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Chapter 1

Introduction

Urban planning is not easy: People simultaneously want to have access
to transportation and not be bothered by it. This is a contradiction which
is not easily resolved, in particular not in densely populated areas. Ur-
ban and transportation planning are the disciplines which deal with this
contradiction.

Any software package designed to help with these questions needs to ad-
dress the fact that humans are “intelligent”, that is, they are able to adapt
and to learn. The maybe most prominent example in the realm oftrans-
portation planning is called induced traffic – the fact that better streets or
better train connections leads to more traffic. In consequence, transporta-
tion planning isnot an exercise of how to best deal with a given and fixed
demand, but it has to balance the interests of people using the transporta-
tion system with the interests of people suffering from it.

A good approach to such complex problems are multi-agent simulations.
Multi-agent means that all entities of the simulation, in particular the trav-
elers, are resolved individually, and that they have internal rules according
to which they make decisions and move inside the synthetic, simulated en-
vironment. Such an approach became possible with the adventof modern
computers, which process rule-based logic as fast as numerical operations.
A big advantage of this agent-based, microscopic approach is that it can
be, at least in principle, arbitrarily improved if it turns out to be not re-
alistic enough in certain aspects. This is in stark contrastto aggregated
methods, which eventually reach a level where small-scale effects cannot
be represented. As an example, 200 cars with 200 different destinations
on a road can only be represented by having these 200 different destina-
tions listed somewhere in the system; there is no useful way to average
over them. Clearly, a natural place to store this information is inside the
agents.

We do however believe that, once one has accepted the microscopic or
agent-based paradigm, one can start with rather simple models. The pri-
mary purpose of this book is to show that full transportationsimulation
packages can be coded by somewhat experienced programmers in rela-
tively short time. Such a package does not only contain the traffic micro-
simulation, which moves vehicles and travelers through thesystem, but
also modules for route planning, for activity generation, and, most impor-
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tantly, for human learning. It is not claimed that the resulting transporta-
tion simulation package is calibrated and validated and thus useful for
policy questions, but it is certainly complete enough to do computational
research with respect to methodological and computationalquestions, and
it could be a starting point for a more realistic package. In particular, it is
possible to replace the modules one by one by more realistic ones and still
keep the structure of the whole system intact. This makes it possible to
pull together the efforts of many different research or commercial groups
towards a large scale realistic multi-agent transportation simulation.

This book is based on a one-semester class with 3 hours per week, which
are approximately evenly distributed between lectures andguided lab
work. In addition, depending on their programming skills, students put
in a significant homework effort (what many of them enthusiastically to).
The class covers most of this book; homework comes in particular from
Part II. The book is written in a way that Part II should be self-contained,
that is, a reader mostly interested in basic code development should find
all relevent information in that part of the book. The other chapters pro-
vide additional material, in particular with respect to improvements, and
with respect to theoretical background. The perspective throughout the
book is computational, that is, theoretical developments without relevance
to a computational implementation are kept to a minimum.
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Chapter 2

A quick tour

2.1 Introduction

Transportation simulation packages consist of several modules. The most
important modules for the purposes of this book are: demand generation,
route generation, and the traffic simulation (Fig. 2.1). In addition, a feed-
back module provides the coupling between these. The following sections
will give short introductions into each of these modules.

2.2 Demand generation

2.2.1 Trip generation

The demand generation module generates the demand for the transporta-
tion simulation system. Two important methods are: (i) origin-destination
matrices, and (ii) activity-based demand modeling.

Origin-destination (OD) matrices are the more traditionalmethod. OD
matrices contain the number of trips fromn starting points ton destina-
tions; it is therefore ann× n matrix. These matrices can refer to arbitrary
time periods. Until a couple of years ago, one typically used24-hour
time periods; these days, people often concentrate on “morning peak” and
“afternoon peak” periods since the main direction of travelis obviously
different between these periods.

In many situations, it is desirable to have information about demand gen-
eration that goes beyond OD matrices. In such situations, the more far-
reaching method of activities-based demand modeling is an alternative.
Here, the simulation includes models of human behavior withrespect to
the planning of a day. This includes where and when to eat, sleep, work,
shop, etc. For example, a person may start the day at home, be at work at
8am, work for eight hours, go shopping which takes an hour, then be at
home for the rest of the day. Assuming that all the transportation pieces
take half an hour, this would fix the transportation scheduleto: leave home
at 7:30am, be at work at 8am, leave work at 4pm, arrive at shopping at
4:30pm, leave shopping at 5:30pm, arrive home at 6pm.
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2.3. Traffic simulation

microsimulation
demand

generation generation

route

Figure 2.1: Modules

HOME

WORK
LUNCH

WORK

DOCTOR

SHOP

HOME

AGENT’S ACTIVITIES

Figure 2.2: Illustration of a daily activity plan.

Once the simulation “knows” where and when people do their activities,
transportation is generated via connecting activities that take place at dif-
ferent locations. Note that it is not necessary (and probably not possible)
to forecast such activities for specific persons; however, there is hope that
we will be able to get useful ensemble averages similarly to Statistical
Physics.

2.2.2 Route generation

Once trips (e.g. starting times, starting locations, and destination loca-
tions) are known, the exact transportation for these needs to be generated.
This includes mode choice (walking, bicycle, train, car, etc.) and the pre-
cise routing. The output of this module are complete plans for each indi-
vidual in the simulation.

2.3 Traffic simulation

Now these plans need to be executed. These simulations come at many
different levels of resolution and fidelity, reaching from the traditional
steady-state flow-based cost function to very detailed micro-simulations.

If one is interested in time-dependent results, as for example the queue
built-up during the onset of rush periods, the simulation needs to be suf-
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2.4. Feedback

HOME

WORK
LUNCH

WORK

DOCTOR

SHOP

HOME

AGENT’S ROUTES

Figure 2.3: Illustration of a daily plan including routes.

ficiently realistic to contain such dynamics. Traditional flow-based cost
functions arenot able to realistically deal with such dynamical effects,
at least not in a straightforward way. Thus, the right simulation has to
be chosen according to what aspects of the dynamics one wantsto have
represented for a given question.

2.4 Feedback

The traffic simulation needs input from the demand generation, since it
executes the plans from the demand generation. However, thedemand
generation depends on the traffic simulation because for example conges-
tion only shows up in the traffic simulation, and demand adjusts to such
shortages. In order to deal with this situation, one iterates between de-
mand generation and traffic simulation. For example, demandgeneration
is run assuming no congestion, the resulting traffic simulation is run, then
the demand generation is run again now including the congestion from the
last traffic simulation run, etc., until a steady state is reached. That is, the
system is systematically relaxed towards a consistent state.

