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Abstract. Most car-following modelsshow a transitionfrom laminarto “congested” flow and
vice versa.Deterministicmodelsoften have a densityrangewherea disturbanceneedsa suffi-
ciently large critical amplitudeto move the flow from the laminarinto the congestedphase.In
stochasticmodels,it may beassumedthat thesizeof this amplitudegetstranslatedinto a wait-
ing time, i.e. until fluctuationssufficiently addup to triggerthetransition.A recentlyintroduced
modelof traffic flow however doesnot show this behavior: in thedensityregimewherethe jam
solutionco-existswith thehigh-flow state,theintrinsicstochasticityof themodelis notsufficient
to causea transitioninto thejammedregime,at leastnot within relevant time scales.In addition,
modelscanbe differentiatedby the stability of the outflow interface.We demonstratethat this
additionalcriterion is not relatedto the stability of the flow. The combinationof thesecriteria
makesit possibleto characterizesimilaritiesanddifferencesbetweenmany existing modelsfor
traffic in a new way.

1 Intr oduction

Cartraffic is notalwayshomogeneous.Forexample,stop-and-gowavesareafrequently
observed phenomenon. Correspondingly, most traffic models show a transitionfrom
laminarto “congested”flow andviceversa.For many deterministic models,thismech-
anismis well understood(e.g.[1,2], seeFig.1): For certaindensities,thehomogeneous
solutionis linearly unstable,meaningthatany tiny disturbancewill destroy thehomo-
geneityandleadto anotherstate,typically to oneor more waves.For otherdensities,
thehomogeneousstatemaybelinearlystable,but unstableagainst largeamplitudedis-
turbances.

In stochasticmodels,onewouldintuitivelyassume(seeFig.2) thatlinearinstability
getstranslatedinto plain instability –meaning that,for thecorresponding densities,the
homogeneousstatebreaks down immediately–andthat for large amplitudeinstability
thelargeamplitudeinstabilitygetstranslatedinto meta-stability– meaning that,for the
corresponding densities,onehasto wait sometime until thenoiseconspiresin a way
thatacritical disturbanceis generatedandtheinstability is triggered.This is exactly the
topic for this paper, wherewe will demonstratethatthis speculationis correct in some
casesbut not in others.

Recentfield measurements identify additional dynamicphenomena, suchasoscil-
lationsandso-calledsynchronizedtraffic [3,4]. It is under discussionin how far these
additional phenomena canbeexplainedby theabovemodel instabilitiesin conjunction�
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Fig.1. Schematicfundamental diagramfor deterministicmodels.“lr g amplunst.” meansthatthe
homogeneoussolutioncanbekicked into aninhomogeneousstateby a largeenough amplitude;
the bottomplot givesa schematicgraphfor the necessarysizeof that critical amplitude.“eps
unstable”meansthatthehomogeneoussolutionis linearly unstable.

with geometrical constraints (suchasbottlenecks) [5,6], or if additional features are
necessaryin themodels[7]. Giventhis, it seemsdesirableto understandasmuchaswe
canabout existingmodels.

Indeed,Krauss[8] introducesmodelclasseswhich he namestype I, type II, and
typeIII. TypeIII refers to aviscous,syrup-likebehavior withoutbreakdown,andis not
of relevancehere.TypeII displaysjam formation,but jamshave a typical size,mean-
ing that the systemis macroscopicallyhomogeneous, andthat thereis no true phase
transition.Type I displaystrue,macroscopic structureformation andtherefore a first
orderphasetransition. In this paper, we will argue that theKrausscharacterization is
incomplete. We will demonstratethat models canbe stableor unstableat maximum
flow, andthatthejamscanhavea stableor unstableinterface.Thedifferenceto Krauss
in Ref. [8] is thatheimplicitly assumesthatstablemaximumflow goestogether with a
stableinterface,andthatunstablemaximumflow goes togetherwith anunstable inter-
face.Introducingouradditional characterization meansthatwehave


