institute of Technology ETH, Zürich, Switzer-
land, 2001.

[25] S. Weinmann. Simulation of spatial learning mechanisms. PhD thesis, Swiss
Federal Institute of Technology ETH, Zürich, Switzerland, in preparation.

[26] I. Chabini. Discrete dynamic shortest path problems in transportation applica-
tions: Complexity and algorithms with optimal run time. Transportation Re-
search Records, 1645:170–175, 1998.

[27] B. W. Bush. Personal communication.

[28] J. Esser. Simulation von Stadtverkehr auf der Basis zellularer Automaten. PhD
thesis, University of Duisburg, Germany, 1998.

[29] K.W. Axhausen. A simultaneous simulation of activity chains. In P.M. Jones, ed-
itor, New Approaches in Dynamic and Activity-based Approaches to Travel Anal-
ysis, pages 206–225. Avebury, Aldershot, 1990.

22



[30] S. T. Doherty and K. W. Axhausen. The developement of a unified modelling
framework for the household activity-travel scheduling process. In Verkehr und
Mobilität, number 66 in Stadt Region Land. Institut für Stadtbauwesen, Technical
University, Aachen, Germany, 1998.

[31] T. Kelly. Driver strategy and traffic system performance. Physica A, 235:407,
1997.

[32] K. Nagel and S. Rasmussen. Traffic at the edge of chaos. In R. A. Brooks and
P. Maes, editors, Artificial Life IV: Proceedings of the Fourth International Work-
shop on the Synthesis and Simulation of Living Systems, pages 222–235. MIT
Press, Cambridge, MA, 1994.

[33] K. Nagel and M. Rickert. Parallel implementation of the TRANSIMS micro-
simulation. Parallel Computing, 27(12):1611–1639, 2001.

[34] P. Gonnet. A thread-based distributed traffic micro-simulation. Term project,
Swiss Federal Institute of Technology ETH, Zürich, Switzerland, 2001.

[35] D.M. Beazley, P.S. Lomdahl, N. Gronbech-Jensen, R. Giles, and P. Tamayo. Par-
allel algorithms for short-range molecular dynamics. In D. Stauffer, editor, An-
nual reviews of computational physics III, pages 119–176. World Scientific, 1995.

[36] http://pdswww.rwcp.or.jp/, since 1993.

[37] J.H. (editor) Kim. Special issue about the first micro-robot world cup soccer tour-
nament, MIROSOT. Robotics and Autonomous Systems, 21(2):137–205, 1997.

[38] D. Sternad. personal communication.

[39] J.D. Rothwell. Control of Human Voluntary Movement. Chapman and Hall, 1994.

[40] TRANSIMS. TRansportation ANalysis and SIMulation System, since 1992. Los
Alamos National Laboratory, Los Alamos, NM. See transims.tsasa.lanl.gov.

[41] A. Voellmy, M. Vrtic, B. Raney, K. Axhausen, and K. Nagel. Status of a TRAN-
SIMS implementation for Switzerland. Networks and Spatial Economics, forth-
coming. See www.inf.ethz.ch/˜nagel/papers.

[42] D. Charypar. Genetic algorithms for activity planning. Term project, Swiss
Federal Institute of Technology (ETH), Zurich, Switzerland, in progress. See
www.inf.ethz.ch/ nagel/papers.

[43] DYNAMIT, since 1999. Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts. See its.mit.edu. Also see dynamictrafficassignment.org.

[44] See www.dynasmart.com. Also see dynamictrafficassignment.org.

[45] A. de Palma and F. Marchal. Real case applications of the fully dynamic
METROPOLIS tool-box: an advocacy for large-scale mesoscopic transportation
systems. Networks and Spatial Economics, 2002.

23



[46] K. Nagel and P. Wagner (editors). Special issue on regional transporta-
tion simulations. Networks and Spatial Economics, forthcoming. See
www.inf.ethz.ch/˜nagel/papers.

[47] J. Esser and K. Nagel. Iterative demand generation for transportation simula-
tions. In D. Hensher and J. King, editors, The Leading Edge of Travel Behavior
Research, pages 659–681. Pergamon, 2001.

24


