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Chapter 1

Introduction

Tra�c jams are annoying, cost money, and pollute the environment. Meanwhile, tra�c jams are only

the most visible part of a far bigger problem: In the western part of Germany

1

alone, people travel

748.3 billion km per year (pkm = passenger kilometers), and goods are moved 266 billion tkm (ton

kilometers) per year [171]. This is more than 2 000000 000 pkm and 725 000 000 tkm per day.

Moreover, 13.7% of the Gross National Product of Germany is absorbed by trade, transportation, and

telecommunication [57]; in the U.S. it is 14.8% by transportation alone [39]. In Germany, nearly 10% of

the federal budget is spent by the department of transportation (1991/92, [57]). Thus, transportation

is a huge part of the economies of industrialized countries.

The traditional answer of transportation planners and politicians to bottlenecks has been to increase

the transportation supply. Yet, demand has always caught up, and during the last years it became in-

creasingly clear that there are big problems in transportation which cannot be solved by the traditional

policies.

For example in Germany, tra�c produces 67.9% of all carbon monoxides, 58.4% of all NO

x

, and 18.2%

of all carbon dioxides [171], and it consumes 28% of all energy [57]. Car tra�c is a noisy and dangerous

ingredient of urban life. Airports, rail lines for high speed trains, and man-made water ways destroy

the last undisturbed natural areas in the industrialized parts of Europe. Airplanes inject water vapor

and pollution directly into the stratosphere.

An intuitive reaction is that there should be ways to do this without putting so much stress on the

environment. And indeed, there is a large number of propositions, ranging from modern technology

to changes in social habits. Examples are among others:

� fuel-saving engines,

� Advanced Tra�c Information/Management Systems (ATIS/ATMS) using Advanced Transport

Telematics (ATT) or the American counterpart Intelligent Vehicle Highway Systems (IVHS),

� routing optimization,

� freight distribution centers, integrated freight logistics,

� transit systems (e.g. trains),

� reducing freight transportation by making industrial production more local

1

Statistical numbers in good quality are not yet available for the new parts of Germany.
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� tele-commuting (i.e. working from a computer terminal at home)

� long-term tra�c-reducing urban planning.

In the United States, the Clean Air Act will force communities to �nd policies which keep the air

quality better than a given standard.

However, because of the high complexity of the problem, singular actions are often not very e�ective

and sometimes even counter-productive. For example, addition of a new road may lead to a decrease

of the vehicle throughput [24]. Simulations show that the introduction of a transit system may lead to

increased pollution [165] (private vehicles remain at home and are used by another household member

for a high number of short trips with a cold engine). More than half of all passenger kilometers are not

work related: In Germany, 63.2% of all pkm fall into the categories shopping (9.2%), leisure (45.3%),

and vacation (8.7%) [171].

These examples should have made clear that there are no simple solutions. It will be di�cult to reduce

the stress on the environment when the transportation demand keeps on increasing at current rates;

and reducing the transportation demand cannot be achieved only by technical solutions in freight

transportation but will have to include changes in social habits. Obviously, this will need thorough

discussion for �nding a widely accepted balance of interests.

One of the best methodologies today to deal with complex systems like the transportation system

is simulation. Fast desktop computers allow people to get a \hands-on" experience with di�erent

possible scenarios, and (parallel) supercomputers give the necessary power to deal with big problems.

As a �rst step, one would like to simulate \everything" which is related to transportation|from

settlement and infrastructure over social habits over trip planning and execution to air pollution

dynamics. It seems necessary to include all these elements since, for example, changes in the settlement

structure will a�ect air pollution in non-foreseeable ways.

This is in fact the approach of the American TRANSIMS project at the Los Alamos National Labora-

tory [165]; the European project EUROTOPP [153] uses similar ideas. Large interdisciplinary groups

are necessary to integrate all the di�erent aspects of such an approach. The research presented here is

part of a collaboration between the University of Cologne and the TRANSIMS project. It is planned

to work with more than 30 people during the next 5 years on the project of transportation simulation,

analysis, and optimization.

In this collaboration, the Cologne group concentrates so far on road tra�c, with special focus on

theoretical developments, on computational aspects of simulation, and on algorithmical aspects. Road

tra�c currently contributes more than 81% of all passenger and 52.7% of all freight transporta-

tion [171]. And despite widespread e�orts, the share of road transportation is still increasing. In this

sense, it makes sense to start with road tra�c when dealing with transportation systems.

This work presents results of tra�c simulations using very fast microscopic models. \Micro" refers to

the fact that each individual vehicle is resolved, which is an inevitable requirement for, e.g., individual

routing analysis. High computational speed, also on (parallel) supercomputers, is achieved by keeping

the model extremely simple. This makes, on one hand, real time simulations of large road networks

possible, and it allows, on the other hand, the use of dynamical systems techniques in conjunction

with many repeated Monte Carlo runs to characterize the phase space of the transportation system.

Last, but not least, the simplicity allows theoretical work: Critical exponents clarify the connection

between 
uid-dynamical and elaborate car-following models, and analytical methods help classifying

the general properties of tra�c 
ow models.
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This text has two main parts: tra�c 
ow, and network tra�c. A third part contains computational

results, an outlook, and the conclusion.

The �rst part consists of Chapters 2 to 7. Chapter 2 explains some necessary background for the tra�c


ow investigations. It starts with an overview of theoretical models for one-dimensional transport and

for tra�c as found in the literature. It is, to my knowledge, the �rst overview which, by using well-

known results from the area of driven di�usive systems, classi�es 
uid-dynamical theories and particle

hopping models for tra�c 
ow into one common framework. The second part of this chapter reviews

tra�c 
ow simulation concepts and models, and argues why a fast microscopic approach is necessary.

Chapter 3 presents the basic model, and gives �rst results on its properties. Chapters 4 and 5 discuss

two di�erent limits of the model: In the �rst case, all randomness is set to zero; in the second case,

this is only done for the part of the randomness which leads to spontaneous initiation of tra�c jams.

Chapter 6 then summarizes further results and explains them in the light of the results from Chapters 4

and 5. Chapter 7 summarizes all tra�c 
ow results, and shows how the tra�c model investigated here

helps closing the gap between 
uid-dynamical theories, car following behavior, and other, simpler,

particle-hopping models.

Chapters 8 to 10 describe tra�c in networks. Chapter 8 discusses basic issues, Chapters 9 and 10

contain network examples, where road network elements such as nodes and edges can be processed

and vehicles follow individual travel plans. Chapter 9 demonstrates, by using a simple example, how

questions such as e�cient adaptive road pricing, can be treated by using this fast microsimulation, and

that these questions cannot be separated from the system dynamics. Quite generally, it turns out that

high system performance is intrinsically coupled to high 
uctuations and therefore low predictability.

The second example (Chapter 10) is a (single lane) network implementation of the freeway network

of Northrhine-Westfalia, showing that this approach makes algorithmic investigations using realistic

individual travel plans possible in much faster than real time.

Chapter 11 tests computational performance by implementing the basic model on many di�erent su-

percomputers. These results are compared to performance values from other projects, and it is checked

how performance decreases when implementations become more realistic, e.g. when programming free-

way networks. Chapter 12 is an outlook, describing indications for further work, or extensions of the

model which have already been investigated by others. Chapter 13 shortly summarizes and concludes

the text.

Several appendices contain, for completeness, technical details, or work which is important for the

overall picture but less important for the main arguments pursued in this text.

Except for Chapter 3, it should be possible to read only parts of this text without losing too much

understanding. People with a background in driven di�usive systems may want to start with the

summary in Chapter 7 and just skip back when they need additional information; and the network

Chapters 8 to 10 build on, but are largely independent of, the rest of the text.
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Chapter 2

Background

Especially when demand exceeds supply, it makes sense to use existing transportation facilities as

e�ciently as possible. Naively, one would want to keep, say, a freeway in the regime of maximum

vehicle throughput (= capacity). However, due to a traditional bias as well as due to a lack of tools,

transportation science mostly has concentrated on tra�c at densities far below maximum throughput|

as can for example be seen from the fact that the Highway Capacity Manual [63] distinguishes �ve

di�erent regimes (Levels of Service A to E) for tra�c at densities below capacity, but only one (Level

of Service F) above.

Most of currently used tra�c 
ow theory has been developed in the 1950's, see, e.g., [47] for a review.

Steady state solutions for mathematical car-following models correspond to steady state throughput-

density curves, and due to the lack of re�ned technology this standard was su�cient to explain mea-

surements. Jam-waves could be explained by using the analogy between tra�c and kinematic waves

in, e.g., rivers for a 
uid-dynamical treatment [100, 175].

However, recent and re�ned measurements [2, 56, 69] point out that especially the regime of maximum

throughput is far from being completely understood. At the same time, extensions of the 
uid-

dynamical treatment using new methods from nonlinear dynamics indicate a phase transition (route to

chaos) in the equations [88], consistent with theoretical developments based on measurements [1, 132].

Simulations of these equations allow for the �rst time systematic investigation of large scale tra�c


ow phenomena near capacity [80].

Nonetheless, the 
uid-dynamical description is not really useful to clarify the connection between the

macroscopic, emergent phenomena (e.g. jams) and the microscopic dynamics (e.g. driving behavior).

In addition, simulations based on 
uid-dynamical equations are known to be problematic in complex

geometries [145]. In the context of tra�c this would mean that each ramp or each change in the road

characteristics (speed limit, number of lanes, slope, : : :) could trigger spurious disturbances which stem

from the discretization of the equations.

1

In 
uid-dynamics, simple particle-based models (lattice gas

automata, LGA) [44] are used to complement the partial di�erential equation (PDE) approach. LGA

have proven to be extremely useful in complex geometries (e.g. for porous media [145]), where they

avoid the instabilities of the discretized PDEs.

1

The fact that this does not seem to happen in network implementations based on the Lighthill-Whitham theory is

most probably a consequence of the fact that, together with numerical dissipation due to the discretization, the Lighthill-

Whitham approach is stable for all frequencies. This is no longer true for more realistic 
uid-dynamic models, which,

though, have not yet been tried for road networks.
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For vehicular tra�c with its much higher particle granularity, an LGA approach is even more natural

than for 
uids. Instead of with \First Principles" as in LGA, one starts with behavioral rules, and

in the same way as in LGA, one can attempt to �nd the hydrodynamic limit. In this way, CA

tra�c models are not only useful for computational applications, but also for theoretical developments

(theory of tra�c 
ow), directly placed between extensive microscopic and averaging 
uid-dynamical

models.

The �rst section of this chapter will be devoted to 
uid-dynamical models for tra�c. Then, particle

based models for one-dimensional transport and their relations to the 
uid-dynamical models will be

reviewed. Section 3 treats models for car-following, and Section 4 reviews simulation models for tra�c


ow.

Section 1 is somewhat more comprehensive because it organizes results found in the tra�c science

literature and results found in the physics literature into one common framework. To my knowledge,

such a review does not exist elsewhere.

2.1 Fluid-dynamical models for tra�c 
ow

2.1.1 General equations

One might use the standard 
uid-dynamical conservation equations for mass and momentum as a

starting point for a 
uid-dynamical description of tra�c:

@

t

�+ @

x

(� v) = 0

and

dv

dt

� @

t

v + v � @

x

v = F=m ;

where � is the density and v the velocity.

2

d=dt is the individual derivative, F is the force acting on

mass m. The �rst equation (of continuity) describes mass conservation; the second one (momentum

conservation) describes the fact that the momentum of a point of mass may only be changed by a

force. Obviously, for tra�c, F has to take care of vehicle and driving dynamics.

2.1.2 Fluctuations

A standard �rst step in 
uid-dynamics [25] is to assume that v and � 
uctuate statistically around

average values h v i and h � i, i.e.

v = h v i+ v

0

; h v

0

i = 0

and

� = h � i+ �

0

; h �

0

i = 0 :

In this case, one only assumes that h v i and h � i 
uctuate slowly in space and time; for the general

subtleties of hydro-dynamical theory see, e.g., [90].

Inserting these relations and subsequent averaging over the whole equations (e.g. h @

x

[(h � i+�

0

) (h v i+

v

0

)] i = @

x

h � ih v i+ @

x

h �

0

v

0

i) yields

@

t

h � i+ @

x

h � ih v i+ @

x

h �

0

v

0

i = 0

2

The tra�c literature often uses k instead of �.
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and

@

t

h v i+ h v i@

x

h v i+

1

2

@

x

h v

0

v

0

i = hF=m i :

One can [25] parametrize an averaged 
uctuation by the corresponding gradient

h v

0

A

0

i � �� @

x

hA i ;

which leads to the set of equations

@

t

�+ @

x

(� v)= D@

2

x

�

@

t

v + v @

x

v = F=m+ � @

2

x

v ;

where, according to convention, the averaging brackets has been omitted, and the di�usion coe�cient

D as well as the (kinematic) viscosity � are assumed to be independent of x and t. It should be noted

that similar di�usion terms can also be obtained from other arguments.

2.1.3 Lighthill-Whitham-theory and kinematic waves

If one assumes that the velocity is a function of density only (v = f(�)), then the momentum equation

is no longer necessary. This corresponds to instantaneous adaption; the particles (or cars) carry no

memory. Using without loss of generality the current q(�) � � v(�), and setting in addition D = 0,

one obtains

@

t

�+ q

0

(�) @

x

� = 0

(Lighthill-Whitham-equation) [100, 53], where q

0

= dq=d�.

3

q

0

will always mean the derivative of q,

even when the prime in connection with other letters often denotes 
uctuations.

The equation can be solved by the ansatz �(x; t) = �(x� ct) with

c = q

0

(�) :

This allows the solution of the characteristics: A region with density � travels with constant velocity

c = q

0

(�), and the resulting straight line in space-time is called characteristic. When q(�) is convex, i.e.

q

00

< 0, then for regions of decreasing density (�(x

1

) > �(x

2

) for x

1

< x

2

) the characterstics separate

from each other. On the other hand, in regions of increasing density, the characteristics come closer

and closer together and ultimately hit each other. When two characteristics hit each other, a density

discontinuity appears at this place (a front), which moves with velocity

c =

q(x

2

)� q(x

1

)

�(x

2

)� �(x

1

)

=

�q

��

:

An illustrative example is a queue, such as at a red light. When the light turns green, the out
ow

front quickly smoothes out, whereas the in
ow front remains steep.

Leibig [97] gives results how a random initial distribution of density steps in a closed system evolves

towards two single steps according to the Lighthill-Whitham-theory.

3

In this text, current is the same as 
ow or throughput. The physics literature usually uses j or J instead of q.
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2.1.4 Lighthill-Whitham with dissipation

Adding dissipation to the Lighthill-Whitham-equation leads to

@

t

�+ q

0

(�) @

x

� = D@

2

x

� :

The solution of this equation is again a nondispersive wave with phase and group velocity q

0

, but this

time with a damping constant D. One way to see this is by linearizing the equation: A stationary and

homogenous density � � const =: �

0

is a solution. The ansatz � = �

0

+ � �

1

+ �

2

�

2

+ : : : leads in �rst

order in � to

@

t

�

1

+ q

0

(�

0

) @

x

�

1

= D@

2

x

�

1

:

A Fourier-Transform (or using the ansatz �

1

= �̂

1

exp[i(kx� !t)]) yields

! = q

0

(�

0

) k � iD k

2

:

From the real part of the frequency one obtains the phase velocity c

'

and the group velocity c

g

:

c

'

:=

Re(!)

k

= c

g

:=

@

@k

Re(!) = q

0

(�

0

) ;

which gives are the same kinematic waves as before. The di�erence is that this time a dissipation

(damping) of the wave amplitude is given by Im(!) = �Dk

2

: Any disturbance decays exponen-

tially. The re
ects the intuitively reasonable e�ect that tra�c jams should tend to dissolve under

homogeneous and stationary conditions.

2.1.5 The nonlinear di�usion (Burgers) equation

For a further development, q(�) has to be speci�ed. Since we are mostly interested in the behavior of

tra�c near maximum throughput, we start by choosing the simplest mathematical form which yields

a \well-behaved" maximum:

q(�) = v

max

�(1� �) ;

which, in tra�c science, is called the Greenshields-model (see [47]). v

max

is, in principle, a free

parameter, but it has an interpretation as the maximum average velocity for �! 0.

4

The maximum

current q

max

is reached at �(q

max

) = 1=2.

The result is the equation

@

t

�+ v

max

@

x

�� 2v

max

� @

x

� = D@

2

x

� :

Introducing a linear transformation of variables [115]

x = v

max

t

0

� x

0

; t = t

0

;

one obtains

@

t

0

�+ 2 v

max

� @

x

0

� = D@

2

x

0

� ;

4

Mathematicians would set v

max

= 1; tra�c scientists use 1��=�

jam

for the term in parenthesis. �

jam

is the density

of vehicles in a jam.



2.1. Fluid-dynamical models for tra�c 
ow 11

which is the (deterministic) Burgers equation.

This equation has been investigated in great detail by Burgers [20] as the simplest non-linear di�usion

equation. The stationary solution is a uniform density �(x; t) = const. A single disturbance from this

state evolves over time into a characteristic triangular structure with height � t

�1=2

, width � t

1=2

, and

bent to the right such that the right side of the disturbance becomes discontinuous. This disturbance

moves to the right with velocity c = q

0

= 2 � v

max

.

When interpreting this for tra�c jams, one has to re-transform the coordinates. Jams can then move

both to the left or to the right (with velocities between v

max

and �v

max

), and the discontinuous front

develops at the upstream side of the jam, i.e. where the vehicles enter the jam. One sees that this

solution is just the solution of the characteristics, with a dissipating di�usion term added|as should

be expected because of D > 0.

Some other versions of the Burgers equation are relevant for tra�c and have been investigated thor-

oughly [85, 18, 105]:

� Noisy Burgers equation: Adding a Gaussian noise term � to the equation (h �(x; t)�(x

0

; t

0

) i =

�

0

�(x� x

0

) �(t� t

0

)) leads to the noisy Burgers equation

@

t

�+ 2 v

max

�@

x

� = D@

2

x

�+ � :

This equation does not reach a stationary state any more.

� Generalized Burgers equation: The nonlinearity of the Burgers equation can be generalized:

@

t

� =

X

�

b

�

@

x

�

�

+D@

2

x

� :

E.g., a current of

q(�) = q

max

� v

max

j�� �(q

max

)j

leads to a linear Burgers equation

@

t

�+ sgn[�(q

max

)� �] v

max

@

x

� = D@

2

x

� :

As we will see later, this linear ansatz is useful for tra�c.

Generalized Burgers equations with arbitrary � have been investigated [18, 85].

The Burgers equation has the same mathematical structure as a well-known equation for surface

growth, the Kardar-Parisi-Zhang (KPZ) equation [18, 78, 85]. The connection is most straightforward

when one interprets the 
uctuations of the density, �

0

= ��h � i

L

, as a step density for a 1-dimensional

surface (i.e. �

0

= @

x

h). Inserting � = h � i

L

+ �

0

into the generalized Burgers equation yields

@

t

�

0

=

X

�

~

b

�

@

x

�

0�

+D@

2

x

�

0

;

with the same structure as before, but with di�erent coe�cients

~

b

�

. The system here is assumed to be

closed (periodic boundary conditions), in consequence @

t

h � i

L

� dh � i

L

=dt = 0. By inserting �

0

= @

x

h

and integrating once, one obtains

@

t

h = const +

X

�

~

b

�

(@

x

h)

�

+D@

2

x

h

(generalized KPZ-equation).
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2.1.6 Including momentum

The equations so far do not explain the spontaneous phase separation into relatively free and rather

dense regions, which is observed in real tra�c. To obtain this, one can no longer neglect the e�ect

of momentum: One can neither accelerate instantaneously to a desired speed nor slow down without

delay. It becomes necessary to include the momentum equation. Here, one has to specify the force term

F=m, which describes acceleration and slowing down. At least two properties have to be incorporated:

interaction with other cars, and relaxation towards desired speed.

� A �rst order approximation for the relaxation term is [88, 130]

1

�

(V (�)� v);

where V (�) is the desired average speed as a function of density.

This choice yields exponential relaxation towards the desired speed. The function V (�) has to

be speci�ed externally, e.g. from measurements.

� A commonly used interaction term [26, 80, 88, 130] is

�

c

2

0

�

@

x

� ; (�)

where c

0

is treated as constant. In tra�c, a typical value for c

0

is 15 km/h [87].

The meaning is that one tends to reduce speed when the density increases, even when the local

density is still consistent with the current speed.

Formally, this term comes from the the pressure term of compressible 
ow

�

1

�

@

x

p ;

where p is the pressure due to thermal motion of the particles. Assuming an ideal gas (p = �RT )

and isothermic behavior T = const, one obtains waves similar to sound waves as a solution of the

linearized equations.

5

This leads to (�), where c

0

is the speed of the \sound" waves. Note that

sound waves move in both directions from a disturbance, which means that sound waves alone

are not a good explanation for freeway start-stop-waves, contrary to what is written in [14].

A possible momentum equation for tra�c therefore is

@

t

v + v@

x

v = �

c

2

0

�

@

x

�+

1

�

(V (�)� v) + �@

2

x

v ;

and the system is closed together with an equation of continuity

@

t

�+ @

t

(� v) = D@

2

x

� :

Usually, D is set to zero.

5

True sound waves assume the gas to behave adiabatic, i.e. p / �

�

. Then, increasing pressure results in an increased

temperature.



2.1. Fluid-dynamical models for tra�c 
ow 13

For this equation, the homogeneous solution (v; �) � (v

0

; �

0

) is unstable for densities near maximum


ow for a suitable choice of parameters. Using the methods of nonlinear dynamics [88, 143, 156] (see

also [64]), one can go beyond the linear stability analysis. One �nds a multitude of stable or unstable

�xpoints and limit cycles which suggest that tra�c near maximum 
ow operates on a strange attractor.

This can lead to quasi-periodic behavior, exactly as is observed in tra�c measurements.

Earlier work [26, 58, 130] has analyzed the same equation without di�usion (� = 0). The results are

reported to be unrealistic for bottlenecks, and the equations do not reproduce the start-stop-wave

behavior.

2.1.7 Discussion of 
uid-dynamical approaches

Fluid-Dynamical models have been used in tra�c science for a long time, with considerable success.

But they have shortcomings. Some of the major points are:

� One has to give externally the relation between speed or current and density. This is unsatisfying

in terms of the development of a theory. But an even more intricate problem is that there is no

agreement on a functional form of the speed-density relation; it is even under discussion if this

relation is at all continuous [56, 132].

� Temperature parametrizes the random 
uctuations of particles around their mean speed. For

gases, 
uctuations and therefore temperature increase with density. For granular media, 
uc-

tuations decrease with density (i.e. inside a jam)|it has been claimed that exactly this inverse

temperature e�ect is responsible for clustering [48]. In this way, assuming isothermic instead of

adiabatic behavior as done for the momentum equation seems only half the way one has to go.

Helbing [61] discusses this further.

� Helbing [61] also discusses excluded volume to take into account the spatial extension of vehicles.

Nonetheless, 
uid-dynamical approaches [80, 88, 143, 156] give, for the �rst time, systematic insight

into tra�c near maximum 
ow beyond simple extrapolation of light and dense tra�c results. Lee [96]

has found the same mechanism for waves in general granular media. Putting all their results together,

the overall picture is as follows: Near maximum throughput, the 
ow becomes unstable due to insta-

bilities in the momentum equation (dynamic mode). These instabilities grow exponentially until the

wave is outside the unstable region (i.e. too high density). Then the dynamic mode damps out, but

the density discontinuity survives as a kinematic wave.

2.1.8 Kinetic theory

The heuristic introduction of the 
uid-dynamical equations for tra�c 
ow remains unsatisfactory. As

in standard hydrodynamic theory [140], it should be possible to derive correct hydrodynamic equations

for tra�c from a kinetic theory. Indeed, such an approach has been followed by Prigogine, Herman,

and coworkers [138], and in fact, the hydrodynamic equations of Lighthill and Whitham have been

derived from this as a limiting case.

In short, the kinetic approach attempts to give the time development of a distribution function

f(x; v; t), where

Z

1

0

dv f(x; v; t) = �(x; t)
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and

1

�(x; t)

Z

1

0

dv v f(x; v; t) = �v(x; t) :

Technically similar to the 
uid-dynamical theory, the dynamic equation for f is

@

t

f + v @

x

f = force terms :

Again similar to the 
uid-dynamical theory, mainly two terms are considered for the force:

� The relaxation term

�

f � f

d

T

;

where f

d

(x; v; t) is the distribution of desired speeds.

� Following standard kinetic theory, the interaction term is at �rst written as a master equation:

@f(x; v

i

; t)

@t

�

�

�

�

interaction

= (1� P )

X

j

[R(v

i

jv

j

)� R(v

j

jv

i

)] :

R(v

b

jv

a

) is the rate with which cars change from velocity v

a

to velocity v

b

due to interaction. In

gas dynamics, these rates are given by the collision rules. For tra�c, it means that an upcoming

car slows down to the speed of a slower car. P is the probability of passing: If a car can pass,

interaction does not take place. P is itself a function at least of �.

Further approximation of this term leads to the expression

@

t

f j

interact

= (1� P ) � (v � v) f :

@

t

f(v)j

interact

is positive when v < v and negative when v > v, which means that the interaction

term itself has the tendency to slow down the tra�c to velocities below v.

This approximation is only mean �eld, meaning that it only takes into account interactions of a

car with the average �eld of all the others. Higher correlations are in principle feasible.

The problems with the kinetic approach are:

� The mathematics are relatively laborious and one needs a lot of speci�city (assumptions about

driving behavior etc.) at an early level of the derivation. The approach is therefore not useful

for investigating a lot of di�erent assumptions.

� Kinetic theory for tra�c is so far only mean �eld: No two-point correlations have been in-

cluded into the calculations. Although this is in principle feasible, it will be even more di�cult

mathematically. Yet, these correlations are most important near maximum 
ow, where we are

interested in.

2.2 Particle models and their relation to 
uid-dynamical models

2.2.1 Particle models for one-dimensional transport phenomena

In more recent times, investigations of partial di�erential equations have been complemented by in-

vestigations of discrete models [162].
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They are much more straightforwardly to simulate on a computer: Local rules usually only consist

of a few integer operations instead of many more 
oating point operations necessary for discretized

partial di�erential equations. And since in addition no round-o� errors and subsequent instabilities

occur, much faster algorithms (for a given number of sites) are possible. This is especially useful for

the investigation of critical phenomena (see below), where large correlation lengths and times and

huge 
uctuations call for large systems, long runs, and averages over many runs.

Moreover, these discrete models can be approached by analytical many-body methods from statistical

physics (see later).

Out of the multitude of particle hopping models, in the context of this work, two of them are of

particular interest. Both use a lattice of size L (open or periodic boundary conditions) which is �lled

with N = �L particles.

� Stochastic asymmetric exclusion [74, 52, 85, 34]: In each update step, one of the particles

is selected randomly (random sequential update). If the site to the right of the particle is free,

the particle is moved to this site, otherwise it does not move.

� Deterministic asymmetric exclusion [85]: All particles are simultaneously updated accord-

ing to the same rule as before.

Biham and coworkers [17] have �rst used this model for tra�c 
ow considerations. Nagatani [117]

has used it for two-lane tra�c. Moreover, all CA tra�c models on two-dimensional grids (see

Chapter 8) are based on this velocity update.

2.2.2 Damage spreading and critical exponents

A helpful concept for understanding critical phase transitions in discrete systems is the notion of

\damage spreading" [159]: One simulates two identical copies of the system. At a certain point, a

minimal change in one of the copies is made and then the time evolution of the di�erences between

the systems is observed.

To be more precise, I will use the picture of tra�c jams as an example. In Chapters 5 and 6, this

picture will be veri�ed and extended for a subcase of the CA tra�c model, and Chapter 7 will explain

the meaning and limit of the picture in the full model.

In our tra�c system, one way of \damaging" is to change the velocity of one randomly picked car by

�1. This car then can, by a chain reaction, cause a jam of a certain life-time; and downstream of this

jam, the tra�c pattern will be di�erent from the undisturbed model. After this jam has dissolved, the

spatial amount of damage extends from the disturbed car to the last car involved in the jam, and this

length is proportional to the life-time of the jam. For the limit p

spont

! 0 (but p

spont

6= 0), i.e. where

spontaneous initiation of a jam becomes rare (see Chapter 5), one obtains the following picture:

� For low densities, jams are usually short-lived (i.e. with an exponential cut-o� in the life-time

distribution). As a result, the average amount of spatial damage is small.

� For high densities, a jam caused by the disturbance will (in the average) survive forever, thus

(in the average) causing in�nite damage.

However, dense tra�c is characterized by the existence of many jams quasi-randomly distributed

over the system. So the additional jam caused by the disturbance will not change the statistical

properties of the system.
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Figure 2.1: Theoretical distribution functions of life-times of tra�c jams. The curves show, for di�erent densities, the

number of jams with a life-time larger or equal than t as a function of t. (y-axis arbitrary units)

� In between, there should be a density �

c

, where, when this density is approached from below,

jams become increasingly long-lived, with the result that the amount of spatial damage becomes

larger and larger. Ultimately, exactly at the critical point, a damage of size in�nity (in the

thermodynamic limit) is possible.