��

����
different

classes,insteadof just I andII.
In orderto demonstratethis,wewill first review whatexpectationonehasfor traffic

flow breakdown in analogyto a gas-liquid transition(Sec.2). We then,in Sec.3, de-
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Fig.2. Schematicfundamental diagramfor stochasticmodels.“meta-stable”meansthat theho-
mogeneoussolutionwill bekickedinto aninhomogeneousstateaftera certainwaiting time; the
bottomplot givesa schematicgraphfor thatwaiting time.

scribethetraffic model thatwe use.Thecentral Sections4 and5 describeresultswith
respectto transitiontimes,andwith respectto interfacedynamics.Sec.6 is alongerdis-
cussionof our results,including speculations,conjectures,andsomesimulationresults
for othermodels. Thepaperis concludedby a summary.

2 Traffic breakdown and the gas-liquid transition

Thebreakdown of laminartraffic, i.e. thetransitionfrom homogeneoustraffic to stop-
and-go waves,canbecomparedto agas-liquid transition,i.e.thetransitionfromtheho-
mogeneousgasstateto theinhomogeneousgas/liquid coexistence state(e.g. [9,8,10]).
As is well known, if onecompressesa gasbeyond a certaincritical density, then it
becomessuper-critical, andsmall fluctuationswill leadto droplet formation andthus
into thecoexistencestate[11]. Similarly, wewouldexpectfor homogeneoustraffic that,
oncecompressedbeyonda certaincritical density, small fluctuations will leadto jam
formationandthusinto thecoexistencestate.

And conversely, oneknows that all dropletsvanish oncethe mixture is expanded
beyondthecritical density. Similarly, onewouldexpectthatall traffic jamsvanishonce
thesystemis expandedbeyond a critical density.
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This leadsto predictionsabout thestatisticsof jam formation andjam dissolution.
Krauss[8] givesthefollowing for theprobability in a given time stepthata jam starts
somewhere in thesystem: ������������� �  !"$#&%(')#+*�,.-
where

"/#&% �103254 ')6 � � 2�7 ')6
is theaverage gap,

# *
and

 ! arefreeparameters,and� is thesystemsize.
7

is thenumberof carsin thesystem;
6

is thelengththatavehicle
occupiesin adensejam.

Theabove is a bulk effect; jam formation canhappenanywherein thesystem.Jam
dissolution, in contrast,is an interfaceeffect: A jam with

7
vehiclesdissolvesif the

random numbers comeout thecorrectway to let all
798�:�;

vehiclesmake the“correct”
typeof movement.This leadsto a recovery probability of �=<>�?�@�A�CB ' 7
8�:�;�D . Since7
8�:�; ���EB 4 ' 4�F�D , weobtain ��<��HGJILK=MON@IPN�QSRUT
Notethat �V< is larger thanzeroalsofor

4XW�4PF
, thatis, spontaneousrecoveryshouldbe

possiblein super-critical systemsalthough it becomes exponentiallyimprobablewith
increasingsystemsize.

In bothcases,thetime to recovery would betheinverseof theabove probabilities.
Whensettingthetwoequationsequal, oneobtainsthecondition for asystemtofluctuate
backandforth betweenthehomogeneous andthecoexistencestate.This would occur
above

4 F
; however, for any given

4XWY4 F
, in thecaseof �[Z]\ , �^� wouldgoto infinity

while � < wouldgoto zero,meaning thatabove
4 F

only thecoexistencestateis stablein
thelimit of �[Z_\ .

3 The model

Themodelto beusedin thefollowing wasintroducedby Krauss[8]. Thebasicideais
thatcarsdriveasfastaspossible,but avoid crashes.Therefore,they haveto choosetheir
velocity `>a�`cb/dfehg which takesinto account thebraking distancei B ` D of thefollowing
andthebraking distancei B�j` D of thepreceding car. Thatmeansthatthevelocity hasto
fulfill i B ` D(k `Jlmani B�j` Dok # . Here,

#
is thespaceheadway betweenthecarsgiven by# � jp ' p '[6 . Thebraking capabilities of the carsarethe samefor all carsandare

parametrizedby themaximumdeceleration q . l is uniformly setto onethroughout this
paper. This safetycondition canbetransformedinto a setof updaterulesasfollows:

` b/d	erg � j`3s kt
 q # s ' j` s
 q k `3s k j`3s (1)`3u gvb �HwyxOz|{ `3s k[} - ` b/dfehg - `3~ df��� (2)` s/� � �Hw�� � { ` u gvb ' }A��� -	� � (3)p s/� � � p s k ` s/� � T (4)

with index � counting integertime. Theparameter
}

is themaximum acceleration, the
parameter

�
measuresthedegreeof randomness,

�
is arandom number,

�y��� ��- 0@� , while
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Fig.3. Space-timeplot for thebreakdown timemeasurement.Spaceis horizontal; time increases
downward; eachline is asnapshot; vehiclesmovefrom left to right. Initially, all vehiclesarelined
up equidistantwith the specifieddensity. Time is measureduntil onevehicle in the simulation
comesto a completestop( ���|�t� ). Oncea jam is started,it typically keeps growing until inflow
is reduced,eitherby anotherjam upstream,or by theeffect of periodicboundary conditions.

`3~ df� is themaximum velocity. We will use ` ;=:��9���
throughout this paper. Ref. [8]

discusseswhat our selectionof parameters meansin termsof real world units; let us
statethatourspecificvalueshavea reasonably closerelationto therealworld.

4 Transition times

Fig.4 showsthebreakdown andtherecovery timesfor two different setsof parameters:B } - q Dy� B 0 - \ D and B } - q D�� B � T 
 -�� T � D . Recall that
}

and q arethe accelerationand
braking capabilities,respectively. The simulations arerun with a fixed number

7
of

vehicles;differentdensitiesareobtainedby adaptingthesystemsize � via � ��7�234 K .
Thetimesareobtainedasfollows:� Breakdown times: The systemis startedwith all vehiclesat equaldistance

# �05234 K ' 0 andwith theinitial velocity takenfrom thelaminarbranchof thefunda-
mentaldiagram.1 Thetime is measureduntil thefirst vehiclein thesystemshows` � � (seeFig. 3).

1 Annoyingly, in thetransitionregime,for someparametersof � and � differentinitial conditions
leadto significantlydifferentbreakdown times.Outsidethe transitionregime, the resultsare
robust.
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Fig.4. Breakdown (middle) and recovery (bottom) times as function of density. Left column:� ���v����� ��� �	��� . Right column:
� �&����� � � �+¡ ¢3�f�c¡ £5� . The straightlines in the bottomplots are

proportional to ¤�¥c¦ �/§©¨«ª � , where
¨

is thenumberof carsin thesystem,and
§

is a freeparam-
eter. – In theright column, weseethatfor

¨ �t¬@�­�®� thereis agapfrom
ª�¯ �+¡ ��° to

ª�¯ �c¡ ¢@�5¬ ,
wherethe systemis, up to

� ��± time steps,stableboth againstbreakdown andagainstrecovery.
– The corresponding sectionsof the fundamental diagram(throughput as function of density;
top) for

¨ ��£5¢®¬ aregiven for orientation.Eachvalueof the fundamentaldiagramis obtained
at 5000 time steps;this is doneoncefor homogeneousandoncefor jammedinitial condition,
resultingin two branches for bi-stablemodels.
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Fig.5.Schematicfundamental diagramfor stochasticmodelsincludingthenew regime.Compare
to Fig. 2.

� Recovery times: Thesystemis startedwith all vehiclesexcept the leadingoneat
distanceone,i.e. gapequalto zero,andvelocity zero.Thetime is measured until
novehiclewith velocity zerois left in thesystem.

Eachdatapoint is anaverageof at least50 runs.
Oneobserves from Fig. 4 that,for bothcases,therecoverybehavior is qualitatively

consistentwith the gas-liquid transitionpicture:Above a certain
4 F

, the waiting time
until recovery(i.e.until asystemwith jamstransitionsto asystemwithout jams)shows
exponentialgrowth, which increaseswith systemsize.

