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Abstract. Most carfollowing modelsshawv a transitionfrom laminarto “congested” flow and
vice versa.Deterministicmodelsoften have a densityrangewherea disturbanceneedsa suffi-
ciently large critical amplitudeto move the flow from the laminarinto the congestedphase.n
stochastianodels,it may be assumedhatthe size of this amplitudegetstranslatednto a wait-
ing time, i.e. until fluctuationssuficiently addup to triggerthetransition.A recentlyintroducel
modelof traffic flow however doesnot shaw this behaior: in the densityregime wherethe jam
solutionco-existswith the high-flow state theintrinsic stochasticityof themodelis not sufficient
to causea transitioninto the jammedregime, at leastnot within relevant time scalesln addition,
modelscan be differentiatedby the stability of the outflow interface.We demonstratehat this
additionalcriterion is not relatedto the stability of the flow. The combinationof thesecriteria
malesit possibleto characterizesimilaritiesanddifferencesetweenmary existing modelsfor
traffic in anew way.

1 Intr oduction

Cartraffic is notalwayshomaeneos. For example stop-anl-gowavesareafrequently
obsened phenanenon Correspadindy, mosttraffic mocels shav a transitionfrom

laminarto “congested”flow andvice versa.For mary determiristic mocels, this mech-
anismis well undestood(e.g.[1,2], seeFig. 1): For certaindensitiesthehonmpgeneas
solutionis linearly unstablemeaningthatary tiny disturtancewill destry thehomeo

geneityandleadto anotherstate,typically to oneor more waves. For otherdersities,
thehonogen®usstatemaybelinearly stable but unstableagairst large amplituce dis-
turbarces.

In stochastienodels pnewouldintuitively assuméseeFig. 2) thatlinearinstability
getstranslatednto plain instability —meaing that, for the corresponding densitiesthe
homaeneass statebreals down immedately—andthatfor large amplitudeinstability
thelargeamplitudeinstability getstranslatednto meta-stability- meanirg that, for the
correspndirg densitiespnehasto wait sometime until the noisecorspiresin a way
thatacritical disturbaigeis geneatedandtheinstability is triggered. Thisis exadly the
topic for this paperwherewe will demanstratethatthis speculations correctin some
casedut notin others.

Recenffield measuremas identify additioral dynamic pheromena suchasoscil-
lationsandso-calledsynchraizedtraffic [3,4]. It is under discussiorin how far these
additioral phenomera canbe explained by theabore mocel instabilitiesin conjunction
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Fig. 1. Schematidundametal diagramfor deterministionodels.“Ir g amplunst! meanghatthe
homogeneoussolutioncanbe kicked into aninhomogeneousstateby a large enoudn amplitude;
the bottom plot gives a schematiagraphfor the necessargize of that critical amplitude.“eps
unstable’meanghatthe homogeneoussolutionis linearly unstable.

with geonetrical constraits (suchas bottleneck) [5,6], or if additiona featues are
necessarin themodelg7]. Giventhis, it seemslesirablgo understandasmuchaswe
canabou existingmockls.

Indeed,Krauss[8] introducesmodel classesvhich he namestype I, type I, and
typelll. Typelll refeisto aviscous syruplik e behaior without brealdown, andis not
of relevarce here.Typell displaysjam formation,but jamshave a typical size,mean-
ing that the systemis macracopicallyhomogneos, andthat thereis no true phase
transition.Type | displaystrue, macroscpic structureformation andtherebre a first
orderphasetransition In this paper we will argue thatthe Krausscharactaeationis
incomgete. We will demorstratethat models can be stableor unstableat maximunm
flow, andthatthejamscanhave a stableor unstabldnterface.Thedifferenceto Krauss
in Ref.[8] is thatheimplicitly assumeshatstablemaxinmum flow goestogetter with a
stableinterface,andthat unstablemaximumflow goes togethemwith anunstatte inter
face.Introducingouraddtional characterizton meanghatwe have 2 x 2 = 4 different
classesinsteadof just| andll.