All these observations are similar to conventional damage spreading observations in cellular au-

tomata (CA) [91, 159]: The damage is limited for class I and class II CA, and it can be in�nite

for class VI CA. For class III CA, the damage is practically always in�nite, but does not change the

statistical properties of the system.

Moreover, at a critical point a system's behavior is characterized by critical exponents. At the critical

point, i.e. where jams barely survive, one would expect for the jam survival probability a scaling law:

P

surv

(t) � t

��

;

where � means \proportional to in the limit of t!1 and L!1", and � is a critical exponent.

But why should that make sense? Why should tra�c take place exactly at �

c

? And if so, should one

not use a more realistic model to obtain quantitative numbers (i.e. critical exponents)? The answers

to these questions are called in short self-organized criticality [8] and universality [173].

In our context, the �rst means that there are microscopic and macroscopic reasons that tra�c 
ow

has the tendency to operate near �

c

. Microscopic, because the out
ow from any high density region

happens at �

c

; macroscopic, because optimal use of a road network pushes � towards �

c

. Both results

will be explained in detail in later chapters.

Universality means that, in many cases, critical exponents are robust with respect to changes of the

model, i.e. grid structure, neighborhood de�nitions, etc. For the tra�c model, we even can explain



2.2. Particle models and their relation to 
uid-dynamical models 17

most of the exponents by a phenomenological theory. In consequence, we expect the results being true

for most if not all car following models. The details of this claim will be worked out later in this text.

Tra�c practitioners have indeed encountered problems which come out of these fundamental observa-

tions. In the TRAF-NETSIM simulation package, a problem was that small control measures could

lead to completely di�erent simulation behavior, which is exactly the problem of damage spreading.

Rathi and Santiago [139] resolved it by implementing \identical tra�c streams", but without a theory

it seems doubtful if this is a �nal solution.

6

Other authors [23] have investigated the variability of

NETSIM simulations|an enterprise which also would bene�t from more theory such as developed

here. For example, it would clarify that variability is density dependent, and where one should expect

the highest variability. See also Chapter 9 on variability in network simulations.

2.2.3 Hydrodynamic exponents

Critical exponents have another advantage: They are useful to compare particle hopping models with


uid-dynamical descriptions even when one does not know the hydrodynamical limit of the hopping

model. In this way, we will be able to work out the connections of the tra�c model proposed in the

next chapter to other models in physics and to the 
uid-dynamical theories of tra�c 
ow.

For example, dimensional analysis of the KPZ equation (see above)

@h

@t

= b

2

j

@h

@x

j

2

+D

@

2

h

@x

2

suggests

H

T

�

H

2

X

2

;

H

X

2

;

where H , T , and X are \typical" values for variations in h, t, and x. Since, heuristically, the last term

on the RHS is smaller than the �rst one on the RHS, one �nds

X

2

� H T :

Driving the KPZ equation by noise yields in addition H � X

1=2

[85] and therefore

T � X

3=2

;

with the well known \anomalous" dynamic KPZ exponent z = 3=2.

More precisely, one considers correlation functions of the type

F

2

h

(x; t) = h [h(x

0

+ x; t

0

+ t)� h(x

0

; t

0

)]

2

i

[105] and checks if F � x

�

(roughness exponent) or F � t

�=z

. And by using, e.g., renormalization

group arguments, one has shown rigorously that the above exponents for KPZ are exact [18].

6

Actually, in that case the situation is somewhat more complicated. In the original NETSIM simulation package,

one random number sequence was used for all randomized elements, especially also for turning decisions at intersections.

And since vehicles in NETSIM do not have trip plans, any small change in the random number sequence (e.g. by the

addition of one single car) sends each car to completely di�erent destinations. Using true paths will help a lot in this

situation, but a fundamental issue remains: One needs theory to evaluate results of Monte Carlo simulations.
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2.2.4 Correspondences between �eld theories and particle models

What now is left is to identify correspondences between �eld theories and particle models. For the

two hopping models presented above, this is done in the following.

Stochastic asymmetric exclusion process

The stochastic asymmetric exclusion process corresponds [85] to the noisy Burgers equation with

� = 2, and therefore corresponds to the exponents mentioned above: X

2

� H T in general, and

H � X

1=2

, T � X

3=2

in the steady state.

For our needs, however, this statement has to be more precise. The particle process corresponds to a

di�usion equation

@

t

�+ @

x

q = D@

2

x

�+ �

with a current q = � (1� �) [85, 34]. Inserting the current yields

@

t

�+ @

x

�� @

x

�

2

= D@

2

x

�+ � :

Since we are searching for 
uctuations,

7

we insert � = h � i

L

+ �

0

and obtain

@

t

�

0

+ (1� 2h � i

L

) @

x

�

0

� 2 �

0

@

x

�

0

= D@

2

x

�

0

+ � :

Thus, when transforming into the moving coordinate system x

0

= x+(1� 2h � i

L

) � t, one obtains KPZ

exponents. In all other coordinate systems, the linear gradient is dominating [18]. A precise treatment

of this uses correlations between tagged particles [105].

In terms of kinematic waves, the explanation of this is as follows: The particle process with a given

average density h � i

L

produces kinematic waves of wave velocity c = q

0

= 1 � 2h � i

L

. Only in the

coordinate system of these waves, one sees the anomalous 
uctuations. And there is a density, which|

not coincidently [86]|corresponds to maximum 
ow, where these waves do not move in space. When

tra�c would follow a Burgers equation, then one could detect maximum tra�c 
ow by standing on

a bridge: Jam-waves moving in 
ow direction indicate too low density, jam-waves moving against the


ow direction indicate too high density (cf. Figs. 7.1 and 7.2).

For surface physics, these spatial transformations usually do not matter. People are interested into

spatially averaged quantities such as the average surface height 
uctuations

W

2

(t) = h (h(x; t)� h h i

L

)

2

i

L

;

which shows anomalous KPZ behavior W � t

�=z

independent of spatial transformations.

Something similar is true for tra�c 
ow. According to this theory, a (small)

8

tra�c jam of length l

would need a time t � l

3=2

until it would be no longer visible in the system. But at the same time, the

jam as a whole can move forwards or backwards. Only at maximum 
ow, the wave velocity c = q

0

= 0,

and the jams stays at the same place.

In consequence, when measuring time series of local quantities, for example the density �(x

0

; t) for

�xed x

0

, one �nds di�erent correlations and a di�erent frequency spectrum at � = �(q

max

) [105].

7

This is why the Musha transformation (see above) is not the correct one to obtain critical exponents.

8

When a jam becomes too big, the system is no longer in the steady state, and a crossing over to other exponents is

found.
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Deterministic asymmetric exclusion process

The deterministic asymmetric exclusion process corresponds to the deterministic Burgers equation

with � = 1, with a current as described above,

q(�) = q

max

� v

max

j�� �(q

max

)j ;

with q

max

= 1=4, v

max

= 1, and �(q

max

) = 1=2. Further observations for this model are described in

Chapter 7, together with summaries of other cases which are relevant for tra�c.

2.2.5 Open systems

In an open system, the number of particles (cars) is no longer conserved. We continue to consider

a one-dimensional system. Particles move from the left to the right. One imposes open boundary

conditions by allowing particles to enter the system at the left end (x = 0) at rate �

0

and letting them

leave the system at the right end (x = L) at unit rate. This is equivalent to �xing the density as

�(x=0) = �

0

, �(x=L) = 0.

For these systems, one generically has to distinguish two regimes [86]:

� �

0

< �(q

max

). In this case, the density in the whole system except for the boundary regions is

equal to �

0

. Near the right boundary, � decays to zero [86]. The size of the boundary region

goes to zero in the hydrodynamic limit [21, 34].

� �

0

> �(q

max

). In this case, the density in the whole system is equal to �(q

max

) < �

0

, i.e. the

system maximizes the 
ow and adjusts the density [86].

The second regime is interesting: As explained above, the case � = �(q

max

) shows anomalous 
uctua-

tions for a �xed observer. By the automatic selection of this state, this supposedly rare case suddenly

happens generically|which may be seen [86] as a case of self-organized criticality [8].

These observations are \generically" true for a large class of systems, but exceptions exist.

For the tra�c CA, these observations give the correct ideas, but the details are distinctly di�erent.

That will put us into a position to judge where the Burgers equation and the more general Lighthill-

Whitham description are incomplete for tra�c.

2.3 Car following models

In socio-economic systems such as tra�c, one does not have �rst principles for particle behavior to start

from. It is therefore somewhat di�cult to discuss the justi�cation of a certain modeling approach|in

many cases, one will have to argue from the usefulness of the results. Nonetheless, car following theory

has been a �eld under development for a long time now, and common agreement has established a

variety of results.

2.3.1 Mathematical car following theory

Mathematical car following theory assumes a linear relationship between the (re)action and a stimulus

(cf. [47] for the following):

action = sensitivity � stimulus :
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The stimulus could, e.g., be the distance to the car ahead, or the di�erence of the velocities. One of

the �rst propositions was

v

i

(t+ �) / �x

i

(t) ; (�)

where v

i

is the velocity of the ith car in a chain, � is the time which is necessary for the adaption

(this is more than the reaction time), and �x is the distance to the next car ahead. Most of the

theory treats vehicles as points. Especially in recent times, results have been obtained starting from

this approximation [10, 125, 176].

Deriving (�) once with respect to time leads to

a

i

(t+ �) / �v

i

(t) ;

where a is the acceleration of i and �v is the velocity di�erence to the next car ahead. A generalisation

of this ansatz, taking into account that the sensitivity depends on the distance and on the speed, is

a

i

(t+ �) = c

1

�

[v

i

(t)]

m

[�x

i

(t)]

l

��v

i

(t) : (��)

l and m are integer numbers. This equation has been analyzed in great detail in the 1960s, for

example with respect to its stability for a single following car (local stability) or for an in�nitely long

chain of cars (asymptotic stability). On can derive speed-density and therefore 
ow-density relations

from (��). The resulting curves are, however, not extremely realistic when compared to modern

measurements [1, 2, 56, 69, 132].

In any case, equation (��) is problematic for numerical modelling. When �v is zero, the equation

allows an arbitrarily small distance to the car ahead, even at very high speed. In the theory, this

never happens as long as one starts from realistic initial conditions, but due to numerical inaccuracy

for simulations such situations could occur. It is very probable that it will occur in a model with only

a few states, as is the model which will be introduced in the next chapter.

As a result, practical implementations either use distance alone as stimulus [51], or they use it to

provide some bounds for the velocity-based reactions [16, 177].

2.3.2 Psycho-physiological spacing models

Another approach to car following is based on psychological and physiological observations. Wiede-

mann [98, 177], before describing a microscopic car-following simulation model, reviews these aspects:

A starting point is that the angular resolution of the human eye is limited. Even when a human can

detect another car as coming closer, it can estimate its velocity only when the car becomes noticeably

bigger in the �eld of vision|i.e. when the angle between left and right parts of the car increases. By

using geometric arguments, one quickly sees that this observability threshold is proportional to the

speed di�erence, and inversely proportional to the square of the distance:

threshold /

�v

�x

2

:

Note that this is similar to the mathematical car following model (��) with l = 2 and m = 0.

Another element of psycho-physiological car following models is that the reactions are, as a �rst

approximation, step functions instead of smooth ones. Thus, after crossing the threshold, slowing

down or braking is adjusted with the goal to reach the speed of the car in front together with a certain
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desired spacing. Measurements, consistent with the physiological argument, indicate that the reaction

threshold is largely independent of one's velocity. Thus, sometimes immediate emergency braking may

be necessary.

Furthermore, the human's braking reaction usually is not very precise, so that further control action

is necessary, leading to a highly stochastic element in car following.

Similar observations are true if the distance to the car in front increases, except that reactions are

slower. This can be explained in part again physiologically, and in part by the weaker motivation to

react (less dangerous).

More precise results here should be possible using results from ecological psychology. Ecological

psychology is concerned with �nding general principles as to how organisms, including humans, interact

with their environment. Visual perception links the perceiver with his/her environment via an optic


ow �eld, which provides the action relevant visual information. The goal is to �nd low-dimensional

quantities that capture this information as is provided in the 
ow �eld.

In the context of car following, the concept of \time to contact" is relevant. Time to contact and its

derivative has proven to be a comprehensive descriptor for informing the perceiver about the necessary

movement behavior given a goal. This goal could be, for example, to arrive smoothly at a desired car

following position [82, 95].

2.4 Simulation and the role of microscopic high speed models

Naively, simulation seems a perfect tool: One simply formulates every aspect of the system as pro-

gramming code, and then runs the code (i.e. the model) on a computer. When initial conditions and

the system dynamics are only realistic enough, this should lead to a good prediction.

There are, though, severe limitations: Simulations are resource-limited; and nonlinearities make pre-

dictions even more resource-demanding. The second aspect will be discussed further down; the �rst

leads to a trade-o� between resolution, �delity, system size, simulation speed, and resources [11]:

� Resolution: The level of detail of a model. All processes of the system which lead, by upward

causation, to the emergence of the phenomena of interest, may be important.

� Fidelity: The degree of realism in modeling each process.

� System size: The system size which can is covered by the simulation.

� Simulation speed: The speed of the simulation, often compared to real time.

� Resources: Often computational resources, but also limitations of the time one wants to spend

on the programming.

This trade-o� has to be balanced in conjunction with the problem and the question under consideration.

With respect to resolution, one often distinguishes between macroscopic and microscopic models. In

tra�c science, macroscopic means that one averages over vehicles, whereas microscopic means that at

least vehicles are resolved individually.

Another classi�cation of models is according to their intended use: models for, e.g., signalized inter-

sections, arterial networks, freeway corridors, or rural highways. In the context of this work, models

for arterial networks and models for freeway corridors are more important than the others.

For reviews of tra�c simulation models see, e.g., [47, 108, 170].
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2.4.1 Macroscopic models

For practical network control problems, only macroscopic models are in use, e.g. FREQ, CORQ,

NETFLO, or CONTRAM [108, 146, 170]. For CONTRAM and its tra�c assignment algorithm,

parallelization attempts are reported [50, 65]. TRANSYT [174] is mostly used for signal optimization.

In the area of freeway simulation, models often are based on discretizations of 
uid-dynamical equations

(MACK, FREFLO, FRECON [170, 146], cell-transmission-model [31, 133], [26, 29]). It has been

claimed [32] that many of these approximations have not been done systematically, i.e. that the

hydrodynamic limit of the �nite di�erence equations would not be consistent with the 
uid-dynamical

equations. However, it should be kept in mind that this does not necessarily matter because the


uid-dynamical equations themselves are not exact for tra�c 
ow.

2.4.2 Microscopic models

Is is quite obvious that certain questions can only be answered by a microscopic model. To understand

the relation between tra�c 
ow phenomena, such as jams, and individual vehicle characteristics (e.g.

driving behavior, cruise control, radar-based automatic car following), one has at least to resolve

the individual vehicles. Dynamic individual routing just does not make much sense when individual

vehicles are not present: For example, to react to incidents in an ATMS/ATT/IVHS environment,

destination information is necessary (cf. Fig. 2.2). Other microscopic questions are modal choice or

pollution (engine temperature!).

These questions quickly lead to 500 000 or more \intelligent objects" in the system and to the necessity

of corresponding computational power.

There are only few well-known simulation models which are at the same time microscopic and operating

on a network level. TRAFF-NETSIM [124] was developed for the Federal Highway Administration of

the USA more than 20 years ago and has been continuously updated and enhanced since that time.

The model is based on a stochastic, time-stepping simulation approach describing the dynamics of

tra�c operations in urban street networks, which consist of uni-directional links and nodes. A wide

variety of options and modules is available, including signal controllers, bus operations, measures of

e�ectiveness, or estimates of emission or fuel consumption.

However, for our needs, NETSIM is too slow, there exists no version which runs e�ciently on parallel

supercomputers, and it does not allow for trip plans: Vehicles at intersections are distributed according

to turn counts (cf. Fig. 2.2).

PARAMICS [181, 110] is a rather new approach, speci�cally designed for parallel computers (PARAM-

ICS = PARAllel MICroscopic tra�c Simulator). It is, so far, the only approach comparable to the

work presented here in its possible applications.

2.4.3 Frameworks

A severe shortcoming of all the models above is that they only deal with one part of the transportation

system: road tra�c. However, in recent times it became increasingly clear that future solutions will

need an integrated tra�c management, and modal split (i.e. the use of di�erent modes of transporta-

tion) will become a necessity. The TRANSIMS project [165] is a reaction to that. It is a framework

planned to include a wider spectrum of transportation activities than ever before, such as:

� Trip generation of individuals from demographic data
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Figure 2.2: Simple example demonstrating the need of microsimulation and travel plans for incident management. Top:

Undisturbed network. Bottom: One road is closed. In both networks, 100 cars are entering from the top, and at junctions

they are distributed according to turn-count percentages. From the undisturbed network one sees that 25 cars exit at

the right and 25 cars at the left (boxed values). With the closed road, the turn-counts simulation completely misses the

correct destination pattern: 50 cars exit to the left, and none to the right (boxed values).
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� Planning of trips, routing

� Execution of trips (microsimulation)

� Incident detection

� Meteorological module: air pollution

� Urban development

Current status is that a demo version shows the feasibility of the approach, and a large team of scientist

and engineers currently works on its realization. This thesis, in a collaboration between Cologne and

Los Alamos, is also part of the TRANSIMS project.

EUROTOPP [153] is a framework similar to TRANSIMS, but is does not have parallel supercomputing

plans so far.

PARAMICS, coming from the supercomputing side of tra�c microsimulation, is planning to extend

towards a framework similar to TRANSIMS.

2.4.4 Nonlinear Dynamics and Statistical Physics: A dynamic systems approach to transportation

So far, together with a general overview over freeway simulation models, it has been shown that

microscopic modelling is a necessity for many of the urgent questions. Another desire is the wish

for simulation speed. Besides for real time applications, where the simulation has to run many times

faster than reality, here another argument will be shown: The necessity of systematic analysis of

tra�c/transportation as a dynamic system.

Even with a perfect prediction machine, a complete tra�c 
ow forecast would not be possible. Nonlin-

ear Dynamics [152] tells us that tiny changes in the initial conditions can lead to completely changed

long-term behavior even in deterministic systems. The best-known example for this is the butter
y

e�ect (\A butter
y in Japan may in
uence tomorrow's weather in Europe.") [152].

But the situation is not completely lost. Short-term predictions are always possible, and depending on

the region in phase space, such a prediction will be better or worse. And in addition it will be possible

to identify \average" tra�c regimes and to predict their changes under changes of parameters: In the

context of the routing problem, one would like to know how di�erent algorithms perform, e.g., in light

vs. dense tra�c, and if one can generalize these results.

In addition, it will turn out that the optimization process itself a�ects the system dynamics, in a way

that optimization of average quantities (such as overall cost) will lead to high 
uctuations of individual

quantities: Although the overall connection between two given points may be faster as the result of

the optimization, unexpected breakdowns of the whole system may happen more often than before.

In short, the optimization procedure becomes part of the system dynamics and can no longer be seen

separately as in other optimization problems, such as job scheduling or tour planning [93].

Quite generally, it appears that simulation does not remove the old task of science: The search for

structure is as necessary as ever. Clearly, to deal with such questions, a dynamic systems approach

to systems such as transportation is necessary. Barrett and Rasmussen [12] describe steps towards

formalizing this search for structure; similar questions are currently discussed in the Arti�cial Life

(alife) research community [144].

One of the currently best concepts to characterize the phase space of a spatial stochastic system is

\damage spreading" [159] (see above). Investigations like this need a lot of averaging over many
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Monte Carlo runs. Since, in addition, things become worse near a critical point (\critical slowing

down": Large system sizes and long times are necessary to avoid �nite size e�ects [66]), models useful

for this kind of analysis have to run by orders of magnitude faster than traditional forecasting models.

2.4.5 Microscopic high speed models

In consequence, a tra�c simulation model with high resolution and high speed would be useful.

PARAMICS achieves this by plainly setting on parallel supercomputers together with a not too so-

phisticated car following dynamics. But according to the arguments above, ultimately one has to sac-

ri�ce �delity. The DYNEMO model [154] achieves simulation speed by moving the individual vehicles

according to a macroscopic 
ow, thus indeed reducing car-following �delity to achieve computational

speed.

Another approach is to reduce �delity directly on the car following level. Similarly to the lattice gases

in 
uid dynamics [160], space, time, and the possible states are discretized. The roadway is separated

into boxes, and each box is either occupied by exactly one vehicle, or it is empty. Movement of vehicles

is restrained to the boxes. Occupied boxes (i.e. vehicles) can have further properties, such as speed,

vehicle type, and so on. In each update step, all these properties have to be moved with the vehicle,

which costs computational resources.

Already an early paper on tra�c simulation [46] contains an idea which comes close to a lattice gas:

Vehicles are restricted to boxes, and the only di�erence to a lattice gas is that the boxes are not equally

spaced. Instead, spacing re
ects velocity at certain points of a network: Regions of short spacing allow

only small movements in each time-step and thus low velocity.

A modern version of the lattice gas method (including single bit coding) has been introduced for tra�c

simulation in 1986 [28]. Here, boxes are equally spaced, and vehicles move with di�erent velocities.

The model has been developed towards a complete simulation tool allowing di�erent vehicle types and

having di�erent modules for multi-lane freeways, two-lane highways with oncoming tra�c, and urban

tra�c [151]. The main problems of this model are:

� The employed bit-coding scheme does not vectorize. As a result, the model did not o�er itself for

large scale Monte-Carlo simulations on the hardware available at that time. But then, without

a large-scale speed advantage, bit-coding is too in
exible for modern tra�c science question.

� Vehicle movement is only from one site to the next. The model allowed for velocities up to

v

max

= 6, but this had to be achieved by 6 single site movements. In consequence, when the

model did not use bit-coding, it was relatively slow.

In recent time and started by the independent publication of [17] and of the �rst results of this

thesis work [120], CA models for tra�c are increasingly used, this time by Statistical Physicists,

partially for one-dimensional [9, 15, 92, 111, 116, 117, 147, 150, 167, 172] and partially for two-

dimensional [30, 112, 119, 118, 166] investigations (i.e. tra�c on a square grid). I will mention most

of the approaches again in the text.
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Chapter 3

A cellular automaton model for tra�c 
ow

In this chapter, a basic model for (single lane) tra�c 
ow is proposed, which is an adaption of the

lattice gas method to tra�c. Phenomenology and average behavior of the model are studied and

compared to reality. The in
uence of the two free parameters of the model is investigated, followed

by some observations concerning calibration.

3.1 This work

According to arguments given in the last chapter, for high simulation speed one ultimately has to

sacri�ce �delity, and one acceptedly useful way of doing this is to use the lattice gas methodology.

But how much �delity does one really need?

Due to the lack of \�rst principles" in tra�c science, only an empirical answer can be possible. From

all possible elements of driving dynamics, one has to select the most important ones.

This work is exactly about taking this idea to the extreme: Individual cars are preserved, but driving

behavior is simpli�ed as much as possible without losing the essentials of tra�c jam dynamics. And

the simpli�cation matches computer architecture considerations as much as possible.

The limits of simpli�cation are certain properties of vehicular tra�c which one wants to preserve, for

example spontaneous jam formation. It will come out that the model speci�ed in the next section is

\minimal" in the sense that every further simpli�cation leads to losing one of these essential properties.

This approach will turn out to indeed run fast enough to use averaging methods from Statistics /

Statistical Physics, for real time applications in large road networks, for algorithm development for

dynamical routing, or for long-term urban planning considerations.

Moreover, since a local and simultaneous update will be used, the model will formally be a cellular

automaton (CA) [180]. This will simplify further analysis: Many spatial methods of statistical physics

have been developed in connection with CA. Analytical treatment is possible (which is, though, labo-

rious, and at the edge of currently available methods, see later), and it allows computational research

for �nding the essentials of tra�c jam dynamics. This is especially useful for tra�c near maximum

throughput, which is the range which is most interesting for planning purposes but explained worst

by conventional methods.

Many models could be used to follow this route. However, I will, by testing state-of-the-art pro-

gramming techniques such as single-bit coding, argue that a more e�cient use of current computer
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architectures will be di�cult to achieve. And I will argue that tra�c has measurable \universal"

properties which will be reproduced by any microscopic model whatsoever, extensive or not.

3.2 The model

The basic computational model is de�ned on a one-dimensional array of L sites with open or periodic

boundary conditions. This could, for example, be an edge in a road network. Each site is either

occupied by one vehicle, or empty. Each vehicle has an integer velocity with values between zero

and v

max

. The number of empty sites in front of a vehicle is denoted by gap. For an arbitrary

con�guration, one update of the system consists of the following four consecutive steps, which are

performed simultaneously for all vehicles:

1

1.) Acceleration: If the velocity v of a vehicle is lower than v

max

and if there is enough room

ahead (v � gap� 1), then the speed is increased by one:

if (v � gap� 1) then v := max[v

max

; v + 1] .

2.) Slowing down (due to other cars): If the next vehicle ahead is too close (v � gap + 1),

speed is reduced to gap:

if (v � gap+ 1) then v := gap .

3.) Randomization (which is applied after rules 1 & 2): With probability p, the velocity of each

vehicle (if greater than zero) is decreased by one:

with probab. p do v := max[v � 1; 0] .

4.) Car motion: Each vehicle is advanced v sites.

Through the steps one to four very general properties of single lane tra�c are modelled on the basis

of integer valued probabilistic cellular automaton rules [160, 180]. Already this simple model shows

nontrivial and realistic behavior.

The Monte Carlo simulations have mainly been carried out with the choice of v

max

= 5 for reasons

stated below. It should be noted that the term maximum speed does not re
ect the physically possible

maximum speed of each car. It re
ects, however, a maximum speed as attained in reality, restricted,

for example, by speed limits or by preferences of the driver.

Step 3 is essential in simulating realistic tra�c 
ow since otherwise the dynamics is completely deter-

ministic. It condenses three di�erent behavioral patterns into one computational rule:

� Fluctuations at maximum speed: Assume a vehicle driving at maximum velocity v = v

max

and with gap � v (free driving). The velocity remains unchanged in rules 1 & 2; in rule 3, it

is, with probability p, reduced to v

max

� 1. In the next iteration, according to rule 1, the speed

v

max

� 1 is algorithmically reset to v

max

, before the randomization can again reduce it with

probability p. Thus, according to the algorithm, a free vehicle moves with frequency 1� p with

v = v

max

, and with v = v

max

� 1 otherwise.

1

Note that either rule 1 or rule 2 applies, but never both.
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This re
ects the fact that people even in light tra�c do not keep their speed perfectly constant,

for example due to distractions.

� Retarded acceleration: Assume a single vehicle with v = 0. Taking rules 1 & 3 together, the

vehicle accelerates to v = 1 with probability 1� p. The deterministic acceleration sequence

0! 1! 2! : : :! v

max

is thus replaced by a multitude of stochastic sequences, for example

0! 0! 0! 1! 2! 2! : : :! v

max

:

It seems realistic that people often wait longer than necessary when the car ahead already moves.

� Over-reactions at braking: When people suddenly see slow tra�c ahead, they tend to over-

compensate. In the rules, instead of reducing the speed exactly to gap, with frequency p they

reduce it further to gap� 1 (if � 0).

Without this randomness, every initial con�guration of vehicles and corresponding velocities reaches

very quickly a stationary pattern which is shifted backwards, i.e. opposite to the vehicle motion, one

site per time step (see Chapter 4).

In the framework of car-following models described in Chapter 2, the CA tra�c model is di�cult to

classify. It only uses spacing as a stimulus; the braking rule is similar to a model where the velocity

is proportional to the spacing, whereas the acceleration is constant as soon as there is enough room

ahead.

When judging the realism of the model beyond these general remarks, one should keep in mind that

this model is intended to be a minimal microscopic model. As already mentioned above, I will in

the end argue that the model goes beyond all of the current 
uid-dynamical theory of tra�c jam

dynamics, and that even for this, most of the exact microscopic properties do not matter. Only after

having identi�ed the important elements, it will certainly make sense to think about making them

more realistic (which will usually mean slower computational speed, though).

For that same reason, this text concentrates on single-lane models. Multi-lane results obtained by

other authors will be shortly mentioned in Chapter 12.

Certain choices of the model were originally done for computational reasons, especially for a bitwise

implementation:

� Making the model grid-based: (a) Theory for evaluating spatial dynamic systems are much better

developed for (few state) grid based models. (b) In view of a planned single-bit implementation,

there is no alternative.

� Velocity of the next car ahead is not taken into account: In a bitwise implementation, just

checking bit-�elds for the presence of a car is much easier to implement (and thus runs much

faster) than complicated calculations based on some number di�erent from 0 or 1.

� The choice of the randomization parameter of p = 1=2 and the fact that is is equal for accel-

eration, braking, and free driving, also re
ects the fact of an intended bitwise implementation:

A bitwise probability of 1=2 is fast to obtain|a randomly selected integer number has its bits

randomly occupied with probability 1=2. Other bitwise probabilities are more costly. Random

number generation typically consumes about 20% of the computer time for simulations of this

tra�c 
ow model.
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� Random sequential (cf. Section 2.2) versus simultaneous versus event driven update: Event

driven update means that each object keeps on doing the same until some stimulus exceeds a

certain threshold|for example that another car comes too close. The most realistic update

obviously is the event driven update; and random sequential update is claimed to be a better

approximation of it than parallel update because in reality it is more probable that the events

occur randomly than in some ordered fashion.

