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Abstract

If the individual entitiesin a systemare usedas the main componentof
a traffic simulation,the simulationis called microscopic. Whenthe traffic
densityis high andthe areacoveredis wide, the individual elementsof a
microscopicsimulationandalsothe simplerulessuchascarfollowing, lane
changing,gap acceptancecan resultin complex behaiiors. Sucha large
scaletransportatiorsimulationcanconsumemoretime andmorecomputing
resourcesA parallelcomputingapproacho sucha big traffic systemmight
be economicablndefficientin termsof mong/ andconsumedesources.

This paperdescribes parallelapproacho a microscopidraffic simula-
tion. Theparallelizationrmethodis domaindecompositionwhich meanghat
eachCPUof theparallelcomputeiis responsibldor adifferentgeographical
areaof thesimulatedregion. We describenow informationbetweerdomains
is exchangedand how the transportatiometwork graphis partitioned. An
adaptve schemas usedto optimizeloadbalancing.

We demonstratdnow computingspeedsof a parallel micro-simulations
canbe systematicallypredictedoncethe scenaricandthe computerarchitec-
ture areknown. This makesit possiblefor example,to decideif a certain
studyis feasiblewith a certaincomputingbudget,andhow to investthatbud-
get. Themainingredientsof the predictionareknowledgeaboutthe parallel
implementatiorof themicro-simulationknowledgeaboutthe characteristics
of the partitioningof the transportatiometwork graph,andknowledgeabout
the interactionof thesequantitieswith the computersystem. In particular
we investigatethe differenceshetweenswitchedand non-switchediopolo-
gies,andthe effectsof 10 Mbit, 100 Mbit, andGbit Ethernet.
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1 Intr oduction

If theindividual entitiesin a systemare usedasthe main component®f a traffic
simulation,the simulationis calledmicroscopic.Althoughthe micro-simulations
have simplerulessuchascarfollowing, lanechanging gapacceptancetc.,these
rulescanproducecomplex behaiors if the traffic densityis high on a wide area.
Sucha large scaletransportationsimulation can consumemore time and more
computingresources.

Large scalesimulationscanberun on a clusterof PCsto speedup thecompu-
tation. Usinga clusterof PCsandpatrtitioningthewholetaskamongthecomputers
in this clusteris economicain thatsucha clusteris affordableby mostuniversity
engineeringdepartmentsand by middle size companies.By “a clusterof PCs”,
we meanthata groupof 10-20PCsconnectedy a standard_AN technologyruns
Beowulf Linux. Theothersolutionmightbebuying a supercomputesuchasIiBM
SP2or Intel iPSC/860in orderto achieve the parallelismbut this solutionis not
cost-efective.

2 Domain decomposition

Domain decompositiormight be definedas partitioning the geographicategion
into subrgyionsof approximatelyequalsize(Fig. 1). It is oneof thecrucialissues
of parallelcomputing. After partitioningthe domaininto subdomainseachCPU
in the systemis assignedo oneof thesesubdomaingindperformsthe calculation
onthatsubdomain.

Sincesomeof thevehiclesin thetraffic mightleave asubdomairandenterinto
anothersubdomainon the way to their destinationsthe traffic flow information
nearthe boundaryof the neighborsubdomaingor CPUs)needgo be exchanged.
Thisis necessarin orderto maintainthe consisteng betweerthe CPUs.

In the following, we will describethe domaindecompositiormethodfor the
cellular automata(CA) implementatiorwhich is usedin TRANSIMS [12]. That
particularimplementationhowever, is usedfor expositiononly; the parallelization
approachworks on ary driving logic which hasa similar structure. The domain
decompositiorior parallelizations straightforvard if thestateattimet+ 1 depens
only oninformationfrom time stept, andon neighboringcells. Thereforeanup-
datingprocessn suchasystemis in principlecomposef two elementspamely
acommunicatiorfor the boundaryinformationat time stept, andanupdatefrom
time stept tot + 1. In theactualimplementationye usetwo communcationsnd
two sub-updatepertime step,seelater.

Traffic simulationdulfill two conditionswhich make this approactefficient:
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Figurel: From[6].Domaindecompositiorof transportatiometwork. Left: Global
view. Right: View of a slave CPU. The slave CPU is only aware of part of the
network whichis attachedo its local nodes.This includeslinks which areshared
with neighbordomains.

e Domainsof similar size: The streetnetwork canbe partitionedinto domains
of similar size. A realisticmeasurdor sizeis theaccumulatedengthof all
streetsaassociateavith adomain.

e Short-rangenteractions:For driving decisionsthe distanceof interactions
betweendriversis limited. In our CA implementationon links all of the
TRANSIMS-1999[12] rule setshave aninteractionrangeof 37.5meters(=
5 cells,eachof which hasalengthof 7.5 meters)whichis smallwith respect
to the averagelink length. Therefore the network easilydecomposegto
independentomponents.