Similarly, for B } - q D�� B 0 - \ D (Fig. 4 left), thebreakdown resultsarequalitatively
consistentwith thegas-liquid transitionpicture:Thetime to breakdown decreasesboth
with increasing systemsizeandwith increasingdensity. Puttingbreakdown andrecov-
ery together, oneobtains that for �²Z³\ andin equilibrium, a systemwith

4�W´4 F
shouldalwaysbein thecoexistencestate.For smaller� , thesystemcanjumpbackand
forth betweencoexistenceandthehomogeneous state.

For parameters B } - q D
� B � T 
 -	� T � D , a possiblydifferentpictureemerges.Here,the
breakdown timesseemto divergeat

4¶µ«· � T 
 , meaning that, for large � andpossibly
for ��Z¸\ , we have a densityrangewherebesidesthetransitionfrom coexistenceto
homogeneousalsotheinversetransitionfromhomogeneousto coexistenceis extremely
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improbable.That is, wemayhavea stablesupercritical homogeneousphaseunder an
update rule that includesnoise. Fig. 5 shows a schematicfundamentaldiagram with
thenew region. – It is howeververydifficult to getgoodnumerical resultsfor suchfast
growth aswefind here:from

4¹� � T 
c
 to
4¹� � T 
�0 , thebreakdown timesgrow between

2 and5 ordersof magnitude,depending on thesystemsize.Several function fits were
tried out, without convincing success;for example º �?������»	B 4 ' 4 µ D IP¼L½ (implying
divergence) or º �H����� » 'm¾ B 4 ' 4 µ D ½ (implying no divergence). We cannot rule out
the secondfunctional form; however, notethat from Fig. 4 we have, at

7¸�À¿ �J�c� , a
gapfrom

4¹· � T 05Á up to
4«· � T 
�0 wherebothbranchesarestablewithin timesof

0 �oÂ .
Also, we notethatbreakdown timesin general donot follow well theanalyticalex-

pectations. Although qualitatively thedependency is asexpected(breakdown time de-
creasingwith increasing systemsize),thequantitativebehavior is different.Thebreak-
down timesfor agivendensitybut differentsystemsizesdonot lie onastraightline on
a log-log plot (not shown), meaningthatneither ºÄÃ�Å�Æ�Ç � 052 � nor any otheralgebraic
form is applicable. In contrast, for recovery times,the simulationresultsareat least
not inconsistentwith ºCÈ FvÉ	Ê �Ë����� » ' ��B 4 ' 4 µ D ½ . Oneshouldin general note that
very few systemsizesweresimulated;in particular, the simulations do not extend to
–computationallydifficult– very large systemssizeswheredifferent behavior might be
found.

Why is theKraussmodel with B } - q - ��D
� B � T 
 -	� T � - 0­D somuchdifferent from the
“standard” phasetransitionpicture,wherenoisewill relatively quickly addup in away
thatasuper-critical homogeneousstatewill breakdown?Wesuspectthatin many traffic
models,becauseof theparallelupdate, noiseis introducedin aspecialway. In particular,
the amount of noiseper spatialand temporal unit is bounded.In conjunction with a
dynamicswhich dissipatesnoisefastenough,it make senseto obtain stateswhich are
absolutelystableunder this kind of noise.It is unclearto usif thecontinuousvariables
usedin themodel hereareanecessaryingredientor not;preliminarysimulationresults
indicatethat the sametype of behavior canbe obtainedby a discretemodel,but see
Ref. [12] for asimilarmodel wherethecontinuousnessof thevariablesseemsto playa
crucialrole.

5 Interface dynamics

The natureof the transition(e.g. crossover vs. true phasetransition)is however not
givenby thetime it takesuntil thefirst fluctuationhappens,but by how this fluctuation
developsfurther, in particular, if it spreads into therestof thesystemor not. In order to
further understandthenatureof thetransition,we will now look at thedynamics of the
interfacebetweenjam andoutflow. That is, we startwith an infinitely large mega-jam
with