Fig. 2.4 shows an example of replanning. The traveler first changes his/her
route, presumably in adaptation to congestion. Eventually, he/she de-
cides that the destination is too far away and switches to a nearer loca-
tion. Fig. 2.5 shows a systemwide consequence of replanning. The sce-
nario is one where 50 000 travelers starting at random locations all over
Switzerland travel to Lugano, which is south of the Alps. Thescenario is
for testing purposes, but it has some resemblance with vacation traffic in
Switzerland. In the initial run (left), all travelers have planned their routes
assuming a completely empty network; in consequence, they all use the
freeways as much as possible. After many iterations (right), travelers have
learnt that because of the congestion other paths may be advantagous; as
a result, traffic is much more spread out.

It should be noted at this point that there is no a priori reason why a real
system should be relaxed. For example, during unique eventssuch as trade
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2.5. Analysis

home

route 1

route 2

workplace A

workplace B

route 3

Figure 2.4: Result of day-to-day learning in a test example.LEFT: Situa-
tion at 9:00am in the initial run. RIGHT: Situation at 9:00amin the 49th
iteration. Each pixel on the road is a car (by overlapping in the graphics
they form the traffic streams); the circle denotes where theyare going.
Clearly, the system has found a better solution after 49 iterations.

Figure 2.5: Feedback

shows or soccer games, the transportation system is probably not relaxed.
The research here just follows the usual path in such situations: First un-
derstand the steady state solution, and then move on to the transients. Note
that the steady state here refers to the comparison from one iteration to the
next,not to a steady state across time-of-day.

2.5 Analysis

Once a representative run or collection of runs of the trafficsimulation
has been obtained, it can be analyzed. For example, one can see where
congestion will show up, and which people get stuck in it. Analysis is the
other aspect of the system that influences the decision aboutthe level of
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2.5. Analysis

realism in the modules. For example, if one is interested in emissions, one
needs a micro-simulation of the driving behavior with enough information
on, e.g., acceleration in order to derive the necessary quantities. Or if one
is interested in the possible rescheduling of activities asa consequence
of transportation infrastructure changes, one needs to model the effect of
“trip chaining”, i.e. the fact that people can for example goshopping on
the way back from work, but they could also put in a stop at homebefore
they go shopping.
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Part II

A do-it-yourself simulation
package
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Chapter 3

Motivational start: Roundabout

In this chapter, we will consider the question if for an intersection it is
better to have traffic lights or a roundabout. Our model is thesimplest
version that makes some sense.

The purpose of this chapter is to familiarize the reader withthe general
thinking that is used throughout this book: Models are started from simple
first principles. In the following model, as in all models introduced in this
book, the reader will easily detect imperfections. It is left to the curious
reader (and programmer) to implement and test improvements.

We consider an intersection with four incoming/outgoing streets (Fig. 3).
Streets are numbered 0, 1, 2, 3 as shown in the picture. We onlymodel the
incoming streets; as soon as vehicles leave the roundabout or the intersec-
tion, they have left our simulation world.

At each incoming streets, vehicles enter the simulation randomly but with
a fixed rate. Each incoming vehicle selects any of the outgoing links as
destination, excluding its own link.

Vehicles are moved forward along the link using the so-called cellular
automata (CA) technique. This technique partitions space into cells which
are updated via simple rules. In our situation, the street will consist of cells
which are either empty, or occupied by exactly one vehicle. The system
uses a parallel update (Fig. 3): All vehicles that have an empty cell in front
of them at timet can move one cell; the result is the configuration for time
t + 1. Vehicles at the end of the link can only continue when the traffic
light is green, or when there is space on the roundabout.

The traffic light The traffic light has four phases as indicated in Fig. 3.
There are no “yellow” times between the phases (although they can be
introduced easily). Vehicles can enter the intersection ifthe traffic light
allows them to go into the direction desired by the vehicle. Otherwise,
the vehicle will stop, blocking all other vehicles behind. Vehicles that are
allowed to enter the intersection are removed from the simulation, that is,
there is no interaction of vehicles inside or beyond the intersection.
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Figure 3.1: (a) Schematic drawing. (b) Cellular automata driving logic.
(c) The four traffic light phases.

The roundabout The roundabout is modeled as a circular street, that
is, it is a CA array of its own. Vehicles that leave the last array cell en-
ter the first array cell. There are four entry cells into that circular array,
corresponding to the four streets. A vehicle can enter when the entry cell
and its upstream neighbor are empty. Vehicles leave one cellbefore the
corresponding entry cell.

Implementation

Many possibilities exist to implement this, and experienced programmers
will find there own system. The following paragraphs will provide some
guidance, but they will not replace a programming class.

The programming style selected in this chapter is the most basic one we
could think of. Later chapters will progressively introduce somewhat more
advanced concepts.

CA links The four CA links can be implemented as

const double RATE=0.2 ;
const int LL=10 ;
const int NN=4 ;
int cells[LL][NN] ;
int tmpcells[LL][NN] ;
const int EMPTY=-1 ;
...
// go through time:
for ( int tt=0; tt<TT; tt++ ) {

// go through all streets:
for ( int nn=0; nn<NN; nn++ ) {

// enter a vehicle if this is possible:
if ( cells[0][nn] == EMPTY && drand48() < RATE ) {

// select a number between 0 and NN-2:
int destination = int( ( double)(NN-1) * drand48() ) ;
// if self is selected, use NN-1:
if (destination==nn) { destination = NN-1 ; }
tmpcells[0][nn] = destination ;

}
// go through all cells except cell closest to intersection:
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// (this loop contained an error until 31jan05)
for ( int ii=0; ii<LL-1; ii++ ) {

if ( cells[ii][nn] != EMPTY ) { // there is a vehicle
if ( cells[ii+1][nn] == EMPTY ) { // there is no vehicle ahead

tmpcells[ii+1][nn] = cells[ii][nn] ; // move
} else { // i.e. there is a vehicle ahead

tmpcells[ii][nn] = cells[ii][nn] ; // stay
}

}
}
// special treatment for last cell:
if ( intersection_can_be_entered ) {

move_vehicle_to_intersection ;
}

}
// copy tmp array back to main array and clear tmp array:
for ( int nn=0; nn<NN; nn++ ) {

for ( int ii=0; ii<LL; ii++ ) {
cells[ii][nn] = tmpcells[ii][nn] ;
tmpcells[ii][nn] = EMPTY ;

}
}

}

Traffic signal Again, there are many ways to implement this. Let us, for
simplicity, assume that each of the NPHASESphases takes PP seconds;
the phase is then given by

for ( int tt=0; ... ) {
int phase = (tt/PP) % NPHASES ;

}

where %is the C++ modulo operation. Let us then define a function

bool allowed ( int from, int to, int phase )

which returns true when movement from link from to link to is allowed
in phase phase , and false otherwise. Intersection movement can then
be modeled as