We decidedto cut the streetnetwork in the middle of links ratherthanat in-
tersections;THOREAU [7] doesthe same. This separateshe traffic compleity
at the intersectiondrom the compleity causedby the parallelizationand makes
optimizationof computationakpeedeasier

In the implementation.eachdivided link is fully representedn both CPUs.
EachCPUis responsibldor onehalf of thelink. In orderto maintainconsisteng



betweenCPUs,the CPUssendinformationaboutthefirst five cells of “their” half
of the link to the other CPU. Five cellsis theinteractionrangeof all CA driving
rulesonalink. By doingthis, the otherCPUknows enoughaboutwhatis happen-
ing on the otherhalf of thelink in orderto computeconsistentraffic. Therefore
theresultingsimplifiedupdatesequencen the split links is asfollows (Fig. 2):

e Changdanes.
e Exchangeboundaryinformation.
e Calculatespeedandmove vehiclesforward.

e Exchangeboundaryinformation.

Note, however, that useof the CA canbe viewed asa didacticexample;ary
traffic simulationlogic wherethe stateat time ¢ 4+ 1 usesonly informationfrom
time ¢ andwhereinteractionis local canbe parallelizedn this way.

3 Master-Slave Approach

Parallel programsdistribute the work betweenmary processorsThe load should
be distributed evenly so thatsomeof processorsarenotidle (and/orsomeof pro-
cessorsarenot overloaded).Oneof the populartechniquedor the distribution is
calledMasterSlave Approach.

As the nameimplies, one of the processorss designatechis masterprocessor
which hasthe knowledgeof the overallwork to bedone.Thereforethesimulation
is startedup by the masterwhich spavnsslaves,distributesthe workloadto them,
andkeepscontrolof thegeneralscheduling.

Masterslave approachesften do not scalewell with increasingnumbersof
CPUssincethe workload of the masterremainsthe sameor even increasewith
increasingnumbersof CPUs. For that reason,in TRANSIMS-1999the master
hasnearly no tasksexceptinitialization and synchronization.Even the outputto
file is donein a decentralizedashion. With the numbersof CPUsthat we have
testedin practice,we have never obsened the masterbeingthe bottleneckof the
parallelization.

4 MessagePassing
In a parallel ervironment, someform of interprocessorcommunicationss re-

quiredin orderto exchangedataandinformationbetweenprocessorandto pro-
vide synchronizatiorof the processorsGenerally therearetwo mainapproaches
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Figure2: Exampleof parallellogic of a splitlink with two lanes.Thdigure shavs
the generallogic of onetime step. Remembethatwith a split link, oneCPU is
responsibldor onehalf andanotherCPU s responsibldor the otherhalf. These
two halves are shavn separatelyout correctly lined up. The dottedpart is the
“boundaryregion”, whichis wherethelink storesnformationfrom theotherCPU.
The arravs denotewhenthe informationis transferredrom one CPUto the other
via boundaryexchangd6].



to inter-processocommunicationOneof themis calledmessge passingoetween
processorandits alternatve is to useshared-addessspacewherevariablesare
keptin acommonpoolthereforethey areglobally availableto all processorsEach
paradigmhasits own adwvantagesanddisadwantages.

In the shared-addresspaceapproachthe variablesareglobally accessibldy
all processorsDespitemultiple processorsperatingndependentlythey sharethe
samememoryresources.Only one processorcan accesghe sharedmemorylo-
cationat atime. Thus,accessinghe memoryshouldbe provided in a mutually
exclusive fashionsinceaccesse® the samevariableat the sametime by multiple
processorsnight leadto inconsistentata. Shared-addresspaceapproachmakes
it simplerfor the userto achieve parallelismbut sincethe memorybandwidthis
limited, severebottlenecksareunavoidablewith theincreasinghumberof proces-
sors. Also, the useris responsibldor providing the synchronizatiorconstructsn
orderto provide concurrentaccesses.

In the messag@assingapproachthereareindependentooperatingprocesses
(or processors).Eachprocessohasa private local memoryin orderto keepthe
variablesanddata. If anexchangeof the informationis neededetweenthe pro-
cessorsthe processorsommunicateandsynchronizedy passingnessagewhich
aresimplesendandreceve instructions.With this method eachprocessocanac-
cessits own memoryvery rapidly. But usershave to sendandreceie dataamong
processors.

The messag@assingparadigmis usuallyprovided with thelibrary extensions
addedto the sequentiaprogrammindanguagesPVM([9]), MPI([5]), P4([8) are
the mostcommonmessag@assindibrariesandprograms.

PVM refersto Parallel Virtual Machine,which is a software packagehatal-
lows a programmeto createandaccess parallelcomputingsystem.The compo-
nentsof sucha systemarethe machineonnectedhroughthe network(s). These
machinegnight bein the samenetwork aswell asseparatedhroughtheinternet.
Also,they may be homogenenousr heterogeneouin termsof the operatingsys-
temrunningonthosehosts.Theideais to bring togethera variety of architectures
undera centralizeccontrol. Thusa PVM userdividesa probleminto subtasksand
assigneachsubtasko oneprocessom thesystem.

