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Abstract

One goal of the project “Planning with Virtual Alpine Landscapes and Autonomous Agents”
is to build a multi-agent simulation model of tourists hiking in the Alps. Such a simulation
generically consists of two components: The physical mobility simulation, which moves the
hikers through the system and computes their interactions; and the strategy generation module(s),
which compute(s) strategic decisions of the agents such as destination or route choice. This
paper concentrates on the mobility simulation. This paper discusses which kind of simulation is
suitable and what model was finally selected. The model is modified for our particular purpose,
i.e. for hiking in the Alps rather than crowd or panic simulations in small enclosed spaces. The

modified model is then calibrated with real-world data.
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1. Introduction

The project “Planning with Virtual Alpine Landscapes and Autonomous Agents” %, which is part
of Swiss National Science Foundation’s NFP 48 “Landscapes and Habitats of the Alps”, uses a
multi agent simulation to model the activities of tourists (primarily hikers). The eventual goal
is to have these agents live in a virtual world where they should be able to evaluate different
development scenarios for tourism.

Such scenarios include, for example, the question of re-forestation of meadows, or the summer
use of chair lifts and the like. Left to themselves, many areas in the Swiss Alps would be covered
by dense forest; it seems however that most hikers would prefer a more variable landscape.
This is confounded by legal regulations, which essentially allow landowners to prevent forest
from growing on meadows, but once a forest is there, it is not allowed to get rid of it again.
Similarly, areas which are used for skiing during winters normally make the landscape visually
unattractive; on the other hand, many people, in particular families with children or people with
health limitations, like mechanical aids to bring them nearer to the top of mountains.

In this situation, it seems that it would be helpful to have models which evaluate these aspects. As
so often, it seems that a model that starts from “first principles” (i.e. from modeling the individ-
ual people including their decisions directly) offers conceptual and methodological advantages.
Also, many questions will be difficult to answer in more aggregated models; for example, it is
impossible to think about judging the overall appeal of a tourist area to people with certain demo-
graphic characteristics if those demographic characteristics are decoupled from, say, the hiking
streams.

All this points to the result that multi-agent simulations for such problems should be tried. Multi-
agent here means that indeed each tourist is individually represented, and that his or her full day
or full week in the vacation area is simulated. Such an approach is in principle feasible, as
similar projects in the area of traffic simulations have shown (e.g. Raney et al., 2003a), but it
is unclear if the corresponding behavioral rules and parameters can be calibrated well enough
to allow meaningful predictions. — Note that in this paper, the words “pedestrian”, “hiker”, and
“agent” will be used interchangeably.

The aim of this project is to implement such a simulation in order to investigate the achievable
level of realism. At the same time, the project is used to explore general computational im-
plementations of mobility simulations. As it turns out, mobility simulation systems generically
consist of at least two components: the simulation of the physical system, and the simulation
of the strategic decisions of the agents (e.g. Ferber, 1999, Chap. 4). While the former is con-
cerned with physical aspects, such as limits on acceleration or speed, or the interaction with
other agents, the latter is concerned with the strategic or mental decisions of the agents. The fact
that both of them, plus their interplay, are important, has often been neglected in the past — either
people coming from physics or similar areas were concerned about the physical simulation but
neglected strategies, or people coming from artificial intelligence or similar areas concentrated
on simulating “intelligent” agents but neglected to implement a realistic representation of the

1see http://www.sim.inf.ethz.ch/projects/al psim/
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physical system (e.g. Ferber, 1999, Chap. 4).