The exact consequences of the parallel choice for the tra�c model will be discussed much later.

Roughly, it turns out that for random sequential update to be realistic one would have to make

the time scales much shorter. For the CA tra�c model, it is certainly much more realistic to

assume that all cars move simultaneously. Another reason is computational: For both discrete

event simulation and random sequential update an e�cient geometric parallelization is hard to

achieve:

For discrete event simulations one needs some more or less optimistic scheduling schemes of

running ahead and rolling back [19, 45] to be e�cient on parallel machines, which is much

harder to implement.

For random sequential update the problem is that a global determination of the next (randomly

chosen) update site obviously is completely ine�cient. Localizing this procedure, though, leads

to the introduction of a new length scale (the system size between two computational nodes),

which might destroy critical properties. Or one would have to implement a scheduler similar to

the one for the discrete event simulation.

In an evaluation of the computational speed (Chapter 11), one �nds that the bitwise implementation

is not much faster on non-vectorizing parallel computers, which are currently the majority of installed

supercomputer hardware. Moreover, for a hybrid model together with a more realistic car following

logic, which is planned in the TRANSIMS project, the bitwise implementation is useless; the same is

already true for the trip plans implementation of Chapter 10. Both arguments together make the use

of a bitwise implementation of the model for the future improbable; some of the restrictions above

could therefore be relaxed in future work.

3.3 Model vs. reality

Modeling tra�c 
ow as particles which jump from one box to another seems like a quite crude ap-

proximation of reality. Can one expect realism from the simulation of such a model? As a �rst answer

to this question, I will make a phenomenological and a quantitative comparison to reality which will

show that the model reproduces some aspects of reality rather well. Theoretic arguments supporting

this claim will be given later in the text.

3.3.1 Trajectories of cars

A useful way to visualize tra�c and tra�c jams are space-time diagrams (Fig. 3.1). One can follow

the trajectory of each car from top left to bottom right; fast cars have trajectories close to horizontal,

slow cars have trajectories close to vertical. An exactly vertical trajectory means that the vehicle

does not move at all. In Fig. 3.1 one clearly sees a jam wave, recognizable by the vertical trajectories

denoting slow vehicles, and by the high density in that region (trajectories close together). Note that

the jam wave moves backwards, i.e. against the tra�c.
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Figure 3.1: Space-time-lines (trajectories) for cars from Aerial Photography (after [168]). Each line represents the

movement of one vehicle in the space-time-domain.

Figs. 3.2 and 3.3 show the corresponding plots from the cellular automaton. These plots are standard

for cellular automata outputs. Lines are con�gurations at consecutive time-steps, integer numbers

show velocities of cars just before movement. For tra�c 
ow, the plots are at the �rst view somewhat

unusual. Nonetheless, one can follow a car individually from left to right, and if one would connect

the positions of one car in space-time, one would get the same trajectories as in Fig. 3.1.

Figs. 3.2 and 3.3 show typical situations at low and high densities. Whereas we �nd laminar tra�c at

low densities, there are congestion clusters (small jams) at higher densities, which are formed randomly

due to velocity-
uctuations of the cars. If one follows (in Fig. 3.3) one individual car coming from the

left, one sees that the car comes in with a speed varying between four and �ve and then has to stop due

to the congestion cluster. There it stays stuck in the queue for a certain time with some small moves,

and can re-accelerate to full speed after having left the cluster at its end. So the cluster represents a

typical start-stop-wave as found in freeway tra�c, and compared to Fig. 3.1, it looks rather realistic.

Figs. 3.4 and 3.5 show larger portions of the system. Vehicles are reduced to dots, i.e. the plot just

shows the space-time-position of each vehicle during the evolution.
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Figure 3.2: Simulated tra�c at a (low) density of 0.03 cars per site. Each new line shows the tra�c lane after one further

complete velocity-update and just before the car motion. Empty sites are represented by a dot, sites which are occupied

by a car are represented by the integer number of its velocity. At low densities, we see undisturbed motion.
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Figure 3.3: Same picture as Figure 1, but at a higher density of 0.1 cars per site. Note the backward motion of the tra�c

jam.

3.3.2 Fundamental diagrams

For the next reality check, more aggregated quantities are used. We start with systems with periodic

boundary conditions (thus simulating tra�c in a closed loop as in car races but only on a single lane).
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tim
e

road(space)

Figure 3.4: Evolution of the model from random initial conditions. Each black pixel represents a vehicle. Space direction

is horizontal, time is pointing downwards, vehicles move to the right. The simulation was of a system of size L = 10000

with density � � �(q

max

) � 0:08; the �gure shows the �rst 1000 iterations in a window of l = 1000.

As the total number N of cars in the loop cannot change during the dynamics, it is possible to de�ne

a constant system density

h � i

L

=

N

L

=

number of cars in the loop

number of sites of the loop

:
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Figure 3.5: Evolution of the model from random initial conditions. Each black pixel represents a vehicle. Space direction

is horizontal, time is pointing downwards, vehicles move to the right. The simulation was of a system of size L = 10000

with density � � �(q

max

) � 0:08; the �gure shows the �rst 1000 iterations in a window of l = 1000.

Other system-averaged quantities are the \travel velocity" h v

trav

i

N

and the 
ow h q i

L

:

h v

trav

i

N

=

1

N

N

X

i=1

v

i

; h q i

L

=

1

L

N

X

i=1

v

i

;
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where v

i

is the velocity of the ith car and the sum runs over all cars. v

trav

is in the average identical

to the velocity each driver measures for himself when traveling, therefore the name.

For practical reasons, tra�c engineers prefer quantities which can be measured at a �xed position.

Thus, in order to mimic real conditions, we measure

2

densities (= occupancies) h � i

T

on a �xed site i

averaged over a time period T :

h � i

T

=

1

T

t

0

+T

X

t=t

0

+1

�

i

(t) ;

where �

i

(t) = 0 (1) if site i is empty (occupied) at time step t.

The time-averaged 
ow h q i

T

between sites i and i+ 1 is de�ned by

h q i

T

=

1

T

t

0

+T

X

t=t

0

+1

�

i;i+1

(t)

where �

i;i+1

(t) = 1 if a car motion is detected crossing the boundary between sites i and i+ 1.

For large T , large L, and periodic boundaries one has h � i

T

= h � i

L

and h q i

T

= h q i

L

.

The local velocity is de�ned as

h v

loc

i

T

:=

1

n(T )

n(T )

X

j=1

v

j

where n(T ) is the number of vehicles which cross the boundary i! i+ 1 during the time interval T ,

and v

j

are the vehicles' velocities. It should be noted that v

trav

generally is lower than v

loc

due to

di�erences in the statistical sampling. For example, vehicles of velocity v = 0 are included for v

trav

but excluded for v

loc

(see, e.g., [183]).

With these de�nitions, it is easy to perform many simulations with di�erent vehicle densities, thus|

after relaxation to equilibrium|getting data for the commonly used fundamental diagrams 
ow h q i

T

vs. density h � i

T

, or h v

loc

i

T

vs. h � i

T

, etc.

Fig. 3.6 was obtained starting with a random initial con�guration of cars with density � and velocity 0

and beginning the collection of data after the �rst t

0

time steps, typically t

0

= 10

4

. Whereas the broken

line indicates the results of averaging over 10

6

time steps, the scattered points represent averages over

only 10

2

time steps. The latter should be compared to data from real tra�c (Fig. 3.7). For low

densities, 
ow increases linearly with density, re
ecting the fact that in this regime adding vehicles

does not decrease the velocity and thus just adds to the 
ow: q

low:density

= � v

max

.

3

High densities

are similarly easy to explain: Many cars have few holes between them. When a car moves forward,

the hole e�ectively moves backwards. In that sense, 
ow is due the movement of the holes between

jammed cars.

In between, no easy explanation is available. For the long-time averages the maximum 
ow q

max

=

0:318� 0:0005 is found at the density � = 0:085� 0:004.

Further simulations show that the position and the form of the maximum of q(�) depend on the system

size (Fig. 3.6, see [92] for a more detailed analysis). Simulations without randomization, i.e. p = 0, do

not show a dependence on the system size.

2

I use the term \measurement" both for reality and simulation, somewhat similar to a \measurement operator" in

quantum mechanics or in statistical physics which extracts averaged information from a microscopic system. When it is

not clear from the context, I will try to specify if I am referring to reality or to a simulation. E.g., \tra�c measurement"

refers to measurements of real tra�c.

3

This relation is no longer linear in � as soon as one includes passing as well as vehicles of di�erent speed [141].
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Figure 3.6: Fundamental diagram of the model (throughput versus density). Points: Averages over short times (100 it-

erations) in a su�ciently large system (L = 10; 000). Broken line: Long time averages (10

6

iterations) in a large system

(L = 10; 000). Dotted line: Long time averages in a small system (L = 100).

3.3.3 Fluctuations

The variance of v

loc

is de�ned as

�(v

loc

) =

s

1

N

X

i

v

2

i

� (v

loc

)

2

:

This quantity may be used for detecting instabilities in the tra�c 
ow and has in fact been used in

Germany to install adaptive speed limits [183]. Fig. 3.8 shows that also in the model �(v

loc

) drastically

increases near maximum 
ow.

3.4 Varying the parameters of the model

In order to get an overview of the in
uence of the model's two parameters v

max

(the maximum integer

speed) and p (the amount of 
uctuation included by the pseudo-random numbers), simulations with

di�erent values of these parameters were performed. A relatively large closed system (L = 10

6

sites)

was used, where it was known from previous tests that this is large enough to prevent visible �nite

size e�ects for the measured quantities. Starting from an initial random distribution of vehicles, the

system run for 10

4

time-steps in order to let the transients die out. Then, every 10

3

iterations one

measurement step was inserted, and the average of 100 such measurements gives one data point. Each
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Figure 3.7: Fundamental diagram as found in reality from �ve-minute averages. Data from a Canadian expressway [56].
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Figure 3.8: Variance of the local velocity.
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Figure 3.9: Di�erent fundamental diagrams obtained by variations of the two principal parameters of the model p and

v

max

(the latter denoted as V in the legends).

curve for a given pair of parameters (v

max

; p) contains about 100 such data points, which corresponds

to about 6 hours on the NEC or 12 hours on the Parsytec (see Chapter 11 for computational details).

The results are summarized in Figs. 3.9, 3.10, and 3.11, where the three standard fundamental diagrams

are given for the model for v

max

= 1; :::; 5 (all with p = 0:5) and for p = 0:25 and v

max

= 5. Clearly,

the model may be adapted, by only varying these two parameters, to a wide range of circumstances

(e.g., the in
uence of bad weather, slopes, : : :) [63].

3.5 Quantitative comparison with realistic tra�c

In this section, some rough arguments concerning the length scale and time scale of the simulation

model are made. The easiest approach to calibrate the model is the claim that in a dense jam each

car occupies about 7:5m of space, which is thus the length of one site, in agreement with [151]. Since

the average velocity in free tra�c of 4:5 sites per time step should correspond to a velocity of about

120 km/h (in Germany), one arrives naturally at a time for one iteration of

7:5

m

site

� 4:5

sites

time-step

=(120=3:6)

s

m

� (1 second per time-step) which again agrees with [151].

A second possibility is to scale the model by the position of the maximum in the fundamental diagram.

From tra�c measurements, this maximum is found at about � ' (30 vehicles per lane and kilometer)

= (0:225 vehicles=7:5 m), which is by a factor of about 2 higher than the position of the maximum

in the scatter-plot for our model. However, this changes when two-lane tra�c with slower vehicles is

simulated [141].
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Figure 3.10: Travel velocity v

trav

as a function of the density. The model very well describes the nearly constant regime

for � < �(q

max

) and the strong decrease of the velocity near maximum 
ow.

Similarly, freeways have a maximum capacity of about (2000 vehicles per hour and lane) = (0:56 ve-

hicles per second). As our maximum of the 
ow is only 0.32 vehicles per time step, our model time

step should correspond to 0:32=0:56� 0:5 seconds, thus being by a factor of two lower from the value

presented above. However, the de�nition of \maximum 
ow" is somewhat unclear. One would think

that averaging the reality measurements in Fig. 3.7 in the same way as the simulations would also

lead to a much lower 
ow than 2000 veh/h. In other words: In the simulation, we have an obvious

de�nition for an average maximum 
ow. It seems however that this de�nition is not consistent with

the more heuristic de�nition of tra�c practitioners.

A fourth possibility for a calibration uses the value of the velocity of the back-travelling start-stop-

waves, where a value of about 15 km=h � 4:2m=s has been measured on freeways. As the maximum

capacity of our simulated system is about 0.3 cars per time step, the maximum speed of the back-

propagating wave, assuming � = 1 inside jams, is 0.3 sites (� 2:25 m) per time step (i.e., about every

third time step a new car arrives at the back of the tra�c jam). This would �x one model time step

at 2:25=4:2 � 0:7 seconds, thus yielding a value between those of the �rst and of the third method.

However, due to the inexact braking, the density inside jams is smaller than one, thus yielding a higher

speed of the backpropagating wave in the model.

In any case, all estimates agree in order of magnitude: One iteration roughly correspond to one

second, and one box roughly corresponds to 7.5 m. Since calibration of fundamental diagrams is, as

mentioned, di�erent for multi-lane simulations [141], and since the more theoretical results do not

depend on the calibration, no further e�ort for calibration will be done in this work. Calibration for

practical applications is the topic of future research.
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Figure 3.11: Relation between travel velocity v

trav

and throughput q.

One should note that, contrarily to intuition, the parameters for a discrete tra�c 
ow model are rather

�xed once one accepts \one car per lattice site in a jam". The parameters used for the simulations

seem relatively reasonable.
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Chapter 4

The deterministic limit p! 0

As a �rst step to understand the model introduced in the last chapter, one can start with its deter-

ministic limit, i.e. p ! 0, which simply amounts to taking the randomization rule out of the velocity

update. It will turn out that this limit already contains many of the properties of the complete CA

model, albeit in a deterministic way. This is not realistic, but easy to work with. Most tra�c models

used in the Statistical Physics literature so far do not go beyond this model [15, 17, 116, 172, 182],

although it is often used in two dimensions [17, 30, 112, 118, 119, 166].

Further results with the deterministic model, for example on di�erent update schemes, and more

details of the following can be found in [121].

4.1 Fundamental diagram and phenomenological behavior

The fundamental diagram for the deterministic limit simply consists of two straight lines (Fig. 4.1),

which intersect at �

c;det

= �(q

max

) = 1=6 and q

c;det

= q

max;det

= 5=6. They will be explained further

down. The intersection point divides two phenomenological regimes: light tra�c (� < �

c;det

) and

dense tra�c (� > �

c;det

). A typical situation for light tra�c is shown in Fig. 4.2. After starting from

a random initial condition, the tra�c relaxes to a steady state, where the whole pattern just moves

v

max

= 5 positions to the right in each iteration. Cars clearly have a tendency of keeping a gap of

� v

max

= 5 between each other. As a result, the current q in this regime is

q

<

= � � v

max

:

The velocity of the kinematic waves in this regime is c

<

= q

0

<

= v

max

. This means that disturbances,

such as holes, just move with the tra�c, as can also be seen in Fig. 4.2.

Dense tra�c is di�erent (Fig. 4.3). Again starting from a random initial con�guration, the simulation

relaxes to a steady state where the whole pattern moves one position to the left in each iteration.

Note that cars still move to the right; if one follows the trajectory of one individual vehicle, for

this car regions of relatively free movement are alternating with regions of high density and slow

speed. Although in a too static way, this captures some of the features of start-stop-tra�c. The

average speed in the steady state equals the number of empty sites divided by the number of particles:

h v i

L

= (L�N)=N ; the current is q

>

= � � h v i

L

, or, with � = N=L,

q

>

= 1� � :
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Figure 4.1: Flow-density relation for the deterministic limit.
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Figure 4.2: Evolution of the deterministic model from random initial conditions for low density (� < �(q

max

)). Note the

quick relaxation towards a steady state.

This straight line intersects with the one from light tra�c at �

c;det

= 1=(1 + v

max

), which is therefore

the density corresponding to maximum throughput.

The velocity of the kinematic waves in the dense regime is q

0

>

= �1, which corresponds to the

backwards moving pattern in Fig. 4.3.
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Figure 4.3: Evolution of the deterministic model from random initial conditions for high density (� > �(q

max

)). Note the

quick relaxation towards a steady state, which, though, looks di�erent than for light tra�c (Fig. 4.2). The disturbance

changes the wave where it happens, and causes a hole moving downstream which is absorbed by the next wave.

4.2 Damage times

In order to estimate the duration of a disturbance, a \damage time" �

d

[159] was measured in the

simulation model. To do so, after reaching the steady state, the velocity of one randomly chosen

particle is reduced by the smallest possible amount (i.e. by one); the damage time �

d

then is the time

the system needs to reach again a new steady state. As explained, the steady state is reached when the

entire con�guration of the system at time t+ 1 either is a right (v

max

positions) or a left (1 position)

shift of the con�guration at time t.

Numerical results for �

d

as a function of the density � = N=L are given in Fig. 4.4. At the density

�

c;det

= 1=6 the damage time �

d

shows a remarkable peak which grows with system size; �nite size

scaling analysis con�rms that it diverges as

�

d

(�

c

) / L :

The phenomenological reason for the divergence at �

c

= 1=6 for the parallel update is as follows. At

�rst, note that each disturbance can produce both a \hole", which moves with v

max

, and a \front",

which moves backwards as a kinematic wave.

� At low densities, the front travels upstream and is absorbed by a gap; the relevant length scale

obviously depends on � and not on L. The \hole" will survive forever, thus having no in
uence

on stationarity.

� For high densities (compare Fig. 4.3), the situation is inverse: The new front survives forever,

whereas the hole is absorbed by the next wave. The length scale for the wave similarly depends

on �.

� In between the high and the low density regimes, a transition takes place; and the critical

point is a state where particles move with maximum velocity v

max

= 5 and minimum gap
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Figure 4.4: Relaxation times after disturbing for tra�c in a closed system using the deterministic model, for di�erent

densities and di�erent system sizes L. Note that the system size is only relevant for densites near �(q

max

) = 1=6.

gap

min

= v

max

= 5 (and therefore �

c

= 1=(gap

min

+ 1) = 1=6). If one introduces a disturbance

into this \critical" state, front and hole move in opposite direction until they meet again (periodic

boundary conditions!); hence the L-dependance of �

d

at �

c

.

At the same time, �

c

is the density which corresponds to maximum particle throughput.

4.3 Self-organization of the critical state

If one assumes a very dense jam as in Fig. 4.5, then the out
ow from this jam assumes exactly the

critical con�guration of particles moving at maximum speed 5 and with gap = 5. This is no longer

true for an open boundary which is �xed in space (Fig. 4.6); but it can be restored, e.g., by forcing

a higher acceleration for the �rst particle (Fig. 4.7). In this last case, a disturbance (as in Fig. 4.7)

causes a front which travels with constant speed to the left boundary, whereas the hole travels with

constant speed to the right boundary. Conceptually, this case of self-organized criticality therefore

belongs to Bak, Tank, and Wiesenfeld's one-dimensional sandpile model [8], with the di�erence that

our model selects a state of non-trivial density (i.e. �

c

6= 0).

With respect to reality, this means that the out
ow of the tra�c jam adjusts itself exactly at the

critical density and therefore at maximum capacity, and due to the criticality, new disturbances have

long-ranged e�ects through density waves traveling with constant speed. This is no longer true for a

bottleneck situation (e.g. a two-lane directional road merging into only one lane): The open boundary

described in Fig. 4.6 leads to lower density and throughput, and the same is true similarly for the full

CA model (see later) and for reality.
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0000000000000000000000001.2..3...4....5.....5.....5.....5.....5.....5.

000000000000000000000001.2..3...4....5.....5.....5.....5.....5.....5..

00000000000000000000001.2..3...4....5.....5.....5.....5.....5.....5...

0000000000000000000001.2..3...4....5.....5.....5.....5.....5.....5....

000000000000000000001.2..3...4....5.....5.....5.....5.....5.....5.....

00000000000000000001.2..3...4....5.....5.....5.....5.....5.....5.....5

0000000000000000001.2..3...4....5.....5.....5.....5.....5.....5.....5.

Figure 4.5: Deterministic out
ow from a tra�c jam.

02....4........5.........5.........5.........5.........5.........5....

1..3......5.........5.........5.........5.........5.........5.........

02....4........5.........5.........5.........5.........5.........5....

1..3......5.........5.........5.........5.........5.........5.........

02....4........5.........5.........5.........5.........5.........5....

1..3......5.........5.........5.........5.........5.........5.........

02....4........5.........5.........5.........5.........5.........5....

1..3......5.........5.........5.........5.........5.........5.........

02....4........5.........5.........5.........5.........5.........5....

Figure 4.6: Acceleration from a dense situation (open system). Particles are inserted with maximum speed at the

left boundary whenever there is space, but due to the other particles ahead they are immediately slowed down. In

consequence, the system is not able to reach its maximum throughput.

4.4 Summary

Already a deterministic CA model for tra�c, which is a subcase of the full model, shows some features

which are realistic for tra�c. Light tra�c is characterized by holes moving with the tra�c; dense

tra�c is characterized by kinematic jam waves moving backwards against the tra�c. The regimes

are separated by a relatively obvious phase transition, showing diverging relaxation times after dis-

turbances.

This transition point gets additional importance because it is automatically selected as output from a

jam.

As will be shown in the next chapters, this model already captures some of the features of tra�c

jam dynamics. It has, though, the property that out
ow tra�c is maximally dense, in the sense that

at any higher density, cars could no longer move at maximum speed. Yet, out
ow tra�c which is

not \maximally" dense is the additional necessary ingredient for tra�c jams becoming the singular

clusters which they are in tra�c measurements (Fig. 3.1).
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05.....5.....5.....5.....5.....5.....5.....5.....5.....5.....5.....5..

5.....5.....5.....5.....5.....5.....5.....5.....5.....5.....5.....5...

4....5.....5.....5.....5.....5.....5.....5.....5.....5.....5.....5....

3...5.....5.....5.....5.....5.....5.....5.....5.....5.....5.....5.....

x (disturbance)

2..5.....4.....5.....5.....5.....5.....5.....5.....5.....5.....5.....5

1.5.....4....5......5.....5.....5.....5.....5.....5.....5.....5.....5.

05.....4....5.....5......5.....5.....5.....5.....5.....5.....5.....5..

5.....4....5.....5.....5......5.....5.....5.....5.....5.....5.....5...

4....4....5.....5.....5.....5......5.....5.....5.....5.....5.....5....

3...4....5.....5.....5.....5.....5......5.....5.....5.....5.....5.....

Figure 4.7: Acceleration from a dense situation (open system) with a forced acceleration of the leftmost particle. This

means that at this position, a particle instantly can accelerate from zero to, e.g., the maximum speed �ve (see, e.g., from

the �rst to the second line).
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Chapter 5

Cruise control limit and self-organized

criticality

Already in Chapter 3 it became clear that start-stop-waves play an important role, as well in the

model behavior as in reality. Chapter 4 then established that dense tra�c can be distinguished from

light tra�c by the direction of the wave speed, and that the transition point between the regimes is

the point of maximum 
ow.

This chapter now continues to work out the relation between the waves and the 
ow maximum. It

actually starts with observations of the full model of Chapter 3, but then moves to a \cruise control

limit", where the picture is clearer. Nevertheless, this cruise control limit correctly captures the main

features of the dynamics of the full model. The exact relation between the cruise control limit and

the full model will then be described in Chapters 6 & 7.

5.1 Density waves

Contrary to the deterministic model of the last chapter, the original model reaches its much lower

maximum throughput q

max

= 0:318� 0:001 already at a density of �(q

max

) = 0:086� 0:002 (Fig. 3.6).

What is the deeper reason behind this capacity limitation?

As a �rst step, one can look at space-time-plots of systems slightly below and above the threshold

density �(q

max

) (�rst row of Fig. 5.1). As before, in these pictures horizontal lines are con�gurations

at consecutive time steps, time evolving downwards. Black pixels stand for occupied sites. Vehicles are

moving from left to right, and by following the pixels, one can discern the trajectories of the vehicles.

These pictures show marked shock waves, and they occur more often for the higher density. The waves

form at arbitrary times and positions due to a \bad" superposition of the disturbances caused by the

random element in the velocity update. They are clearly visible as clusters of cars of low velocity,

with more interior structure inside the clusters. Once such a disturbance has formed, it is maintained

as long as there are more vehicles arriving at the end of the queue than vehicles leaving the queue at

its head. These disturbances appear already well below the regime of maximum tra�c 
ow, but they

are rare. They start to dominate the system's appearance at densities above the regime of maximum


ow. This leads to the idea that the regime of maximum tra�c 
ow might be reached when there are,

for the �rst time, waves with a \very long" lifetime, similar to a percolation transition [163]. See also

Ref. [167] for a similar analysis of a deterministic model.
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Figure 5.1: (Previous page) Plots of simulated single lane freeway tra�c in the space-time-domain with resolutions

(a) 1:1, (b) 1:4, (c) 1:16. Left column: Density � = 0:07, slightly below the regime of maximum 
ow. Right column:

Density � = 0:1, slightly above the regime of maximum 
ow. Each black pixel corresponds to a site occupied by a vehicle

at a certain place (x-direction) and at a certain time (y-direction). A trajectory of an undisturbed vehicle goes therefore

diagonally downwards and to the right. The pictures of the �rst row cover 500 sites and 500 time steps. The pictures of

each row are contained (as indicated by the boxes) in the pictures of the row underneath.

To get a better overview, the second and third row of Fig. 5.1 show the same system at lower resolutions

obtained by averaging, therefore showing a larger part of the system and more time steps. A striking

feature of these pictures is that they look in some way self-similar [41, 106], i.e., large jams are

composed of many smaller ones which look like large ones at a higher resolution. This supports the

idea of a critical transition at maximum 
ow.

5.2 The cruise control limit

To analyse these jam-clusters, it is extremely helpful to construct a system where at most one such

cluster exists. This is achieved by taking the \cruise control limit" of the model: Fluctuations at free

driving are set to zero. The resulting model reads as follows: For every con�guration of the model,

one iteration consists of the following steps, which are each performed simultaneously for all vehicles

(the quantity gap again equals the number of empty sites in front of a vehicle):

� A vehicle is stationary when it travels at maximum velocity v

max

and has free headway (gap �

v

max

). Such a vehicle just maintains its velocity.

� If a vehicle is not stationary, it is jammed. The following two rules are applied to jammed

vehicles:

{ Acceleration of free vehicles: If a vehicle has gap � v + 1, then: With probability 1=2,

it accelerates to v + 1, otherwise it keeps the velocity v.

{ Slowing down due to other cars: Each vehicle with gap � v slows down to gap: v :=

gap. With probability 1/2, it over-reacts and slows down even further: v := max[gap�1; 0].

� Movement: Each vehicle advances v sites.

For clarity, a formal version of the velocity update is given in the appendix.

While in the original model (Chapter 3), vehicles at v

max

slow down randomly with probability

p

free

= p, here only the jammed vehicles move nondeterministically. This corresponds to the p

free

! 0

limit, or the \cruise control limit", of the original model and completely separates the time scales for

driving (i.e. perturbing) the system and the system's response.

The fundamental diagram, or current-density relation, q(�), was determined numerically as shown

in Fig. 5.2 for a closed system of size L = 30 000. Starting with a random initial condition with

N cars (i.e. � = N=L) and after discarding a transient period of 5 � 10

5

iterations, we measured

h q i

L

(t) =

P

N

i=1

v=L every 2500 time-steps up to the 3 � 10

6

th iteration. Each data point corresponds

to the average over current measurements for a single initial condition, with the following exception:

When a run becomes stationary (i.e. no more jammed cars in the sense of the de�nition above), then

the future behavior is predictable. In this case, the run is stopped, and the current will be equal to

q

det

= v

max

� �, see below.
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Figure 5.2: The fundamental diagram, q(�), for v

max

= 5. The dotted line is valid for deterministic tra�c, i.e. when the

initial state is prepared such that for each car gap > v

max

and v = v

max

. The points are measurement results starting

from random initial conditions; each point corresponds to one run of a closed system of length L = 30000 and an average

over 2:5 � 10

6

iterations. When a run relaxed to the deterministic state (no more jammed cars), it was stopped and the

deterministic current was taken as the result (points on the dotted line).

For a spatially in�nite system, the following results hold: For � < �

c

, jams present in the initial

con�guration are eventually sorted out and the stationary deterministic state is jam free with every

vehicle moving at maximum velocity. Thus in the lamellar regime the current is a linear function of

density with slope v

max

= 5. Lamellar behavior is observed up to a maximum current q

c

(�

c

). For

� > �

c

, and � < �

det;max

(de�ned below) the system is bistable. Starting from an initial con�guration

which has many jams, the jams in this case are never sorted out (in�nite system size). The steady state

is an inhomogeneous mixture of jam free regions and higher density jammed regions. Clearly, these

jammed regions decrease the average current in the system. It is possible, nevertheless, to prepare

initial con�gurations that have no jams. Since all motion is deterministic in this state, the steady

state will also have no jams and the current will still be a linear increasing function of � (the dotted

line in Fig. 5.2). This is possible up to densities of

�

det;max

=

1

v

max

+ 1

;

leading to a maximum current of

q

det;max

=

v

max

v

max

+ 1

:

This clearly is much higher than the current q

c

for random initial conditions. It is in this sense that

our system is bi-stable (cf. also [148, 167]). This e�ect allows us to produce out
ows with densities

above �

c

.