// special treatment for last cell:
if ( cells[LL-1][nn]!=EMPTY ) {

int destination = cells[LL-1][nn] ;
// if movement NOT allowed, keep vehicle:
if ( !allowed( nn, destination, phase ) ) {

tmpcells[LL-1][nn] = cells[LL-1][nn] ;
}

}

Roundabout Implementation of the roundabout is left to the creativity of
the reader. Note that there are some subtle timing issues involved: A rea-
sonably clean implementation should not allow a vehicle to move two cells
in a given time step; this would mean that a vehicle that just entered the
roundabout is not allowed to make another move inside the roundabout.
This can be achieved by first computing the tmpcells for all links, and
only then copying them back to cells . In that way, a vehicle entering a
roundabout would be copied into the tmpcells of the roundabout, where
it would not be moved any further during the time step. Obviously, one has
to be careful that no other vehicle overwrites this vehicle in tmpcells .
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Output Experienced programmers will have their preferred visualization
toolkit. Here we just want to point out that, to a certain extent, it is possible
to derive graphics from simple terminal operations. For example, links can
be plotted by

#include <iostream>
...
for ( int ii=0; ii<LL; ii++ ) {

if ( cells[ii][nn] != EMPTY ) {
// if there is a vehicle, output its destination:
cout << cells[ii][nn] ;

} else {
// else output an empty space:
cout << " " ;

}
}
// Don’t forget the newline once the link is plotted:
cout << endl ;

Most platforms have a so-called vt100 terminal; under unix this can often
be obtained by typing setenv TERM vt100 in an xterm. For example,
the command

cout << "\033[H\033[2J" ;

erases the screen, allowing the program to overwrite what was there be-
fore. This makes it possible to display the complete intersection dynamics
as a movie inside a text terminal.

Variations As said before, this is a very simplistic model, and many
modifications of this are possible. Some examples:

• The link lengths, the entry rates, the signal phases, or the size of
the roundabout could be changed. Signal phases could be made
adaptive.

• The entry conditions into the roundabout can be changed.

• There could be separate lanes for left turns. How long should they
be?

• There could be inhomogeneous demand.

• Etc.
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Chapter 4

Some basics of object-oriented
programming

4.1 Introduction

We attempt to use relatively “lightweight” object-oriented programming.
However, unfortunately this depends on the perspective andexperience. I
hope that even someone without experience will be able to getthe most
important things done. However, some solid programming experience is
most probably helpful. If you have never seen pointers or structs/classes,
it is going to be hard.

Before you get desperate, maybe have a look at Sec. 4.15 to seehow (rel-
atively) easy it will be at the end.

Implementation

4.2 Compilation of programs under Unix

If you are an unexperienced programmer, I recommend to write everything
into one file, say work.cpp . This is then compiled with

g++ work.cpp

and executed with

./a.out

You need at least g++ version 2.96; the version number can be found out
by the command g++ -v .

You should put the following lines at the beginning of work.cpp :

#include <assert.h> // assert macro; see ‘‘man assert’’
#include <iostream> // cin/cout
#include <math.h>
#include <stdlib.h>
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4.3. Pointers

If you are using a Microsoft compiler, the following may help:

#if _MSC_VER > 1020 // if VC++ version is > 4.2
using namespace std; // std c++ libs implemented in std

#endif

The following should print “hello world” once:

// put above headers here
int main() {

cout << "hello world" << endl ;

return 0 ;
}

4.3 Pointers

At first, one typically does things such as

int id = 1 ;
double xCoord = 2.34 ;
cout << id << endl ;
cout << xCoord << endl ;

Pointers allow to put the real stuff somewhere else and to reference it by
an address:

int* id ; * id = 1 ;
double* xCoord ; * xCoord = 2.34 ;
cout << * id << endl ;
cout << * xCoord << endl;

What this means is that id itself contains just a memory address, and the
real content is where this memory address points to. * (...) can thus
be read as “contents of (...) ”.

This does not have any advantage at this level; but it has enormous ad-
vantages as soon as the content that the memory address points to is
more than a simple number.

4.4 Structs

Plain C allows things like

struct Node {
int id ;
double xCoord ;
double yCoord ;

};

This means that our node has properties, such as an ID number and
coordinates. These are used as follows:

struct Node node ;
...
node.id = 213 ; //assingment of ID number 213
xx = node.xCoord ; // retrieval of xCoord
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4.5. Classes and minimal memory management

Typically, this is however used in pointer syntax; the example then is

// this does not work yet, see text
struct Node * node ;
...
node->id = 213 ;
xx = node->xCoord ;

Note that the arrow -> comes from converting Node node into Node*
node . That is, arrows mean that the thing to the left of them is a pointer.

There is not yet a big advantage of using it this way. If one looks at the
memory management, then struct Node * node only reserves space
for the memory address itself; we would however also need memory
space for id, xCoord, yCoord , which we don’t have at this level. This
will be solved in the next paragraph.

4.5 Classes and minimal memory manage-
ment

In C++, we can replace struct by class:

class Node {
int id ;
double xCoord ;
double yCoord ;

};
...
Node* node ; // reserve space for memory address
...
node = new Node() ; // reserve memory space for contents
...
node->id = 213 ;
xx = node->xCoord ;

the use of new also solves the memory problem.1

4.6 Encapsulation

In C++, one typically encapsulates variables. This does not have a ma-
jor advantage at the level of this text, but we do it to conform with the
standard. It goes as follows:

class Node {
private:

int id_ ; // Convention: I add underscores to private variables.
double xCoord_ ;
double yCoord_ ;

public:
void set_id( int tmp ) { id_ = tmp ; }
int id() { return id_ ; }
void set_x( double tmp ) { xCoord_ = tmp ; }
double x() { return xCoord_ ; }
...

1In C, this would be done viamalloc .
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4.7. Constructors

} ;
...
Node* node ;
...
node = new Node() ;
...
node->set_id( 213 ) ;
xx = node->x() ;

private: means that everything in that block can only be accessed
by methods which are defined inside the class definition, i.e. inside the
class Node block.

4.7 Constructors

“new ... ” is also called “calling a constructor”. In the above example, we
have not defined what the constructor does; for this case, C++ provides a
so-called default constructor. One can re-define the constructor, and one
can even call it with arguments. Although that feature can lead to more
robust code, we will not use it here.2

4.8 Arrays of classes

Typically, we have more than one node. The straightforward way to do this
would be

...
Node* nodes[20] ; // allocate 20 memory addresses
...
nodes[0] = new Node ( ) ; // allocate space for ONE (!) node
...
nodes[0]->set_id( 213 ) ;
xx = nodes[0]->x() ;

4.9 The Standard Template Library (STL)

The above array usage is awkward because we need to know in advance
how many nodes we will have. It is better to use vectors, as follows:

#include <vector>
...
vector<Node * > nodes ;
...
// memory management missing
...
nodes[0]->set_id( 213 ) ;
xx = nodes[0]->x() ;

2For experts: The main reason why we do not use it is because constructors are not in-
herited. For templatized classes, as will be useful for the network construction (Sec. 10),
this means that each change of the constructor arguments in the template methods neces-
sitates corresponding changes in all derived classes. We found that rather inconvenient.
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4.10. Associative arrays/maps

So the usage of this looks the same as before, but the memory manage-
ment is still missing. An easy way to enter elements without having to
worry about memory is to use one of the insertion operators:

...
Node* node = new Node( ... );
nodes.push_back( node ) ; // add array element at end
...