This paper concentrates on the physical simulation, also called mobility simulation. This paper
first discusses the type of basic model that was selected and the reasons for this choice (Sec.
2). All of these models are in some way driven by a “desired velocity” of the agent. Sec. 3
thus discusses options of how to obtain that desired velocity in a scenario with hiking paths.
Sec. 4 then discusses field experiments that were used to calibrate the model for our purposes.
The challenge is to simulate hikers in large geographical areas, of, say, 50 km x 50 km. Since
the simulation uses full two-dimensional space, and needs high spatial resolution in order to be
realistic, this poses considerable demands on the computation and memory resources. Sec. 5
discusses computational methods of how to achieve this. The paper is concluded by a quick look
on a very preliminary application result, and a summary.
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2. Mobility Simulation

As mentioned above, the mobility simulation takes care of the physical aspects of the system,
such as interaction of the agents with the environment or with each other. Typical simulation
techniques for such problems are:

e In microscopic simulations, each particle is represented individually. There are three
versions of this:

— The agents’ movements can be given by coupled differential equations. For computer
implementations, the differential equations need to be discretized with a time step .2
The original model is recovered for h — 0. This is the same technique as applied in
molecular dynamics simulations (e.g. Beazley et al., 1995).

— Sometimes, it makes sense to define the agents’ dynamics directly in coarse-grained
time. This makes for example sense for traffic (Krauf3, 1997), where the reaction
time plays an important role. In these models, the time step A needs to be selected
with care, and the limit ~ — 0 is not meaningful for such models. Such models are
sometimes called coupled map lattices.

— Analogous to coarse-grained time, it is also possible to coarse-grain space. That
IS, again one does not consider the limit & — 0 of the discretization constant, but
the model is explicitely formulated with a specific spatial resolution in mind. These
models are typically called cellular automata (CA, e.g. Wolfram, 1986).

e In macroscopic or field-based simulations, particles are aggregated into fields. The corre-
sponding mathematical models are partial differential equations, which can be discretized
for computer implementations.

e |t is possible to combine microscopic and field-based methods, which is sometimes called
smooth particle hydrodynamics (SPH, Gingold and Monaghan, 1977). In SPH, the in-
dividuality of each particle is maintained. During each time step, particles are aggregated
to field quantities such as density, then velocities are computed from those densities, and
then each individual particle is moved according to those macroscopic velocities.

e As a fourth method, somewhat on the side, exist the queuing simulations from operations
research. Here, particles move in a networks of queues, where each queue has a service
rate. Once a particle is served, it moves into the next queue. Most queuing models do not
model spillback, i.e. the fact that queues can extend upstream.

For our simulations, we need to maintain individual particles, since they need to be able to make
individual decisions, such as route choices, throughout the simulation. This immediately rules
out field-based methods. We also need a realistic representation of inter-pedestrian interactions,
which rules out both the queue models and the SPH models with their too simplified dynamics.
This leaves the microscopic models. We decided against using a CA technique for the following

2Event-driven simulations are possible, but not considered here.
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reason: Hikers make movements into arbitrary directions. CA models however are best at repre-
senting movement along the main directions, which could be four or six depending on the choice
of quadratic or hexagonal grid. Off-axis movements in CA models is typically represented by
using different probabilities for different directions. This however results in erratic movements
for off-axis movement, and in different directional variabilities for on-axis vs. off-axis move-
ment. For crowd simulations, such as for evacuation (e.g. Meyer-Konig et al., 2001), this is not
of major importance. But for our application, where it may even be necessary to follow the eye
movements of an individual agent, this makes CA simulations awkward.

This leaves the simulations based on continuous space. Here, models derived from coupled
differential equations seem to be much better understood than coupled maps (for which we are
not even aware of an example), which is why we decided to use the former. A generic coupled
differential equation model for pedestrian movement is (Helbing et al., 2000)

dv; vy — v,
mi g =M +;fﬁ+;fiw (1)

where m; is the mass of the pedestrian and v; its velocity. v? is its desired velocity; in con-
sequence, the first term on the RHS models exponential approach to that desired velocity, with
a time constant ;. The second term on the RHS models pedestrian interaction, and the third
models interaction of the pedestrian with the environment.