Above �

c

, the current-density relation can be derived by assuming that the system phase separates

into jammed regions separated by jam free gaps. The jam free gaps are the out
ow of a jam and thus
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have current q

c

(�

c

), as argued in the next section. Conservation of the number of cars and of volume

leads to N

f

+N

j

= N , L

f

+L

j

= L, N

j

=L

j

= 1=a, N

f

=L

f

= �

c

, where N

f

,L

f

, and �

c

are the number,

length, and density, respectively, in the free 
owing phase, and N

j

, L

j

, and 1=a are the corresponding

quantities in the jammed phase. After some algebra one obtains

q = q

c

�

(�� �

c

)(aq

c

� v

j

)

1� a�

c

;

where a is the average number of lattice sites per jammed vehicle, and v

j

is the average velocity

(< v

max

) of a jammed vehicle (see [10] for a similar calculation). Thus, the current-density relation is

linear both above and below the critical point, as demonstrated in Fig. 5.2.

The discontinuity in the current at the critical point, as seen in the �gure, is a �nite size e�ect due

to the fact that each point in the �gure represents a single initial con�guration. In a �nite system,

there is a �nite probability that even a system with supercritical density � > �

c

�nds the deterministic

state, and then has a current of q

det

> q

c

.

5.2.1 The out
ow from a jam occurs at maximum throughput

A striking feature of the model is that maximum throughput is selected automatically when the left

boundary condition is an in�nitely large jam and the right boundary is open. An intuitive explanation

is that maximum throughput cannot be any higher than the intrinsic 
ow rate out of a jam, because

then jams become stable in the long time limit and reduce the overall current. By de�nition, of course,

maximum throughput cannot be lower than this intrinsic 
ow rate.

In Fig. 5.3, the cars on the left 
ow out from a region of high density where they move with zero

velocity. This high density region is not plotted here; only the interface or front separating the high

density region and its deterministic out
ow is plotted. This is the branched structure on the left hand

side of the �gure. The vehicles 
owing out of the large jam ultimately relax to the deterministic state

when they have moved su�ciently far away from the jam.

This feature of maximum throughput selection is a general feature of driven di�usive systems [21, 34,

86]. However, in our case the left boundary condition is unusual: if the left boundary is �xed in space

as in [21, 34, 86], then the out
ow from a jam cannot reach maximum throughput (cf. bottleneck

situation in the last and in the next chapter).

5.2.2 Tra�c jams in the out
ow show self-organized criticality

The out
ow situation, as described above, produces deterministic 
ow asymptotically at large dis-

tances. This means that su�ciently far downstream from the large jam, the jam 
ow has sorted itself

out into deterministic 
ow. In the deterministic region, one car is randomly perturbed by reducing its

velocity to zero. Many di�erent choices for the local perturbation, however, give rise to the same large

scale behavior. The perturbed car eventually re-accelerates to maximum velocity. In the meantime,

though, a following car may have come too close to the disturbed car and has to slow down. This

initiates a chain reaction { the emergent tra�c jam.

Fig. 5.3 shows the �rst 1400 time steps of such an emergent jam (the right jam in the �gure). Qual-

itatively, the jam clearly shows a tendency to branch with complex internal structure and a fractal

appearance. The emergent tra�c jams drift backwards; so it is possible for a su�ciently long lived

emergent jam to eventually intersect with the out
ow jam interface that is itself becoming broader
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Figure 5.3: Out
ow from a dense region (left); this out
ow relaxes precisely to the critical density. In the out
ow region,

a jam is triggered by a small disturbance. Note the branching behavior of this jam. | \Deterministic" vehicles to the

right of the jam are not plotted.



5.3. Random walk arguments 53

with time. It is likely that the branching behavior of the emergent jams is the same as the branching

behavior of the original jam interface. In this work, however, we do not explicitly study the interface.

Contrary to the �gure, in the computer code, the interface region to the left and the jam to the right

are kept completely separate using methods described in the appendix.

A jam is sorted out when the number of jammed cars is zero. This de�nes the lifetime, t, of an emergent

tra�c jam. In order to obtain statistics for the distribution of tra�c jam lifetimes, P (t), for example,

the deterministic out
ow is then disturbed again. Other cluster statistics such as the spatial extent

w of the jam or overall space-time size s (mass) of the jam are obtained as well. These distributions

are analogous to similar distributions for other branching processes such as directed percolation [49],

branching annihilating random walks [76], or in nonequilibrium lattice models [75] although the precise

behaviors are di�erent.

Fig. 5.4 shows 1400 time steps in the middle of the life of a larger jam. Here, vehicles that are stationary

are no longer shown; the plot only shows the \particles", or jammed vehicles, that propagate the

disturbance.

For a quantitative treatment, we start by measuring the probability distribution of jams as a function

of their lifetime t. Fig. 5.5 shows that for t >� 100 this distribution follows a power law

P (t) � t

�(�+1)

with (� + 1) = 1:5� 0:01 ;

very close to � = 1=2. Figure 5.5 represents averaged results of more than 60 000 avalanches.

Here scaling is observed over almost four orders of magnitude as determined by our numerically

imposed cuto�: For this �gure, if jams survive longer than 10

6

time steps, they are removed from the

data base. It is very important to note that these emergent jams are precisely critical. Their power

law scaling persists up to any arbitrarily large numerically imposed cuto�. The lifetime distribution

is related to the survival probability P

surv

(t) by

P

surv

(t) =

Z

1

t

dt

0

P (t

0

) � t

��

for � > 0 :

We again emphasize that no external tuning is necessary to observe this scaling behavior. The out
ow

from the in�nite jam self-organizes to the critical state.

5.3 Random walk arguments

Paczuski [123] has developed a phenomenological theory for the branching waves. The arguments are

given in this and the next section.

It is, perhaps, surprising that such a seemingly complicated structure as shown in Fig. 5.3 is described

by such a simple apparent exponent. Numerically, the exponent � + 1 is conspicuously close to 3=2,

the �rst return time exponent for a one-dimensional random walk. In fact, for v

max

= 1 this random

walk picture is exact, as shown below.

Let us consider a single jam in a large system with v

max

= 1. The vehicles in the jam form a queue,

and all of these cars have velocity zero. When the vehicle at the front of the jam accelerates to

velocity one, it leaves the jam forever. The rate at which vehicles leave the jam is determined by the

probabilistic rule for acceleration. Vehicles, of course, can be added to the jam at the back end. These

vehicles come in at a rate which depends on the density and velocity of cars behind the jam. Given

the rules for deceleration, the spacing between the jammed cars is zero so that the number of cars in
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Figure 5.4: Space-time plot of a huge emergent jam. Only vehicles with v < v

max

, i.e. \jammed cars", are plotted.
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Figure 5.5: Lifetime distribution P (t) for emergent jams in the out
ow region; average over more than 65 000 clusters

(avalanches). The straight line has slope 3=2. Without external tuning, the lifetime distribution is precisely critical up

to the numerically imposed cut-o� at t = 10

6

.

the jam, n, is equal to the spatial extent of the jam, w. This contrasts with the branching behavior

for v

max

> 1. The probability distribution, P (n; t), for the number of cars in the jam n at time t is

determined by the following equation:

P (n; t+ 1) = (1� r

in

� r

out

)P (n; t) + r

in

P (n � 1; t) + r

out

P (n + 1; t) : (�) (5:1)

Here, the quantities r

in

and r

out

are phenomenological parameters that depend on the density behind

the jam and the rate at which cars leave a jam. They are independent of the number of cars in the

jam. For large n and t, one can take the continuum limit of Eqn. (�) and expand to lowest order

@P

@t

= (r

out

� r

in

)

@P

@n

+

r

out

+ r

in

2

@

2

P

@n

2

: (5:2)

When the density behind the jam is such that the rate of cars entering the jam is equal to the intrinsic

rate that cars leave the jam, then the �rst term on the right hand side vanishes. Then, the jam queue

is formally equivalent to an unbiased random walk in one dimension [42]. The �rst return time of the

walk then corresponds to the lifetime of a jam. This leads immediately to the result P (t) � t

�3=2

for

the lifetime distribution.

This argument shows that the out
ow from an in�nite jam is in fact self-organized critical. This

can be seen immediately by noting that the out
ow from a large jam occurs at the same rate as the

out
ow from an emergent jam created by a perturbation. This also shows that maximum throughput

corresponds to the percolative transition for the tra�c jams. Starting from random initial conditions

in a closed system, the current at long times is determined by the out
ow of the longest-lived jam in

the system.
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When r

in

= r

out

, one also �nds from Eqn. (�) that n � t

1=2

and the size of the jam s � nt � t

3=2

.

If the density in the deterministic state is below the critical density �

c

, then the jams will have a

characteristic lifetime, t

co

, size s

co

, number n

co

, etc. From Eqn. (�), t

co

� n

co

(r

out

� r

in

)

�1

. Assuming

that near the critical point r

out

� r

in

� �

c

� �, then using n

co

� t

1=2

co

leads to

t

co

� (�

c

� �)

�2

:

For � > �

c

, vehicles on average enter the jam at a faster rate than they leave. In this case, there is a

�nite probability to have an in�nite jam, P

1

, which vanishes as �! �

c

as

P

1

� (�� �

c

)

~

�

:

The steady-state density of jammed cars, �

j

= (�� �

c

)

1

, so that the order parameter exponent

~

� = 1.

From the random walk Eqn. (�), and in analogy with other branching processes such as directed

percolation [49], P

surv

follows a scaling form

P

surv

(t;�) � t

��

f(t�

�

t

) ;

near the critical point. Here � � j� � �

c

j and t

co

� �

��

t

. From this scaling relation,

~

� = ��

t

. For

v

max

= 1, � = 1=2, �

t

= 2, and

~

� = � = 1.

The number of jammed vehicles, �n, averaged over all jams, including those that die out, has the scaling

form

�n � t

�

g(t�

�

t

) :

The number of jammed vehicles averaged over surviving jams, scales with a di�erent exponent

n(t) = �n(t)=P (t) � t

�+�

:

The mapping to the random walk gives � = 0.

The cluster width, averaged over surviving clusters, scales as �w � t

1=z

, and the mapping to the random

walk gives z = 2. The average cluster size �s � t

�+�+1

; �s � t

3=2

in the random walk case.

In the numerical measurements, we averaged the quantities t = lifetime of the cluster, w = maximum

width of cluster during cluster life, n = maximum number of simultaneously jammed vehicles during

cluster life, s = total number of jammed vehicles during cluster life.

Our theoretical results should describe the emergent tra�c jams not only at v

max

= 1 but also for any

v

max

> 1 as long as the tra�c jam itself remains dense. If this is the case, then the dynamical evolution

is determined solely by the balance of incoming and outgoing vehicles as described by Eqn. (�). The

ratio �w=n should go to a �nite constant at large times if the theory is valid. If the emergent jams break

up into a fractal structure, and �w=n diverges, internal dynamics must also be included. Since the jams

displayed in Figs. 5.3 and 5.4 appears branched and at least qualitatively fractal, one might doubt

that such a simple theory could describe this behavior. Nevertheless, the close numerical agreement

of the lifetime distribution exponent for the SOC behavior suggests the possibility that the random

walk theory is a valid description of the branching jam waves.

5.4 A cascade equation for the branching jams

We now analyze the branching behavior of jams with v

max

> 1 in terms of a phenomological cascade

equation. A very large emergent jam, at a �xed point in time, consists of small dense regions of
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jammed cars, which we call subjams, separated by intervals, \holes", where all cars move at maximum

velocity. If the jam is dense, then the holes have a �nite average size. Otherwise, the jammed vehicles

comprise a fractal with dimension d

f

< 1. We will consider the subjams to have size one.

Holes between the subjams are created at small scales by the probabilistic rules for acceleration. Each

subjam can create small holes in front of it. We will ignore the details of the injection mechanism, and

assume that there is a steady rate at which small holes are created in the interior of a very long lived

jam. We also assume that the interior region of a long-lived jam reaches a steady state distribution of

hole sizes.

In order to determine the asymptotic scaling of the large holes in the interior of a long-lived jam,

it is necessary to isolate the dominant mechanism in the cascade process for hole generation. The

microscopic mechanism that connects holes at di�erent scales is the dissolution of one subjam. When

one subjam dissolves because the cars in it accelerate to maximum velocity, the two holes on either

side of it merge to form one larger hole. Holes at any large scale are created and destroyed by this

same process. In the steady state, the creation and destruction of large holes must balance. This leads

to a cascade equation for holes of size x:

X

u=x+1

< h(x)h(u� x) >=

x�2

X

x

0

=1

< h(x

0

)h(x� x

0

� 1) > : (��)

Here, the angular brackets denote an ensemble average over all holes in the jam, and the quantity

h(x)h(u � x) denotes a con�guration where a hole of size x follows a hole of size u � x. The right

hand side of this equation represents the rate at which holes of size x are created, and the left hand

side represents the rate at which holes of size x are destroyed.

Now, we make an additional ansatz; namely, for large x, < h(x

0

)h(x� x

0

� 1) >= G(x), independent

of x

0

to leading order. That is, to leading order the probability to have two adjacent holes, whose

sizes sum to x is independent of the size of either hole. G(x) then also scales the same as P

h

(x), the

probability to have a hole of size x. Thus Eqn. (��), to leading order can be written

xG(x) �

X

u=x

G(u) :

Di�erentiating leads to

x

@G(x)

@x

= �2G(x) ; G(x) �

1

x

2

:

Thus the distribution of hole sizes decays as

P

h

(x) � x

��

h

; with�

h

= 2 :

It is interesting to note that the cascade equation (��) is identical to the dominant mechanism in the

exact cascade equation for forests in the one-dimensional forest �re model [128]. In addition, the result

�

h

= 2 equals the distribution exponent for the forests, which has been obtained exactly [35, 128].

The exponent �

h

is related to the fractal dimension d

f

of jammed vehicles by

�

h

= 1 + d

f

;

as long as �

h

� 2 [107]. Thus, �

h

< 2 implies that the equal time cut of the jam clusters is fractal,

otherwise not. The point �

h

= 2 is the boundary between fractal and dense behavior. At this special

point, the random walk theory can still be expected to apply, although with logarithmic corrections.
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The width of an emergent jam, at a given point in time, w(t), can be expressed as

w(t) =

n(t)

w

j

�

w

j

+

Z

dx xP

h

(x; t)

�

:

Here, w

j

is the average width of a subjam, it is O(1). The quantity P

h

(x; t) is the probability

distribution to have a hole of size x in a jam that has survived to time t. It is natural to assume that

this distribution corresponds to P

h

(x) up to a cuto� which grows with t. Inserting the expression for

P

h

(x) gives

w(t) � n(t)

 

1 +

Z

x

�

h

1

dx x

1��

h

!

;

where the upper bound x

�

h

represents a time-dependent cuto�. Using �

h

= 2, n � t

�+�

, and assuming

x

�

h

� t

c

gives

w(t) � t

�+�

(1 + c log t) for �

h

= 2 :

In other words, if �

h

= 2, as the above arguments suggest, spatial quantities such as w(t) will exhibit

logarithmic corrections to the random walk results. In the following section, we test these theoretical

predictions with further numerical studies.

5.5 Simulation results

In this section, we present the rest of our numerical results. Unless otherwise noted, these results were

obtained for systems with v

max

= 5.

5.5.1 At the self-organized critical point

We study the critical properties of the out
ow of a large jam by driving it with slow random pertur-

bations as described in Sec. II. Numerically, we �nd (Fig. 5.6)

n(t) � hn i

surv

(t) � t

�+�

� + � = 0:5� 0:1

and (Fig. 5.7)

s(t) � n(t)t � t

1+�+�

1 + � + � = 1:5� 0:1

in agreement with the random walk predictions. However, the simulations do not converge to power

law scaling before t ' 3 � 10

4

, and since the simulation is cut o� at t = 10

6

, the exponents are

obtained from less than two orders of magnitude in t. Figs. 5.6 and 5.7 contain the averaged results

of more than 160 000 avalanches, typically corresponding to approximately 200 workstation hours (see

Appendix and �gure captions for further information).

5.5.2 O� criticality

By changing the left boundary condition (i.e. the in
ow condition) of the open system, simulations

were performed both above and below the critical point. This is achieved by replacing the mega jam

by the following mechanism: Vehicles are inserted at a �xed left boundary so that in all cases v

max
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Figure 5.6: Number of jammed particles at time t, n(t), averaged over surviving clusters, in the out
ow situation. More

than 165 000 clusters were simulated. The straight line has slope 1=2. Note that the measurement only converges for

t >� 5000.
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Figure 5.7: Mass of jam in space-time, s(T ), in the out
ow situation, for the same clusters os in Fig. 5.6. Jams of

similar lifetime T were averaged. The straight line has slope 3=2. Note that the measurement again only converges for

t >� 5000.
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Figure 5.8: Survival probability for jam-clusters, P

surv

(t), for di�erent in
ows. This picture corresponds exactly to the

theoretical picture, cf. Fig. 2.1. Note that this distribution is highly sensitive to the in
ow, re-con�rming that the out
ow

is indeed precisely critical.

sites are left empty and then the following sites are attempted to be occupied with probability p

insert

until a site is occupied. The rate p

insert

determines an average density � by

� =

1

v

max

+ 1=p

insert

;

which can go as high as � = �

det;max

= 1=6 = 0:16666 : : : for v

max

= 5, much higher than the critical

density of �

c

� 0:0702.

We have performed data collapse for the survival probability P

surv

(t) on varying the density, as shown

in Fig. 5.9. By plotting P

surv

=t

��

vs. t�

�

t

with the exponents � = 0:5, �

t

= 2 was determined by

the qualitatively best collapse. The accuracy of this method is not very high, though, so that the

conclusion from the numerical results is no better than

�

t

= 2� 0:2 ;

which is again in agreement with our random walk predictions.

5.5.3 Spatial behavior

So far, we have only shown simulation results for exponents describing the evolution of the number

of vehicles, but not their distribution in space. Here, our simulation results are less conclusive. The

width �w(t) vs. t (Fig. 5.10) is, besides the convergence problems already described, best approximated

by an exponent

1

z

= 0:58� 0:04
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Figure 5.9: Data collaps for the survival probability of jams for the same data as for Fig. 5.8 with � = 0:5 and �

t

= 2.

instead of 1=2. Measurements of other relations (e.g. w vs. n; not shown) con�rm these discrepancies

for the spatial behavior for branching jam clusters with v

max

> 1. However, the form w(t) � t

1=2

ln t

vs. t (Fig. 5.10) is also consistent with the numerics.

In an e�ort to resolve this question, we analyzed large jam con�gurations. We ran simulations with

v

max

= 2 until a cluster reached a width of, say, 2

13

= 8192, and stored the con�guration of this time-

step. About 30 con�gurations of the same size were used. Box-counting analysis of these con�gurations

was not conclusive, but measuring the distribution of holes inside the con�gurations is consistent with

the results from the cascade equation, presented earlier.

Fig. 5.11 shows a plot of the probability distribution for hole sizes, P

h

(x) vs. x, obtained from these

con�gurations. We �nd

P

h

(x

h

) � x

��

h

h

�

h

= 1:96� 0:1 ;

which is indeed consistent with the prediction �

h

= 2 from the cascade equation.

Nevertheless, our numerical results are not precise enough to distinguish �

h

= 2 from �

h

< 2 for

the holes exponent, or the power law �t with exponent 0:58 from the theoretically plausible �t with

exponent 1=2 and logarithmic corrections for the width exponent.

5.6 Applications to real tra�c

With respect to real world tra�c, much of this discussion appears rather abstract. A con�guration of

size 2

13

= 8192, as analyzed in this work, corresponds to more than 100 km of undisturbed roadway,

a situation that rarely occurs in reality. However, the following results should be general enough to

be important for tra�c:
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Figure 5.10: Averaged maximum width of clusters, w, as a function of their life-time, t. The straight line has slope 0:58;

the dotted line is a logarithmic �t A � t

1=2

� log(t) where A is a free parameter. This measurement only converges for

life-times t >� 50 000, and then, the data material (from the same clusters as for Figs. 5.6 and 5.7 is not enough to

distinguish between the scaling law and the theoretically plausible �t with a logarithmic correction.

� The concept of critical phase transitions is helpful for characterizing real tra�c behavior. Open

systems will tend to go close to a critical state that is determined by the out
ow from large jams.

This underlying self-organized critical state corresponds to a percolative transition for the jams;

i.e. spontaneous small 
uctuations can lead to large emergent tra�c jams.

� Interestingly, planned or already installed technological advancements such as cruise-control or

radar-based driving support will tend to reduce the 
uctuations at maximum speed similar to

our limit, thus increasing the regime of validity of our results. One unintended consequence of

these 
ow control technologies is that, if they work, they will in fact push the tra�c system

closer to its underlying critical point; thereby making prediction, planning, and control more

di�cult.

� The fact that tra�c jams are close to the border of fractal behavior means that, from a single

\snapshot" of a tra�c system, one will not be able to judge which tra�c jams come for the same

`reason'. Concepts like point queues [157] or single waves do not make sense when tra�c is close

to criticality. `Phantom' tra�c jams emerge spontaneously from the dynamics of branching jam

waves.

� The fact that holes scale with an exponent around �2 means that, at criticality, the jammed

cars are close to not carrying any measure at all. The regime near maximum throughput thus

corresponds to large \holes" operating practically at �

c

and q

max

, plus a network of branched

jam-clusters, which do not change � and q very much. The 
uctuations found in the 5-minute-

measurements of tra�c at capacity [2, 56, 69, 132] therefore re
ect the fact that tra�c 
ow
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Figure 5.11: Probability distribution P

h

for hole-sizes x

h

. The straight line has slope �2. The average is over 60 con�g-

urations, which all have width w = 2

1

3 = 8192. Contrary to all other �gures in this chapter, these results were obtained

with v

max

= 2, thus con�rming that v

max

= 2 is already su�cient to obtain the described branching behavior.

is inhomogeneous with essentially two states (jammed and maximum throughput). The result

of each 5-minute-measurement depends on how many jam-branches are measured during this

period.
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Chapter 6

Further results

This chapter contains further results for the full model and for variations of it. Chronologically, most

of this work was done before the work on the cruise control limit. But after having more general

insight into the model, these results are now a lot easier to explain.

The chapter starts with repeating the idea of the jam lifetimes, now for the full model. Next, open

systems are considered, i.e. systems where cars are inserted at the upstream end and move out of the

system at the downstream end. Then, some simple changes in the driving behavior are investigated,

and the results can be interpreted as tentative answers to questions such as \What would happen if

everybody had a Porsche?" or \What in
uence have radar-based automatic braking systems?". Last,

I shortly report from an analytical approach.

6.1 Lifetimes in the original model

In the previous chapter, a central quantity was P

surv

(t), the probability that a jam cluster survives

until time t. This quantity was analysed under di�erent conditions, especially for di�erent densities.

A similar analysis is now presented for the complete model of Chapter 3. In that model, several jam

clusters can coexist in a system at the same time. One therefore computationally has to distinguish

between these clusters. This is done using ideas from cluster labeling in percolation [68].

The technical details of this investigation, especially how the cluster labeling is done on a parallel

computer, can be found in the Appendix.

6.1.1 Results of lifetime measurements

Fig. 6.1 (lower branch) shows the results for the lifetime distribution of our tra�c model. The �gure

shows the (normalized) number P (T ) of tra�c jams of lifetime T ; as the data is collected in \loga-

rithmic bins", the y-axis is proportional to T � P (T ). Closed systems (periodic boundaries) of sizes

of L = 10

4

and L = 10

5

were used. The simulations were started from random initial conditions

for densities � = N=L = 0:09, 0:08, 0:07, and 0:06. The �rst 2 � 10

5

iterations were discarded to let

transients die out; data then was collected over typically 10

7

iterations.

For a density of � = 0:08 (near the capacity threshold density �(q

max

) = 0:085), there is a region

where P (T ) / T

��

1

(�

1

= 3:1�0:3) for T approximately between 5 and 50, and another region where

P (T ) / T

��

2

(�

2

= 1:65� 0:08) for T approximately between 100 and 5000. For a higher density,
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Figure 6.1: Comparison of lifetime distributions P (T ) for the tra�c jams between the \standard" model and the \model

with cruise control" (upper branch). | The data is collected in logarithmic bins, therefore the y-axis is proportional to

T � P (T ), and it has been normalized such that P (T = 1) = 1 for the lower and P (T = 1) = 100 for the upper branch.

| Lower branch: standard model, i.e. p

free

= 0:5. Straight lines, from left to right: Results for system size L = 10

5

and

densities � = 0:06, 0:08, and 0:10, i.e., below, near, and above the threshold density �(q

max

). Dotted lines: Results for

same densities, but smaller system size L = 10

4

. | Upper branch: including \cruise control", i.e. p

free

= 0:005. System

size L = 10

5

, densities � = 0:09, 0:08, 0:07, and 0:06, as noted in the legend.

� = 0:1, the second regime gets slightly longer. It vanishes totally for a lower density of � = 0:06. In

other words, the change-over from the light tra�c regime (� < �(q

max

)) to the heavy tra�c regime

(� > �(q

max

)) is accompanied by a qualitative change in the lifetime distribution, i.e., the emergence

of a regime with P (T ) � T

��

2

, but the lifetime distribution does not show critical behavior in the

sense of a percolation transition because of the upper cut-o�.

This cut-o� of the lifetime distribution near T = 50000 is not a �nite size e�ect. Since we analyze

clusters in a space-time-domain, �nite size e�ects can be caused by space or by time. For the space

direction, in Fig. 6.1 the results for system sizes L = 10

4

and L = 10

5

are superimposed. The scaling

region is not any longer for the larger system. Similarly, it was checked that the cut-o� is no �nite

time e�ect [122].

6.1.2 Reducing the 
uctuations at maximum speed

A reduction of only the 
uctuations at high speed should converge towards the cruise control limit.

For this purpose, the \randomization" step of the update algorithm was replaced by the following rule:
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Figure 6.2: Parts of the fundamental diagrams (i.e. throughput q versus density �) near the capacity maximum for the

original model (+) and for the model with reduced 
uctuations (squares) presented later in this text.

� New randomization: If a vehicle has maximum speed v

max

and gap > v

max

, then it reduces

its speed by one with a much lower probability p

free

= 0:005. Otherwise, it reduces its speed by

one with probability 0.5 (as before).

1

By this rule, only the 
uctuations at v = v

max

are changed, whereas the slowing down or the acceler-

ation remain the same. For p

free

! 0 this gives the cruise control limit.

The part of the fundamental diagram (throughput versus density) near the throughput maximum is

included in Fig. 6.2. The maximum throughput becomes slightly higher for this new model and is

found at a somewhat lower density, but the change in throughput is only 2%.

In the scaling plot of the lifetime distribution (Fig. 6.1), the scaling region of the \second" regime

clearly gets longer and extends now over about three orders of magnitude from T = 200 to T = 200000.

In this region, P (T ) � T

��

0

2

with �

0

2

= 1:55�0:05, i.e. converging towards �+1 = 3=2 from the cruise

control limit.

6.1.3 Discussion

One can attribute the cuto� to the non-separation of the time scales between disturbances and the

emergent tra�c jams. As soon as p

free

is di�erent from zero, the spontaneous initiation of a new jam

can terminate another one. Obviously, this happens more often when p

free

is high, which explains

why the scaling region gets longer when one reduces p

free

. Dimensional arguments suggest that the

cuto� in the space-time volume, V � wt, should scale as V

co

p

free

� 1 (for p

free

� 1) since this implies

1

The de�nition of \free driving" is, for \historical reasons", slightly inconsistent throughout this thesis. This in
uences

some of the absolute values (e.g. maximum 
ow or density at maximum 
ow), but does not change the overall results,

especially not the critical exponents.



68 Chapter 6. Further results

0.265

0.27

0.275

0.28

0.285

0.29

0.295

0.3

0.305

0.31

0.315

0.32

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16

flo
w

density

’v5r.d’

Figure 6.3: Position of the 
ow-density value from the bottleneck situation; tips of the arrow indicate the error of �. The

error in the q-measurement is too small to be visible on this scale. The simulation clearly indicates that the self-organizing

bottleneck state does not correspond to the maximum of the 
ow.

that a new jam is initiated in a space-time volume occupied by a previously initiated jam. According

to the random walk picture V � s, so that s

co

� p

�1

free

and t

co

� p

�2=3

free

. Measuring these correlation

lengths, however, is outside of the scope of the present study.

6.2 Open systems

6.2.1 Tra�c in a bottleneck situation

For this section, di�erent boundary conditions are used, leaving the rest of the model unchanged from

Chapter 3:

� When the leftmost site (site 1) becomes empty, a new car with velocity v

insert

= 0 is inserted at

this position. As our tra�c is going from left to right, one may imagine a bottleneck situation

where a saturated two-lane-street feeds a street of only one lane (which is simulated).