PVM is basedntheparalleimessage-passimgodel. Messageareexchanged
betweertasksvia the connectingnetworks. If thecommunications donebetween
two differenttypesof machineghatdo not have a commonrepresentatiofor the
datathendatacorversionis doneautomatically Initialization andterminationof a
processaretheusers responsibilities The usershouldalsousestandardnterface
routinesdefinedin PVM in orderto exchangedataandto synchronizewith the
otherprocesses.

MPI standsfor MessagePassinginterface. It providesa standardor writing
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message-passingograms. It was designedor high performanceon both mas-
sively parallelmachinesand on workstationclusters. It provides morethan 100
functionsasallibrary. It alsodefinesan interfacefor FortranandC. Therearea
coupleof implementation®f MPI on differentarchitectures/sysins. It alsosup-
port hetergenouscomputingasPVM does.A comparisorof MPl andPVM can
befoundin [3].

Thereareseveralotherlibrariesin theliteratureandthey have moreor lessthe
sameprocedureandusage.Someof themare commercialproductsbut onecan
find freeavailablelibraries(suchasPVM) too.

5 Graph Partitioning

Graphpartitioningis a techniquefor executinga setof tasksin parallelso asto

balancethe load and minimize communication@mongprocessorsOncewe are

ableto handlesplit links, we needto partition the whole transportatiometwork

graphin anefficientway. Efficient meansseveralcompetingthings: Minimize the

numberof split links; minimize the numberof other domainseachCPU shares
links with; equilibratethe computationaloadasmuchaspossible.

Thereareseveralalgorithmsandsoftwarefor graphpartitioning. Oneapproach
to domaindecompositioris orthogonakecursie bisection.Althoughlessefficient
thanMETIS (explainedbelaw), orthogonalbisectionis usefulfor explaining the
generalapproach.In our case,sincewe cut in the middle of links, the first step
is to accumulatecomputationaloadsat the nodes:eachnodegetsa weightcorre-
spondingto the computationaloadof all of its attachedhalf-links.

Nodesarelocatedat their geographicatoordinates.Then,a vertical straight
line is searchedothat,asmuchaspossible half of the computationaloadis on
its right andthe otherhalf oniits left. Thenthe larger of the two piecesis picked
and cut again, this time by a horizontalline. This is recursvely doneuntil as
mary domainsare obtainedasthereare CPUsavailable. Theorthogonalbisection
for Portland200000links network is shavn in Fig. 4. It is immediatelyclearthat
undernormalcircumstancethis will be mostefficient for a numberof CPUsthat
is a power of two. With orthogonalbisection,we obtain compactandlocalized
domains andthe numberof neighbordomainss limited.

Anotheroptionis to usethe METIS library for graphpartitioning[4]. METIS
usesmultilevel partitioning. Whatthatmeanss thatfirst the graphis coarsened,
thenthe coarsenedyraphis partitioned,andthenit is uncoarseneagain,while
using an exchangeheuristicat every uncoarseningtep. The coarseningcan for
examplebe donevia randommatching which meanghatfirst edgesarerandomly
selectedsothatnotwo selectedinks sharethe samevertex, andthenthetwo nodes



atthe endof eachedgeare collapsednto one. Oncethe graphis suficiently col-

lapsed,it is easyto find a good or optimal partitioning for the collapsedgraph.
During uncoarseningt is systematicallytried if exchange®f nodesatthe bound-
ariesleadto improvementsStandard’"METIS useanultilevel recursve bisection:
Theinitial graphis partitionedinto two piecesgeachof thetwo pieceds partitioned
into two pieceseachagain,etc.,until thereareenoughpieces.Eachsuchsplit uses
its own coarsening/uncosernng sequence k-METIS meansthatall k partitions
are found during a single coarsening/uncosernng sequencewhich is consider

ably faster It alsoproducesnoreconsistenandbetterresultsfor large k.

Thenumberof splitlinks from METIS canbeapproximate@sN;,, ~ 140 p°-5° —
140 for the20024-linksnetwork mentionedabove; for ahigherresolutionnetwork
with 200000links we obtain Ny, = 250 p°-*° [6]. p is thenumberof CPUs.The
orthogonabisectionmethod,on the otherhand,scalesN,;, as~ p®®°. Therefore,
METIS considerablyeduceghe numberof split links.