It helps to use typedefs:

...
typedef vector<Node * > Nodes ;
Nodes nodes ;
...

(instead of vector<Node * > nodes; ).

Note that now

Nodes nodes ;

essentially looks like and is used like

Node* nodes[20] ;

except that the memory management is different.

vector<Node * > is template syntax; it means that we have a vector of
type Node* . Instead of vector, you could think “array”.

Besides vector , there are other pre-defined template classes, such as
list and deque . They all have certain insertion and removal operations
which do the memory management for us. In C++, this is known as the
Standard Template Library (STL). It is included in all new enough C++
compilers.

We will always hide templates via typedefs so in general they will not
really show up. They do however (unfortunately) make a big difference in
compiler error messages (see 5.3).

4.10 Associative arrays/maps

In C-arrays, one needs that indices start at zero and are consecutive. In
transportation and many other areas, items such as nodes and streets
have names or numbers. In our context, the nodes/links have numbers,
and they are unique, but not consecutive. What we want is a data struc-
ture that deals with this in a straightforward way, i.e. where we can retrieve
a node with ID “231” by node[231] . Associative arrays do this. They are
used as follows:

#include <map>
...
typedef map< int,Node * > Nodes ;
...
Nodes nodes ;
...
// allocate space for new node and fill with information:
Node* node = new Node(id,xCoord,yCoord);
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4.11. Methods; Inlining

// register this node with the global nodes array:
nodes[id] = node;
...

Use of this now is:

cout << "ID:" << nodes[213]->id() << endl ;
cout << "X :" << nodes[213]->x() << endl ;

4.11 Methods; Inlining

We had already constructs like

class Node {
...
double x() { return xCoord_ ;}

};

One can put arbitrary functions here, e.g.

class Node {
...
intersectionLogic() {

// lots of stuff
}

};

This is called a method of the class. This version is the “inlined” version
of the method.

Often, this gets so long that one wants to have this outside the class
definition. In this case one would write:

class Node {
...
intersectionLogic() ;

};

and somewhere else

Node::intersectionLogic() {
// lots of stuff

}

Conventionally, one would put the first part into a * .h file, and the second
part into a * .cpp file. It is however also possible to leave everything in
work.cpp .

Inlined functions/methods are faster during the execution but need more
memory and more compilation time.

4.12 References (“&”) in subroutine calls

C and C++ by default call subroutine arguments “by value”, which means
that they copy the complete object. For example,

file: book.tex, p.4-6 October 15, 2007



4.13. “. ” vs. “-> ”

void doSomething( Nodes nodes ) {
...
}
...

doSomething( theNodes ) ;
...

would copy the whole Nodes data structure and then operate on that copy.
That has two often undesired or unexpected side-effects:

• The Nodes object can be rather large: For large road networks, it
contains all pointers to all nodes.

• Changes in Nodes are not moved up to the main program.

This behavior can be avoided when references are used, as follows:

void doSomething( Nodes& nodes ) {
...
}
...

doSomething( theNodes ) ;
...

Note the “&” in the argument list. The result of this is that doSomething
will directly use the already existing nodes data structure.

In general, we will always use references in subroutine calls. Only when
we pass int or double will we, wenn we do not want to pass back a
result, omit the “&”.

References can also be used in other contexts, in particular to avoid point-
ers to objects (see below). We will not use them for that since we find the
pointer version easier to understand for non-experts.

4.13 “. ” vs. “-> ”

In the above, methods inside classes are addressed via the -> operator.
Sometimes, one has to use the . operator instead. Unfortunately, we are
unable to write efficient code which uses consistently one or the other, so
you need to understand the difference. That difference is that x->y()
means that x is a pointer, while x.y() means that x is the object itself
or a reference to it. As a rule of thumb, we will use “-> ” when we use
objects, and “. ” when we use containers. For example:

typedef map<Id,Node * > Nodes ; // Nodes contains *pointers* to Node!
Nodes nodes ; // nodes is *not* a pointer
...
for (Nodes::iterator nn=nodes.begin() ; // since ‘‘nodes’’ is not a

nn!=nodes.end() // pointer, ‘‘.’’ is used.
++nn ) {

Node* node = nn->second ; // ‘‘node’’ is now a pointer
...
cout << node->id() << endl ; // ‘‘->’’ is used
...
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4.14. General code structure

4.14 General code structure

Even if you write everything into one file, which simplifies life for non-
experts, there is some structure that should be obeyed and that helps
later to pull the code apart into several files. It is as follows:

// Global declarations/definitions.
// This would become something like ‘‘globals.h’’.
typedef double Time ;
Time time = -1 ;
...

// global utilities
// This would become something like ‘‘utils.h’’.
#include <stdlib.h>
extern "C" double drand48() ;
double myRand() {

return drand48() ;
}

// Class declarations including definitions for ‘‘short’’ methods.
// Each class would go into a separate *.h file.
class Link ; // forward declaration
class Node {
private:

Id id_ ;
public:

void set_id( Id val ) { id_ = val ; } // ‘‘short’’ method
...
Link * findOutgoingLink( Id linkId ) ; // ‘‘long’’ method

};
...

// Definitions of ‘‘long’’ class methods.
// Methods for each class would go into a separate *.cpp file.
Link * Node::findOutgoingLink( Id linkId ) {

...
}
...

// global functions (should be avoided; can normally go into ‘‘class
// SimWorld’’ or similar)

// main:
void main() {

...
}

4.15 Review

The most important information that you hopefully take from the above is
that when you copy something like

#include <map>
...
typedef map< int,Node * > Nodes ;
...
Nodes nodes ;
...
Node* node = new Node( ... ); // allocate space for new node
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4.15. Review

...

from this text, then afterwards the use of this is relatively straightforward:

cout << "ID:" << nodes[213]->id() << endl ;
cout << "X :" << nodes[213]->x() << endl ;
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Chapter 5

Some programming
recommendations

Implementation

5.1 General

We recommend to use variable names which are easy to remember. We
also recommend to write “robust” code, because this piece of code will be
used over and over again, and it will be improved bit by bit. Robust means
the following for me:

• Things which can go wrong need to be tested during execution and
should lead to a program abort if the test fails. In my experience,
warnings are not useful here since in the end there will be so many
warnings that one will ignore them all. For example, one should test
for memory boundaries. assert() is a useful C/C++ command,
see man assert .

• As a minimum rule for the use of subroutines: Functionality which is
used more than once inside a program has to go into a subroutine.

Personally, I think that for simulation problems the strict observation of
these two rules are by far the most important aspects of structured pro-
gramming. This is independent from the particular programming lan-
guage; it is also independent from the object-orientedness of the pro-
gramming language although it may help.