Modeling the desired speed v? is critical for hikers since they need to be able to follow arbitrarily
complicated paths through variable terrain. In the simplest model, one assumes that the hiking
path is defined by a large enough number of waypoints, and the agent simply heads towards a
waypoint (marked “w” in Fig. 1). That is, if the agent is at r; and the waypoint is at R, then the
desired velocity of the agent is given as

0 0 R - r;

vV, =

7 U; |R—I‘i|’

where v! is the magnitude of the desired velocity. Once a waypoint is reached, R is moved to the
next waypoint. — A disadvantage of this method is that pedestrians are artificially pulled towards
that waypoint even in situations where this is not plausible. This will be discussed in more detail
in Sec. 3.

The specific mathematical form of the interaction term does not seem to be critical for our appli-
cations as long as it decays fast enough. Fast decay is important in order to cut off the interaction
at a relatively short distance. This is important for efficient computing, but it is also plausible
with respect to the real world: Other pedestrians at, say, a distance of several hundred meters
will not affect a pedestrian, even if those other pedestrians are at a very high density. We use an
exponential force decay of

lr; —r;|\ r;—r,
f-':exp( J J
N B, ] [ri—1xl’

which seems to work well in practice. f;; is the force contribution of agent j to agent ¢; r; is
the position of agent . Alternative more sophisticated formations are descibed by Helbing et al.
(2000).



Swiss Transport Research Conference
March 19-21, 2003

This leaves the environmental forces, f;;;,. The most important environmental influence is giving
by the hiking path. The waypoints, as described above, pull the pedestrian towards a point on the
path, but they do in general not pull the pedestrian onto the path. One option to achieve the latter
is to give locations x outside a path a force towards the nearest path (see Fig. 1 for a cell-based
example which is discussed in Sec. 5). As already said, improvements of this are discussed in
Sec. 3. As the only other aspect of environmental forces, point-like obstacles are modeled as
non-moving pedestrians.

In the implementation, a time-step of ~ = 0.5s is used. Pedestrians are considered one at a time.
Velocity is updated according to

+h<v9_vi’t+1 ) £+ — ) f ) ()
2,t+1 .t i . L ] } W |
j#i w
position is updated in parallel according to
Tit41 = Tip + Vigyr

As of now, the update is sequential; for our problems, no large differences to parallel update were
observed.

In fact, it may happen that the velocity according to Eq. (2) is much larger than is plausible. For
that reason, if the magnitude of the velocity is larger than »?, it is artificially reduced to v?.

An additional element is given by a so-called walkability parameter w(r;). This number, be-
tween 0 (obstacle) and 1 (flat street), parametrizes the walkability of the terrain. This number
depends on the position r; of the agent. This, instead of reducing the velocity to v} as indicated
in the last paragraph, it is actually reduced to v? w(r;) .
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Figure 1. Example of the force towards the waypoint. It is at the same time an illustration of the
use of cells for local force information.

AV ararararars

Path D Outside Path \ Force towards path

3. Improved version of the path force (“model B”)

The pedestrian model described in the previous section (“model A”) suffers from some short-
comings:

e Agents move in the direction of a waypoint. This is for example a problem if they are on a
wide straight street with a waypoint in the middle, because they will all move towards that
waypoint instead of remaining on their side of the street (see Fig.2).

e If two paths are close together and a pedestrian was pushed away, say by other pedestrians,
too far from its own path, the environmental forces which pull the pedestrian to the nearest
path may pull the pedestrian to the wrong path. This will eventually be corrected when the
simulation continues since the pedestrian is still pulled towards the correct waypoint, but
it looks implausible. The conceptual reason behind this is that in model A the path forces
depend on the location rather than on the agent’s own intentions.

In this section, a model will be presented that allows agents to follow a path without those two
artifacts.

The idea is to move to a force system that follows the path. The path is given by a line, which
in turn is given by our input data. This path line may for example be a piecewise linear object,
or a Bezier curve, or a spline. Each pedestrian now has, besides its true location, a shadow tag

3In fact, standard B-splines do not work well; instead, one can use Akima splines (Akima, 1972).