Suchempiricalresultson graphpartitioningcanbe usedto computethe the-
oreticalefficiengy. Efficieng is optimalif eachCPU getsexactly the samecom-
putationalload. However, becauseof the granularity of the entities(nodesplus
attachedhalf-links) that we distribute, load imbalancesare unavoidable,andthey
becomdargerwith moreCPUs.We definetheresultingtheoreticalefficiency due
to the graphpartitioningas

load on optimal partition (1)
e = — ,
4mn = “loadon largestpartition

wheretheloadontheoptimalpartitionis justthetotalloaddividedby thenum-
berof CPUs. We thencalculatedthis numberfor actualpartitionsof both of our
200000links andof our 200000linksPortlandnetworksasshavn in Fig. 3 (from
[11]). Theresultshavs that, accordingto this measurealone,our 200000 links
network would still run efficiently on 128 CPUs, and our 200000links network
would run efficiently onupto 1024CPUs.

6 Adaptive Load Balancing

Load balancingis animportantissuefor a parallelsystem.It shouldbe solved in
orderto enableheefficientuseof parallelcomputersystemsuchthattheloadson
differentCPU shouldbe assimilar aspossibleandall CPUsshouldbe kept busy
asmuchaspossible.

The efficiency measurdrom thelastsectiongivesinformationaboutprobable
load imbalancedueto the granularityof the smallestunits, which arethe nodes
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Figure3: Theoreticakfficienciesbasedon graphpartitioningalgorithms

with attachedhalf-links. The approachn that sectionassumeshatthe computa-
tional load of thoseunits depend®on the lengthsof the attachedinks only. Some
applicationssuchastraffic simulationsdo not have constantomputationaloads
on thoseunits, becausdghe computationaload dependson the numberof vehi-
cleson thoselinks which in turn depend=on traffic. Thus, we shouldoptimize
the averageresponsdime of both singletasksandthe overall applicationin par

allel in orderto provide equalload on the CPUsandto minimize delaysin data
communicatiorbetweertheseCPUSs.

Thereareseveralcommonapproacheto adaptatiorof theloadbalancing.One
ideais alternatingoetweerafew differentmethodsy definingasystemasheaily,
mediumor lightly loadedandissuingdifferentpoliciesfor eachsituation.

Anotherapproachthatis usedhere,is to learnfrom the outputsof the previous
runs. The loadson CPUsdependon the actualvehicle traffic in the respectre
domains. Sincewe are doing iterations,we arerunningsimilar traffic scenarios
over andover again. We usethis featurefor an adaptve load balancing: During



Figure4: From[11]. Partitioningof the domain.Left After orthogonabisection.
Right After theadaptve loadbalancing.

run time we collect the executiontime of eachlink andeachintersection(node).
The statisticsare outputto file. For the next run of the micro-simulation the file
is fed backto the partitioning algorithm. In that iteration, insteadof usingthe
link lengthsasload estimate the actualexecutiontimes are usedas distribution
criterion.

Fig.4 (right) shawvs the new domainsafter adaptve load balancinghasbeen
emplog/ed. Oneclearly seesthat the sizesof the domainsare differentfrom the
partitioningof theemptynetwork (Fig. 4 left).

To verify the impactof this approachwe monitoredthe executiontimes per
time-stepthroughoutthe simulationperiod. Figure5 depictsthe resultsof one
of the iterationseries. For iteration 1, the load balancerusesthe link lengthsas
criterion. The executiontimesarelow until congestiorappearsaround?7:30am.
Then,the executiontimesincreasdivefold from 0.04secto 0.2 sec.In iteration2
the executiontimesare almostindependenbf the simulationtime. Notethatdue
to the equilibration,the executiontimesfor early simulationhoursincreasefrom
0.04secto 0.06sec,hbut this effectis morethancompensatethteron.

The figure also containsplots for later iterations(11, 15, 20, and40). The
improvementof executiontimesis mainly due to the route adaptationprocess:
congestionis reducedandthe averagevehicle densityis lower. On the machine
sizeswherewe have tried it (up to 16 CPUs),adaptve load balancingled to per
formancemprovementaupto afactorof 1.8. It shouldbecomamoreimportantfor
largernumbersof CPUssinceloadimbalanceshave astrongereffectthere.
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Figure5: From[11]. Executiontimeswith externalload feedback.Theseresults
wereobtainedduringthe Dallascasestudy[1, 10].

7 Evaluation of Performance of the parallelized micro-
simulation

Thesizeof inputusuallydetermineshe performancef a sequentiablgorithm(or
program)evaluatedin termsof executiontime. However, this is not the casefor
the parallelprograms.Whenevaluatingparallelprograms pesidegheinput size,
the computerarchitectureand alsothe numberof the processorshouldbe taken
into consideration.

Therearevariousof metricsto evaluatethe performancef aparallelprogram.
Executiontime, SpeedumndEfficiengy arethe mostcommonmetricsto measure
theperformancef aparallelprogram.We will discusghesemetricsin thefollow-
ing subsections.

7.1 ExecutionTime

The executiontime of a parallelprogramis definedasthetotal time elapsedrom
thetime thefirst processostartsexecutionto thetime thelastprocessocompletes
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the execution. During execution,a processors eithercomputingor communicat-
ing. Therefore,

T(p) = Tcmp(p) + Tcmm(p) s (2

whereT is theexecutiontime, p is the numberof processors]e,,, is thecom-
putationtime andT,,,,, is thecommunicatiortiime.