In orderto demastratethis, we will first review whatexpedationonehasfor traffic
flow brealdown in analogyto a gas-liquid transition(Sec.2). We then,in Sec.3, de-
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Fig. 2. Schematidundamemal diagramfor stochastianodels.“meta-stable’meansthatthe ho-
mogen@ussolutionwill bekickedinto aninhomogaeousstateaftera certainwaiting time; the
bottomplot givesa schematigraphfor thatwaiting time.

scribethetraffic mode thatwe use.The centrd Sections4 and5 describeresultswith

respecto transitiontimes,andwith respecto interfacedynanics. Sec .6 is alongerdis-
cussionof ourresults,including speculatias, conjectues,andsomesimulationresults
for othermodds. The paperis concludgdby a summay.

2 Traffic breakdown and the gas-liquid transition

The breakawn of laminartraffic, i.e. thetransitionfrom homogeneastraffic to stop-
and-@ waves,canbecomparedto agas-liquid transitioni.e. thetransitionfrom the ho-
mogereousgasstateto theinhomaeneais gas/liqud coexistene state(e.g [9,8,10]).
As is well known, if one compessesa gasbeyond a certaincritical dersity, thenit
becones supercritical, and small fluctuationswill leadto droplet formation andthus
into the coexistencestate[11]. Similarly, we would expectfor homayeneaistraffic that,
oncecompessedieyond a certaincritical density small fluctuatiors will leadto jam
formationandthusinto the coexisterce state.

And corversely oneknows thatall dropletsvarish oncethe mixture is exparded
beyondthecritical dersity. Similarly, onewould expectthatall traffic jamsvanishonce
thesystemis expandedbeyond a critical density
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This leadsto predictions abou the statisticsof jam formation andjam dissolution
Krauss[8] givesthe following for the prabability in a given time stepthata jam starts
someavherin thesystem:

&
Py~ Lexp ((g) —go> ’

where{g) =1/p— £ = L/N — listheaverag gap go anda arefreeparametes, and
L isthesystemsize.N is thenunberof carsin thesystemy is thelengththatavehicle
occupesin adensgam.

Theaboveis abulk effect; jam formatian canhapgnarywherein the system.Jam
dissolution in contrast,is aninterfaceeffect: A jam with NV vehiclesdissohesif the
randan numbes comeoutthe correctwayto let all NV 4., vehiclesmake the“correct”
type of movement.This leadsto a recovery probability of p4+ ~ exp(—Njam). Since
Njgm ~ L (p— p.), weobtain

Py~ e Llp—pc)

Notethatp; is larger thanzeroalsofor p > p., thatis, spontaneusrecovery shouldbe
possiblein supefcritical systemsalthowgh it becoms exponentiallyimprobable with
increasingsystensize.

In bothcasesthetime to recorery would betheinverseof the above prokabilities.
Whensettingthetwo equatios equd, oneobtairsthecondtion for asystento fluctuate
backandforth betweerthe homagyeneos andthe coexisterce state.This would occu
above p..; however, for ary givenp > p., in thecaseof L — oo, p; wouldgoto infinity
while p;+ would goto zero,meanirg thatabove p . only the coeisterce stateis stablein
thelimit of L — oo.

3 The model

Themodelto be usedin thefollowing wasintroducedby Krauss[8]. Thebasicideais
thatcarsdrive asfastaspossibleput avoid crashesTherdore, they haveto chaosetheir
velocity v < wg,age Which takesinto accoun the braking distanced(v) of thefollowing
andthe brakirg distanced(¢) of the preceling car Thatmeanghatthe velocity hasto
fulfill d(v) + vt < d(?) + g. Here,g is the spaceheadvay betweerthe carsgiven by
g = & — x — £. Thebrakng capaliities of the carsarethe samefor all carsandare
paramérizedby the maximumdeceleratia b. 7 is uniformly setto onethroughou this
paper This safetycondtion canbetransfomedinto a setof updaterulesasfollows:

Vsate = U1 + 2 b% (1)
Vdes = Min{v; + a, Vsafe, Umax } (2
V41 = max{vges — ae€, 0} 3)
Tir1 = Tp + Vggq - 4)

with index ¢ courting integertime. The paranetera is the maximum acceleratia, the
paraméer e measurethedegreeof randanness¢ is arandan nunber, £ € [0, 1], while
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Fig. 3. Space-timeplot for the breakdwn time measurerant. Spaceis horizortal; time increases
downward; eachline is asnapshg vehiclesmove from left to right. Initially, all vehiclesarelined
up equidistantwith the specifieddensity Time is measuredintil one vehiclein the simulation
comesto acompletestop(v; = 0). Onceajamis startedjt typically keegs growing until inflow
is reducedgitherby anotheljam upstreamor by the effect of periodicboundary conditions.

Umax 1S the maximum velocity. We will usev,,,., = 3 throwghou this paper Ref. [8]
discussesvhat our selectionof parametes meansin termsof realworld units; let us
statethatour specificvalueshave areasonaly closerelationto therealworld.

4 Transition times

Fig. 4 shavsthebreakawn andtherecovery timesfor two different setsof paraneters:
(a,b) = (1,00) and(a,b) = (0.2,0.6). Recallthata andb arethe acceleratiorand
brakirg capabilities,respectrely. The simulatiors are run with a fixed numbker N of
vehicles;differentdensitiesareobtainedby adaptinghe systensize L viaL = N/pr.
Thetimesareobtairedasfollows:

e Breakdown times: The systemis startedwith all vehiclesat equaldistanceg =
1/pr, — 1 andwith theinitial velodty takenfrom thelaminarbranchof thefunda-
mentaldiagram® Thetime is measuredintil thefirst vehiclein the systemshawvs
v = 0 (seeFig. 3).

1 Annoyingly, in thetransitionregime, for someparametersf a andb differentinitial conditions
leadto significantly differentbreakdevn times. Outsidethe transitionregime, the resultsare
robust.
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Fig. 4. Breakdavn (middle) and recovery (bottom) times as function of density Left column:
(a,b) = (1, 00). Rightcolumn (a,b) = (0.2,0.6). The straightlinesin the bottom plots are
proportioral to exp(ANp), whereN is thenumberof carsin thesystemand A is afreeparam-
eter — In theright column we seethatfor N = 5000 thereis agapfrom p =~ 0.17 to p = 0.205,

wherethe systemis, up to 10° time steps stableboth againstoreakawn and againstrecovery.

— The corresponihg sectionsof the fundamenal diagram(throughpu as function of density;
top) for N = 625 aregivenfor orientation.Eachvalueof the fundarrentaldiagramis obtained
at 5000time steps;this is doneoncefor homogaeousand oncefor jammedinitial condition,
resultingin two branche for bi-stablemodels.
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Fig. 5. Schematidundamemal diagramfor stochastienodelsincludingthenew regime.Compare
to Fig. 2.

e Recovery times: The systemis startedwith all vehides excep theleadingoneat
distanceone,i.e. gapequalto zero,andvelodty zero.Thetime is measurd until
no vehiclewith velocity zerois left in thesystem.

Eachdatapoint is anaveragge of atleast50 runs.

Oneobsenes from Fig. 4 that,for bothcasestherecovery behaior is qualitatively
consistentith the gas-liquid transitionpicture: Above a certainp .., the waiting time
until recovery (i.e. until asystemwith jamstransitiongo asystemwithoutjams)showvs
exponentialgrowth, whichincreasesvith systensize.