Swiss Transport Research Conference
March 19-21, 2003

on that line. The shadow tag is always computed such that the connection between the shadow
tag and the pedestrian is orthogonal to the path line. The desired speed v? is now computed such
that it is in the direction of the path line (light arrows in Fig. 3); and there will be a weak environ-
mental force component towards the center of the path (dark arrows in Fig. 3). In consequence,
agents now essentially move parallel to the path direction and do not have a tendency any more
to go to the center of the path near waypoints. The success of this is documented in Fig. 4.

Note that the shadow tag is used only for computing the path force. Once the agent has moved,
the position of the shadow tag needs to be computed again. In general, this is a non-linear
problem and thus needs to be solved by an iterative algorithm, for example the one by Brent.
Even with this algorithm, it is clear that it can become stuck in a local minimum, and care needs
to be taken to prevent that situation. The situation gets confounded by the fact that shadow tags
need to be passed on across waypoints, and the best position for a shadow tag could be already
on the next segment. Some details of this are discussed by Mauron (2002).

In our case, it turns out that the path data is good enough that a piecewise linear interpolation is
sufficient. For this case, the position of the shadow tag can be computed directly, and the only
thing that can happen is that is has moved on to the next segment. What we do is to calculate the
distance d;,, of the pedestrian also to the next segment P;,; and compare it with d;. If d;;; Is
smaller or equal than d;, then P, becomes the current segment; that is, if there is a choice, then
the next segment is chosen. A resulting artifact of this is that at connections with angles larger
than 90 degrees, agents will move towards the inner side of the curve at an implausible location.
For our purposes, this artifact can be accepted, since such situations are rare with the given data.

Technically, this means that the environmental force contribution, ) ;. fiw, is now separated into
two terms,

Z sz = Lobstacles T+ fpath . (3)
w

Obstacles are still simply treated as non-moving pedestrians. The path force f,,,, (denoted by
dark arrows in Fig. 3) keeps the pedestrian on the path and is perpendicular to the path line. It is

given by
hi —h h—nh
fpath,i = Apath,i [exp ( }l,i ) — €Xp ( B 2):| n(s) ) (4)

2,

where n(s) is the vector normal to the path, h; and h, characterize the path width, and the
constants By ;, B ;, Apain,i Characterize resp. the range and strength of the pedestrian-path inter-
action, individually for each pedestrian ;. Some plots of |f,,., ;| can be found in Fig. 6. The force
Eq. (4) can be derived from a potential as f,4:,; = —9,V; with

h,—h h—h
Vi = Apath,i [Bl,i exp < IB ) + By exp < B 2)] .
1,8 2,

Since the potential is more intuitive than the force plot, it is given in Fig. 7.

Note that an equilibrium position can be found by setting the force equal to zero; this results in

By hy + By hy
ho; =

= 5)
’ By 4+ By ®)
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Figure 2: Traces of hikers in “model A”, where they are all pulled towards the same waypoint.
Note how the trajectories focus near the waypoint, and diverge before and after. The width of the
path remains unchanged.

Sec. 4 will describe an asymmetric walkway where all these parameters are indeed used. In
general, however, we will use hy = —hy, B1; = By, and a uniform A,,.
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Figure 3: Path-oriented coordinate system for the computation of the desired velocity and the
path forces. The light arrows show the desired velocity, which drives the agent forward along the
path. The dark arrows show the path force, which pull the agent towards the middle of the path.

Figure 4: Traces of pedestrians walking in the same direction according to “model B”. Note that
they stay on their side of the path, even at a bend.
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Figure 5: Angle between the “force” caused by the desired velocity, and the path force. This is
both a function of the path width, and the distance from the center of the path. At large distances
from the path, the agent is driven towards the path with no component in its desired walking
direction. On wide paths, the lateral component of the force is nearly zero. For the plot, the
velocity of the agent, v;, is assumed to be zero.
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4. Model Calibration

In this section we present field measurements on pedestrian flow we have performed using a
video camera. We took video footage of pedestrians walking on a sidewalk and measured their
distance to the borders. We used these observations to select an appropriate path force model and
calibrate various model parameters.