Thetimerequiredfor thecomputationnamely T¢,,,, canbecalculatedoughly
in termsof the serialexecutiontime (run time of the algorithmon a single CPU)
andthe numberof processorsThus,

Tong(p) =+ (1 four ) + Famn ) 3

whereTtis the serialexecutiontime, p is the numberof CPUSs; f,,, includes
overheaceffects (for example,split links needto be administeredy both CPUs);
famn = Uegmn - Lincludestheeffectof unequatdomainsizesasshavn in Equation
1 in graphpartitioningsection.

Time for communicatiortypically hastwo contritutions: Lateny andband-
width. Lateng is thetime necessaryo initiate the communicationandin conse-
guencdit is independenbf the messagaize. Bandwidthdescribeghe numberof
bytesthatcanbe communicategbersecond.Sothetime for onemessagés

Smsg
b 7

whereTy, is thelateng, Sy,s4 is themessagsize,andb is the bandwidth.

However, for mary of todays computerarchitectureshandwidthis givenby at
leasttwo contrikutions: nodebandwidth andnetwork bandwidth.Nodebandwidth
is the bandwidthof the connectiorfrom the CPUto the network. If two computers
communicatavith eachother thisis the maximumbandwidththey canreach.For
thatreasonthisis sometimeslsocalledthe “point-to-point” bandwidth.

The network bandwidthis given by the technologyandtopology of the net-
work. Typical technologiesare 10Mbit Ethernet,100Mbit Ethernet,FDDI, etc.
Typicaltopologiesarebustopologiesswitchedopologiesfwo-dimensionatopolo-
gies(e.qg.grid/torus),hypercubeopologiesgetc. A traditionalLocal AreaNetwork
(LAN) usesl1OMbit Ethernet,andit hasa sharedbus topology In a sharedbus
topology all communicatiorgoesover the samemedium;thatis, if several pairs
of computercommunicatavith eachother they have to sharethe bandwidth.

For example,in our L00MbitFDDI network (i.e. anetwork bandwidthof b,,.; =
100Mbit) at Los AlamosNationalLaboratory we foundnodebandwidthsof about
bna = 40Mbit. Thatmeanghattwo pairsof computersould communicateat full

Tmsg =Ty +
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nodebandwidth,i.e. using80 of the 100 Mbit/sec,while threeor morepairswere
limited by the network bandwidth. For example, five pairs of computerscould
maximally get100/5= 20 Mbit/seceach.

A switchedtopologyis similarto abustopology exceptthatthenetwork band-
width is given by the backplaneof the switch. Often, the backplanebandwidthis
highenougho have all nodescommunicatevith eachotheratfull nodebandwidth,
andfor practicalpurpose®necanthusnegylectthe network bandwidtheffect for
switchednetworks.

If computerdecomemassiely parallel,switcheswith enoughbackplandand-
width becomeoo expensve. As a compromisesuchsupercomputergsuallyuse
a communicationsopologywherecommunicatiorto “nearby” nodescanbedone
at full nodebandwidth,whereagjlobal communicatiorsuffers someperformance
degradation. Sincewe partition our traffic simulationsin a way thatcommunica-
tion is local, we canassumehat we do communicatiorwith full nodebandwidth
on asupercomputefThatis, on a parallelsupercomputewe canneglectthe con-
tribution comingfrom the b,,.;-term. This assumedhowever, thatthe allocationof
streetnetwork partitionsto computationahodesis donein someintelligent way
which maintaindocality.

As aresultof thisdiscussionywe assumehatthecommunicatiortime pertime
stepis

Tern(p) = Nows - (moas(p) T+ 22 Simd v ) Simd) g
b bnd bnet

where N,,,;, is the numberof sub-time-stepsSincewe do two boundaryex-
changepertime step,N,,,;, = 2 for the 1999TRANSIMS micro-simulationmple-
mentation.

nqp 1S the numberof neighbordomainseachCPU talks to. All information
which goesto thesameCPU s collectedandsentasa singlemessagethusincur
ring thelateny only onceperneighbordomain.For p = 1, n,,;, is zerosincethere
is no otherdomainto communicatewith. For p = 2, it is one. For p — oo and
assumingthat domainsare always connectedEuler’s theoremfor planargraphs
saysthatthe averagenumberof neighborscannotbecomemorethansix. Basedon
asimplegeometricagument,we use

nu(p) =2(3vp—1) (VP —1)/p,

whichcorrectlyhasn,,;(1) = 0 andn,,;, — 6 for p — oo. NotethattheMETIS
library for graphpartitioning doesnot necessarilygenerateconnectedoartitions,
makingthis potentiallymorecomplicated.
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Ty, is the lateng (or start-uptime) of eachmessage.T;; between0.5 and 2
millisecondsare typical valuesfor PVM on a LAN. Next arethe termsthat de-
scribeour two bandwidtheffects. Ny (p) is thenumberof split links in thewhole
simulation.Accordingly N, (p)/p is the numberof split links percomputational
node. Sy,q is thesizeof the messag@ersplit link. 6,4 andb,.; arethenodeand
network bandwidthsasdiscusse@bove.