The results are independent of the choice of v

insert

.

� At the right side (i.e. the end of the street), cars on the rightmost six sites are deleted, resulting

an open boundary. This simulates the beginning of a more expanded freeway section.

The simulations included grid length up to 10000 sites with durations up to 5 � 10

6

time steps. After

relaxation, the model shows tra�c at a density of �

bn

= 0:069�0:002 and a 
ow of q

bn

= 0:304�0:001

(Fig. 6.3). This is de�nitely less than maximum 
ow, q

max

= 0:318�0:0005 at �(q

max

) = 0:085�0:004,

con�rming the observation from Chapter 4 for the deterministic case, that an open boundary on the

in
ow side is not able to produce maximum 
ow.
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Baldus [9] reports systematic investigations of bottlenecks of this kind, with di�erent in
ow and out
ow

rates, analogous to theoretical investigations of the stochastic asymmetric exclusion model [34].

6.2.2 Self-organization of maximum throughput in the out
ow situation

Meanwhile, the out
ow from a jam self-organizes into maximum 
ow, so that the out
ow behavior is

exactly as for the simpler cases of Chapters 4 and 5. In order to see this, in a system of length L = 10

6

,

the left half is �lled with density �

left

= 1; the right half is left empty (cf. Fig. 6.4). The right boundary

is open, i.e., vehicles on sites L� v

max

; : : : ; L are deleted. The left boundary is closed.

The system is run according to the update rules. After t

0

= 2 � 10

5

time steps to let transients die out,

we start to count the vehicles which left the system at the right boundary. Fig. 6.5 shows the average

throughput

q

open

=

n(t; t

0

)

t� t

0

;

where n(t; t

0

) is the number of vehicles which left the system between times t

0

and t. We �nd

q

open

= 0:318� 0:01 for large times, which is, within errors, exactly the value of maximum throughput

q

max

for the closed system. In addition, even when �lling up the left half of the system randomly only

with a much smaller density �

left

= 0:1, the out
ow is the same. We conjecture therefore that the

out
ow from a high density regime selects by itself the state of maximum average throughput; and

\high density" means an average density above the threshold density �(q

max

).

As said before, this is comparable to the case of boundary-induced state selection for asymmetric ex-

clusion models [86], with one di�erence: Our model does not select this state of maximum throughput

when adding as many particles as possible at a �xed left boundary (see \Bottleneck situation"). In

Chapter 4 it was shown for a simpler model that this can be overcome by some arti�cial update rules

for a few sites at the left boundary; the same is true for the model here.

This point warrants further investigation, since it corresponds to the real world observation that

disturbances which are �xed in space, such as bottlenecks or on-ramps, lead to much lower throughput

downstream than would be possible theoretically [77]. And one indeed has a similar problem when

programming on-ramps (Chapter 9).

6.3 Varying driving behavior

As the next issue, we show how far capacity can be enhanced by changing characteristics of the vehicles

or of the driving behavior. We analyze the in
uence of a \cruise control", of quicker acceleration, of

braking \to the point", and of a better car following behavior in the \dead zone" where neither accelera-

tion nor deceleration are necessary. Technically, we de�ne di�erent \randomization probabilities" p

acc

,

p

sld

, p

free

, and p

ptn

for acceleration noise, noise during slowing down, noise at free driving, and noise

for platoon behavior, respectively. The de�nitions will be in a way that p

acc

= p

sld

= p

free

= p

ptn

= 0:5

reduce to the \old" model with p

general

= 0:5. These new noise parameters were integrated into the

velocity update in the following way:

� acceleration: If the distance to the next vehicle ahead is large enough (v � gap�1) and maximum

velocity is not yet reached (v � v

max

� 1), then accelerate with probability 1� p

acc

by one. Fast

acceleration corresponds therefore to a small value of p

acc

.
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Figure 6.4: Space-time plot of the out
ow from a jam. As usual, the horizontal direction is the space direction and time

is running downwards. The system size is L = 500, much smaller than the systems used for Fig. 6.5.

� slowing down: If the next car ahead is too close (gap � v � 1), then reduce the velocity to gap,

with a probability of p

sld

to over-react.

� free driving: If the car has maximum speed (v = v

max

) and drives freely (gap � v

max

+ 1), then

introduce with probability p

free

a 
uctuation.
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Figure 6.5: Average out
ow (see text) from a high density region as a function of time. The straight line shows the

out
ow with �

left

(t = 0) = 1:0, the broken line shows the out
ow from a region with �

left

(t = 0) = 0:1. In both cases,

the system self-organizes towards the state of maximum throughput.

� driving in a platoon: If the car is driving in a platoon (v = gap), then reduce speed with

probability p

ptn

by one.

In order to make this clear, the rules are once again given in pseudo-code:

if (v � gap� 1 & v � v

max

� 1) then

with probab. (1� p

acc

) do v := v + 1 else v := v

else if (gap � v � 1) then

v := gap ; with probab. p

sld

do v := max[gap� 1; 0]

else if (v = v

max

& gap � v

max

+ 1) then

v := v ; with probab. p

free

do v := v � 1

else

v := gap ; with probab. p

ptn

do v := max[gap� 1; 0]

endif

As usual, after the velocity update the vehicle propagation is done.

Fig. 6.6 contains the averaged fundamental diagrams when

� p

acc

is reduced from 0:5 to 0:005 (better acceleration), or when

� p

sld

is reduced from 0:5 to 0:005 (reduced over-reaction for slowing down), or when

� p

free

is reduced from 0:5 to 0:005 (reduced 
uctuations at free driving: \cruise control"), or

when

� p

ptn

is reduced from 0:5 to 0:005 (reduced 
uctuations during platoon driving).

A cruise control gives a capacity of 0.324 vehicles per iteration (2% better than the control case), better

braking gives 0.327 vehicles per iteration (2%), and better platoon behavior leads to an increase to

0.380 vehicles per iteration (about 20%). But the remarkable result of these simulations is that an

enhancement of the acceleration (p

acc

reduced) nearly doubles the throughput from 0.318 to 0.623

vehicles per iteration (cf. [135] for a similar prediction). In addition, the space-time diagram for this
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Figure 6.6: Throughput versus density for di�erent sets of parameters (see text). The legends gives the parameter(s)

which is/are reduced versus the \standard" model. Note the high increase in possible throughput when p

acc

is reduced

to 0.005 (vehicles accelerate more quickly).

system near capacity (Fig. 6.7) looks qualitatively di�erent from all the others, which look, at least at

this resolution, similar to Fig. 3.4.

The reason for this behavior is that, for (in�nitely) large systems, it is impossible to suppress jams.

And then, the 
ow is entirely dominated by the out
ow, which means that everything else except

acceleration does not matter. A more detailed interpretation will be given in the next chapter.

6.4 Analytical results

Analytical calculations were an integral part of the research on the model. These calculations were

mostly done by M. Schreckenberg and A. Schadschneider [120, 147, 150].

The idea is to �nd equations for subsections of the road array. Let the con�guration of a subsection

of length n (n-sites approximation) be denoted by �

1

; : : : ; �

n

, where �

i

are the state variables, e.g. �1

for empty and 0; : : : ; v

max

for a vehicle with the corresponding velocities, i.e. v

max

+2 states.

2

The

probability to �nd this con�guration at time t + 1 from a given state at time t is given by a master

equation:

P

(t+1)

n

(�

1

; : : : ; �

n

) =

X

f�

j

g

W (�

1

; : : : ; �

n

j�

�v

max

+1

; : : : ; �

n+v

max

)�

�P

(t)

2v

max

+n

(�

�v

max

+1

; : : : ; �

n+v

max

) :

2

It is possible to reduce the technically necessary number of possible states by one.
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Figure 6.7: Evolution of the model from random initial conditions for a reduced p

acc

= 0:005. Apart from that the �gure

is the same as Fig. 3.4.

In the simplest case with n = 1 and v

max

= 1 this reduces to

P

(t+1)

1

(�

1

) =

X

f�

j

g

W (�

1

j�

0

; �

1

; �

2

)P

(t)

3

(�

0

; �

1

; �

2

) :

The next two steps are:
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� Find all transition probabilities W . They can be enumerated: For v

max

= 1 each variable has

three possible states (empty, occupied with v = 0, and occupied with v = 1), leading to a table

with 3

4

entries.

� Express P

2v

max

+n

in terms of P

n

. In the case of n = 1, one obtains

P

3

(�

0

; �

1

; �

2

) = P

1

(�

0

) � P

1

(�

1

) � P

1

(�

2

) ;

i.e. spatial correlations are no longer considered (mean �eld).

Since (i) this did not belong to the work of this thesis, (ii) the technical details are not imperial for

understanding the conclusions, and since (iii) the results are relatively easy to �nd in [120, 147, 150],

I will not go any further. The results of this analysis are, however, quite interesting, and they will

support conclusions presented in the next chapter:

� For random sequential update and v

max

= 1, already the 1-site approximation (mean �eld) is

exact.

� For parallel update and v

max

= 1, the 1-site approximation is not exact, but the 2-sites approx-

imation is.

� For parallel update and v

max

� 2 there does not seem to be an exact solution. However, one

can plot 1-, 2-, ..., n-sites approximations, and they converge towards the results obtained from

simulation. For example, for v

max

= 2 the 5-sites approximation is only a few percent di�erent

from both the 4-sites approximation and from the simulation result.

6.5 Summary

This chapter described four seemingly rather unrelated further observations for the tra�c CA.

First, it was shown that, in the complete CA model, there is a �nite cut-o� for the jam life-time

distribution, which is due to interactions between jams. Remember that the cruise control limit

allowed only one jam in the system and therefore no interactions.

Next, open systems were discussed. Analogous to the results in previous chapters, also the full model

shows self-organisation to maximum 
ow in the out
ow situation, but less than maximum 
ow in the

bottleneck situation.

Third, variations of the individual driving rules were tested. It turned out that only a higher accel-

eration has a big impact for increasing the 
ow, whereas, e.g., more controlled braking increases 
ow

by only 2%.

Last, analytical results from other researchers were reported. They are especially interesting because

the di�culty to obtain correct analytical results corresponds directly to the di�erent phenomenological

complexities for the di�erent subcases of the CA tra�c model. This will be discussed in the next

chapter.
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Chapter 7

Discussion of tra�c 
ow results and meaning

for reality

As already described in Chapter 2, for many particle hopping models one knows 
uid-dynamical limits.

It turns out that these 
uid-dynamical descriptions correspond to well-known relations of tra�c 
ow

theory. More speci�cally: Some particle hopping processes are equivalent to the Lighthill-Whitham-

theory when speci�c 
ow-density-relations are used. Yet, the behavior of the full CA tra�c model

of Chapter 3 goes beyond the Lighthill-Whitham-theory as it includes spontaneous initiation of jams,

and 
uctuations. Newer 
uid-dynamical models for tra�c 
ow include spontaneous initiation of jams

in a similar way, but still no 
uctuations. Phenomenologically, taking the average over di�erent

realisations of the CA starting from macroscopically identical initial conditions leads to the 
uid-

dynamical description of [80, 87, 88, 96].

The details of these connections and the contributions of the CA model are the topic of this chapter.

7.1 Models with random sequential update

One of the best-investigated particle hopping models is the asymmetric exclusion process with random

sequential update [34]. To recall, the rule is \choose one particle randomly and move the particle

forward if the next site is free".

In the steady state, already the mean �eld approximation is exact [120].

This model corresponds, in the hydrodynamic limit, to a noisy and di�usive equation of continuity,

i.e.

@

t

�+ q

0

@

x

� = D@

2

x

�+ �

with a current of

q = v

max

� (1� �) (7:1)

(in tra�c science, this is Greenshields' relation, see [47]), which leads to the noisy Burgers equation

with an additional linear term, i.e.

@

t

�+ v

max

@

x

�� 2 v

max

� @

x

� = D@

2

x

�+ � :

In other words, this exclusion process and the Lighthill-Whitham-theory with the Greenshields 
ow-

density relation (plus noise plus di�usion) describe the same behavior.
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Musha and coworkers [115] have proposed the noisy Burgers equation for tra�c 
ow without men-

tioning the connection to the Lighthill/Whitham theory.

This model class (universality class) has a roughness exponent (see 2.2.3) of � = 1=2 and a dynamic

exponent of z = 3=2 at all densities; remember that z = 3=2 has the meaning that the time to dissolve

a jam of length l is proportional to l

3=2

.

In the steady state, this model shows kinematic waves (= small jams), which are produced by the

noise and damped by di�usion (Fig. 7.1). These non-dispersive waves move forwards (c > 0) at low

densities (Fig. 7.1) and backwards (c < 0) at high densities (Fig. 7.2). Somewhere in between, the

wave velocity is exactly zero (c = 0), and this is the point of maximum throughput [86]. Moreover,

this point is selected automatically in the out
ow situation (see Chapter 6).

The drawback of this theory with respect to tra�c 
ow is that it does neither have a regime of

lamellar 
ow nor \real", big jams. Because of the random sequential update, vehicles with average

speed v 
uctuate severely around their average position given by v t. As a result, they always \collide"

with their neighbors, even at very low densities, leading to \mini-jams" everywhere. This is clearly

unrealistic for light tra�c.

Actually, this fact is also visible in the speed-density-diagram. Using Eqn. 7.1, one obtains

v =

q

�

/ 1� � ;

which is in contrast to the observed result that, at low densities, speed is nearly independent of density.

Judging from Figs. 7.1 and 7.2, changing the maximum velocity in the update does not change the

universality class. I.e., picking one particle randomly and then applying the update rules of the CA

tra�c model only skews the 
ow-density-relation towards lower densities, but does not lead to other

phenomenological behavior and not to another universality class.

7.2 Deterministic models

At �rst, deterministic models look like subcases of the last section. The prototype model for v

max

= 1

is \for all particles simultaneously, if a particle has a free site in front of it at time t, then it moves

one site ahead during this iteration".

But taking away the noise from the particle update completely changes the universality class [85]. The

model now corresponds to the non-di�usive, non-noisy equation of continuity with a linear 
ow (cf.

Chapter 2)

q(�) =

1

2

� j��

1

2

j:

This yields a linear Burgers equation:

@

t

�+ sgn[

1

2

� �] @

x

� = 0

Here, the dynamic exponent z is equal to 1; the roughness exponent � depends on the initial condi-

tions [85].

In some sense, this model is the complementing ingredient for the �nal tra�c model. It lacks the

mechanisms for spontaneous formation and dissipation of jams, but the tra�c jam dynamics itself is

a useful approximation of reality:
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Figure 7.1: Space-time plot for random sequential update, v

max

= 1, and � = 0:3. Clearly, the kinematic waves are

moving forwards.

� For � < �(q

max

), all jams eventually dissipate. A dynamic exponent of z = 1 means that a jam of

length 2 �l needs twice as long to dissipate than one of length l, t(2l) = const �(2l)

z

= 2 t(l), which

intuitively makes more sense for reality than the exponent z = 3=2 of the random sequential

update. When one disturbs, the disturbance decays deterministically, also with z = 1. The wave
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Figure 7.2: Space-time plot for random sequential update, v

max

= 5, and � = 0:5. Clearly, the kinematic waves are

moving backwards, i.e. for v

max

= 5 the density � = 0:5 is above �(q

max

).

velocity for � < �(q

max

) is c = v

max

, meaning that correlations travel with the cars. This is

clear: As soon as all disturbances are sorted out, the density pro�le travels with v

max

(Fig. 4.2).

� Above �(q

max

), the situation is di�erent. Some jams are never sorted out, and they survive

forever while traveling backwards with the kinematic wave velocity c = �1. A disturbance,

however, makes the model non-stationary only for a short time: Usually, it just shifts another
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wave or part of it to a new wave originated by the disturbance (Fig. 4.3). Here, as also for

� < �(q

max

), the average transient time after a damage scales as T

trans

� j�� �(q

max

)j.

� Near �(q

max

), relaxation of the model needs more and more time. In the case of � = �(q

max

) and

periodic boundaries, a disturbance causes a hole in the tra�c 
ow, which travels with c

<

= v

max

,

and a wave, which travels backwards with c

>

= �1. In a closed system, the hole and the wave

ultimately meet again and cancel each other. As a result, the transient time here scales as

T

trans

� L, where L is the system size.

In short, this model already possesses the ingredients for the critical behavior in the cruise control

limit, albeit in an overly deterministic way.

Meanwhile, this model does not have spontaneous wave formation; and adding noise in the usual way

just leads back to the model of the previous section.

Using a maximum velocity higher than one does not change these results (Chapter 4).

As said before, most work using CA models for tra�c is based on this model. Biham and coworkers [17]

have introduced it for tra�c 
ow, with v

max

= 1. Other authors base further results on it [15, 116,

167, 182], also for two-lane tra�c [117]. Vilar and coworkers [172] use it with v

max

= 5. It is also the

basis of the two-dimensional CA models for tra�c [30, 112, 118, 119, 166].

7.3 Stochastic parallel update with v

max

= 1

There is, however, another way of adding noise, which is used in the CA tra�c model introduced in

Chapter 3. There, all vehicles/particles simultaneously evaluate their state, but their resulting action

is randomized. From an algorithmical point of view, this is an obvious choice, but for analytical work,

it is much more complicated.

Judging from space-time-plots, stochastic parallel update with maximum velocity v

max

= 1 (Fig. 7.3)

does not seem much di�erent from the standard stochastic asymmetric exclusion process (Fig. 7.1,

where, though, due to a di�erent density the movement direction of the kinematic waves is di�erent).

Apart from the same particle-hole-symmetry, it also shows the same kind of kinematic waves, moving

forwards for low densities (� < �(q

max

)) and backwards for high densities; and the waves itself do not

look much di�erent from the random sequential update. However, two facts indicate that one enters

a di�erent dynamical regime: The mean-�eld approximation is no longer exact, and it is possible to

work with the cruise control limit.

Analytic results

Analytic calculations [147, 150] show that the mean-�eld approximation is no longer exact. Compared

to the asymmetric stochastic exclusion model, particles have a tendency to remain equidistant (e�ective

anti-ferromagnetic potential), which is clearly realistic for cars. This results in a higher maximum 
ow

compared to random sequential update.

The next approximation beyond mean �eld, i.e. the 2-cluster approximation which takes two-point

correlations into account, turns out to be exact for v

max

= 1.
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Figure 7.3: Space-time plot for parallel update, v

max

= 1, and � = 0:5. This time, the waves do not move; � = 0:5 is

the density of maximum throughput. Apart from the di�erent velocity of the waves, the picture looks quite similar than

random sequential update (Fig. 7.1).

Cruise control limit

Because of the parallel update, it is possible to de�ne the cruise control limit exactly as in Chapter 5.

For v

max

= 1 this means that all particles with speed v = 1 and gap � 1 move deterministically with

rate one. The model loses its particle-hole symmetry, and the fundamental diagram is skewed to the
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left. Meanwhile, it is now possible to completely separate jams and lamellar 
ow. A system with

density � < �(q

max:det

) = 0:5 can be prepared to behave completely deterministically (Fig. 7.4). Then,

a single disturbance initiates, via a chain reaction, a jam, and depending if one has super-critical,

sub-critical, or exactly critical density, the emergent jam is, in the average, growing, shrinking, or

\undecided".

Since v

max

= 1 means that the jam is dense, this completely corresponds to a random walk description

(Chapter 5), i.e. the number of cars in the jam, n(t), behaves as the trajectory of a random walk. If

the in
ow is higher than the out
ow (middle part of Fig. 7.4), then cars enter the jam with a higher

rate than they leave, the average jam grows linearly in time, and the corresponding random walk is

biased. If the in
ow is lower than the out
ow, the jam quickly dissolves. If the in
ow exactly matches

the out
ow (which happens generically, because of the out
ow behavior; see, e.g., in the lower part

of Fig. 7.4), then the random walk is unbiased and shows its typical 
uctuations and exponents, as

explained earlier.

1

This instability de�nitely goes beyond a Burgers equation, since the Burgers equation can never be

instable. One has to include the e�ect of momentum into the partial di�erential equations.

It is, however, from plots such as Fig. 7.3, not clear why the cruise control limit behavior, i.e. singular

jams and the phase separation, should play an important role. This only becomes clear at higher

maximum velocities. For that reason, it is worthwhile to spend some more time describing the v

max

= 1

cruise control case, because the following remarks remain valid for arbitrary v

max

.

It is useful to compare the CA cruise control case results with results from partial di�erential equation

(PDE) models for tra�c 
ow [80, 87, 143, 156]. This is easiest when starting from homogeneous initial

conditions, as is done in all �gures of this chapter.

� For low densities, i.e. � < �(q

max

), a disturbance decays, although some survive longer than

others. The average behavior corresponds to the decay of the wave amplitude of the PDE.

� For high densities, i.e. � > �(q

max

) but � < �(q

max:det

), a homogeneous initial state is a meta-

stable state. Here, a disturbance in the average grows linearly in time (growth of the wave

amplitude). However, an individual disturbance can still die out.

The picture for the average CA wave is this similar to the linear stability analysis of the PDEs for

tra�c 
ow, where disturbances become instable when the density is higher than a critical value. There

is, however, a di�erence in the growth rate: PDE waves grow exponentially, CA waves grow linearly

in time.

Thus, the 
ow restriction is not caused by an intrinsic density limit for lamellar 
ow, but by the fact

that there is a density above which the waves no longer decay. The rate of in
ow which a wave can

barely support without growing (in the average) is just the rate of release on the other, the out
ow,

side. And this rate of release is given by the acceleration characteristics. This is why, in Chapter 6,

only the change in the acceleration had a remarkable in
uence on throughput.

In consequence, a higher 
ow than the out
ow from a jam can only be sustained for a limited time.

Measures for stabilizing tra�c 
ow would thus only be useful if the disturbance could be suppressed

during the whole rush hour. Otherwise, a disturbance would eventually happen, it would grow because

the in
ow would be supercritical, and the out
ow from the jam would reset the tra�c system to the

same lower 
ow as before the introduction of the new technology. From tra�c science measurements,

this phenomenon is known as hysteresis [169].

1

Actually, for Fig. 7.4 this is not precisely true. There is a correlation via the periodic boundary conditions.
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Figure 7.4: Space-time plot for parallel update (cruise control limit) and v

max

= 1. The �rst 50 time steps show

deterministic supercritical 
ow; after the disturbance, the jam clearly grows; when the out
ow reaches the jam again via

the periodic boundary conditions, both jam fronts describe a random walk (but see footnote in text).|In order to be

clearer, the �gure uses a lower acceleration probability than normal.

In the cruise control limit, the 
ow-density-relation is non-smooth at q

max

. This just re
ects the phase

separation:
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� Below �(q

max

), in the steady state there are only cars with maximum velocity v

max

, leading to

a linear 
ow-density relation q

<

= � � v

max

. The velocity of the kinematic waves c

<

= q

0

= v

max

,

i.e., disturbances move with the tra�c.

� Above �(q

max

), tra�c separates into laminar regions operating at (�(q

max

); q

max

) and jammed

regions operating at (� = 1; q = 0). The fundamental diagram is just the linear interpolation

between both: q

>

= q

max

(1� �)=(1� �(q

max

)). The velocity of the kinematic waves

c

>

=

�q

��

= �

q

max

1 � �(q

max

)

:

No other wave velocity is possible in the steady state. The e�ect is similar (although smeared out)

for higher velocities, which explains why the waves in the model all move backwards with similar

velocities.

Takayasu and Takayasu [167] have shown that the bi-stability can also be obtained by a deterministic

model|although in this case one replaces the random walk picture by its deterministic average.

7.4 The full CA model for tra�c 
ow

For higher maximum velocities, e.g. v

max

= 5, there are three new observations: The cruise control

limit dynamics now visibly plays a role, i.e., singular jams are an important feature of the dynamics;

jams can branch; and analytic work is more di�cult.

� Cruise control dynamics. The cruise control regime now visibly plays a role, i.e. simulated

tra�c 
ow separates into laminar and jammed regions, as in reality. However, for this, there is

no dynamical di�erence to the v

max

= 1 case, it is only that the natural parameters are closer

to the cruise control case.

Together with the knowledge that the v

max

= 1 case looks like random sequential update, and

the knowledge of the cut-o� in the lifetime measurements (see Chapter 6), one comes to the

conjecture that a correct description of tra�c contains a cross-over from cruise-control dynamics

to Burgers/KPZ dynamics. An associated correlation length � describes up to which length the

cruise control description is valid; there is also a similar correlation time. Judging from Treiterers

space-time-plots (see Fig. 3.1), for tra�c this length scale has to be larger than 10 km.

It is this e�ect which is responsible for the special shape of the fundamental diagram. If �

were in�nity (cruise control limit), the fundamental diagram would be non-smooth at �(q

max

).

However, a � <1 smoothes out the peak region.

� Jams can branch. Completely new for v

max

> 1 is the e�ect that jams now can branch.

This behavior enters naturally into the model when one attempts to obtain a more realistic

fundamental diagram by using a maximum speed v

max

larger than one. The branching is due to

the memory e�ect of v

max

> 1, where cars leaving a jam need some time to accelerate to v

max

.

During this acceleration phase, they follow di�erent rules than when driving at maximum speed,

which may lead to a sub-branch of the jam (Fig. 7.5).

I am not aware of any tra�c measurements which directly support this picture, but it seems

intuitively reasonable|after an accident site has been cleared, one usually drives through many

start-stop-waves with free tra�c in between|, and it is actually very di�cult to suppress it in

the simulations as soon as one allows 
uctuations in the acceleration.
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Figure 7.5: Space-time plot for parallel update (cruise control limit), v

max

= 5, � = 0:09, i.e. slightly above critical. The


ow is started in a deterministic, supercritical con�guration, but from a single disturbance separates into a jam and a

region of exactly critical density.|This is phenomenologically the same plot as Fig. 7.4 except that v

max

= 5.

Chapter 9 will contain an example how branching will make the density estimation for congestion

pricing much harder than one could expect.

� Analytic results. The fact that the internal jam dynamics becomes more complicated is

re
ected by the fact that the analytic approximation becomes more complicated [147, 150]. The
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n-sites approximations only converge towards the correct solution for n ! 1, but do not seem

to become exact.

Even with its natural parameters, the model behaves very similar to the 
uid-dynamical results of

the Daimler-Benz research group [80, 88, 143, 156]: Starting from ordered initial conditions (Fig. 7.6),

dynamic instabilities develop when � >� �

c

, which transform into kinematic waves, which survive

for a long time. See Ref. [96] for a thorough treatment of the di�erences and connections between

dynamic and kinematic waves. These models use a smooth 
ow-density relation; the correct behavior

comes out due to the nonlinear e�ects in the equations.

It is interesting to note that both the 
uid-dynamical and the particle hopping approach go in the

same way beyond the Lighthill-Whitham theory: They replace instantaneous velocity adaption with

momentum (an additional momentum equation for the 
uid-dynamical models, the acceleration rules

for the hopping model), which leads to the instability of the lamellar 
ow of high densities.

7.5 Random sequential vs. parallel update

As mentioned in Chapter 3, one usually assumes that random sequential updating is a better approxi-

mation of reality than parallel updating, and that one chooses parallel updating only for computational

reasons. Why is for tra�c 
ow parallel updating more realistic?

The problem is that for the random sequential update, the 
uctuations of the speed are proportional

to v

max

, whereas in the parallel update, they are independent of v

max

. In consequence, the relative


uctuations around v are constant for random sequential update, but decrease as / 1=v

max

for parallel

update. This is what makes the cruise control limit relevant for higher velocities: Fluctuations at free

driving are decreased.

In order to \save" the random sequential update, one would thus have to reduce the 
uctuations

around the mean velocity for free driving. This could, e.g., be achieved by moving smaller spatial

steps and making the probability of moving proportional to the velocity of the car. But then, during

one cycle a vehicle would have to be moved several times, which would make the simulation much

slower. Noise-reduction techniques for surface growth models work similarly [81, 179].

7.6 Summary for tra�c 
ow theory

As one sees, once one has an overview over connections between the di�erent hopping models and to

the 
uid-dynamical models, there is a wide variety of tra�c 
ow phenomena which could be readily

explained. This will be, together with discussions with tra�c engineering people and with data eval-

uations, the topic of further work. Here, I just want to summarize the|in my view|most important

results which have come out of this research in the area of tra�c 
ow:

� There is strong evidence from this work, from 
uid-dynamical results, and from car-following

simulations that, on a su�ciently small scale, stable tra�c 
ow regimes are only: light tra�c

� < �

c

, out
ow tra�c � = �

c

, and dense tra�c � � 1. All other tra�c with � > �

c

undergoes a

spontaneous phase separation into out
ow regions of �

c

and jammed regions with densities close

to one. Many tra�c measurements can be explained using this clear picture.
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Figure 7.6: Space-time plot for parallel update, v

max

= 5, � = 0:09 (i.e. slightly above �(q

max

)), starting from ordered

initial conditions. The ordered state is meta-stable, i.e. \survives" for about 300 iterations until is spontaneously separates

into jammed regions and into regions with � = �(q

max

).

� Since all tra�c above �

c

eventually separates into the two regions explained above, the maximum


ow is given by the out
ow from a jam, and this is given by the acceleration rules. Faster

acceleration at the out
ow of a start-stop-wave greatly enhances the throughput.
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This situation is described in the average by a linear Burgers equation. The 
uctuations around

this average picture (apart from the branching complications) are described by a random walk.