The calibration of the model parameters like the force constants A and B in Eq. (4) can be
difficult. A common method in microscopic modeling is to use observed macroscopic properties
of the flow, like speed-density curves or flow-density and adapt the simulation parameters to
match them (Hoogendorn et al., 2002). A major difficulty in the case of pedestrian flow is that
the speed-density curves, the so-called fundamental diagrams are scarce. The usual reference
curve, the Weidmann curve (Weidmann, 1992), although generally acknowledged as realistic ,
was not tested on the field. An additional problem with speed-density curve calibration is the
lack of specificity since one can only calibrate the whole set of parameters and not only single
parameters. A more precise fine grained calibration would be obtained by measuring specific
properties of the traffic flow but here again, the lack of proper studies causes great difficulties,
although several efforts are currently conducted to obtain quantitative data from pedestrian flow.

10
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Figure 6: Force |f,.:,(h)| in a 2 meters wide sidewalk (B; = 0.5). Note that the plot shows the

absolute value |.| of the force; to the right of where the force becomes zero, the force is actually
negative.
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Figure 7: Potential in a 2 meters wide sidewalk (B; = 0.5)
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4.1 Experimental setup

Pedestrian movements were observed at a sidewalk on Tannenstrasse, between the CLA build-
ing and the main building of ETH in Zurich (Fig. 8). Advantages of that location included: it
was possible to place the camera high above the observed area; different observation times re-
sulted in different flow characteristics; the area is devoid of inhomogeneities such as additional
entrances/exits, shopping windows, etc. A disadvantage is the slight uphill grade of the sidewalk.

After the video footage was taken, pedestrian movements had to be translated into a Cartesian
field coordinate system. This was achieved by a half-automatic image analysis and coordinate
conversion software written explicitely for this purpose (Mauron, 2002). The system was cali-
brated by four control points that were marked with bright duct tape on the pedestrian side walk.
The field coordinates of those points were determined using standard measuring tape. A 1-meter
reference stick, randomly placed on the sidewalk and analysed via the system resulted in a length
error of about 5¢m, which is reasonable for the purpose here. The width of the sidewalk was
2.5 m, resulting in

hy = 0.0m and (6)
hy = 25m. (7

After this, movements of real pedestrians were tracked. For this, second-by-second video im-
ages were read into the software, and their estimated projection of their center of gravity to the
sidewalk was manually determined. That position was then converted by the software into field
coordinates. Two situations were distinguished:

e Single pedestrian. No other pedestrian was within a 10 meter radius.

e Crossing pedestrians. Two pedestrians of opposing direction pass each other, without any
other pedestrian within a 10 meter radius.

As will be explained below, the first scenario was used for the calibration of the B;, while the sec-
ond scenario was used to calibrate pedestrian-pedestrian interaction. 475 non-interacting pedes-
trians and 150 crossing events were used for the analysis. The resulting distributions are shown
in Fig. 9.

4.2 Calibration of the path force

The observation of non-interacting pedestrians on a straight sidewalk have shown that they tend
walk in straight line keeping a constant distance h from the road border. The radial pedestrian
distribution obtained with the field measurements reveal that the A’s are statistically distributed
around a mean value ko ~ 1.6 m. The pedestrians tend to keep a larger distance from the street
than from the wall which is understandable since the street is potentially more dangerous.

For a calibration of the path force constants, it was assumed that the path force constants B ;
and B, ; are normally distributed with a mean value B;, B; and the same standard deviation AB.