Similarly, for (a,b) = (1,00) (Fig. 4 left), the breakawn resultsarequalitatively
consistentvith thegas-liqud transitionpicture: Thetime to breakdlown decrease$oth
with increasiig systemsizeandwith increaing density Puttingbreakeawn andrecor-
ery together oneobtairs thatfor L — oo andin equilibrium, a systemwith p > p.
shouldalwaysbein the coexisterce state For smallerL, thesystemcanjump backand
forth betweercoexistenceandthehomayeneos state.

For paraneters(a,b) = (0.2,0.6), a possiblydifferentpictureemepes.Here, the
brealdown timesseemto divergeat p* ~ 0.2, meairing that, for large L andpossibly
for L — oo, we have a densityrangewherebesidedhe transitionfrom coexisterceto
homaeneaisalsotheinversetransitionfrom homaeneaisto coexisten@is extrenely
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improbable.Thatis, we mayhavea stablesupecritical homaeneousphaseunder an
updae rule that includes noise Fig. 5 shavs a schematidundamentaldiagran with
thenew region. — It is however very difficult to getgoodnumeical resultsfor suchfast
growth aswe find here:from p = 0.22 to p = 0.21, thebreakawn timesgrow between
2 and5 ordersof magnitule,depenihg on the systemsize.Severd function fits were
tried out, without corvincing successfor exampe T' ~ exp ((p - p*)—") (implying
divergencg or T' ~ exp ( —v(p— p*)) (implying no divergence) We canna rule out
the secondfunctional form; however, notethatfrom Fig. 4 we have,at N = 5000, a
gapfrom p = 0.17 upto p = 0.21 wherebothbranchesarestablewithin timesof 10°.

Also, we notethatbrea&down timesin geneal do notfollow well the analyticalex-
pectatios. Although qualitatvely the depedeny is asexpected(breakdavn time de-
creasingwith increasiig systensize),the quantitative behavior is different. The break
down timesfor a givendensitybut differentsystemsizesdo notlie onastraightline on
alog-log plot (not showvn), meaningthatneithe T4, ~ 1/L norary otheralgelyaic
form is applicdle. In contrst, for recovery times, the simulationresultsare at least
not inconsistenwith Ty.co, ~ exp ( — L(p — px)). Oneshouldin geneal notethat
very few systemsizeswere simulated;in particular the simulatiors do not exterd to
—compuitationallydifficult— very large systemssizeswheredifferert behaior might be
found.

Why is the Kraussmodé with (a,b,€) = (0.2,0.6,1) so muchdifferentfrom the
“standard phaseransitionpicture, wherenoisewill relatively quickly addupin away
thatasupetcritical honogeneasstatewill breakdown?We suspecthatin mary traffic
modelspecausef theparallelupdatenoiseis introducedin aspecialway. In particular
the amouwnt of noiseper spatialandtempaal unit is bounded.In corjunction with a
dynamicswhich dissipatesioisefastenaigh, it make sensdo obtan stateswhich are
absolutelystableunde this kind of noise.lt is unclearto usif the continuasvariables
usedin themocel herearea necessarjngredent or not; preliminary simulationresults
indicatethat the sametype of behaior canbe obtainedby a discretemodel,but see
Ref.[12] for a similar model wherethe continwousnes®f thevariadesseemdo playa
crucialrole.

5 Interface dynamics

The natureof the transition(e.g. crosseer vs. true phasetransition)is howvever not
givenby thetime it takesuntil thefirst fluctuationhapgens but by how this fluctuatian

developsfurther, in particular if it spreadinto therestof the systemor not. In orde to

further understandhe natureof thetransition,we will now look atthedynanics of the
interfacebetweerjam andoutflow. Thatis, we startwith aninfinitely large mega-jam
with ¢ = 0 andthusp = 1 in the half spacefrom x = —oo to zero.We collect data
for the developmentof the densityprofile asa function of time. While doing that,we

translatehe zeroof the coodinatesystemalwaysto theleftmostmaoving car, i.e.to the
rightmostcarin the megajam which hasnot moved sofar. To theleft from this point,