In consequencehe combinedime for onetime stepis

T(p) = %(1 + four(p) + fdmn(p))+

Ny (p) S, S
Noup (nnb(p) Ty + 3’;( ) o Nop(p) ”"d) -
n

Accordingto whatwe have discussedbove, for p — oo thenumberof neigh-
borsscalesasn,;, ~ const andthe numberof split links in the simulationscales
asNyy ~ /p. In consequenclr f,, and f4,, smallenoughwe have:

e for asharedor bustopology b, is relatvely smallandconstantandthus

1 1
Tp)~—-+1+—+Vp—>VpP;
(p) p N VP = /P
e for a switchedor a parallelsupercomputetopology we assume,,.; = oc
andobtain
T(p) ! +1+ ! —1
p)~ — —= .
p VP

Thus, in a sharedtopology adding CPUswill eventually increasethe simula-
tion time, thus making the simulationslower In a non-sharedopology adding
CPUswill eventuallynot make the simulationary faster but at leastit will notbe
detrimentalto computationakpeed.The dominanttermin a sharedtopologyfor
p — oo is the network bandwidth;the dominanttermin a non-sharedopologyis
thelateng.

Thecurwesin Fig. 6 areresultsfrom this predictionfor a switched100 Mbit
EthernetLAN; dotsandtrianglesshav actualperformanceesults[6]. The top
graphshaws the time for onetime step,i.e.T(p), andthe individual contritutions
to this value. Onecanclearly seethatfor morethan64 CPUs,the dominanttime
contrilution comesfrom the lateng.The bottom graphshaws the real time ratio

RTR
( ) . o At _ lsec
) T S )
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which sayshow muchfasterthanreality the simulationis running. At is thedura-
tion a simulationtime step,whichis 1sec in TRANSIMS-1999.This figureshavs
that even somethingas relatively profane as a combinationof regular Pentium
CPUsusinga switched100Mbit Ethernettechnologyis quite capablen reaching
good computationakpeeds.For example,with 16 CPUsthe simulationruns 40
timesfasterthanrealtime; the simulationof a 24 hourtime periodwould thustake
0.6 hours. Thesenumbersrefer to the Portland200000 links network. Included
in the plot (black dots)aremeasurementsith a computeclusterthatcorresponds
to this architecture Thetriangleswith lower performancdor the samenumberof
CPUscomefrom usingdual insteadof single CPUson the computationahodes.
Note thatthe curve levels out at aboutforty timesfasterthanreal time, no matter
whatthenumberof CPUs.As onecanseein thetopfigure,thereasons thelatengy
term,which eventuallyconsumesearlyall thetime for atime step.This is oneof
theimportantelementsvhereparallelsupercomputerare different: For example
the Cray T3D hasa morethanafactorof tenlower lateny underPVM [2].

Fig. 7 shavs somepredictedrealtime ratiosfor othercomputingarchitectures.
For simplicity, we assumehatall of themexceptfor one specialcaseexplained
belav usethe same500MHz Pentiumcomputenodes.Thedifferences in thenet-
works: We assumelOMbit non-switched 10Mbit switched,1Gbit non-switched,
and1Gbit switched. The curvesfor 100Mbit arein betweenandwereleft out for
clarity; valuesfor switched100Mbit Ethernetwerealreadyin Fig. 6. Oneclearly
seesthatfor this problemandwith todays computersjt is nearlyimpossibleto
reachany speed-upmn a 10Mbit Ethernet,even when switched. Gbit Ethernetis
someavhat more efficient than 100Mbit Ethernetfor small numbersof CPUs, but
for larger numbersof CPUs,switchedGbit Ethernetsaturatest exactly the same
computationabpeedasthe switched100Mbit Ethernet.Thisis dueto thefactthat
we assumehat lateny remainsthe same— after all, therewas no improvement
in lateny whenmoving from 10 to 100Mbit Ethernet.FDDI is supposedlyeven
worse[2].

Thethicklinein Fig. 7 correspondso the ASCI Blue Mountainparallelsuper
computerat Los AlamosNationalLaboratory On a perCPU basis,this machine
is slower thana 500 MHz Pentium. The higherbandwidthandin particularthe
lower lateny male it possibleto usehighernumbersof CPUsefficiently, andin
factoneshouldbe ableto reacharealtime ratio of 128accordingto this plot. By
then, however, the granularityeffect of the unequaldomains(Fig. 3) would have
setin, limiting the computationakpeedorobablyto aboutl00timesrealtime with
128 CPUs.We actuallyhave somespeedmeasurementsn thatmachinefor up to
96 CPUs,but with a considerablyslower codefrom summerl998. We omit those
valuesfrom theplot in orderto avoid confusion.