12
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This results, via Eq. (5), in a distribtion for the equilibrium values kg ;. The constants B, By,
and AB were now varied so that the resulting distribution of the h,; matches as well as possible
the field measurement distribution; note that the value of A does not matter here. The method
converged to the following values,

B, = 3.3m, (8)
B, = 1.1m, 9)
AB = 0.8m. (10)

The corresponding pedestrian distribution is shown in figure 10. Although the simulated distri-
bution peaks roughly at the same value h,, the field distribution is significantly higher at 4, and
decreases faster approaching the wall.

4.3 Calibration of pedestrian interaction

Given the above calibration of the path force, the field measurements of the two-pedestrian-
encounters can be used to calibrate the pedestrian-pedestrian interaction. The basic assumption
here is that this interaction follows the same functional form as the path force, i.e.

Xa xa
£op(Xap) = App exp X ’
By,

|Xab| ’

where x,;, is the vector from the position of b to the position of a. The strength of the interaction
force, A,,, is assumed to be the same as the strength of the path force, A,.,. Finally, it is
assumed that the path force, with B ; = B, and By; = B,, should be exactly in equilibrium
with the interaction force when the pedestrians are side-by-side; the measured average positions
when the pedestrians are side-by-side are

he = 0.85+0.25m, (11)

hy = 1.8840.20m. (12)

For the forces to cancel out, this results in two equations, one for each pedestrian:
fpath (Ea) + fpp (Eab) =0 (13)
foatn (Py) + £p(hea) = O. (14)
hij = h; — h; is the distance between the two average values.

Inserting the force equations for the first equation one obtains

exp (hIE? ha) — exp (hag_ hQ) — exp (haB_ hb) =0, (15)
1 2 P

where already the assumption was made that all force strengths A are the same. Solving this
equation with respect to B,,, results in

B Ea _Eb

pp — —
log (exp (—}“F_lh“) — exp (—hap_;n))

~ 1.71m. (17)

(16)

13
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Given our previous values for B; and B,, this value seems plausible.

Doing the same procedure for the second equation results in a much lower estimate for B, of
0.18 m. This is due to the fact that for a pedestrian close to the wall the presence of a second
pedestrian does not shift the average value for 4 a lot — from hy ~ 1.6 m to hy ~ 1.88m — and
therefore the other pedestrian does not have to “push” a lot to achieve this. We conclude that for
our purposes an interaction range of B = 1m is plausible, both for the path force and for the
interaction force.

4.4 Fundamental diagrams, and the interaction strength A

We measured the behaviour of simulated pedestrians on a path with width 2m, i.e. h; = 0m and
hyo = 2m. The length of the path segment was 10 m. For this section, a constant and large path
force strength of A,.,, = 6000 was selected, while the pedestrian interaction strength, A,,, was
varied as indicated. The large path force models solid walls. We were interested in the change
of mean walking speed v of the agents if we change their density p. A curious result when doing
this with periodic boundary conditions is that the velocity does not go down at all, even with
very high density. The reason is that the pedestrians move as a single block even at very high
densities; this is caused by a combination of two properties of the equations: The pedestrian
interaction is uniform in all directions, that is, a pedestrian from behind pushes as much as a
pedestrian in front. Second, nothing in the formulation says that their velocity should depend on
some distance from each other as it is the fact with most car following equations.

This is clearly unrealistic. It however turns out that with “randomized” boundary conditions,
the problem goes away and reasonable fundamental diagrams result (Fig. 11). With randomized
boundary conditions, a pedestrian reaching the end of the segment will reappear at the start of
the other end with a randomized lateral position. Since now the boundary conditions are not
periodic, the pedestrian about to leave the corridor at one end does not push the pedestrians
on the other end. This can cause unrealistic overlapping pedestrians. In order to avoid that, the
simulation checks if there is space available at the randomized location (for the precise algorithm
see Mauron (2002)). If the location is already occupied, the pedestrian is stuck and the procedure
Is repeated at every simulation time step till there is space. — This essentially means that with
randomized boundary conditions the “pushing from the back” is not done at the entry to the path
segment.