densityis alwaysone;in consequece,we look at the questionif theinterfaceto the
rightwill grow in time or if it will develop a charateristic,time-indepen@ntprdfile.
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Fig. 6. Space-timelot of interfacedynamics.As before,spaces pointinggotheright andtimeis
pointingdown. Spacecoordnatesaretranslatedsuchthatthe leftmostedgeof the moving traffic
is always at the sameposition. LEFT: Krausswith (a,b,¢) = (1, 00,1). Examplefor stable
interface.RIGHT: Krausswith (a, b, €) = (0.2, 0.6, 1.5). Examplefor unstablenterface.— Note
thatfor theleft examge, a andb areselectedn therangetypically consideredinstablewhile for
theright example,a andb areselectedn therangetypically consideredstable.

Fig. 6 containsspace-timeplots of this interfacefor two different systemsin the
left plot, theinterfaceis stable,whereasn theright plot, it keepsgrowing throughait
the plot. The left plot is obtaired with (a,b,e) = (1,00,1), which is oneof the two
modelsfor whichwe have investigaedthetransitiontimesin more detailabove. A plot
for (a,b,e) = (0.2,0.6,1) looks similar (not shavn). In contast,the plot on the right
with the growing interfaceis obtainedwith a larger noiseamplituce, i.e. (a,b,€) =
(0.2,0.6,1.5).

In order to investigatethe longterm behaior, we also plotted density profiles at
differenttimes.A stableinterfaceis charactazedby a densityprdfile which eventually
becones stationary;an unstatte interfacekeepsgrowing. Fig. 7 contairs a resultfor
themockl of Fig. 6 right, i.e. with (a, b,€) = (0.2,0.6, 1.5). The plot contairs density
profilesattimes250000 500000 750000 and1 000000 Eachcuneis theaverag of
60runs.Clearly, theplot shavsthattheinterfacegrowswith time. In fact,whenlooking
atafixeddensityvalue,sayp = 0.2, it seemghattheinterfacewidth is growing linearly
in time.

Whatthis meands thatthe stability of theinterfaceis a propertywhich is sepaate
fromthestability of the flow. Thefollowing tablelays outtheresultingfour cases:
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Fig. 7. Density profilesfor (a,b,e) = (0.2,0.6,1.5) at times 250000, 500000, 750000, and
1000000.Clearly, theinterfacekeeps growing with time. For thesystemon theleft in Fig. 6, we
obtaina completelystationaryinterfaceprofile, which alsodoesnot extendfar into the system
(notshawn).

stableoutflow unstableoutflov
stable| E.g.(a,b,¢) = (0.2,0.6,1) | E.g.(a,b,e) = (1,00,1)
i-face “Krausstypel”
unstableE.qg.(a, b, €) = (0.2,0.6,1.5)|E.g.(a, b, €) = (1,00, 1.5)
i-face

The finding of 2 x 2 criteria goesbeyond the findings of Krauss[8], who only dif-
ferentiatesbetweenrstable(“Type ") andunstable(“Type II") maximunm flow. Krauss
mentiors “branching”, but more or lessexplicitly assumeshat brarching goesalong
with unstale maximun flow. In additin, the examge of Ref. [8] for “brancing”
((a,b,€) = (1,00, 1)) in facthasa stableinterfaceasdemorstratedn Fig. 6.

6 Discussionand openquestions

Thereis controversyif cellularautomatdCA) modelsfor traffic shawv afirst orderphase
transition? a true critical phasetransition[15], or noneat all [16,17]. The discussion
wasseriouslyhamperedby the factthatno paraméer wasknown to changehe possi-
bly critical behavior of the system.Our findings, with a differenttype of modéd, shed
new light onthis discussionlt is plausibleto assumehatmodelswith anunstableout-
flow interfacedisplaya cross@er behaior, becausary phaseseparatia in theinitial
condtions will spreadhroughthe system- in afinite systemtherewould eventually
be amacroscojzally homogeneas statealthoudh therewould be structureon the mi-
croscofic scale.Corversely modelswith a stableoutflow interfacewill displaytrue
macroscpic phasesSincethe different phasesare obtainedby variatiors of continu
ousparameers,it shouldbepossible(albeitcomputationallyexpersive) to find theline
in phasespacewhich separatethetwo regimes.