� The opposite picture would be that tra�c 
ow is mostly constrained by disturbances \all over

the place".

This picture corresponds to the noisy nonlinear Burgers equation and the standard KPZ univer-

sality class.

� All results indicate that in reality there is a crossover between both descriptions, where the

\cruise control limit"-description is valid on short scales, and the Burgers description on large

scales. Both descriptions are thus correct, but for di�erent length scales, and judging from tra�c

observations, the crossover length is larger than 10 km.

The length and time scale of this crossover increase with decreasing p

free

, the 
uctuations at

maximum speed.

� Tra�c jams out of nowhere are caused by 
uctuations at maximum speed. In the 
uid-dynamical

description, they are caused as instabilities in the equations for dynamic waves, but survive as

kinematic waves [88, 80, 96]. The CA model supports this picture.

� Reducing the 
uctuations at maximum speed does not increase maximum throughput very much.

Therefore, installing technology for better controlling maximum speed will not be very useful

without coupling it to the acceleration (see above).

The reason why that does not help is that maximum 
ow is dominated by the out
ow from a

jam, and as long as it is not possible to keep tra�c completely free of jams, it does not make

a big di�erence if there are many or few jams in the system. However, reducing 
uctuations at

maximum speed will largely enhance throughput when used in bottlenecks of a shorter length:

Then, it is feasible to keep the tra�c along this length completely free of jams.

� Jam waves branch. Between the branches, one �nds holes \of all sizes" (see Chapter 5). This

makes the concept of queues di�cult for state estimation problems: From a spatial con�guration

at a given time step alone, one cannot decide if two jams have the same dynamical origin or

not|one needs the history.

The results about the universality classes mean that, to a large extent and in the way described here,

all car following models will lead to the same macroscopic behavior. Since all major simpli�cations of

the the CA tra�c model lead either to losing the e�ect of spontaneous jam formation or to losing the

lamellar 
ow regime, it is improbable that a much simpler model can be found which gives the same

macroscopic behavior. On the other hand, using a more complicated model is only justi�ed if one is

interested in e�ects which go beyond the ones identi�ed in this work. This is certainly the case for

e�ects like the design of ramps or intersections, but seems|at least in �rst approximation|useless for

most studies on the freeway network level. In other words: If one is satis�ed with a numeric version

(i.e. including di�usion and noise) of the Lighthill-Whitham (LW) model for certain questions but

needs a microscopic version, then the approach presented here should be more than enough. It is even

better than discrete LW in at least one respect: It correctly reproduces the instability above �(q

max

).

For example, whereas discrete LW will always predict the same average queue before a bottleneck, the

particle model will allow both days without breakdowns and days with very severe breakdowns. This

can make a di�erence when, e.g., only the queue from the severe breakdown reaches back into, say,

another intersection.
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Moreover, together with our implementation results on di�erent supercomputers (Chapter 11) this

means that, on current supercomputers, it will be di�cult to �nd a faster microscopic tra�c simulation

model with the same phenomenology.
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Chapter 8

Some issues of tra�c in networks

The text now moves away from single lane tra�c 
ow considerations towards road networks with

ramps connecting di�erent segments. Such a road network could be the freeway network of the

German land Northrhine Westfalia, but it could also be a simple \toy" example. This chapter, the

�rst of three, reviews other work on network tra�c. The �rst section explains the con
ict User

Optimum vs. System Optimum. Section 8.2 explains tra�c management systems and congestion

pricing theories. In Section 8.3, it is reviewed how simulation models handle tra�c streams, which

is related to Section 8.4, about tra�c assignment methods, and Section 8.5, about origin-destination

information. Section 8.6 gives an overview of how two-dimensional cellular automata techniques have

been used for tra�c networks.

8.1 Nash Equilibrium vs. System Optimum

Again, as a �rst approximation, one would like to use the network infrastructure as e�ciently as

possible. Even if one discards environmental concerns, practicability, personal preferences, etc., there

is still the problem that \e�cient use" means something di�erent for users than for a global observer [3,

22]:

� A Nash Equilibrium (NE; also called User Optimum) is de�ned as a state where no user can

reduce his/here costs by unilaterally changing his/her behavior.

� A System Optimum (SO) is de�ned as a state where the sum of all individual costs is globally

minimal.

1

These system states are often in con
ict, because, as is common knowledge, individual interests rarely

coincide with global welfare. An example will be given in Chapter 9.

8.2 Tra�c management

Di�erent projects, as well in the U.S. as in Europe, such as PROMETHEUS, DRIVE, SCOPE, etc.,

attempt to make road tra�c safer and more e�cient (see, e.g., [54, 55, 70, 127]). I will shortly outline

1

Whereas all SOs need to have the same sum of costs, there can be more than one SO. However, one should take this

point from the pragmatic side, since in real, 
uctuating road tra�c, it is infeasible to �nd an exact optimum.
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the part of these projects which are most important here. This is the tra�c management part. The

idea of tra�c management is to guide vehicles in an e�cient way through the network, i.e.

� to give them routing information if they are in an unfamiliar area,

� to warn them of incidents and to guide them around incident locations in an e�cient way, and

� to redistribute tra�c such that the network is used more e�ciently.

The necessary data collection and data transmission are parts of the projects Advanced Transport

Telematics (ATT, in Europe) or Intelligent Vehicle Highway Systems (IVHS, in the U.S.). Advanced

Tra�c Information Systems (ATIS) and Advanced Tra�c Management Systems (ATMS) are intended

for driver information and tra�c management.

Providing routing information for unfamiliar drivers does not pose any big problems. For incident

management at least an improvement (if not an optimal solution) is foreseeable. For the third point,

however, the bene�ts are unclear. It depends (i) on in how far today's commuter tra�c is already

operating at a Nash Equilibrium, or could bene�t from better driver information, and (ii) on how

much one assumes a System Optimum to be better than a Nash Equilibrium.

Mahmassani and Peeta [102] report from simulation results a 15% advantage of the SO over the

NE, whereas Zallmann and K

�

onig [184] found practically no di�erence. Hall [55] expects possible

bene�ts of IVHS mostly in non-recurrent (i.e. caused by an incident) congestion. Emmerink et al [38]

evaluate, based on simulations using behavioral rules for travelers, possible bene�ts of ATIS systems as

a function of market penetration. Their results with respect to recurrent vs. non-recurrent congestion

are similar to Hall's.

Economists do not believe that it will be possible to push people towards an SO if that means a

disadvantage for the user [3]. They propose congestion pricing as a solution, and prove for a bottleneck

situation that, when the social cost of using the bottleneck equals the toll, then the SO is reached,

and each user pays exactly the amount of money he/she is ready to pay for the time he/she saves.

Social cost is de�ned as the sum of all additional costs one additional user imposes on all users.

MacKie and Varian [101] propose a similar method for the Internet. The problem is very similar indeed

since each longer message when submitted to the Internet is broken into pieces which are transmitted

in separate packets. And each packet searches its own path through the network.

Note that all these policies propose congestion pricing, not road pricing. That means that it is not the

use itself of the infrastructure which is priced, but the social costs one imposes to others (and himself)

by over-using it.

A problem with these policies so far is that it is unclear how to implement them in a spatial, 
uctuating,

and unpredictable environment. MacKie and Varian propose that packets carry a certain amount of

money which they use to pay congested parts of their travel. But what if, shortly before they reach

their target, there is a prohibitively expensive bottleneck? Something similar is true for road tra�c,

where it cannot be expected that commuters want to live with a toll which is highly 
uctuating from

day to day and from time slice to time slice just because congestion toll is supposed to match social

costs.

Thus, one has to develop this line of thinking further. Chapter 9 will present a situation where even in

a highly 
uctuating environment a slowly self-adjusting congestion toll leads to an acceptable result.

If people do not like pricing, other coercive measures might lead to success. In Chapter 9, one will

�nd an example where a simple tra�c light would already help considerably.
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8.3 Modeling tra�c streams in road networks

Since many tra�c assignment methods are directly coupled to simulation models, it is necessary to

review some basic features of network tra�c models. Contrary to Chapter 2 with the focus on tra�c


ow, this section will concentrate on issues which are related to tra�c stream management.

Two issues are of particular importance here: the implementation of directional information (trip

plans vs. turn counts), and the handling of queues or jams. Both issues are interrelated, as will be

seen.

8.3.1 Trip plans vs. turn counts

Most tra�c simulation models to date, even microscopic, use turn counts as data input. This means

that, for each intersection and each time slice, one either has the percentage or the number of cars

relating incoming to outgoing travel, i.e. the number of left turns, right turns, cars going straight, : : :,

for each incoming road.The opposite, basing the simulation model on trip plans (also called paths),

means that each car individually knows at each intersection where it wants to continue its trip.

2

The decision to use turn counts in the past was due to pragmatic reasons: Turn count data is much

easier available. Moreover, on a certain level of modeling, it does not make a di�erence. For example,

a macroscopic model based on the Lighthill-Whitham equations [31, 29, 133] produces an average over

possible tra�c situations as output [134]. Thus, as long as one uses average turn counts (for example

monthly averages of all weekdays) as input, then simulation and input data are compatible.

The situation becomes more problematic when unexpected incidents occur. Assume, for example, that

a road is suddenly blocked, e.g. by an accident (Fig. 2.2). Then, a model based on turn-counts has

no means to predict the resulting reorganization of the tra�c patterns. A model based on trip-plans,

however, can, based on behavioral rules or on a tra�c management strategy, re-plan the a�ected trips.

8.3.2 Handling of queues

All simulation models obey mass conservation and therefore handle queues in one way or the other:

If a segment cannot deal with a certain 
ow demand, and if vehicles have no alternative, the vehicles

have to wait somewhere. There are, however, di�erences in how realistic queues are handled:

� Macroscopic models [129] often handle 
ow-density-relationships on a link basis. If, for example,

an intersection at the end of a link is blocked, this immediately increases the average density of

the whole link.

� Point queue models [157] have queues before bottlenecks (e.g. intersections) which have no spatial

extension. Back-spill of jams, which produces grid-lock, will not occur.

� Deterministic models (e.g. 
uid-dynamical models based on the Lighthill-Whitham the-

ory [130, 31, 29, 133], but also deterministic microscopic models [17, 116, 117] or combined

approaches [154]), lead to average queues. Such models will give an deterministic answer to a

question if a certain incident will cause, say, a network breakdown or not.

� Stochastic microscopic models can produce di�erent scenarios from the same input data. For

example, sometimes a queue can spill back to another intersection and cause a network break-

2

I will, when that makes writing easier, personalize the car. DVU (driver-vehicle-unit) is used in some texts.
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down, whereas in the average, the queue does not grow that long. For obtaining interpretable

results, averaging over many di�erent scenarios may be necessary.

This method is the only one available if one is interested in 
uctuations, e.g. the probability that

a certain incident can lead to a network breakdown.

Note that the average itself can be di�erent from the averaging models, if, for example, the

network breakdown has enough weight in the averaging procedure. If one wants, for example,

obtain measures of e�ciency for a certain tra�c management strategy, then one has to take

network breakdowns into account, and if they do in fact happen, than deterministic models will

give a wrong answer.

The connection to the turn counts / trip plans issue is that, as soon as either the simulation or the

turn counts data or both are no longer averaged (for example in real time applications, where the

turn counts are not averaged), driving the model by turn counts is inconsistent as soon as 
uctuations

become large, e.g. by tra�c jams: For example, suppose a situation where the deterministic model

predicts, say, 500 vehicles at a speci�c intersection in a certain time slice. Meanwhile, in reality

all vehicles which want to make a left turn are caught in some jam somewhere, and there are only

300 vehicles, which all go straight or to the right. When using these turn-counts percentages, the

simulation will send too few cars to the left in this time slice. Research is necessary to clarify how

much averaging is necessary to avoid such situations.

There will be data assimilation methods to handle this, especially in real time applications, when one

does not want to give up the higher simulation speed of a macroscopic model. This is, though, not a

conceptually satisfying solution. A better solution is to directly drive the model by trip plans. This

does not ensure compliance with reality, but at least one can be sure that the simulation follows one

of the possible trajectories of the system in state space.

There are a number of models in the literature which could easily support trip plans. Nonetheless,

this is usually not the case. For example, both NETSIM and FREESIM (based on INTRAS) use turn

counts [146].

Meanwhile, there are some notable exceptions. CONTRAM moves packets of vehicles with identi-

cal origin-destination pairs through the network. Emmerink and coworkers [38] use a model where

300 packets are used for each simulation run. Yet, the use of packets is only possible as long as there

are enough vehicles with the same path in each space-time unit of the simulation. CONTRAM achieves

this by using time-steps of 15-30 minutes and by taking links as the basic unit of space. Emmerink

and coworkers use a corridor network, i.e. all vehicles start from the same node and drive to the same

node. In such a case, the number of possible paths is much smaller than in a full network. Cremer

and Meissner [29] consider only two routing alternatives and model them, in a 
uid-dynamical model,

as portions of the 
ow.

In terms of microscopic models, DYNASMART is a path-based microscopic simulation model used for

urban tra�c assignment [102]. Zallmann and K

�

onig [184] use a traditional turn-count based model

for the tra�c assignment, but completely vehicle-based models for the microsimulations. The demo

version of the TRANSIMS microsimulation [165] also uses trip plans. PARAMICS [181] includes

behavioral rules and therefore trip plans for travelers.
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8.3.3 Origin-destination information

Turn counts data itself does not give any information on correlations between turns, for example the

information if a vehicle making a left turn at a certain intersection is likely to make a right turn at

the next intersection.

Yet, turn counts data contains temporal correlations: Assume that one has, at a certain time and

at a certain intersection A, many cars making a left turn. Assume further that one has, at the next

intersection B and after the time one needs to drive from A to B, many cars making a right turn.

Than it is likely that these cars are the same. These are the kind of correlations which are used by

current methods of O-D estimation [27].

It is clear though that this method cannot reveal long distance correlations. Here, it seems more

promising to estimate O-D relations from demographic data, where one has, for example, information

on where people live and where they work [165, 153]. And then, evidently, one can run microsimulations

based on that data and validate the simulation results with turn counts or other observational data.

As mentioned above, a major reason that one currently uses turn counts to drive the simulation models

is that this data is, at least in principle, relatively easy to obtain: One just counts the cars. Origin-

destination (O-D) data is much more di�cult to obtain. It is though open which is the more economic

method when dealing with large systems. Reliable automatic counting systems seem di�cult to

develop [134], and it might be better in the long run to develop a method method based on demographic

data and simulation which can do with fewer sensors for validation and incident detection.

8.4 Tra�c assignment methods

8.4.1 Static equilibrium methods

A commonly used method in tra�c science is static equilibrium assignment, usually only called equi-

librium assignment [164, 184, 155]. The problem is equivalent to a static multi-commodity network


ow problem.

Commonly, people use a relaxation algorithm which works as follows:

(i) Assume that a network of nodes and links/arcs with link cost functions and a matrix of origin-

destination-streams (O/D-matrix) are given. Choose one of the streams.

(ii) For the O-D-stream, �nd the cheapest path through the network.

(iii) Calculate the resulting density on each link. Calculate link costs (for example travel time on

that link) from this density.

(iv) Take the next O-D-stream and go back to step (ii).

This algorithm is known in the tra�c science literature as All-or-nothing assignment method because

is assigns each tra�c stream at once. It collapses, for example, when there is an O-D-demand where

no path exists which carries the whole demand.

There are several variations of this general scheme in the literature, e.g.:

� In order to avoid the \all-or-nothing" problem, one can replace (ii) by [184, 155]

(ii') For the O-D-stream, calculate the shortest path through the network. Assign only 1=k of

the demand to it.



96 Chapter 8. Some issues of tra�c in networks

� More recent implementations often use a simulation model instead of step (iii) [164].

� The above scheme may only be taken as a �rst guess, which is followed by a relaxation algorithm

where small parts of the streams are exchanged [184].

Since in the assignment, each stream optimizes its own cost function, the result corresponds to a Nash

Equilibrium.

Note that the equilibrium assignment assumes a steady state solution, i.e. a solution where the tra�c

streams according to the O-D-matrix are stationary.

8.4.2 Queues

Static equilibrium assignment is obviously problematic for time-varying demands. But it completely

breaks down above capacity: Queues develop at the entrances of the overloaded links, and equilibrium

solutions become history dependent. In other words: Static equilibrium assignment assumes static

tra�c streams. Yet, under static and congested circumstances, queues would be in�nitely long.

Arnott and coworkers [3] treat the simplest case of this problem: A single bottleneck during the rush

period. It is assumed that, for a certain time, transportation demand through the bottleneck exceeds

supply, such that a queue develops at the entrance of the bottleneck. After the rush hour, the queue

decays due to reduced demand. One-dimensional bottleneck cases can be treated analytically.

Kuwahara and Newell [89] extend the idea to a single core city: It is assumed that workers want

to reach a point-like central business district (CBD) during the morning rush hour, and that queues

develop on all arterials leading to the CBD.

One option to deal with the queuing problem would be to make the assignment procedure time-

dependent, and then to use a simulation model to calculate the cost functions. However, as long as

the simulation model is driven by turn counts, the non-queueing planning process and the simulation

are incompatible. It is again the same problem as above, that, for example, all people who are supposed

to make a left turn at a certain intersection according to the assignment can be caught in a queue.

Meanwhile, the turn-counts keep on sending the predetermined percentage of all arriving people to the

left, which then is wrong. And the error is likely to amplify during later time-steps. Indeed, di�erences

between the simulation-based assignment and reality are reported [164].

One way out is to use a simulation model driven by individual trip plans in order to calculate the cost

function. The main reason why this is not done is that conventional microscopic models, when used

with trip plans, are computationally prohibitive, especially in an iterative assignment loop.

On the algorithmical side, it is only recently that congestion/queueing has been taken into account.

See the collection of articles in [126]. However, each of these papers has at least one of the following

restrictions: (i) No algorithmical solution is proposed. (ii) The algorithm is only valid if one has a single

destination. (iii) The algorithm does not take into account that the tra�c pattern will vary during the

driving time; in other words: A path is assigned to a driver when she enters the network, and this path

is optimized based on a snapshot of the current tra�c situation. Each of these restrictions prevents

the practical application for the dynamic congested tra�c problem. See [129] for a a framework for a

dynamic treatment of multidestination tra�c networks.
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8.5 Cellular automata models for tra�c in road networks

8.5.1 Two-dimensional cellular automata models on a grid

Two-dimensional cellular automata models [30, 112, 119, 166] are useful to understand the grid-lock

transition (also called jamming transition by several authors) occurring on overcrowded road networks:

A blocked intersection leads to a queue, which blocks an intersection somewhere else, etc., until a large

portion of the network is in grid-lock.

The CA models represent tra�c on a two-dimensional grid where vehicles can move to adjacent grid-

points in each iteration. In all the models so far, the vehicle dynamics follows the deterministic

asymmetric exclusion process, i.e. v

max

= 1 and p = 0 in the language of Chapter 3. Meanwhile, they

employ more sophisticated rules for making turns at intersections.

The models show that a grid-lock transition occurs at a certain vehicle density �

c

; above that density,

most or all vehicles are caught in a few very large grid-lock clusters; below that density, no stationary

grid-lock clusters exists. Yet, in these models the maximum 
ow is given entirely by the capacities

of the intersections, which is not always realistic, e.g. for arterials. Nagatani [118] investigates a case

where a portion of the intersections is two-level.

8.5.2 Road networks composed of cellular automata segments

A more realistic, but more laborious, approach is to connect one-dimensional CA tra�c 
ow segments

to road networks. This is similar to conventional microscopic tra�c 
ow simulation [124], except that

the CA model will run much faster (see Chapter 11).

As mentioned in Chapter 2, Sch

�

utt [151] describes a tool-box of urban and rural roads and freeways

plus the corresponding intersections in order to construct road networks.

Rickert [141] reports an implementation, based on this work here, with two lanes in each direction for

arbitrary freeway networks. He describes results of extensive simulations with a network implementa-

tion of Northrhine-Westfalia.

Both models do not, however, implement trip plans, the missing of which have been identi�ed as one

of the major shortcomings in current methodologies.

I will, in the next two chapters, describe results obtained with a single-lane network implementation

which includes trip plans.
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Chapter 9

Predictability vs. network performance

This chapter is the �rst of two dealing with tra�c in road networks. It considers a simple road

network where, using a basic model of human decision behavior, issues such as User Equilibrium

and Congestion Pricing are investigated in a simulation. An important results will be that tra�c

management makes tra�c indeed more e�cient, but also more 
uctuating in certain quantities and

therefore less predictable.

The chapter starts with the introduction of a new quantity, the vehicle-to-vehicle 
uctuations for

trip times. Then it introduces the speci�c network example which will be used, discusses tra�c

management aspects and the resulting set-up for the simulations. Section 9.3 presents the simulations

results, followed by a summary.

9.1 Variability and predictability of travel times

Measuring the life-time distribution of tra�c jams as in Chapters 5 and 6 is convenient for a theoretical

understanding, but it is not very useful for everyday tra�c. The probably most important reason for

this is that life-times of jam-clusters are practically not amenable to measurements in reality.

A quantity which is much easier to measure and which is extremely relevant in the context of trans-

portation management is the individual travel-time and its variation from vehicle to vehicle using the

same route. For the following simulations, we still use a closed loop of size L. We de�ne a subsegment

of length l < L and measure, for each car, the time t

l

between entry and exit of this subsegment.

The relative variation of travel-times is de�ned as

�(t

l

) :=

p

h (t

l

� h t

l

i)

2

i

t

l

:

h : : :i denotes the average over all cars during the simulation; h t

l

i therefore is the average travel-time

for all cars during the simulation.

This can be seen as a measure of the predictability of the trip time. When a vehicle enters the

measurement section, one would like to tell the driver how much time he will need. One would tell

him h t

l

i as expected time; and for the expected relative error of this prediction one would use �.

Results of these measurements as a function of density are shown in Fig. 9.1. A system of length

L = 10

3

is used where trips along a designated subsegment of l = 100 are measured. The simulation

runs, after 10

4

iterations to let the transients die out, for 10

5

time steps, and every time a car �nishes
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Figure 9.1: Travel time and variations of travel time as a function of density. System size L = 10

3

, length of traveled

subsection l = 10

2

, measured time T = 10

5

time-steps.

a complete travel along the measurement subsegment, its travel time is taken into account for the

average.

One clearly sees that both the travel time and the vehicle-to-vehicle 
uctuations are approximately

constant up to a density around 0.09. There, the travel time starts to rise as a function of density.

Meanwhile, the 
uctuations go up very steeply and reach a maximum near � = 0:11. In other words,

one can not only show that the region of maximum throughput shows near-critical behavior in a

theoretical sense, but also that this behavior has practical consequences: It implies that, passing from

slightly below to slightly above capacity, one comes from a regime where the travel time is predictable

with an accuracy of approx. �3% to a regime where the error climbs up to more than �65%.
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9.2 A simple transport network

Let us now move away from the single lane closed loop system to a single lane highway network with

ramps connecting the di�erent segments. The travelers on this network have route plans so that

they know which ramps they need to exit to reach their individual destinations. We assume that

each traveler always has the same origin/destination pair. Each traveler remembers the last travel

time for each alternative route between his or her origin and destination. The network may have

tra�c density sensors at speci�ed locations which can be used to identify congested areas and perhaps

introduce toll for the use of such links. The travelers are able to re-plan depending on their aggregated

transportation costs which is their remembered travel time plus eventual toll. Such a sensor setup is

an example of a (Advanced) Transportation Informational System (ATIS), and the introduction of toll

for the use of highly congested links is a simple example of an (Advanced) TransportationManagement

System (ATMS) [55, 70]. The rationale behind such a toll policy is to make the highway tra�c more

e�cient by pushing a larger part of the system towards the density corresponding to maximum 
ow.

Interestingly, this implies that more tra�c intentionally will be moved into the critical regime as de�ned

above which in turn will increase the 
uctuations of the travel times as well as the non-predictability

of transportation system dynamics. This e�ect is the topic of this section.

9.2.1 Ramps

In order to simulate a network, one �rst needs a reasonable algorithms for transferring vehicles from

one road to another at junctions. This involves two parts: Including the vehicle into the tra�c stream

on the target road; and then deleting it from the source road.

Unfortunately, introducing an additional car into a given tra�c stream can cause problems. Just

adding the in
ow to the tra�c on the main road easily leads to disturbances which (i) block the tra�c

on the main road, and (ii) lead to an out
ow, downstream from the ramp, which is below capacity.

For this reason, we chose an algorithm where access to the main road is only possibly when there is

su�cient space between vehicles. We believe that this is realistic enough to represent metered ramps

(i.e. ramps with regulated access), and since we are often concerned with the analysis of future tra�c

systems, it seems, in a �rst step, appropriate to model a technically advanced tra�c control system

here.

The algorithm works as follows. Imagine a ramp, as in common experience, as two parallel stretches

of road; these parallel stretches have a length of 5 sites in the model. The target stretch is part of

a longer road and therefore is connected at both ends, whereas the source stretch is only backwards

connected. If there is a vehicle (velocity v) on the source stretch, then

� it looks, on the target stretch, for the next car ahead (which may be its neighbor; ; gap

forward

);

and

� it looks for the closest car behind on the target stretch (; gap

backwards

).
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Figure 9.2: Fundamental diagram for ramp. A circular segment of length L = 10

3

may be partially bypassed by a second

segment. 50% of the tra�c uses the bypass; at the end of the bypass, it again merges with the main stream of the tra�c.

The measurements were taken at the part of the main segment where no bypass exists.

� Then the following rules are applied:

if (gap

forward

> v & gap

backwards

> v

max

)

change lane

v = max(v

max

; gap

forward

) on new lane

else

v = 0

(�)

endif

One may imagine that this is emulating a ramp metering system, where a technical device upstream

of the ramp determines where to �t in a car. The car then gets a green light and arrives at maximum

speed, in between two other cars on the target road.

In line (�) one has to take some precautions that the vehicle really does not move, which depends on

the algorithmical structure.

The details of this algorithm will probably not matter for our results, as long as it allows maximum


ow downstream from the ramp. That this indeed is the case is shown in Fig. 9.2, which may be

compared to Fig. 3.6. It gives the fundamental diagram for a system with two road segments where

one is a closed loop and the other one provides an alternative route for a certain length, connected to

the main road by one exit and one entry ramp. Half of the vehicles use this alternate route. Density

and throughput are measured on the undivided part.
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Figure 9.3: Schematic sketch of the network used for the simulations. Vehicles drive from A to B and can choose between

the direct route and the much longer alternative route. On the direct route, the encounter a bottleneck. Other vehicles

drive from C to D.

9.2.2 Nash Equilibrium versus System Optimum: An example

The con
ict between Nash Equilibrium (NE) and System Optimum (SO) can perhaps best be illus-

trated in terms of a simple transport network example (a variation of [22]), especially as we will use

the same example for simulation experiments later on.

Imagine a road from A to B with capacity q

max

, with a bottleneck with capacity q

bn

< q

max

before

B (Fig. 9.3). Further imagine that there exists an alternative, but longer route between A and B. On

the direct route from A to B additional travelers from C have to go to destination D. First assume

that there are no travelers with origin in C.

If many drivers are heading from A to B, they will, without knowing anything about the overall tra�c

situation, all enter the direct road. In consequence, a queue builds up from the bottleneck.

A Nash-Equilibrium is de�ned as a situation where no agent (= driver) can lower his or her cost (=

decrease travel time) by unilaterally changing behavior. Assuming that the drivers have complete

information, this implies that, in the NE, their waiting time in the queue exactly compensates for the

additional driving time on the alternative route.

Now assume that there are additional travel demands from C to D (see Fig. 9.4), with the exit to D

lying shortly before the bottleneck. Obviously, this tra�c is su�ering from the bottleneck queue

upstream (= left) of the bottleneck, and from these travelers' point of view it would be much better if

the queue were located to the left of the ramp that the travelers from C use to enter the link. Note that

moving the queue further upstream does not make any di�erence for the NE of the drivers originating

in A.

This could, for example, be achieved by a tra�c light near the entrance ramp from C. This light would

restrict tra�c 
ow from A to the bottleneck capacity. As a result, tra�c between the tra�c light and

the bottleneck would 
ow freely, and the tra�c from C to D would be much less disturbed.

Note, however, that in more complicated situations such actions are no longer possible. In our case,

already some travel demand from A to D would make this tra�c light a doubtful solution. And note,

in addition, that the steady state optimum solution for our system would be to send all A-B travel via
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Figure 9.4: Schematic network representation with tra�c, showing time-steps 10, 30, and 210 of a particular simulation.

Tra�c entering at (A) is bound for (B) and may use the \direct route" or the \alternative route". Tra�c entering

at (C) is bound for (D). The bottleneck is denoted by V1V1V1V1V1 (maximum speed 1). One observes that the tra�c

coming from (C) has di�culties entering into the main stream; and|in time-step 210|a disturbance denoted by (*)

has traveled backwards from the bottleneck.

the long route: In this way, throughput is maximized. However, for rush hour tra�c, such a solution

is no longer optimal.