From Fig. 11, one observes that an interaction strength of A,, = 100 is too weak. Values of
App =~ 300 are plausible.

Finally, Fig. 12 shows fundamental diagrams when a share of pedestrians, C, is moving in the
opposing direction. Clearly, with C increasing towards 0.5, the average velocity goes down. As
expected, the effect is more pronounced for high than for low densities. We are not aware of any
systematic field measurements to compare this data against.

14
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Figure 8: Measured quantities

5. Computational aspects

It was argued earlier that a cellular automata representation of space did not seem appropriate
for our purposes. Instead, we use a continuous representation of space. However, some aspects
of our simulation, such as walkability or obstacle forces, depend on the spatial location of the
agent. The same is true for the path forces in “model A” (Sec. 2), which we still intend to use
for simulations with complicated geometries such as inside buildings. These forces are relatively
expensive to calculate, since one needs to enumerate through all possible objects that could
influence a given location.

However, since those forces do not depend on time, they can be pre-computed before the simu-
lation starts. In order for this to be successful, some coarse-graining of space is necessary. For
this, we use cells of size 25¢m x 25¢m, and assume that all time-independent forces are constant
inside a cell. The resulting force field (Fig. 1) becomes non-continuous in space, but this is not a
problem in practice since this only influences the acceleration of pedestrians. That is, the accel-
eration contribution from the environmental forces can jump from one time step to the next, but
since time is not continuous, this is not noticeable.

Unfortunately, precomputing the values for all cells in a hiking region of, say, 50km x 50km,
does not fit into regular computer memory. To avoid this problem, we implemented two methods:
lazy initialization, and disk caching (Fig. 13). By lazy initialization, we mean that the values
are computed only when an agent really needs them. In practice, the simulation area is divided
into blocks of size 200m x 200m. Every time an agent enters one of these blocks, the values for

15
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Figure 9: Real-world pedestrian distribution for non-interacting and interacting pedestrians
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Figure 10: Validation: Real-world and simulated single pedestrian distribution
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Figure 11: Average speed v vs. pedestrian density for uni-directional flow and randomized
boundary conditions (B,, = 1, L = 10[m], W = 2[m])
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all cells inside that block are computed. Since hiking paths cross only a small fraction of those
blocks, the cell values for many blocks in our hiking area will never be calculated.

In addition, the cell values, once computed, are stored on disk (disk caching). Every time when
an agent encounters a block for which the cell values are not in memory, the simulation first
checks if they are maybe on disk. Computation of the cell values is only started when those
values are not found on disk. In consequence, a simulation started for the first time will run
slower, because the disk cache is not filled yet.

If the simulation runs out of memory, then blocks which are no longer needed (i.e. which have not
been crossed by an agent for a long time) are unloaded from memory. If they are needed again,
they are just re-loaded from disk. It would also be possible to allocate main memory for all the
blocks and rely in the paging mechanism of the operating system. However, since we know more
about the simulation, we are able do optimize the parameters for this special purpose.

An additional advantage of the blocks, well known from molecular dynamics simulations, is that
one can use them to cut off the short-range interaction between the pedestrians. Agents which are
not in the same or one of the eight adjacent blocks are ignored (Fig. 14). This implies that there
needs to be some data structure where agents are registered to the block. Agents that move from
one block to another need to unregister in the first block and register in the second one. In this
way, an agent searching for its neighbors only needs to go through the registered agents in the
relevant blocks. This brings the computation complexity from O(/N?) down to O(N M), where
M is the number of agents in a single block. M is a reasonably small number when compared to
the number N of all agents in a real-world scenario.
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Figure 12: The maximal velocity of walking pedestrians decreases if their density rises, and when
oncoming traffice increases. A,, = 300, By, = 1, Ap., = 6000, random boundary conditions.
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For a testing scenario, of size 12 km x 15 km, we would need approx. 2.9 x 10° cells or 4500
blocks, resulting in 9 GByte memory requirement. The result of the lazy initialization together
with the caching mechanism is that 50 MByte are enough for the scenario shown in Fig. 16. The
computational speed for that simulation, with 300 hikers, was about 40 times faster than real

time.
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Figure 13: Since block consume a lot of memory, they are loaded into memory as soon as an
agent walks over, and are deleted after a while.
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Figure 14: The scene is divided into multiple “blocks”. Only forces from adjacent blocks have
an influence to an agent.
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Figure 15: First run. All agents have the same destination, and at this stage, the same route.