2 |n Ref.[10], Wolf reviews evidencefor andagainsttrue phasecoexistence without makinga
judgment.
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Fig. 8. Densityprofilesat times250000,500000, 750000,and 1000000 for the stochastidraf-
fic cellular automaton(STCA) of Ref. [13] (top) and for the slow-to-startmodel of Ref. [14]
(bottom).Clearly, in both casegheinterfaceis non-stationary

Additional simulationsshaw that the stochastidraffic cellularautomata (STCA)
of Ref. [18] hasindeedbothanunstableoutflov andanunstabldnterface(Fig. 8 top).
The so-calledcruise contrd limit of this mocel [19] also hasan unstableinterface
but a stableoutflow, althowgh mamginally so.We alsotestedthe so-calledslow-to-start
model[14] andfound thatit has for the parametesthatwe testedanunstablanterface
(Fig. 8 bottom). This putsit in a classseparatdrom Krausstypel, in contastto the
original motivation thatit would displaythe samekind of “meta”-stalility asa Krauss
typel model.

Wolf, in Ref.[10], descrilesa so-calledGalileo-irnvariart CA traffic model,where
he obsenes a differenttype of meta-stabilitythanthe slow-to-startmockls. It is open
into which of ourfour classeshatmodel belorgs.

In summary it seemsthat our findings are finally the starting point of a more
compleae classificationof the different mockls for traffic. Also from an enginer
ing/appications perspectie, it is necessaryo solve thesequestionsbecase of their
conseqencesfor real world apgications. For examge, the existenceof stablehigh
flow statesunder noisewould meanthatit shouldbe possibleto stabilizethesestatedn
therealworld. And anunstalte outflow interfacewould imply differentinterpretgéions
of realworld data,which aretypically averagesover 1 minuteor longer
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An implication of our findings is that, in contrastto earlierclaims,outflow is not
constanin STCA-typemodds: It is constahonly outsidethe bourdaryregion, which
however grows to infinity. Ontheotherhard, for bothKraussmodelsof this paperwith
(a,b) = (1,00) and(a, b) = (0.2,0.6), andnoisee smallenoud, outflow is indeeda
constant.

Thisimpliesthatourtheoly aboutbrealdown behaior in microscopicmodelsneeds
to be revised. That theorywasthat thereis a charactestic jam outflow, andary ho-
mogereoussolutionwith higherdersities would be unstableagairst large amplituce
disturbarces,suchas stoppirg a vehcle andreleasingt later For modds wherethe
outflow is notwell definedthis is obviously too simplistic.

In addition,it seemghat also for modelswith stableinterfacesthe situationcan
be morecomgicated.Our own simulatiors shav that, essentiallythe densitybetween
jamscanbe “compressed’in modelswith continwobusvarialles. This is not discussed
further here.

7 Summary

We have demanstratedhatthe breakawn of the homogeneas statein stochastidraf-
fic mocelsis charaterizedby two properties:(i) stability or not of the high flow states;
(ii) stability or not of the outflow interfaceof jams.This is differert from earlierfind-
ings, whereit was assumedhat the two go togetter. This is important, sinceit will
allow to charaterizethe differentexisting traffic modelsaccordimg to theseproperties.
It shouldalsoallow to evertually settlethe controsersy over the natureof the tran-
sition from homogneows to corgestedflow. Engireeringapplications shouldbenefit
from thesefindings by beingableto pick the modeltype which closestreflectsreal-
ity. And finally, it is aninterestingphysical questionsincewe are looking at simple
one-dmensionadrivensystemswhich displayinterestingdynamicsandwhich canbe
analyzedusingthe methais of statisticalphysics.
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