# � � andthus
4)�Ì0

in thehalf spacefrom p � ' \ to zero.We collect data
for thedevelopmentof thedensityprofile asa function of time. While doing that,we
translatethezeroof thecoordinatesystemalwaysto theleftmostmoving car, i.e. to the
rightmostcar in themega-jam which hasnot moved sofar. To theleft from this point,
densityis alwaysone; in consequence,we look at the questionif the interfaceto the
right will grow in time or if it will develop a characteristic,time-independentprofile.
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Fig.6.Space-timeplot of interfacedynamics.As before,spaceis pointinggotheright andtimeis
pointingdown. Spacecoordinatesaretranslatedsuchthattheleftmostedgeof themoving traffic
is always at the sameposition.LEFT: Krausswith

� ���v�®�SÍf�«� ��� �f��� � � . Examplefor stable
interface.RIGHT: Krausswith

� ���v�®�SÍf�|� � �c¡ ¢+�f�+¡ £c� � ¡ ¬®� . Examplefor unstableinterface.– Note
thatfor theleft example, � and � areselectedin therangetypically consideredunstable,while for
theright example,� and � areselectedin therangetypically consideredstable.

Fig. 6 containsspace-timeplots of this interfacefor two different systems.In the
left plot, the interfaceis stable,whereasin theright plot, it keepsgrowing throughout
the plot. The left plot is obtained with B } - q - ��D«� B 0 - \ - 05D , which is oneof the two
modelsfor whichwehaveinvestigatedthetransitiontimesin moredetailabove.A plot
for B } - q - ��DÄ� B � T 
 -	� T � - 05D looks similar (not shown). In contrast,theplot on theright
with the growing interfaceis obtainedwith a larger noiseamplitude, i.e. B } - q - ��DÎ�B � T 
 -�� T � - 0 T ¿cD .

In order to investigatethe long-term behavior, we alsoplotteddensityprofilesat
differenttimes.A stableinterfaceis characterizedby adensityprofile whicheventually
becomesstationary;an unstable interfacekeepsgrowing. Fig. 7 contains a result for
themodel of Fig. 6 right, i.e. with B } - q - ��DÏ� B � T 
 -�� T � - 0 T ¿JD . Theplot contains density
profilesat times250000, 500000, 750000, and1000000. Eachcurve is theaverageof
60runs.Clearly, theplot showsthattheinterfacegrowswith time.In fact,whenlooking
atafixeddensityvalue,say

4¹� � T 
 , it seemsthattheinterfacewidth is growing linearly
in time.

Whatthis meansis that thestability of theinterfaceis a propertywhich is separate
fromthestabilityof theflow. Thefollowing tablelaysout theresultingfour cases:
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Fig.7. Densityprofiles for
� ���v�®�vÍ	�Ñ� � �c¡ ¢+�f�+¡ £+� � ¡ ¬­� at times 250000, 500000, 750000, and

1000000.Clearly, theinterfacekeepsgrowing with time.For thesystemontheleft in Fig. 6, we
obtaina completelystationaryinterfaceprofile, which alsodoesnot extendfar into the system
(not shown).

stableoutflow unstableoutflow
stable E.g. B } - q - ��DU� B � T 
 -�� T � - 0­D E.g. B } - q - ��DU� B 0 - \ - 0­D
i-face “KrausstypeI”

unstableE.g. B } - q - ��DÒ� B � T 
 -	� T � - 0 T ¿cD E.g. B } - q - ��D(� B 0 - \ - 0 T ¿JD
i-face

The finding of

E�t


criteria goesbeyond the findingsof Krauss[8], who only dif-
ferentiatesbetweenstable(“TypeI”) andunstable(“Type II”) maximum flow. Krauss
mentions “branching”, but moreor lessexplicitly assumesthat branching goesalong
with unstable maximum flow. In addition, the example of Ref. [8] for “branching”
( B } - q - ��DU� B 0 - \ - 05D ) in facthasa stableinterfaceasdemonstratedin Fig. 6.