Fig. 7 (bottom)shaws predictionsfor the higherfidelity Portland200000links

15



Portland EMME/2 network (20 000 links)

0.25 ‘
Tcmp(x) ............
Tlat(x) -
Tnode(x)
g 02 Tnet(x) .
® T(x)
[} Jun 00; Pentium Cluster @
£ Jun 00; Pentium Cluster Dual CPUs A
~ 0.15 A
(]
o
[0)]
£
< 01
(8]
ks}
o
€ 005
0
1 1024
number of CPUs
Portland EMME/2 network (20 000 links)
128 ‘
) /.,
A
A
ke
IS
(0]
£
©
g
2
1
1/T(x)
05 | Jun 00; Pentium Cluster @
0.95 Jun OO;‘ Pentium C|u§ter Dual CPps A
1 4 16 64 256 1024

number of CPUs

Figure6: 100Mbit switchedEthernetLAN. Top:From[6]. Individual time contri-
butions.Bottom: CorrespondindrealTime Ratios.Theblackdotsreferto actually
measuregerformancavhenusingone CPU perclusternode;the crossegeferto
actually measuregerformancevhenusing dual CPUsper node (the y-axis still

denoteghe numberof CPUsused).Thethick curve is the predictionaccordingto
themodel. Thethin linesshav theindividual time contrikutionsto thethick curve.
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Figure7: From[6]. Prediction®f realtimeratiofor othercomputerconfigurations.
Top: With Portland20024 links network. Bottom: With Portland200000 links

network. Note that for the switchedconfigurationsand for the supercomputer
the saturatingreal time ratio is the samefor both network sizes,but it is reached
with differentnumbersof CPUs. This behaior is typical for parallelcomputers:
They areparticularlygoodat runninglarger andlarger problemswithin the same
computingtime. All curvesin both graphsare predictionsfrom our model. We

have someperformanceneasurement®r the ASCI machine put sincethey were
donewith an older and slower versionof the code,they are omittedin orderto

avoid confusion.
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network with the samecomputerarchitecturesThe assumptiorwasthatthe time
for onetime step,i.e. 77 of Eqg. (3), increasedy a factor of eight dueto the
increasedoad. This hasnot beenverifiedyet. However, the generaimessageloes
not dependon the particulardetails: When problemsbecomelarger, thenlarger
numbersof CPUsbecomemore efficient. Note thatwe againsaturatewith the
switchedEthernetarchitectureat 80 timesfasterthanreal time, but this time we
needabout64 CPUswith switchedGbit Ethernetin orderto get 40 timesfaster
thanreal time — for the smallerPortland200000 links network with switched
Gbit Ethernetwe would need8 of the sameCPUsto reachthe samereal time
ratio. In shortandsomevhatsimplified: As long aswe have enoughCPUs,we can
micro-simulateroadnetworksof arbitrarily large size with hundredof thousands
of links and more, 40 times fasterthan real time, even without supercomputer
hardware. — Basedon our experience,we are confidentthat thesepredictions
will be lower boundson performancein the past,we have alwaysfoundwaysto
make the codemoreefficient.

7.2 Speed-Upand Efficiency

We have castour resultsin termsof the real time ratio, sincethis is the mostim-
portantquantitywhenonewantsto geta practicalstudydone. In this section,we
will translateour resultsinto numbersof speed-upefficiency which allow easier
comparisorfor computingpeople.

Speedupachieved by a parallel algorithmis definedasthe ratio of the time
requiredby the bestsequentiallgorithmto solve a problem,7’(1), to the time
requiredby parallelalgorithmusingp processorso solve the sameproblem7’(p).
For simplicity, 7'(1) is calculatedy runningtheparallelprogramon oneprocessor

We candefinethe Speedugsin thefollowing formula

(1)
T(p)’
wherep is againthe numberof CPUs. Dependingon the viewpoint, for 7'(1)
oneuseseitherthe runningtime of the parallelalgorithmon a single CPU, or the
fastestexisting sequentiaklgorithm. Since TRANSIMS hasbeendesignedfor
parallel computingand sincethereis no sequentialsimulationwith exactly the
samepropertiesT’ (1) will betherunningtime of the parallelalgorithmonasingle
CPU.For time-steppedimulationssuchasusedhere thedifferences expectedo
besmall.

Speedups limited by a coupleof factors.First, the softwareoverheadappears
in the parallelimplementationsince codelength of a parallelimplementationis
morethanthe oneof sequentiaprogram.Secondspeedups generallylimited by

S(p) ==
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the speedof the slowvestnodeor processorThus,we needto make surethateach
nodeperformsthe sameamountof work. i.e. the systemis load balanced.Third,

if the communicatiorand computationcannotbe overlappedthenthe communi-
cationwill reducethe speedof the overall application. To avoid this, the parallel
programshouldkeepthe processorsusy asmuchaspossible.