5.2 Programming language

Many programming languages are suitable to write traffic simulations.
Here are some comments about the most common ones:
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5.3. Compiler error messages for STL code

• C – “small” language; fast; objects are available via struct but no
further object support; in general very little support for things that
one needs for agent-based simulation

• C++ – “big” language that few people know completely (i.e. signifi-
cant risk that one writes code that nobody can read); object-oriented
language with decent support for agent-based simulation; good
support for high performance computing in particular for object-
oriented numerics; no standardized support for graphical user in-
terfaces.

• java – similar to C++; includes support for graphical user interfaces.
Well-written code in java is not necessarily slower than code in C++,
but there is in general less support for high performance computing
(parallel compilers; debugging of parallel code; object-oriented nu-
merics; ...).

• fortran – comes from the tradition of numerical analysis; newer ver-
sions of fortran have some support for agent-based simulation but
no comparison to C++ or java

Recommendation: C++ or java, depending on own experience.

In the following, we will often give examples in C++ style. The goal is not
to push C++ to its limits (as said above, in our experience very few people
can read and maintain the resulting code) but to end up with design pat-
terns that hopefully help average programmers. We will use the Standard
Template Library (STL) where we feel that this is helpful.

5.3 Compiler error messages for STL code

Compiler error messages for STL code are awkward. Here is an example:

In file included from sim.cpp:5:
global.h: In function ‘ void Simulate ( int, map<id, Node * , less<Id>,
allocator<Node * > >, map<Id, Link * , less<Id>, allocator<Link * > >,
map<Id, Veh * , less<Id>, allocator<Veh * > >) ’:
global.h:358: conversion from ‘Link *’ to non-scalar type ‘Link ’
requested

It is often helpful to first read the messages item by item and sometimes
to re-arrange the messages:

• First comes where the corresponding file was included:

In file included from sim.cpp:5:

• This is followed by the function where the error happens:

global.h: In function ‘ void simulate ( int, map<Id, Node * , less<Id>,
allocator<Node * > >, map<Id, Link * , less<Id>, allocator<Link * > >,
map<id, Veh * , less<Id>, allocator<Veh * > >) ’:
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5.4. Iterators

As long as there is only one function void simulate(...) , one
can ignore the rest of this part of the error message. If one does
not know about function overloading, this should be generically the
case.

• Finally comes the real error message. Rearranging yields:

global.h:358: conversion from
‘Link * ’

to non-scalar type
‘Link’

requested

That is, somehow the item on the right is a pointer to link, while the
item on the left is a link.

In this case, the offending line was

Link link = l->second;

The correct line would be

Link * link = l->second;

5.4 Iterators

Simulations often need to iterate over all objects in a certain class, for
example over all agents or all streets.

In C++, iterators are explicitely provided for many data structures of the
STL. Code typically looks like the following:

for (Links::iterator ll = links.begin(); ll != links.end(); ll ++) {
Link * link = ll->second ;

}

The ->second is necessary if Links is, as discussed in Sec. 4.10,
a map<int,Link> . Then ll returns the “pair” (int,Link * ) , while
->second just returns the second item. – This will be filled with more
meaning in later examples.

5.5 Tokenizer

In order to read line-oriented input files, it is useful to first read the com-
plete line (getline ), and then to parse it. This can look as follows:

assert( inFile.is_open() ) ;
typedef vector<string> Tokens; Tokens tokens ;
while ( !inFile.eof() ) {

string aString ; getline( inFile, aString ) ;
if ( !aString.empty() ) { // ( skip empty lines )

tokenize( aString, tokens ) ;
for ( Tokens::iterator tt=tokens.begin() ; ii!=tokens.end() ; ii++ ) {

cout << * tt << "\n" ;
}

}
}
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5.5. Tokenizer

As of 2003, there is unfortunately no standard tokenizer for C++. A simple
tokenizer, which separates on white spaces (such as blanks and tabs), is
the following (from the linux C++-programming-howto ):

#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
#include <vector>
...

inline void tokenize ( const string& str, vector<string>& tokens ) {
tokens.erase( tokens.begin(), tokens.end() ) ;
tokens.push_back( "TRASH" ) ; // do not use tokens[0] ;
string buf ;
stringstream ss(str) ;
while( ss >> buf ) {

tokens.push_back(buf) ;
}

}

This is slightly modified when compared to the original version in so far
as it puts “TRASH” into the zeroth element so that the counting of tokens
starts with one. This has the advantage that a token from the nth column
will be in token[n] .
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Chapter 6

Street network data and data
structures

6.1 Introduction

Transportation simulations need to deal with real world scenarios to be
useful. In order to achieve this, it makes sense to write themso that they
can read arbitrary real world configurations, even when the initial intention
of the project is to use artificial data. For the example case of this text, the
minimum content of the data base is some information about the road
network, and some information about where people live and where people
work.

In this section, the information about the road network is considered. The
basis for this is a simple coding that is usually used for graphs, with one
file/list for nodes (vertices) and one file/list for links (edges, arcs). The
traffic network then is built by identifying links with roads, and intersec-
tions with nodes. Our intersections will be extremely simplistic.

The node file typically contains:

• a unique ID number for each node, and

• geographical coordinates.

Additional information can be added for each node, but is notneeded for
this example.

The link file for this example needs the following information:

• a unique ID number for each link,

• the ID number of the node where the link starts,

• the ID number of the node where the link ends,

• length of the link (length is necessary because a curvy road between
two nodes will be longer than the Euclidean distance),
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6.2. Network file formats

Implementation

6.2 Network file formats

The first implementation question to resolve is how to store the data. We
will assume that the data is in a file, and that is uses the same format
that the transportation simulation software package Transims (?) uses.
Transims file formats are used several times in this text. The advantage is
some degree of portability; the disadvantage is that the formats often con-
tain many more entries than we truly need. Also, a more modern format
might use some kind of XML syntax; there is however no corresponding
standard for transportation simulations. We think that the advantage of
using Transims files outweighs the disadvantages. XML formats will be
discussed in Sec. 24.3.

Each Transims network file has a header line, and then zero or more lines
of entries. The header line needs to be there; it contains the keys of the
entries. Fields are separated by tabs.

The nodes file has the following entries:

Column Header type explanation

1 ID integer Unique number of node
2 EASTING integer Coordinate in x direction
3 NORTHING integer Coordinate in y direction
4 ELEVATION integer Coordinate in z direction. Ignore
5 NOTES string Optional notes. Ignore

In consequence, a nodes file looks as follows:

ID<tab>EASTING<tab>NORTHING<tab>ELEVATION<tab>NOTES <ret>
1<tab>651700<tab>137200<tab>0<tab><ret>
2<tab>652220<tab>137600<tab>0<tab><ret>
...

The entries which are important for our do-it-yourself implementation are
printed in boldface. Any information in the other columns will be ignored.
That information may, however, be important to make other Transims mod-
ules work, most importantly the visualizer (Sec. 8). In particular, note the
additional <tab> that separates a possibly empty NOTESfield from the
<ret> .