A rather general way to push a tra�c system from an NE towards an SO is to keep the density on each

road at or below �(q

max

), the density of maximum throughput. Then there would not exist queues

anywhere in the system, since queues are regions of high density, This would ensure that additional

tra�c which is not using the bottleneck could proceed undisturbed. Note that this could for instance

imply (in the limit of a perfect implementation) that drivers have to wait to enter the road network

until su�cient capacity is available for them.

9.2.3 Egoistic drivers: Travel plans and individual decision logic

In our simple network, there are only two di�erent types of travelers: Travelers from A to B, and

travelers from C to D. Travelers from A to B can choose between the direct and the longer, alternate

route. In order to make decisions, each AB-driver remembers his or her last travel-time on each of the

two routes.

A traveler calculates expected costs [3] according to

cost

direct

= toll + � � t

direct
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and

cost

alt

= � � t

alt

where cost

direct

and cost

alt

are the expected costs for the two route choices, toll is the toll for the

current day (see below), t

direct

and t

alt

are the remembered travel times for each route, and � is a

conversion factor which re
ects trade-o� between time and money. � could be di�erent for each driver,

but is uniformly equal to one in this work. � re
ects \standard values of time", VOT, which can be

looked up for tra�c systems [6].

Then, each driver chooses the cheaper route, except that there is a 5% probability of error (which

gives each driver a chance from time to time to update her information about the other possibility).

As long as the tra�c dynamics is deterministic and completely uniform, this scheme leads to a Nash

equilibrium [3]. However, in our case of stochastic tra�c dynamics, this is no longer true: There is no

easy way to de�ne complete rationality because the interactions become too complicated. It is therefore

better to speak of `bounded rationality', which means that individual decisions are plausible instead

of mathematically optimal. By dealing with stochastic tra�c dynamics, the notions of economic

equilibrium theory have to be used with care.

9.2.4 Space-time dynamics

Before we discuss how to determine the toll, we shortly turn to a space-time plot of the direct route

from A to B (Fig. 9.5). As before, vehicle movement is to the right and time is downward. The �gure

contains the �rst 300 time-steps, and then time-steps 2000 to 2950.

The major dimensions of the system are:

� direct route from A to B: 1021 sites (full size of plot)

� cars leave for the alternative route at (a)

� cars coming from C enter at (b) and leave again at (c)

� the bottleneck (v

max

= 1) is at (d).

20% of the A-B vehicles are preselected to leave at the junction for the longer route, as can be seen in

the picture by a change of the gray shading at (a). The entry-point of the C-D (b) vehicles is marked

by the permanent existence of a disturbance, which is very often connected to other disturbances

which travel \backwards" through the system.

The point of exit for the C-D (c) vehicles is covered by dense tra�c most of the time, but it may

be seen near the top right of the �gure as a change in gray shading and as a sudden stop of some

trajectories.

The bottleneck (d) is visible at the very right edge of the �gure, where the trajectories of the vehicles

are diagonally pointing downwards to the right.

The striking feature of this picture is the graphic illustration of the highly dynamic and nonlinear

structure of tra�c patterns. Vehicles do not wait orderly in front of the bottleneck, but instead self-

organize into backwards moving jam waves. If one of these waves reaches back into an area with higher

density (in our case upstream, i.e. to the left, of (c)), then the survival probability of this jam wave

suddenly becomes much larger, and it may move deeply back into the system. A single snap-shot of

such a tra�c situation (see time-step 210 in Fig. 9.4) cannot uncover the origin of such a wave (cf. the

arguments of Chapters 5 and 7). The implications to tra�c measurement and modeling are important.
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Figure 9.5: Space-time plot of the main segment (A-B) of the network. The cars are injected at the left. At (a), a change

in gray indicates the junction where vehicles to the alternative route leave. (b) marks the position of the on-ramp for

travel from C. At (c), another change in gray indicates the o�-ramp to D. Very close to the right (d) is the bottleneck,

together with jams emerging from this region and traveling backwards into the system.
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Something similar is true for the region where the C-D tra�c stream enters the main road. It is not

a process where both tra�c streams line up to wait until they can jointly proceed. Instead, it is often

possible that the additional tra�c enters into the main stream without causing a major disturbance

right away. But the locally enhanced density is unstable and leads sooner or later to the initiation of

a disturbance, which then travels backwards to the junction (and often beyond).

Both e�ects cannot be described by deterministic models, neither by microscopic [116, 117, 172] nor

by 
uid-dynamical [31, 133, 80] ones.

9.2.5 Congestion detection and congestion pricing

We now come back to a further determination of the tolling scheme. For simplicity, assume that the

toll is based on some tra�c observation of the last period (day). Let us further assume that each

driver only drives this trip once in each period (day). Note that this is over-simplistic, and further

investigations are needed to make it work for, e.g., workdays versus weekend.

Algorithmically, we proceed as follows: (i) The tra�c microsimulation is executed for one period. Each

driver updates her travel time information just after arrival at the destination. (ii) After all cars have

reached their destinations, the toll is adapted according to the average value provided by the sensor.

(iii) Each A-B driver makes her route choice. (iv) The next microsimulation period starts. | This

results in a day-to-day evolution of the decision pattern [104]. The procedure is actually very similar

to standard multi-period game-theory [5], except that we obtain the pay-o� from the microsimulation

and not from a prede�ned matrix.

A critical question remains: Where should one place the tra�c sensor(s) for the determination of the

toll? Placing it inside the bottleneck is not very useful, because tra�c there is always at or below the

\e�cient" density (i.e. at or below the density corresponding to maximum throughput).

Intuitively, it would make sense to measure the length of the queue before of the bottleneck. However,

as we showed in the last section, the dynamics of the tra�c does not lead to the built-up of a regular

queue but to a system of back-traveling jams instead, which makes this approach infeasible.

Since there is no obvious solution, it makes sense to start with something simple and local. It was

therefore decided to use the temporal and spatial average density on the segment upstream of the

bottleneck, i.e. between the exit to D and the bottleneck. A local as opposed to a global strategy is

for example discussed by Faieta and Huberman in the context of tra�c light control [40].

Then, the next question is, which should be the target density for the control algorithm? When

one is measuring tra�c upstream of a bottleneck, then stationary tra�c can never reach maximum

throughput: Either tra�c operates at densities corresponding to 
ow rates lower than the bottleneck

capacity, or dense tra�c builds up. Tra�c can only \use" the part of the fundamental diagram which

is below the capacity of the bottleneck; in consequence, densities are either far below or far above the

ones corresponding to maximum throughput [56, 132, 69, 172].

However, having some knowledge about the bottleneck is not really helpful: In a more complicated

tra�c network, it may be the case that further downstream of one bottleneck there is another one,

which has even lower capacity. Or the bottleneck may be the on-ramp to a crowded major road: Here

the performance of the bottleneck depends on the time-dependent and 
uctuating load on the main

road.

We therefore again follow a simplistic and completely local approach, which will nevertheless prove

to be quite e�ective. Assume that the toll is operated by a local \toll agent", who does not have
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any global knowledge. However, she knows the fundamental diagram (
ow as function of density) of

her sensor area. If she wants to keep the tra�c at maximum 
ow, she has to keep the density in the

correct range, i.e. near � = 0:08. We implement this by the following rules:

if ( � < 0:06 ) then

toll = toll� delta

else if ( � > 0:10 ) then

toll = toll+ delta

endif ,

where delta is an external parameter.

According to our arguments above, is not obvious that this approach will produce meaningful decision

behavior: The toll agent tries to keep the tra�c at a density regime which is dynamically impossible

because of the bottleneck downstream. It is not clear, a-priori, what e�ect this will have, and it was

one of our main points of interest how this control mechanism would work.

9.3 Simulation results: How to play tra�c games

9.3.1 Technical set-up

In the following, we describe one particular simulation run in more detail. We used a network of

overall size 1962 sites, composed of the following parts:

� direct route from A to B: 241 sites (smaller than for Fig. 9.5 to reduce computational demand)

� alternate route from A to B: 1570 sites (much longer than direct)

� connection from C to main route: 103 sites

� connection from main route to D: 48 sites

� length of the section shared by A-B and C-D-travelers: 101 sites

� thus, overall length from C to D: 252 sites

� length of bottleneck (with maximum velocity reduced to one): 10 sites

� position of the bottleneck: starts 20 sites before reaching B

The density �

toll

for the update of the toll is measured between the junction where the vehicles heading

for D leave the main route, and the start of the bottleneck.

We have N

AB

= 16000 vehicles which want to travel from A to B, and the same amount N

CD

= 16000

which want to travel from C to D. At each \day" of the simulation, they are lined up outside the

simulated system in the same sequence; and they enter the system at their respective entry points as

soon as the simulated tra�c allows it (cf. Fig. 9.4).

When the vehicles enter the system, they already have decided on their travel plans, so they just

execute these plans. The simulation runs until all vehicles have reached their respective destinations.

Then the toll is updated and drivers decide on their route for the next day, as described above.
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Figure 9.6: Simulation output for 200 iteration of the simple corridor network model. Time-steps 1-50: No adaption;

51-100: drivers can choose alternative route; 101-200: drivers can choose alternative route, and the toll adapts in order

to keep the density at the speci�ed level. Top: Average trip times for the direct and for the alternative route from A to B

as well as for the route from C to D, and toll for the direct route from A to B. Middle: Vehicle-to-vehicle 
uctuations of

trip time for the direct and for the alternative route from A to B. Bottom: Densities on the segment shared by A-B-direct

travelers and C-D-travelers, on the segment shortly before the bottleneck used for determination of the toll, and on the

alternative route from A to B.

9.3.2 A simulation of 200 periods (days)

We describe 200 days of a simulation where the toll was kept at zero during the �rst 100 days, and in

addition all A-B-travelers were forced to use the direct route during the �rst 50 days.

Fig. 9.6(a) shows results for the trip times and the adaptive toll, Fig. 9.6(b) the vehicle-to-vehicle

variations of the trip time (as de�ned earlier), and Fig. 9.6(c) the day-averaged density, on selected

road sections. These road sections are: (i) the section where the density for the toll adaption is

measured, (ii) the section of the main road between the on-ramp from C and the o�-ramp from D,

and (iii) the alternative route.
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Even when allowed (i.e. after day 50), not many of the A-B drivers use the new option of the alternative

route. This is to be expected, since it is more than six times longer than the direct one. In consequence,

travel times and 
uctuations do not change much.

After day 100, the adaptive tolling starts and fairly quickly reaches a stationary value around 260

(Fig. 9.6(a)). As the \toll" line in Fig. 9.6(c) indicates, this keeps indeed �

toll

near the speci�ed range

between � = 0:06 and 0:10. In addition, the density on the main segment (used by both A-B and C-D

travelers) drops to around 0:11, above, but close, to the density of maximum throughput.

Travel times for C-D and for A-B-direct travelers decrease (Fig. 9.6(a)); and the toll just o�sets the

time gain for use of the direct route: time

direct

+ � � toll � time

alternat:

; remember that � = 1.

Vehicle-to-vehicle 
uctuations (Fig. 9.6(b)) for the use of the alternative road increase from ca. 2% to

around 12%, and for the use of the direct road from ca. 11% to around 42%. Moreover, the day-to-day


uctuations also seem to go up in all measurements.

All this is in agreement with our intuition that tra�c management can indeed make tra�c more

e�cient, but may in addition lead to higher 
uctuations and, as a consequence, lower predictability,

since the system is driven closer to capacity and thus to the edge of chaos.

One should distinguish between two di�erent kinds of 
uctuations: Fluctuations due to the dynamics,

and 
uctuations due to the learning. The 
uctuations in the latter might be due to the speci�cs of the

chosen learning scheme, especially the lack of historic information beyond the last try. More realistic

assumptions about the learning and en-route information are claimed to avoid that [6, 38]. However,

the results for the vehicle-to-vehicle 
uctuations (i.e. the � as de�ned in the text) only depend on the

fact that the tra�c density is driven towards the critical value. A less 
uctuating learning scheme

should therefore even increase our values for �.

It should be emphasized that the quantity of the vehicle-to-vehicle and therefore the prediction error

as de�ned above can only be found in a microscopic model.

9.4 Summary and discussion

The predictability of travel times sharply decreases when the density increases above the density of

maximum throughput (near-critical regime). Therefore, tra�c management will not only make tra�c


ow more e�cient, but will also drive large portions of the system towards the critical regime. The

main reason for this is that the most e�cient use of a tra�c system takes place when all parts operate

at densities near capacity 
ow. Systems designed for the management of tra�c 
ows will reroute

tra�c from overcrowded roads to under-crowded ones, thus driving both closer to criticality.

1

Once

tra�c is near the critical region, further control inputs will have unpredictable consequences.

This implies that the approximation of deterministic, predictable tra�c patterns will be less and less

correct the more one approaches high performance of the tra�c system. In consequence, tra�c assign-

ment methods based on relaxation to (time dependent) equilibrium would no longer be meaningful:

The changes in the tra�c patterns due to one relaxation step would get lost in the changes due to the

inherently 
uctuating dynamics, and the algorithm would never converge. An open question is in how

far one can replace the equilibrium quantities by statistical averages (e.g. many Monte-Carlo runs);

this is a topic of future research.

1

Technically, it should be remembered that tra�c at maximum 
ow is not exactly critical, but shows critical properties

up to a certain cut-o�, provided by the 
uctuations at free driving, as discussed in Chapter 7.
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One envisaged way [102] of pushing drivers towards system-optimal behavior is to give each driver

only individual route guidance instead of complete tra�c information. If one doubts that this will

lead to high user acceptance, then congestion pricing seems to be the only alternative. Our simulation

results support the idea that already locally operating agents can achieve this in an e�cient way.

In the text, the case of tolling on a speci�c road segment upstream of \the" bottleneck is discussed.

However, this demands prior knowledge about the system. Yet, one can imagine a completely local

algorithm in the following way (see also [101]): Assume that every road segment in the system is

operated by a simple economic agent. This agent wants to keep the operation of the segment as

e�cient as possible, and the only measure she has is to go up or down with the toll. The agent

knows the performance characteristics (i.e. throughput q as a function of density �) of her segment,

and from this she obtains the density which corresponds to maximum 
ow and therefore to maximum

road performance. The agent then tries to keep the density on her segment at this particular density,

increasing the toll when the density becomes too high, and else decreasing it. In a real network, we

would expect that the toll for most segments turns out to be zero.

This tolling scheme gives the impression that every agent locally drives her segment towards criticality

(= maximum 
ow), but the situation is more complicated. In most cases, it is not the tra�c inside

bottlenecks which is tolled, but the overcrowded segments upstream of the bottlenecks. But because

of the bottleneck, these upstream segments usually cannot operate at maximum throughput: As soon

as the incoming 
ow is more than the bottleneck capacity, dense tra�c builds up, and the segment

switches from operation far below to far above the critical point (see above). Nevertheless, our results

show that this still leads to having more parts of the network near criticality, as a result of collective

e�ects.

In an economic context, we therefore have a local aiming for high performance, which happens to

coincide with criticality. But even though the criticality very often cannot be reached locally by this

mechanism, it drives the global system closer towards criticality: Local maximization of e�ciency leads

to global criticality [8].

Or in short: The fact that, in a complex system, high performance often has the downside of high

variability seems also to be true in transportation systems.
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Appendix A

Computational details for life-time

measurements in the Cruise Control Limit

For the results in Chapter 5, a \vehicle-oriented" technique was used. Vehicles are maintained in an

ordered list, and each vehicle has an integer position and an integer velocity. For single lane tra�c,

passing is impossible, and the list always remains ordered.

The following is an algorithmical version of the velocity update of the model:

for all vehicles do in parallel

if (v < v

max

or gap < v) then

if (gap > v) then

v := v + int(0:5 + rnd())

else

v := max(gap� int(0:5 + rnd()); 0)

endif

endif

enddo ,

where rnd() gives a random number between 0 and 1, and int(a) gives the integer part of a. Note

that, because of integer arithmetic, expressions like gap > v and gap � v + 1 are equivalent.

The simulated system is, for all practical purposes, in�nite in space. The idea is comparable to a

Leath-Algorithm in percolation [94], which also only remembers the active part of the cluster.

As described, a jam-cluster is surrounded by deterministic tra�c. Let us assume that the leftmost

car of this jam has the number i

left

and is at position x

left

(similar for the rightmost car). Cars are

numbered from left to right; tra�c is 
owing from left to right.

To the right of car i

right

, everything is deterministic and at maximum speed, and, in consequence,

nothing happens which can in
uence the jam. Therefore, not simulating these cars does not change

the properties of the jam. Moreover, as soon as car i

right

becomes deterministic, it can never re-enter

the non-deterministic regime. Therefore, car number i

right

� 1 becomes the new rightmost car, and

car number i

right

is no longer considered for the simulation.

To the left of car i

left

, the situation is similar. The only information that is needed is the sequence of

the gaps (gap

i

)

i

of the incoming cars. Just before car i

left

� 1 enters the jam, one more car is added

at the left, with gap

i

left

�2

.
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It is obvious that, with this computational technique, the only restriction for the spatial size is given

by the memory of the computer. Since our model is one-dimensional, this has never been a problem.

A remaining question is how to obtain the sequence of gaps (gap

i

)

i

of the incoming cars, especially

for the out
ow situation. One possibility would be to �rst run another simulation of the out
ow from

a mega-jam. Cars leave this mega-jam, drive through a regime of decreasing density, and eventually

relax to the deterministic state. One then records the gaps between these cars, writes them to a �le,

and reads this �le during the other simulation. Apart from technicalities (avoiding the intermediate

�le), this is the technique we adopted in our simulations.

Our program runs with approximately 270 000 vehicle updates per second on a SUN Sparc10 worksta-

tion; and since the critical density is �

c

� 0:0655, for v

max

= 5 this corresponds to 270 000=0:0655 =

4:1 � 10

6

site updates per second. This includes all time for measurements and for the production of

the gaps of the incoming cars.

The numerical results cannot resolve the question between logarithmic corrections for the width w(t)

or an exponent di�erent from 1=2, in spite of data obtained over six orders of magnitude in time. The

reason for this is a large \bump" in the measurements of the width. Simulations of larger systems would

have been helpful. The time complexity for our questions is O(t): As shown above, when averaging

over all started clusters, the number of active sites, hn i

started

, is constant in time: hn i

started

(t) � t

0

.

When t

co

is the numerically imposed cut-o�, then one performs for each started cluster in the average

� t

co

updates of a vehicle. From experience, � � 5 for v

max

= 5.

In other words, in order to add another order of magnitude in time, with the same statistical quality

as before, one would need a factor of 10 more computational power. However, each of our graphs

already stems from runs using 4 or more Sparc10 workstations for 10 days or more. And using a

parallel supercomputer seems di�cult: Standard geometric parallelization is ine�ective because most

of the time the jam-clusters are quite small, and in consequence all the CPUs responsible for cars

further away \from the middle of the jam" would be idle. More sophisticated load-balancing methods

might be a solution.
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Labeling of jam clusters on a massively

parallel computer

This appendix contains the technical details of the cluster labeling techniques which were used for the

lifetime measurements in Section 6.1.

At �rst, \free" cars and \slow" cars are de�ned: After the deterministic part of the update and before

the randomization step, all \free" cars have velocity v = v

max

. One therefore de�nes all cars with

v < v

max

at this point as \slow". One then looks for \clusters" of slow cars in the model and measured

the lifetime of these clusters. Di�erent jams are marked by di�erent labels, and the jam of each label

lbl is active between t

start

(lbl) and t

end

(lbl). Initially, t

end

= 0 and t

start

= t

max

are set for all lbl. (t

max

is the total number of iterations of the simulation run.) Then, at each time step after the deterministic

and before the random part of the velocity update, the following is done:

� All \fast" cars get a very high label number lbl

max

, with t

start

(lbl

max

) = 0 and t

end

(lbl

max

) =

t

max

.

� Being \slow" (in the sense of the above de�nition) can in the model only be caused by two

reasons: Either the car n had to slow down because the next one ahead n+ 1 was too close, or

the car has not yet accelerated to full speed due to a jam which it just has left. Therefore,

t

start

(n; t) = min[t

start

(n+ 1; t� 1); t

start

(n; t� 1); t] :

In words, this means that if two di�erent jams may be the origin of n's slowness, then the

algorithm selects the older one.

� Then the label is set to the one of the selected jam:

IF t

start

(n; t) = t

start

(n+ 1; t� 1) THEN

lbl(n; t) = lbl(n+ 1; t� 1)

ELSE IF t

start

(n; t) = t

start

(n; t� 1) THEN

lbl(n; t) = lbl(n; t� 1)

ELSE

lbl(n; t) = newlbl

ENDIF

where newlbl is a new label not yet used.

� Next, t

end

is updated: t

end

(lbl(n; t)) = t.
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The overall result of this labeling is that every vehicle which becomes \slow" without another \slow"

car as a cause originates a new jam with an associated lifetime. When one jam splits up into several

branches, they all obtain the same label because they have the same origin. In consequence, only

the branch which stays \alive" the longest time determines the lifetime of this speci�c jam. When

two branches completely merge together, the \older" one takes over. The younger one then no longer

exists, but it is counted for the statistics because it had its own independent origin.

This algorithm is implemented on a Parsytec GCel-3 parallel computer, where up to 1024 processors

could be used. The dynamics itself is implemented in a \vehicle-oriented" way as already explained

earlier. Since, in single-lane tra�c, the list of particles remains ordered, one can distribute the model

by placing N=p consecutive vehicles on each of the p processors. This results, for large system sizes,

in a computational speed of 8:5 � 10

6

particle-updates per second on 512 processors, compared to

0:34 � 10

6

on a Sparc10 workstation. (At a density of � = 0:08, this corresponds to 106 � 10

6

and

4:25 � 10

6

site-updates per second, respectively.) But for a smaller system size of L = 10

5

(� = 0:08)

the computational speed on 512 nodes decreases to 3:1 � 10

6

particle-updates (= 39 � 10

6

site-updates)

per second.

For the parallel cluster labeling, the implementation follows the idea of Ref. [43]. That means that

labels are assigned locally on the processors, and only labels that touch boundaries are exchanged with

the neighbors. After the labeling, information on \active" labels is exchanged by a relaxation method

(see Ref. [43]) to the leftmost processor which has this label in use. By this method one keeps track

of \active" jams, and lifetimes of \dead" jams (i.e. cluster labels which were no longer in use) could

be recorded.

For su�ciently large system sizes, the computational speed decreases by a factor of four due to the

labeling; but for smaller systems of size L = 10

5

and � � 0:08, 512 processors are ine�cient. The

following table shows computational speeds (in MUPS = Mega Updates Per Second = 10

6

site-updates

per second) for these parameters (� = 0:08):

number of computational nodes 32 128 512

speed w/o labeling 6.8 27 106

speed with labeling 1.5 5.5 5.7

In consequence, usually 128 processors per job were used. About �ve days of computing time on

512 processors (4� 128) were needed for Fig. 6.1.
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Enumeration of the 10 shortest network-paths

C. Moll has developed a short recursive procedure to enumerate the 10 shortest paths between any set

of nodes in the freeway network of NRW. For completeness, the main procedure of this algorithm is

given in the following. Note that the algorithm was developed for a speci�c problem (the network data

was given in a certain form; the number of nodes and edges was known; the algorithm had only to

run once to produce the simulation input; etc.), so that neither high computational speed nor general

usefulness were an issue.

The algorithmical version is as follows; a more textual description is given below. The algorithm works

on a directed graph G(E; V ), where E is the set of the edges and V is the set of the nodes or vertices.

global Length(1 : jEj) /* contains the lengths of all edges */

global Dist(v; w) /* distance from v to w via shortest path */

global bound /* maximum length of the 10 shortest paths found so far */

global CurrentPath(1 : jV j) /* list which contains all edges of the current path so far*/

global Touched(1 : jV j) /* 
ag to mark nodes which have been touched */

subroutine FindAllPaths ( v; CurrentLength; CurrentDepth )

Touched(v) := true

if ( v = t ) SavePath ( CurrentLength )

for all edges e adjacent to v do

w := target(e)

if ( not Touched(w) & CurrentLength + Length(e) +Dist(w; t) < bound ) then

CurrentPath(CurrentDepth) := e

FindAllPaths ( w;CurrentLength+ Length(e); CurrentDepth+ 1 )

CurrentPath(CurrentDepth) := NULL

endif

endfor

Touched(v) := false

return

The algorithm is started for each origin-destination pair (s; t) at s. Then, FindAllPaths is called with

the arguments s, CurrentLength = 0, and CurrentDepth = 0.

Now assume we are in the middle of the recursive enumeration. v is the current node, CurrentPath

is the list of edges we have used to reach v, CurrentDepth is the number of edges in this list (minus
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one), bound is the maximum of the 10 shortest paths from s to t found so far. FindAllPaths now marks

v as touched; because of the recursive algorithm, all nodes which are in CurrentPath are marked as

touched. For all outgoing edges from v it is checked if the target nodes are untouched, and if the path

from v via this node and then using the shortest distance to t is shorter than bound. If both is true,

the outgoing edge is added to CurrentPath, and FindAllPaths is called again, now starting at the

new node. If this new node happens to be t, CurrentPath is saved in the list of the so far known 10

shortest paths, and bound is adjusted.

Dist(w; t) is pre-calculated, using a Dijkstra algorithm starting at t.

Thus, the algorithm recursively tries all paths from s to t, discarding those which have no chance to

belong to the 10 shortest. It is good to have an initial guess for bound; in consequence, the algorithm

starts with a very low initial bound and repeatedly increases it until 10 paths are found.
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A continuous version

In order to investigate if there is a deterministic model which shows more complex (and therefore

more realistic) behavior than the case of Chapter 4, a continuous version of the model is considered

here. The one-dimensional system has, as usual in the tra�c 
ow chapters, length L with periodic

boundary conditions; but velocity v

i

and position x

i

of a vehicle i are now continuous variables. The

update rule is as follows:

� If the velocity is high with respect to the gap, then the car slows down:

v > gap+ 1� � ; v ! max( 0 ; gap ) ;

(the \max" is only necessary to prevent negative velocities);

� else if the velocity is low with respect to the gap and slower than �ve, then the car accelerates:

v < gap+ 1� � & v < v

max

; v ! v +min( 1 ; 
 � (gap+ 1) ) :

Note that this rule allows maximum speeds up to nearly six.

� After the velocity has been updated for all vehicles according to the last two rules, we move all

vehicles simultaneously according to their velocities.

In our simulation we used � = 0:5, � = 3:0, and 
 = 0:1.

The only new feature of this model with respect to the integer version is that the acceleration is

weaker when the distance is still small. A distinct feature of this model which it shares with the

integer model is that there is a \dead zone" in the distance to the next car ahead where a driver

neither accelerates nor slows down. This is in accordance with psychological investigations insofar

as it stresses the importance of physiological thresholds in order to make human drivers react (see

Chapter 2 for further information).

With this model, simulations of di�erent setups are performed. Whereas the normal closed systems

shows a behavior similar to the integer model (i.e., settling down to an \imitate your leader"-state),

already the introduction of one slightly slower vehicle leads to complex and unpredictable behavior.

To be speci�c, the setup is as follows. In a system of length L and with periodic boundary conditions,

initially, N = [� � L] vehicles are placed on sites 1 to N , all with velocity zero, where � is chosen

small enough to prevent any e�ect of the last car of the platoon on the �rst one through the periodic

boundary conditions. (A platoon is an ensemble of vehicles travelling together.) Starting from this

totally ordered initial state, the system is allowed to evolve according to the above rules, with the
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exception of the �rst vehicle, the speed of which was kept �xed at v

lead

= 4:99999 after its initial

acceleration. This is a simpli�cation of the well known situation where a number of fast vehicles has

to follow a slower one which they cannot pass, and besides its obvious single-lane applications this

situation also occurs on freeways when many passenger cars want to pass a group of trucks.

Fig. D.1 shows a section of the evolution of the system. For a certain time, the density behind the

�rst car gets larger because all vehicles close up. But at seemingly random instances, many of the

followers have to slow down in one large collective event, which redistributes the vehicles with a lower

density. As the �rst vehicle moves freely, the simulation represents, in spite of the periodic boundary

conditions, the situation of a platoon moving in�nitely in space.

In Fig. D.2 we see the time evolution of a system which has been transformed to the coordinates of

the �rst vehicle, i.e. the positions of all cars are given relative to the �rst car. One sees that equally

spaced cars rapidly evolve into a 
uctuating state (right hand side). In this new state density increases

give rise to very short bursts (tra�c jams) of very di�erent sizes which redistribute the cars backwards

such that in some cases they even start again in equally spaced patterns.

Although the model itself is totally deterministic, small perturbations may lead to totally di�erent

trajectories in phase space due to the chaotic dynamics. One notices this e�ect when simulating the

same number of vehicles in systems of slightly di�erent size: After a certain time, the development of

the systems diverges, due to small di�erences in the transfer of cars through the periodic boundary.

In order to clarify that this divergence is an intrinsic consequence of the dynamics and not just

the enhancement of numerical round-o� errors, single precision were compared with double precision

calculations. The overall result of these tests is that noise enters the system with the same \speed"

for all cases, which is a strong indication that complex behavior originates from a chaotic dynamics

and is not driven by the limited precision of the 
oating point numbers.

In addition, the principal behavior of the model (i.e. the formation of the collective shocks) is robust

with respect to parameter changes. More precisely, no qualitatively di�erent behavior is found for

changes of the parameters �, �, 
, and v

lead

within the following range 0:1 � � � 0:6, 2:0 � � � 5:0,

0:08 � 
 � 0:12, 4:5 � v

lead

� 4:99999.