A final limitation of the Speedups known asAmdahl’'s Law - SerialFraction.
This statesthat the speedupof a parallelalgorithmis effectively limited by the
numberof operationsvhich mustbe performedsequentially Thus, let’s defineS
astheamountf thetime spenty oneprocessoon sequentiapartsof theprogram
and P asthe amountof the time spentby one processoon partsof the program
thatcanbe parallelized. Then,we canformulatethe serialrun-timeas7'(1) := S
+ P andthe parallelrun-timeasT'(p) := S+ P/N. Therefore the serialfraction F’
will be

S
ST’
andthe speedupb (p) is expresseds

or in termsof serialfraction, it would be

S(p) : L

= T L
F+5

As anillustration,let ussay we have aprogramcontaininglOOoperationgach
of which take 1 time unit. If 80 operationscanbe donein paralleli.e. P = 80 and
20 operationgnustbe donesequentiallyi.e. S = 20. thenby using80 processors,
the Speedupvould be 100/ 21 j 5i.e. aspeedupf only 5 is possibleno matter
howv mary processorgareavailable.

Now noteagainthattherealtimeratiois rtr(p) = 1 sec/T'(p) . Thus,in order
to obtainthe speed-udrom the real time ratio, one hasto multiply all real time
ratiosby T'(1)/(1sec). On alogarithmicscale,a multiplication correspondso a
linear shift. In consequencespeed-uEurnescanbe obtainedfrom our realtime
ratio cunesby shifting the curvesup or down sothatthey startatone.

This alsomalesit easyto judgeif our speed-ups linearor not. For example
in Fig. 7 bottom,the curve which startsat 0.5 for 1 CPU shouldhave an RTR of
2 at4 CPU,anRTR of 8 at 16 CPUs,etc. Downward deviationsfrom this mean
sub-linearspeed-upSuchdeviationsarecommonlydescribedy anothemumbey
calledefficiengy, anddefinedas
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Figure8: From [6]. Efficiengy for the sameconfigurationsasin Fig. 7 bottom.
Note thatthe curvescontainexactly the sameinformation.

It is obviousthatanideal systemwith p processorfiasa speedupequalto p.
However, this is not the casein practicesincein a parallelprogram,a processor
cannotuse100%of its time for the computation.It shouldalsoconsumesomeof
its time for the communicationThereforewe caninterpretthe efficiency formula
above as a measureof the percentageof time for which a processoiis utilized
effectively. Ideally, efficiency equalsto 1 but in practiceit is betweenO and 1
dependingon how aprocessois emplg/ed.

Fig. 8 containscurvesof theefficieny F asafunctionof thenumberof CPUs
p for someof thecasesliscusse@bove. Noteagainthattheseplotscontainno nen
information,they arejustre-interpretationsf thedatausedfor Fig. 8 bottom.Also
notethatin our logarithmicplots, E(p) will just bethe differenceto the diagonal
pT(1). Efficiengy canpointoutwhereimprovementsvould be useful.
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8 Summary

This paperexplains a parallelizationmethodfor the wide areamicro traffic sim-
ulations. Thesekind of simulationsshouldbe parallelizedin orderto achiee an
efficient usein termsof computingresourcesOur approacthereis to run sucha
simulationonaclusterof PCswhichis muchmoreaffordablethanto buy a parallel
computer

Parallelcomputingcomeswith someimportantissuessuchasdomaindecom-
position, datasharing/&changirg and communicationbetweenprocessors.We
represenpur approache®n theseissueswhich will affect the performanceof a
parallelsystem.

A well-behaed parallel systemis load balanced. In orderto achieve load
balancing,one shouldbe carefulwith the domaindecomposition.If the parallel
applicationdoesnot have constantioadson the processorsit is betterto usea
dynamic/adaptie methodto disaggrgatethe domainontoprocessors.

Datasharingamongprocessorsanbeemplo/edby usingeithershared-address
spacemethodor messag@assingapproach.Messagegassings moreefficientin
termsof bandwidthandmemoryusage.Eachprocessois independenbut at the
sametime in acooperatiorwith theotherprocessorsvthennecessaryAs thename
implies, the communicationis donethroughthe messagesxchangedamongpro-
cessors.

Wefinally demonstratbow computingtime for aparalleltraffic micro-simulation
can be systematicallypredicted. An importantresultis that a typical city with
20024 links network runsabout40 timesfasterthanrealtime on 16 500 MHz
Pentiumcomputersconnectedsia switched100 Mbit Ethernet.Theseareregular
desktop/LANtechnologies.When usingthe next generatiorof communications
technologyi.e. Gbit Ethernet,we predictthe samecomputingspeedfor a much
largernetwork of 200000links with 64 CPUs.
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