The link file has the following columns. Once more, the relevant ones are
printed in bold; the other ones are just given for complete information.

Column Header Type Explanation

1 ID integer Unique ID number
2 NAME string Name of the link, e.g. the

street name. Ignore
3 NODEA integer Node ID at one end of

link
4 NODEB integer Node ID at other end of

link
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6.2. Network file formats

5 PERMLANESA integer Number of lanes towards
A. Ignore

6 PERMLANESB integer Number of lanes towards
B. Ignore

7 LEFTPCKTSA integer Number of left pocket
lanes towards A. Ignore

8 LEFTPCKTSB integer Number of left pocket
lanes towards B. Ignore

9 RGHTPCKTSA integer Number of right pocket
lanes towards A. Ignore

10 RGHTPCKTSB integer Number of right pocket
lanes towards B. Ignore

11 TWOWAYTURNboolean Whether there is a two-
way link for left turns in
the middle of the road (an
American specialty). Ig-
nore

12 LENGTH positive float Length of link in meters
13 GRADE float Grade (= slope) of link. Ig-

nore
14 SETBACKA positive float Setback distance (in me-

ters) from the center of the
intersection at node A. Ig-
nore

15 SETBACKB positive float Setback distance (in me-
ters) from the center of the
intersection at node B. Ig-
nore

16 CAPACITYA positive float Capacity of link towards A
in vehicles per hour. Ig-
nore (but see Sec. 18)

17 CAPACITYB positive float Capacity of link towards B
in vehicles per hour. Ig-
nore (but see Sec. 18)

18 SPEEDLMTA positive float Speed limit, in meters per
second, towards A. Ignore
(but see Secs. 17 and 18)

19 SPEEDLMTB positive float Speed limit, in meters per
second, towards B. Ignore
(but see Secs. 17 and 18)

20 FREESPDA positive float Free speed, in meters per
second, towards A. Ignore
(but see Secs. 17 and 18)

21 FREESPDB positive float Free speed, in meters per
second, towards B. Ignore
(but see Secs. 17 and 18)

22 FUNCTCLASS keyword Functional class of link. Ig-
nore
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6.3. Node class

23 THRUA integer ID of outgoing link across
A which denotes “through”
direction. Can be used for
data compression. Ignore

24 THRUB integer ID of outgoing link across
B which denotes “through”
direction. Can be used for
data compression. Ignore

25 COLOR integer Obsolete. Ignore
26 VEHICLE keywords Allowed modes on link. Ig-

nore
27 NOTES string Arbitrary notes. Ignore

Task 6.1 Generate a node file and a link file which together describe a
square with a diagonal (i.e. four nodes and five links). You can use the
files in

http://www.matsim.org/files/studies/test-net/networ k

as a starting point.

6.3 Node class

typedef long Id;
typedef double Coord ;
...
class Node {
private:

Id id_;
public:

void set_id( Id val ) { id_ = val ; }
Id id() { return id_ ; }

private:
Coord xx_;

public:
void set_xx( Coord val ) { xx_ = val ; }
xx() { return xx_ ; }

private:
Coord yy_ ;

public:
void set_yy( Coord val ) { yy_ = val ; }
yy() { return yy_ ; }

};

6.4 SimWorld class

It is useful to have a SimWorld class that defines our simulation world:

class SimWorld {
public:

typedef map<Id,Node * > Nodes ;
Nodes nodes ;
...
readNodes() ;
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...
}

In this case, we will not make Nodes private, i.e. we will not encapsulate
it. The result of this is that we can directly use the access functions of the
STL. It is possible to use the STL functions even when Nodes is private,
but we find the above solution easier for non-experts.

6.5 Nodes input

Reading the nodes file would go as follows:

#include <fstream>
#include <string>
...
const char* NODES_FILE_NAME ="T.nodes";
...
class Node {

...
};
...
class SimWorld {

...
};
...

void SimWorld::readNodes ( ) {
cout << "\n### entering readNodes ...\n" ;
ifstream inFile ; inFile.open(NODES_FILE_NAME) ;
assert( inFile.is_open() ) ;
string aString ;
vector<string> tokens ;
// process header line:
getline( inFile, aString ) ;
tokenize( aString, tokens ) ;
assert( tokens[1]== "ID" ) ;
assert( tokens[2]== "EASTING" ) ;
assert( tokens[3]== "NORTHING" ) ;
// main loop:
while ( !inFile.eof() ) {

getline( inFile, aString ) ;
if ( !aString.empty() && isdigit( aString[0] ) )

// [[ skip lines with junk (e.g. last line) ]]
{

tokenize( aString, tokens ) ;
Id nodeId ; convert( tokens[1], nodeId ) ;
Coord xCoord ; convert( tokens[2], xCoord ) ;
Coord yCoord ; convert( tokens[3], yCoord ) ;
// initialize node:
Node* node = new Node ;
// enter node into node map:
nodes[nodeId] = node ;
node->set_id( nodeId ) ;
node->set_xx(xCoord);
node->set_yy(yCoord) ;

}
}
cout << " nNodes: " << nodes.size() << endl ;
cout << "### leaving readNodes ...\n\n" ;

}
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The convert methods are as follows:

inline void convert ( const string& str, int& ii ) {
ii= atoi( str.c_str() ) ;

}
inline void convert ( const string& str, long& ii ) {

ii= atol( str.c_str() ) ;
}
inline void convert ( const string& str, double& dd ) {

dd = atof( str.c_str() ) ;
}

This would be called from the main program via

int main()
{

SimWorld simWorld ;
simWorld.readNodes() ;
...

}

Task 6.2 Write a program which reads the node data.

6.6 Link class

The link class is analogous to the node class:

typedef double Len ;
typedef double Spd ;
...
class Link {
private:

Id id_;
public:

void set_id( Id val ) { id_ = val ; }
Id id() { return id_ ; }

private:
Node* fromNode_;

public:
void set_fromNode( Node * node ) { fromNode_ = node ; }
Node* fromNode() { return fromNode_ ; }

private:
Node* toNode_ ;

public:
void set_toNode( Node * node ) { toNode_ = node ; }
Node* toNode() { return toNode_ ; }

private:
Len len_ ;

public:
void set_length( Len val ) { len_ = val ; }
Len length() { return len_ ; }

};

6.7 Links input

Again, this is analogous to the nodes.
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...
const char* LINKS_FILE_NAME = "T.links";
...