6 Discussionand openquestions

Thereis controversyif cellularautomata(CA) modelsfor traffic show afirst orderphase
transition,2 a truecritical phasetransition[15], or noneat all [16,17]. The discussion
wasseriouslyhamperedby thefact thatno parameter wasknown to changethepossi-
bly critical behavior of thesystem.Our findings,with a different typeof model, shed
new light onthis discussion.It is plausibleto assumethatmodelswith anunstableout-
flow interfacedisplaya crossover behavior, becauseany phaseseparation in theinitial
conditions will spreadthroughthesystem– in a finite system,therewould eventually
bea macroscopically homogeneousstatealthough therewould bestructureon themi-
croscopic scale.Conversely, modelswith a stableoutflow interfacewill display true
macroscopic phases.Sincethedifferent phasesareobtainedby variations of continu-
ousparameters,it shouldbepossible(albeitcomputationallyexpensive) to find theline
in phasespacewhichseparatesthetwo regimes.
2 In Ref. [10], Wolf reviews evidencefor andagainsttruephasecoexistence,without makinga

judgment.
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Fig.8. Densityprofilesat times250000,500000,750000,and1000000for thestochastictraf-
fic cellular automaton(STCA) of Ref. [13] (top) and for the slow-to-startmodelof Ref. [14]
(bottom).Clearly, in bothcasestheinterfaceis non-stationary.

Additional simulationsshow that thestochastictraffic cellularautomaton (STCA)
of Ref. [18] hasindeedbothanunstableoutflow andanunstableinterface(Fig. 8 top).
The so-calledcruisecontrol limit of this model [19] also hasan unstableinterface
but a stableoutflow, although marginally so.We alsotestedtheso-calledslow-to-start
model[14] andfound thatit has,for theparameters thatwetested,anunstableinterface
(Fig. 8 bottom). This putsit in a classseparatefrom Krausstype I, in contrast to the
original motivation that it would displaythesamekind of “meta”-stability asa Krauss
typeI model.

Wolf, in Ref. [10], describesa so-calledGalileo-invariant CA traffic model,where
heobserves a different typeof meta-stabilitythantheslow-to-startmodels. It is open
into whichof our four classesthatmodel belongs.

In summary, it seemsthat our findings are finally the startingpoint of a more
complete classificationof the different models for traffic. Also from an engineer-
ing/applicationsperspective, it is necessaryto solve thesequestionsbecauseof their
consequencesfor real world applications.For example, the existenceof stablehigh-
flow statesundernoisewouldmeanthatit shouldbepossibleto stabilizethesestatesin
therealworld. And anunstable outflow interfacewould imply differentinterpretations
of realworld data,whicharetypically averagesover 1 minuteor longer.
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An implicationof our findings is that, in contrastto earlierclaims,outflow is not
constantin STCA-typemodels: It is constant only outsidetheboundaryregion, which
howevergrowsto infinity. Ontheotherhand, for bothKraussmodelsof thispaper, withB } - q DÄ� B 0 - \ D and B } - q DÄ� B � T 
 -�� T � D , andnoise

�
smallenough, outflow is indeeda

constant.
Thisimpliesthatourtheory aboutbreakdownbehavior in microscopicmodelsneeds

to be revised.That theorywas that thereis a characteristic jam outflow, andany ho-
mogeneoussolutionwith higherdensities would be unstableagainst large amplitude
disturbances,suchasstopping a vehicle andreleasingit later. For models wherethe
outflow is notwell definedthis is obviously toosimplistic.

In addition,it seemsthat also for modelswith stableinterfacesthe situationcan
bemorecomplicated.Our own simulations show that,essentially, thedensitybetween
jamscanbe“compressed”in modelswith continuousvariables.This is not discussed
further here.

7 Summary

We have demonstratedthatthebreakdown of thehomogeneousstatein stochastictraf-
fic modelsis characterizedby two properties:(i) stabilityor notof thehighflow states;
(ii) stability or not of theoutflow interfaceof jams.This is different from earlierfind-
ings, whereit wasassumedthat the two go together. This is important, sinceit will
allow to characterizethedifferentexisting traffic modelsaccording to theseproperties.
It shouldalso allow to eventually settlethe controversyover the natureof the tran-
sition from homogeneous to congestedflow. Engineeringapplications shouldbenefit
from thesefindings by beingableto pick the model type which closestreflectsreal-
ity. And finally, it is an interestingphysical questionsincewe are looking at simple
one-dimensional drivensystemswhich displayinterestingdynamicsandwhich canbe
analyzedusingthemethodsof statisticalphysics.
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