In order to quantify these observations, the distribution of times � between consecutive \braking"

events for the last vehicle (� is the time from the end of one braking to the beginning of the next) was

measured. Braking is de�ned here as a slowing down according to the rules for the velocity update.

We performed simulations on a Parsytec GCel-3, replicating a system with a �xed number of vehicles

but di�erent system sizes on up to 512 processors and averaging the results. For instance for N = 1900

vehicles, after 3 � 10

5

time steps to let the transients die out, the distribution of � measured during

about 1:1 � 10

6

further time steps. This speci�c simulation took about 33 hours on 256 processors.

According to Fig. D.3, the distribution displays a remarkable straight line on a log-log-plot, ful�lling

the power law

n(�) / �

��

with � = �2:2�0:1. This non-trivial exponent is a strong indication for the existence of self-organized

criticality[8] for this model.

Many aspects of this model are reminiscent of the so-called train model for earthquake dynamics [158].

Instead of pulling at one end, the slower car may be seen as pushing against the other cars which want

to move faster. This leads to a slowly increasing average density, and at some time this density locally

exceeds a critical threshold. The reaction is a more or less drastic slowing down of the corresponding
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Figure D.1: Evolution of the continuous model (5600 time steps), N = 61, L = 1024. As before, consecutive lines

represent con�gurations at consecutive time steps; vehicles are denoted by black squares, empty spaces are left blank.
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Figure D.2: (Previous page) First 4200 time-steps of the continuous model, transformed to the coordinates of the leading

(rightmost) vehicle. Only every third time-step is plotted, everything else is as in Fig. D.1. The jam-waves are now

clearly visible as nearly horizontal lines. The 
ow is from left to right.
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Figure D.3: Distribution n(�) of times � between consecutive braking events for N = 190 and N = 1900 cars. (The

times are collected in \logarithmic bins", so that the y-axis is proportional to � n(�).)

vehicle, which may or may not force the next vehicle to slow down as well. By this mechanism,

avalanches of all sizes are generated, which may propagate through the entire platoon of vehicles.
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Appendix E

Coding

This chapter discusses single-bit coding and compares it to the \intermediate algorithm".

E.1 Single-bit coding: SBIT-algorithm

One iteration consists for each car of a deterministic velocity update, which depends on the neighbors,

a randomized velocity update, and the vehicle movement. Since each site can only have a very low

number of states, this is very much like Ising-model programming [59]. Accordingly, single bit coding

is possible, which means that all 32 bits of a computer word carry information for a di�erent site,

which can be treated simultaneously with one integer-operation. For the NEC{SX3 and the CM{5

more e�cient 64-bit integers are used, even when not explicitly mentioned in the following.

The technique of e�cient single-bit coding is described in detail elsewhere [160], but it will be explained

for our algorithm. The �rst step is to code the di�erent vehicle velocities by Boolean variables (e.g. 0

and 1). Certain choices are possible for doing this, but one can follow [28, 151] in taking the simplest

approach: Each velocity is denoted by a velocity \level" which means that one has arrays iv0, : : :,

iv5; and a 1 in a level means that the vehicle at this place has (at least) this velocity. As an example,

accelerating all vehicles is done by the following steps:

DO ii=1,max_x

iv5(ii) = iv5(ii) .OR. iv4(ii)

iv4(ii) = iv3(ii)

iv3(ii) = iv2(ii)

iv2(ii) = iv1(ii)

iv1(ii) = iv0(ii)

iv0(ii) = 0

ENDDO .

These operations can as well be performed bitwise on all 32 bits of each computer word iv0, ...

, iv5 (single-bit coding). In theory, this technique can therefore yield a gain of a factor of 32 in

computational speed as well as in memory consumption. In practice, one can program our tra�c

dynamics more e�ciently when not intending to use single-bit coding, see below. Thus, the practical

gain is much lower. But the single-bit coded program (\SBIT") is fully vectorizable, which makes it

far superior on the traditional vector computer NEC{SX3/11 and is still better on the vector CPNs of
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the CM{5 (CPN: ComPutational Node). This is a clear advantage over the work of Cremer, Ludwig

and Sch

�

utt, whose bit-oriented coding scheme is not vectorizable. (See [151], where tests on a Convex

C1-XP vector processor gave a speedup of only 2 against an IBM-80286-AT with 10 MHz). In order

to get good vector performance, Fortran is used for this approach (CM-Fortran on the CM{5).

E.2 Touching only the occupied sites: DIST-algorithm

The CA updating approach as described above is not very e�cient for tra�c 
ow, because it needs for

an empty site as many operations as for an occupied one. An approach which is better in this respect

is, on an array where vehicles move from left to right, to go through the array from left to right, and

to perform the following steps:

If you are at an occupied site, then

� search for the next car ahead (distance);

� adapt the velocity according to that distance taking into account your own velocity;

� move car according to velocity;

� proceed to the next car ahead according to distance

(\algorithm DIST"). As this algorithm does not vectorize, C is used as programming language.

E.3 Parallelization and vectorization

Geometric parallelization of an array of length L is straightforward: Each of the N CPNs gets L=N

sites of the array, and the boundary information is passed on by messages after each time step. On each

architecture the fastest message passing method available was used, i.e. asynchronous communication

where possible, and the boundary information is sent away at the earliest time possible, which is as

soon as the edges of the array have been processed.

This method ensures that one will reach linear scale-up if one only makes the computational part of

each CPN large enough: The part of communication at the total time goes to zero. Some machines

allow overlapping of computation and communication, and then this works even better.

The situation is more complicated for the parallelization of the single-bit coded program. The standard

technique for single-bit coding is to use \staggered" computer words, which means in an example with

32 bits (0 to 31) and a system size of 32 � L that the leftmost L sites of a road are stored in bit

number 31 of words 1 to L, sites L+1 to 2L are stored in the next bit (number 30) of the same words

1 to L, etc., until the whole system size of 32L is stored (cf. Fig. E.1). Now a bit-coded site in word

number m �nds the states of its two neighbors in words m � 1 and m + 1 at the same bit position

(m = 2 : : :L� 1).

In order to provide the correct boundary information, one needs in our case at each end �ve (= v

max

)

additional boundary words with numbers -4 to 0 and L + 1 to L + 5. On a sequential machine and

with periodic boundary conditions, the left neighbor of bit 31 in word 1 is bit 0 in word L, and the

left neighbors of bits 30 to 0 in word 1 are bits 31 to 1 in word L. In general, words �4 to 0 contain a

circular right shift of words L� 5 to L, and words L+ 1 to L+ 5 contain a circular left shift of words

1 to 5.
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w1b31 w2b31 w3b31 w4b31 w5b31 w6b31 w1b30 w2b30 w3b30

x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 : : :

Figure E.1: Visualisation of single-bit coding. For example, \w4b31" means \bit 31 of word number 4". What can be

seen here is the left end of the \road"-array on one CPN. In this example we use only 6 di�erent words, so the length of

this \road" is 6� 32 = 192 sites. As one has to pass the states of the leftmost 5 bits to the next CPN, bit number 31

has to be extracted from words number 1 to 5 each. This information has to be sent to the next CPN to the left, where

it has to be inserted into the correct words (the \boundary words"). | Note that words are counted from left to right

whereas, according to the standard notation, bits are numbered from right to left.

Since boundary conditions need the information on �ve (= v

max

) sites to be passed on to the neighbor

CPN, this implies that this information has to be extracted bitwise from �ve words, to be passed

on, and then to be inserted bitwise into �ve other words. When, say, sending information to the left

neighbor CPN, then

� the states of bit number 31 in each of the words 1 to 5 have to be extracted,

� these states have to be sent to the left neighbor CPN,

� and on this CPN, bit number 0 in each of the words L + 1 to L + 5 has to be overwritten by

these states.

And this has to be done for each variable, which are seven in our coding (iv0, ..., iv5, and one for

the information if a site is occupied at all).

The situation is again di�erent on the CM{5, where, at the time of this work, only the data parallel

Fortran compiler was able to produce code for the four vector processors on each CPN. Translating the

single-CPN code was straightforward, but tuning needed a lot of time. For example, the WHERE ...

ELSEWHERE ... ENDWHERE construct turned out to be very slow and had to be replaced by masks.

Referring to vectorization, both codes were tested on a NEC-SX3/11 vector computer. As expected,

the automatic vectorizer vectorizes all loops in the main part of SBIT completely, whereas the C

compiler does not �nd any vectorizable loops at all in DIST. (The C-compiler of the NEC is supposed

to �nd vectorizable loops, although experience shows that it does much worse than for Fortran loops.

In addition, the DIST-algorithm is structured in a way that still would not vectorize e�ciently even

when written in Fortran.)
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Appendix F

Practical computational complexity of

geometric parallelization

In order to make reliable predictions on scaling behavior, some theory is helpful. Here results on a

simpli�ed model for the parallel time complexity of the algorithm are given. The predictions of the

model will be compared with experimental results. Similar analysis for the geometric parallelization

method have been presented by Heermann and Burkitt [60] and Jakobs and Gerling [73].

We begin by some basic assumptions for our one-dimensional system:

� The computing time t

step

per time-step consists of calculation and of communication parts. It

depends on the number of CPNs n and on the system size l per CPN. The overall system size L

is always L = l � n.

� Communication consists of a �xed amount t

sync

(n) of work for �lling bu�ers, calling commu-

nication routines etc. and of the time required for transportation of the message, t

async

(n). A

power law [73]

t

async

(n) =

(

0 : n = 1

c

1

� n

�

: n > 1

gives a good �t of the data for the one-dimensional tra�c 
ow case. It should be noted that the

power law is only used for the asynchronous part of the communication time, in contrast to [73].

t

sync

(n) is given by

t

sync

(n) =

(

0 : n = 1

t

�

sync

: n > 1

� Computation times consist of a �xed amount t

bnd

of work for dealing with boundaries and sending

away the required messages and of the time t

calc

for the update of l sites:

t

calc

= c

2

� l

� Because of overlapping computation and communication, the message transportation time only

becomes visible if it takes longer than computation:

t

step

(n) = t

sync

(n) + t

bnd

+max(t

async

(n); t

calc

(l))
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Figure F.1: Real to Simulation Time Ratio (measurements and approximating theoretical curves) as a function of the

number of CPNs for di�erent system sizes.

Thus

t

step

(n) =

(

t

bnd

+ c

2

� l : n = 1

t

�

sync

+ t

bnd

+max(c

1

� n

�

; c

2

� l) : n > 1

To verify the assumptions, computation times on a Parsytec GCel-3 with 1024 CPNs are measured.

Systems of size L=n � 2

i

on partitions of n = 2

j

CPNs (i = 5 : : :19; j = 0 : : :10) are used. From these

data the following diagrams are calculated:

� Real to Simulation Time Ratio

realsim =

1

t

step

� Speedup

speedup =

t

step

(1)

t

step

(n)

� E�ciency

eff = speedup=n

given in Figs. F.1, F.2, and F.3. The approximating curves refer to parameter values t

�

sync

= 2:2 �

10

�3

sec, t

bnd

= 1:4 � 10

�3

sec, c

1

= 2:0 � 10

�5

sec, c

2

= 6:1 � 10

�6

sec=site, and � = 0:8. t

bnd

and c

2

are

found by approximating the values for one CPN (n = 1), t

�

sync

by approximating all curves for small

n, and c1 and � by approximating all curves for large n. The approximations are visibly worse for

� = 0:5 and for � = 1:0 (not shown).

The above de�nition for � is not directly comparable to [73], which is due to explicitly taking care of

overlapping computation and communication by only using the maximum of both times. But especially

in Fig. F.1 one observes that this is necessary in order to approximate the abrupt change of the curves

near their maxima. This is probably due to the fact that in this one-dimensional system the whole



163

1

2

4

8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256 512 1024

sp
ee

du
p

number of T805 transputer nodes

L = 2^10
L = 2^11
L = 2^12
L = 2^13
L = 2^14
L = 2^15
L = 2^16
L = 2^17
L = 2^18
L = 2^19

Figure F.2: Speedup (measurements and approximating theoretical curves) as a function of the number of CPNs for

di�erent system sizes.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32 64 128 256 512 1024

ef
fic

ie
nc

y

number of T805 transputer nodes

L = 2^10
L = 2^11
L = 2^12
L = 2^13
L = 2^14
L = 2^15
L = 2^16
L = 2^17
L = 2^18

Figure F.3: E�ciency (measurements and approximating theoretical curves) as a function of the number of CPNs for

di�erent system sizes.

communication time does not depend on the system size, which makes the explicit formulation of the

overlap more important.

With these parameters, the computational speed per CPN s may be written as

s =

l

t

step

=

l

t

�

sync

+ t

bnd

+max(t

async

; t

calc

)
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=

1

c

2

+ (n=L)(t

sync

+ t

bnd

+max(t

async

� c

2

�L=n; 0))

=:

1

c

2

+ n

scaled

:

In order to verify our approximation, the speed per CPN s is plotted against n

scaled

(Fig. F.4) and

one obtains a nice data collapse.
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Deutsche Zusammenfassung

In dieser Arbeit wird die Eignung eines sehr schnellen, hardware-orientierten, mikroskopischen

Modelles f

�

ur Verkehrssimulationen untersucht.

Nach einem einf

�

uhrenden Kapitel

�

uber Verkehrs
u�-Theorie, Verkehrssimulationsmodelle sowie

�

uber

kritische Ph

�

anomene und ihre Bedeutung f

�

ur die Staudynamik wird eine der besten verf

�

ugbaren

Methoden f

�

ur schnelle mikroskopische Simulationen|die Methode der Zellularautomaten (CA) [160]|

f

�

ur Verkehrssimulationen variiert. Stra�en werden in K

�

astchen gleicher L

�

ange unterteilt, und

ein K

�

astchen ist entweder leer, oder von genau einem Auto besetzt. Dieses Auto kann Integer-

Geschwindigkeiten v zwischen 0 und v

max

annehmen. Bewegung des Fahrzeuges erfolgt durch Springen

auf dem K

�

astchenraster; vorher gew

�

ahrleisten (stochastische) Brems- und Beschleunigungsregeln, da�

keine \Unf

�

alle" passieren.

Dies ist ein ziemlich einfaches Teilchen-Modell; um so erstaunlicher ist sein wirklichkeitsnahes

Verhalten, so z.B. das spontane Entstehen realistischer Stop-and-Go Wellen [87] sowie realistische

Fundamentaldiagramme [56], z.B. Durch
u� q gegen Dichte � oder Geschwindigkeit v gegen Dichte.

Dieser Ansatz ist einspurig; Rickert [141] und Latour [92] beschreiben, wie die Methode auf

zweispurigen Verkehr erweiterbar ist.

Zwei Grenzf

�

alle des Modelles werden im vorliegenden Text detailliert untersucht|der komplett

deterministische Grenzfall, sowie ein \Speedomat"-Grenzfall, bei dem nur die Fluktuationen bei freiem

Fahren (= bei H

�

ochstgeschwindigkeit) auf Null gesetzt werden.

Der komplett deterministische Grenzfall ist, im hydrodynamischen Limes,

�

aquivalent [85] zu einer

linearen, deterministischen und nicht-di�usiven generalisierten Burgers-Gleichung. Diese wiederum

stimmt mit der Lighthill-Whitham Theorie f

�

ur kinematische Wellen

�

uberein [100], wenn man eine

st

�

uckweise lineare, zeltf

�

ormige Flu�-Dichte-Beziehung einsetzt. Es gilt

@

t

�+ sgn[�(q

max

)� �] v

max

@

x

� = D@

2

x

� :

Der Speedomat-Grenzfall erlaubt stabile homogene Verkehrs


�

usse bis zu einer gewissen Dichte

�(q

max;det

). Diese Fl

�

usse kann man deterministisch konstruieren, da ja bei maximaler Geschwindigkeit

keine Fluktuationen existieren. Allerdings gibt es noch eine weitere wichtige Dichte �

c

mit folgender

Eigenschaft: (i) F

�

ur � < �

c

l

�

osen sich St

�

orungen (Staus, z.B. nach einem Unfall) im Mittel

(Ensemblemittel) auf. (ii) F

�

ur � > �

c

wachsen St

�

orungen im Mittel immer weiter. (iii) Wenn � = �

c

ist, dann wachsen St

�

orungen im Mittel nicht, schrumpfen aber auch nicht. F

�

ur einen individuellen

Stau bei dieser Dichte hat das zur Folge, da� die Anzahl der Fahrzeuge im Stau entsprechend einem

Random Walk 
uktuiert. Als Folge sind Staus � = �

c

kritische Cluster im Sinne der Theorie der

Kritischen Ph

�

anomene. �

c

ist gleichzeitig die Dichte bei maximalen Flusses, wenn man von zuf

�

alligen

Anfangsbedingungen startet (�

c

= �

max;rnd:ini

).
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Speedomat-Verkehr zwischen �

c

und �

max;rnd:ini

ist marginal stabil: Schon die geringste St

�

orung f

�

uhrt

zu einem immer weiter wachsenden Stau (entsprechend (ii)); und der Aus
u� von diesem Stau erfolgt

mit Dichte �

c

, also mit der kritischen Dichte (Selbstorganisierte Kritikalit

�

at [8]).

Ein dritter Spezialfall ergibt sich, wenn man die Maximalgeschwindigkeit des Modelles v

max

auf eins

setzt. Dies benimmt sich sehr

�

ahnlich wie der bekannte Stochastische Asymmetrische Exclusions-

Prozess (SAEP) [74, 34]. Beim SAEP ist die Reihenfolge des Teilchenupdates zuf

�

allig, d.h. da� jeweils

ein Teilchen zuf

�

allig ausgew

�

ahlt und dann entsprechend der Regeln einer deterministischen Dynamik

bewegt wird. Beim CA-Modell hingegen werden alle Teilchen gleichzeitig angefasst, aber aufgrund

einer stochastischen Dynamik bewegt. Nichtsdestotrotz benehmen sich bei v

max

= 1 beide Modelle

�

ahnlich, so z.B. in den kinematischen Wellen, die bei kleinen Dichten � < �(q

max

) vorw

�

arts und

bei gro�en Dichten � > �(q

max

) r

�

uckw

�

arts laufen. Diese

�

Ahnlichkeit zwischen den beiden Modellen

verschwindet mit h

�

oherem v

max

; in dem CA-Modell f

�

ur Verkehr existieren z.B. vorw

�

arts laufende

Wellen

�

uberhaupt nicht mehr, unabh

�

angig von der Dichte.

Der SAEP ist, im hydrodynamischen Limes,

�

aquivalent zu einer generalisierten stochastischen Burgers-

Gleichung mit einem linearen plus einem nicht-linearen Term [18]:

@

t

�+ @

x

�� 2 � @

x

� = D@

2

x

�+ � ;

wobei � ein Rauschterm ist. Dies entspricht, wenn man D = � = 0 setzt, wiederum der

Lighthill-Whitham-Theorie, diesmal mit einer quadratischen Flu�-Dichte-Beziehung, die in den

Verkehrswissenschaften Greenshields-Beziehung genannt wird.

Das vollst

�

andige CA-Modell benimmt sich nun

�

ahnlich wie der Speedomat-Grenzfall. Allerdings

sind jetzt alle Kon�gurationen mit Dichten � > �(q

max;rnd:ini

) nur noch metastabil, zerfallen also

irgendwann spontan, und zwar in Stauwellen und Aus
u�-Regionen. Letztere sind wieder kritisch im

oben beschriebenen Sinne (Fall (iii) im Speedomat-Grenzfall), allerdings nicht mehr exakt kritisch: Es

exisitiert ein oberer Cut-o�, der dadurch entsteht, da� spontan neu entstehende Staus alte austrocknen

k

�

onnen; die Zeitskalen zwischen Staudynamik und Antrieb der Clusterdynamik sind also nicht mehr

getrennt.

Man kann, insbesondere im Zusammenhang mit den Beobachtungen f

�

ur v

max

= 1, begr

�

undet

vermuten, da� oberhalb dieses Cut-o�s wieder die Burgers-Theorie g

�

ultig ist. Vergleich zwischen

Stau-Messungen in der Realit

�

at und Simulationsergebnissen legen nahe, da� die L

�

angenskala des Cut-

o� oberhalb von 10 km liegt.

Die spontane Phasentrennung kann durch die Lighthill-Whitham-Theorie nicht mehr beschrieben

werden; 
uid-dynamische Theorien f

�

ur Verkehrs
u� k

�

onnen diesen Vorgang erst (und auch dann nur

gemittelt) beschreiben, wenn eine Gleichung f

�

ur den Impuls der Fahrzeuge eingef

�

uhrt wird.

F

�

ur alle diese Teilchenmodelle gilt, da� der Aus
u� aus einer Region hoher Dichte automatisch den

Zustand maximalen Flusses (� = �(q

max;rnd:ini

)) w

�

ahlt. Interessant dabei ist vor allem, da� damit der

kritische Zustand, also der Zustand hoher Fluktuationen, generisch auftritt.

�

Uber die bisher res

�

umierten E�ekte hinaus k

�

onnen sich Staus noch teilen. Mangels genauer Me�daten

l

�

a�t sich dieses Verhalten f

�

ur die Realit

�

at weder belegen noch widerlegen; es erscheint aber plausibel,

und es tritt im Modell auf nat

�

urliche Weise auf, sobald v

max

> 1, und l

�

a�t sich kaum wieder beseitigen.

Dies f

�

uhrt zu \L

�

ochern" zwischen verschiedenen Zweigen eines Staus, in denen ein Autofahrer wieder

H

�

ochstgeschwindigkeit fahren kann. Aus diesem Grunde haben Weg-Zeit-Plots der Stau-Dynamik

ein fraktales Aussehen. Messungen der Verteilungsfunktion f

�

ur die L

�

ocher ergeben aber, da� die

Staus gerade so nicht fraktal sind. Diese Struktur kann 1=f

�

-Rauschen von Messungen erkl

�

aren,
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insbesondere da es auch unter recht verschiedenen Umst

�

anden in einem Fahrzeugfolgemodell mit

kontinuierlichen Variablen auftritt.

Zusammenfassend f

�

ur diesen Teil der Arbeit, den \Verkehrs
u�-Teil", l

�

a�t sich sagen, da� die

gr

�

undliche Untersuchung des Teilchenmodelles zu einem genauen Verst

�

andnis der auftretenden

Ph

�

anomene gef

�

uhrt hat. Das Modell l

�

a�t sich in den Kontext existierender Teilchen-Modelle

einbetten, wodurch sich ein direkter Zusammenhang mit 
uid-dynamischen Theorien f

�

ur Verkehrs
u�

ergibt. Allerdings geht bereits dieses einfache CA-Modell

�

uber s

�

amtliche derzeitigen 
uid-dynamischen

Theorien f

�

ur Verkehrs
u� hinaus, da es nicht nur mittlere Staus beschreibt, sondern auch die m

�

oglichen

Fluktuationen um diesen mittleren Zustand.

Weiterhin kann das kritische Verhalten des Modelles bei �

c

durch kritische Exponenten beschrieben

werden. Insbesondere da f

�

ur diese Exponenten auch eine ph

�

anomenologische Theorie vorliegt,

kann man annehmen, da� diese Exponenten universal sind und damit relativ unabh

�

angig vom

mikroskopsichen Modell gelten. Man kann also annehmen, da� auch wesentlich kompliziertere

mikroskopische Verkehrsmodelle sich hierbei nicht anders verhalten werden. | Andererseits ist das

in dieser Arbeit verwendete Modell minimal in dem Sinne, da� jede weitere Vereinfachung zu einem

Verlust an gew

�

unschten Eigenschaften f

�

uhrt.

Der zweite Teil der Arbeit beschreibt Simulations-Experimente in Stra�ennetzen. In einem

einf

�

uhrenden Kapitel wird insbesondere herausgearbeitet, da� robuste Verkehrssimulationsmodel-

le aufgrund von individuellen Routenpl

�

anen funktionieren sollten (im Gegensatz zu aggregierten

Abbiegewahrscheinlichkeiten). Dies wird intuitiv relativ schnell klar, wenn man einmal die Reaktionen

beider Ans

�

atze auf eine Stra�ensperrung untersucht (Abb. 2.2).

In Kapitel 9 wird dann ein einfaches Verkehrsnetz, bestehend aus einer Direktverbindung mit einem

Engpa�, einer Ausweichstrecke sowie weiteren Verkehrsteilnehmern untersucht. F

�

ur diesen Fall stellt

sich insbesondere heraus, da� das derzeit in der

�

o�entlichen Diskussion be�ndliche Congestion Pricing

in der Tat zu einer faireren Allokation der Resourcen (Stra�enkapazit

�

at) f

�

uhrt. Dies ist zwar im

Prinzip zu erwarten, allerdings ist unklar, inwieweit die bekannten

�

okonomischen Untersuchungen

noch in der N

�

ahe maximalen Durch
usses g

�

ultig sind, bei dem Verkehr nach den oben aufgezeigten

Resultaten sehr start 
uktuiert. Dar

�

uberhinaus ist die Bestimmung des Verkehrszustandes, die ja

einer Preis-Entscheidung zugrunde liegen sollte, durch die L

�

ocher zwischen den Staus stark erschwert.

Weiterhin kann die Simulation als Beispiel eines allgemeineren Ph

�

anomens dienen: Neben dem

theoretischen Wissen

�

uber die Fluktuationen, das sich aus den Verkehrs
u�-Untersuchungen ergibt,

wurde auch eine praktischere Gr

�

o�e gemessen: die Fluktuationen von Reisezeiten zwischen Fahrzeugen,

die zu verschiedenen Zeiten, aber unter gleichen mittleren Bedingungen, die gleiche Route fahren.

Interpretiert ist dies die Fehlerbreite einer Reisezeit-Vorhersage. Es stellt sich heraus, da� diese

Fehlerbreite bei Dichten knapp oberhalb des Regimes maximalen Flusses stark anw

�

achst. Statt

einer Vorhersageungenauigkeit von �3% bekommt man im Modell pl

�

otzlich mehr als �65%; eine

vorhergesagte mittlere Reisezeit von 2 Stunden kann also leicht mehr als 3 Stunden dauern, und eine

bessere Vorhersage ist auch aus prinzipiellen Gr

�

unden nicht m

�

oglich.

Daraus ergibt sich das Problem, da� sich das System einer weiteren Optimierung entzieht, da man

ohne verl

�

a�liche Vorhersage nicht optimieren kann. Verkehrsmanagement (ATMS) wird also

�

uber

diesen Punkt hinaus nicht m

�

oglich sein. Daraus ergibt sich die Notwendigkeit, diejenigen Zust

�

ande im

Verkehrssystem zu �nden, die einer Optimierung tats

�

achlich zug

�

anglich sind.

In Kapitel 10 werden dann Simulationen des Autobahn-Netzes von Nordrhein-Westfalen vorgestellt.

Aufbauend auf Arbeiten von Rickert [141], werden individuelle Routenpl

�

ane implementiert. Jedes
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Fahrzeug wei� also an jeder Kreuzung individuell, welchen Weg es einschlagen will. F

�

ur die

Simulationen werden alle Fahrzeuge an Randknoten des Netzes aufgereiht. Jedes Fahrzeug w

�

ahlt

einen anderen Randknoten als Ziel; daraufhin erh

�

alt es eine Liste der 10 geometrisch k

�

urzesten Wege

zu diesem Ziel. Die Fahrzeuge fahren in der Simulation entsprechend ihrer Aufreihung los, wobei sie

zuf

�

allig einen Wege aus ihren 10 M

�

oglichkeiten w

�

ahlen. Nachdem alle Fahrzeuge angekommen sind,

wird die Simulation wieder gestartet. Auf diese Weise sammeln alle Fahrzeuge Erfahrungen

�

uber die

Performances der verschiedenen Routenvorschl

�

age; und nach einiger Zeit w

�

ahlen sie im allgemeinen

die schnellste Route.

Es stellt sich heraus, da� man mit diesem Verfahren die Fahrzeugstr

�

ome im Stra�ennetz erfolgreich

equilibrieren kann|und zwar auch im Nichtgleichgewicht eines

�

uberbelasteten Stra�ennetzes, wo

konventionelle Methoden versagen. Dar

�

uberhinaus sind die Resultate erstaunlich robust, und zwar

sowohl von einem simulierten \Tag" auf den n

�

achsten, als auch unter verschiedenen Annahmen f

�

ur

die Zielknoten-Auswahl.

Die Simulation behandelt 60 000 Fahrzeugen gleichzeitig, und l

�

auft auf 2 gekoppelten Sparc10

Workstations etwa 5 mal schneller als Echtzeit. Ein Simulationslauf bis zur Relaxation des

Lernverhaltens dauert damit etwa 36 Stunden. Damit ist die Methode schon auf relativ moderater

Hardware schnell genug zur Durchrechnung von Szenarien. Durch gezielte Untersuchungen auf

zahlreichen H

�

ochstleistungsrechnern wurde dar

�

uberhinaus nachgepr

�

uft, da� der Ansatz dort e�zient

l

�

auft, so da� auch aufwendigere Monte-Carlo-Untersuchungen und eventuell Echtzeit-Anwendungen

m

�

oglich sind.
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