void SimWorld::readLinks ( ) {
cout << "\n### entering readLinks ...\n" ;
ifstream inFile ; inFile.open( LINKS_FILE_NAME ) ;
string aString ;
vector<string> tokens ;
// process header line:
getline( inFile, aString ) ;
tokenize( aString, tokens ) ;
assert( tokens[1]== "ID" ) ;
assert( tokens[3]== "NODEA" ) ;
assert( tokens[4]== "NODEB" ) ;
assert( tokens[12]== "LENGTH" ) ;
// main loop:
while ( !inFile.eof() ) {

getline( inFile, aString ) ;
if ( !aString.empty() && isdigit( aString[0] ) ) {

// ( skip lines w/ junk (e.g. last line) )
tokenize( aString, tokens ) ;
Id linkId ; convert( tokens[1], linkId ) ;
Id fromNodeId ; convert( tokens[3], fromNodeId ) ;
Id toNodeId ; convert( tokens[4], toNodeId ) ;
Len length ; convert( tokens[12], length ) ;
Link * link = new Link ;
links[linkId] = link ;
link->set_id ( linkId ) ;
Node* fromNode = nodes[ fromNodeId ] ;
assert( fromNode != NULL ) ;
link->set_fromNode ( fromNode ) ;
Node* toNode = nodes[ toNodeId ] ;
assert( toNode != NULL ) ;
link->set_toNode ( toNode ) ;
link->set_length ( length ) ;
fromNode->addOutLink(link) ;
toNode->addInLink(link) ;

}
}
cout << " nLinks: " << links.size() << endl ;
cout << "### leaving readLinks ...\n\n" ;

}

Regarding addOutLink and addInLink see next section.

Task 6.3 Write code that does the links input.

Remember that you need to include Links into the SimWorld class sim-
ilarly to Nodes .

6.8 Incoming/outgoing links

In order to traverse the graph, for each node we need the incoming and
the outgoing links. Recall that for links we already have the corresponding
information, i.e. the fromNodes and toNodes. The construction of the
inLinks and outLinks is as follows:

First, add the corresponding entries to the node class:
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6.8. Incoming/outgoing links

class Node {
private:

...
typedef vector<Link * > VLinks;
Vlinks outLinks_;
Vlinks inLinks_;

public:
...
void addOutLink(Link * Link) { outLinks_.push_back(link); }
Link * outLink( int i) { return outLinks_[i]; }
int nOutLinks() { return outLinks_.size(); }

void addInLink(Link * link) { inLinks_.push_back(link); }
Link * inLink( int i) { return inLinks_[i]; }
int nInLinks() { return inLinks_.size() ; }

} ;

Note that we do not need the associative array property here for
outLinks_ or inLinks_ , and so we use the vector class instead of
map.

Next, we generate the information of which links are incoming and outgo-
ing. The easiest way is to add this in the readLinks routine at the end,
as was already done in the previous section.

Task 6.4 Add the information about incoming/outgoing links to your code.

Task 6.5 Test if you can read the network in

http://www.matsim.org/files/studies/corridor/networ k

without errors.
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Chapter 7

Cellular automata
micro-simulation

7.1 Introduction

The micro-simulation executes the route plans and returns congestion lev-
els. Since we do not have plans yet, we will at this stage see the traffic
micro-simulation as something that moves vehicles along links and across
intersections.

We use the same dynamics as we had used for the roundabout in Chap. 3.
That is:

• The road is divided into cells of length 7.5 meters.

We will only model links with single lanes.

• Each cell is either empty or occupied by exactly one vehicle.

• Vehicles move deterministically by one cell between timet and time
t + 1 if the cell ahead is empty at timet.

• Across intersections, we will check that the first cell of thereceiving
link is empty.

Implementation

7.2 Vehicles

Now, we need vehicles. We will start very simplistic:

class Veh {
private:

Id id_ ;
public:

set_id( Id val ) { id_ = val ; }
Id id() { return id_ ; }

}
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7.3. Vehicles on links

7.3 Vehicles on links

Now we need to extend the links so that they contain the vehicles. For
our cellular automata (CA) approach, we represent the road by a 1-lane
sequence of cells. In consequence,

class Link {
...

private:
typedef vector<Veh * > Cells ;
Cells cells_ ;

public:
build() ;

}

As one sees, the road is a vector of pointers to Veh. If this pointer is NULL,
then the corresponding cell is empty.

For modular programming, one would in fact introduce a new class, say
simlink , and make it inherit from the link class. Unfortunately, this
eventually means to templatize the link and node classes, which we do
not want to do at this point. Further details are discussed in Chap. 10.

The build() command builds the road, i.e. reserves memory etc.:1

void Link::build () {
int nCells ;
nCells = int( length() / LCELL ) ;
for( int ii=0; ii<nCells; ii++ ) {

cells_.push_back(NULL);
}

}

LCELL is a global constant containing the length of a cell which we set to
7.5 meters. According to the code, the number of cells is

Ncells = L/ℓ, (7.1)

where L is the length of the link and ℓ the length of a cell. push_back is
the command to add elements to a vector .2

We also need functions to add vehicles at the upstream end and remove
them at the downstream end of the link. Similarly, one needs to be able to
test for the availability of space, and get access to the most downstream
of the vehicles. The code segment looks as follows:

class Link {
...
void addToLink( Veh * veh ) {

assert( cells_[0]==NULL );
cells_[0] = veh ;

}
veh * firstOnLink() {

return cells_.back() ;
}
void rmFirstOnLink() {

1Again, there are specific commands in the STL to achieve the same thing. We leave
that to the experts.

2One could useallocate , but the use ofpush back preserves at least somewhat
the look and feel of a traditional array.
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7.4. Random moves through intersections

assert( cells_.back()!=NULL ) ;
cells_.back() = NULL ;

}
bool hasSpace() {

return cells_.front()==NULL ;
}

}

cells_.front() and cells_.back() are STL functions and provide
access to the first and the last element of the vector.

Finally, we need a method to move vehicles forward. This can look as
follows:

class Link {
...
void moveOnLink( int& nVehs ) ;
void move( int& nVehs ) {

moveOnLink( int& nVehs ) ;
// more here to be added later ...

}
} ;

and:

void Link::moveOnLink ( int& nVehs ) {
int last = cells_.size() - 1 ;
for( int ii=0; ii<last ; ii++ ) {

Veh* veh = cells_[ii] ;
if ( veh != NULL ) {

nVehs ++ ;
if ( cells_[ii+1] == NULL ) {

cells_[ii+1] = veh ;
cells_[ii] = NULL ;
ii++ ;
veh->set_speed( LCELL ) ;

} else {
veh->set_speed( 0. ) ;

}
}

}
}

Note that this uses traditional array syntax, so alternative models can be
easily implemented even by programmers not fluent in C++.