6. A preliminary application

The eventual goal of this project is to simulate hikers in a tourist area in the Swiss Alps, and
make them react to visual stimuli. It would go beyond the scope of this paper to discuss the
whole idea of that project, and its planned implementation. In general, the approach is similar
to an activity-based microsimulation approach to transportation simulation (e.g. Raney et al.,
2003b). That is, there will be a snythetic population, presumably consisting of tourists staying
at hotels or visiting for a day. For each tourist, a daily or possibly weekly activity plan will
be generated. These activities will include, say, to hike to a certain peak, to have a coffee at
a mountain restaurant, or to go shopping in the village. These activities are then connected by
routes. Routes will be computed according to generalized cost functions, which depend, for
example, on scenical beauty or on the number of other hikers that are encountered. A learning
algorithm on top of this will make the tourists adapt, for example in order to avoid other hikers.

A small proof-of-principle run is documented in Figs. 15, 16, and 17. It is assumed that all
agents leave in the morning from the hotel and hike to the same mountain peak. They however
want to avoid each other because they want to hike in solitude. Fig. 15 shows the first run, where
no hiker knew about the other hikers’ intentions. Fig. 16 shows the situation after 50 iterations,
where hikers have learned to spread out and avoid each other.

Considerably more work will be necessary to fill these elements with true real-world meaning.
This aspect goes, as said before, beyond the scope of this paper.
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Figure 16: After 50 iterations

7. Summary

Within the research project “Planning with Virtual Alpine Landscapes and Autonomous Agents”,
a simulation of hikers in the Alps is implemented. The ultimate goal is to have these hikers make
realistic tours, where they react to visual stimuli including the presence of other hikers. This
paper presents the underlying pedestrian simulation for the project. Because of the need to allow
for realistic arbitrary movement, a simulation based on continuous space was selected. The
dynamic model is taken from the literature, but thoroughly tested for our purposes.

One important aspect is the computation of the forces which keep the agent on the path and make
it follow the possibly winding path. Two approaches were tested: one based on a combination of
location-based forces, which push the agent towards the nearest path, and attractive waypoints,
which pull the agent along its route. The other model (“*model B”) uses a path-oriented coordinate
system, with a strong force along the path, and a weak force towards the middle of the path. For
the hiking application, model B seems to be easier to handle and to generate fewer artifacts than
model A.

In contrast to other pedestrian simulations, which concentrate on crowd or even panic behavior
but have the advantage of relatively small spatial scenario sizes, in this project crowd behavior
is less important but large scenarios need to be handled. The implementation therefore uses
lazy initialization plus caching for location-based data. This means that the simulation area is
segmented into blocks. Location-based data is only computed when an agent enters a block for
the very first time. It is then simultaneously kept in memory and written to disk. If the simulation
runs out of memory, blocks which have not been used for a long time are removed from meory
but kept on disk. Such blocks can be re-loaded if another agent enters the block at some later
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Figure 17: Some agents hiking from their hotel to the top of a mountain.

time, or if the simulation is run a second time with the same parameters. — Since the hiking paths
cover only a relatively small fraction of the whole geographical area, this mechanism makes the
handling of large scenarios possible on normal desktop PCs.

Future work will concentrate on “strategic” modules, which compute destinations and routes for
the hikers. The intention is to do this in a more general distributed computational architecture,
which will allow the simulation of arbitrary large scale mobility scenarios.
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