7.4 Random moves through intersections

We also need a method to move through intersections. If there is more
than one outgoing link, then the vehicle needs to select one of those. In
Sec. 9.1 we will introduce route plans for this purpose. In order to test the
code without that functionality, here we introduce a method with random
selection of the outgoing link:

class Node {
...

public:
void rndmove() ;
void move() {

rndmove() ;
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}
}

and

void Node::rndmove ( ) {
for ( VLinks::iterator ll=inLinks().begin(); ll!=inLinks() .end(); ++ll ) {

Link * inLink = (Link * ) * ll ;
Veh* veh = inLink->firstOnLink() ; // NULL if none
if ( veh != NULL ) {

int nOutLinks = outLinks().size() ;
int outLinkIdx = int( myRand() * nOutLinks ) ;
Link * theOutLink = outLink(outLinkIdx) ;
if ( theOutLink->hasSpace() ) {

inLink->rmFirstOnLink() ;
theOutLink->addToLink( veh ) ;

}
}

}
}

Note that in contrast to earlier no “->second ” is used with the iterator,
since the VLinks is a standard vector (array) structure, and not a map.

myRand() is a random number generator that returns values between
zero (included) and one (excluded), for example

double myRand() {
return rand()/(RAND_MAX+1) ;

}

7.5 Fairer intersections

In this text, an attempt is made to present a simple (the simplest?) version
here, and to wait with improvements until Part III. In this section, there will
be an exception: The modification presented here is not strictly necessary.
Not including it does, however, result in strong artifacts and asymmetries
in the traffic dynamics.

A disadvantage of the above code for intersection movement is that cer-
tain incoming links always get served earlier than others. A useful way
to improve the situation is to go through the incoming links in random
sequence. This can be achieved by

typedef multimap< double,Link * > RndLinks ;
RndLinks rnd_links ;
// go through all inLinks, give them a random number, and insert
// them according to it:
for ( VLinks::iterator ll=inLinks_.begin(); ll!=inLinks_.e nd();

++ll ) {
Link * link = * ll ;
rnd_links.insert( make_pair( myRand(), link ) ) ;

}
// retrieve the inLinks in the order of their random numbers:
for ( RndLinks::iterator ll = rnd_links.begin();

ll != rnd_links.end(); ll++ ) {
Link * inLink = ll->second ;

and then continue as above.

file: book.tex, p.7-4 October 15, 2007



7.6. Initializing vehicles for testing purposes

The above algorithm goes through all incoming links and gives them a
random number and then inserts them into the multimap using the random
number as key. A multimap is similar to the map we used for links and
nodes with the only difference that keys do not have to be unique; this is
necessary since it could happen that two random numbers are identical.
The links are then taken out of the multimap in increasing order of the
random number.

7.6 Initializing vehicles for testing purposes

We need to be able to put vehicles on the network. A useful method
for this will be discussed in Chap. 9 in conjunction with the introduction
of plans. Here we just point out that for testing purposes one can put
vehicles on links for example as follows:

Id cnt = 0 ;
for ( Links::iterator ll=links.begin(); ll!=links.end(); ++ ll ) {

Link * link = ll->second ;
Veh* veh = new Veh ;
veh->set_id(cnt) ;
cnt++ ;
link->addVeh( Veh ) ;

}

7.7 Main program

Finally all the above functionality needs to be put together. This can be
done as follows:

typedef double Time ;
...
Time globalTime = -1 ; // global definition of a time; see text
...
class Link ; // forward declaration
class Node {

...
};
class Link {

...
} ;
class Veh {

...
} ;
class SimWorld {

...
void simulate() { // see later

...
}

} ;
...
int main () {

// network construction as discussed earlier
...

// build the links:
for ( SimWorld::Links::iterator ll =simWorld.links.begin() ;
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ll!=simWorld.links.end();
++ll ) {

Link * link = ll->second ;
link->build() ;

}

// insert some vehicles as explained above
...

// time iteration:
for ( globalTime=simStartTime; globalTime<99999; globalTim e++ ) {

bool done = false ;
simWorld.simulate( done ) ;
if ( done ) break ;

}
return 0;

}

and finally

void SimWorld::simulate ( bool& done ) {
int nVehs=0 ;
// links movement:
for ( Links::iterator ll=links.begin(); ll!=links.end(); ++ ll ) {

Link * theLink = ll->second ;
theLink->move( nVehs ) ;

}
// intersection movement:
for ( Nodes::iterator nn=nodes.begin(); nn!=nodes.end(); ++ nn ) {

Node* theNode = nn->second ;
theNode->move( ) ;

}
// output
int skip=60 ;
if ( long(globalTime)%skip==0 ) {

for ( Links::iterator ll=links.begin(); ll!=links.end(); ++ ll ) {
Link * theLink = ll->second ;
theLink->writeVehFile( ) ;

}
}
if ( long(globalTime)%1000==0 ) {

cout << "Step: " << globalTime
<< " NVehs: " << nVehs
<< endl ;

}
done = false ;
if ( nVehs==0 ) {

done = true ;
}

}

The above code fragment also contains a provision for visualizer output,
to be used in the next chapter.

Note the time is defined globally as globalTime . There are better ways
to do this; this is, as always in this text, left to the experts.
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Chapter 8

Visualizer

8.1 Introduction

For larger simulations, visualization is nearly always an absolute neces-
sity. Writing a visualizer, however, goes beyond the purposes of this text.
One option is the Transims visualizer, on which the output formats in the
following are based; since the whole Transims package is available to aca-
demic institutions for an affordable license fee, this may be an option. In
some cases, visualizers of other transportation simulation software may
be available. In this section it will be described how a graphics program
that plots data points based on Cartesian coordinates can beused to gen-
erate some basic visualization. The public doman software “gnuplot” will
be used. Other plotting packages with similar functionality should also
work.

Implementation

8.2 Vehicle output

The file format for vehicle output is as follows:

Column Header type explanation

1 VEHICLE integer Vehicle ID
2 TIME integer Current time (in seconds past

midnight)
3 LINK integer Link ID
4 NODE integer FromNode ID (i.e. ID of node

where the vehicle is coming
from)

5 LANE integer Lane the vehicle is on
6 DISTANCE float Distance (in meters) the vehi-

cle is away from the node
7 VELOCITY float Vehicle speed (in meters per sec-

ond)
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8.2. Vehicle output

8 VEHTYPE integer Vehicle type. “1” = car.
9 ACCELER float Vehicle acceleration (in m/s per

second)
10 DRIVER integer Driver ID
11 PASSENGERS integer Number of passengers in vehicle
12 EASTING float Position of vehicle in x direc-

tion
13 NORTHING float Position of vehicle in y direc-

tion
14 ELEVATION float Position of vehicle in z direction
15 AZIMUTH float Vehicle’s orientation (degrees

from east in counterclockwise
direction)

16 USER integer User-defined data field

The most important fields for our purposes here are time and the two
spatial coordinates. When these fields are filled out correctly, the Tran-
sims visualizer will work even when all other fields are filled with dummy
variables.

Some linear algebra is necessary to calculate the position and the orien-
tation of the vehicles. It goes as follows:

1. The vector from the fromNode s to the toNode t is

rst =

[

xst

yst

]

=

[

xt

yt

]

−
[

xs

ys

]

(8.1)

2. When θ is the angle between the x axis and r, then one has

tan θ =
y

x
or θ =















arctan
( y

x

)

if x > 0
arctan

( y
x + π

)

if x < 0
1
2π if x = 0 and y > 0
3
2π if x = 0 and y < 0

(8.2)

3. A vehicle’s distance on the link from the fromNode is given by the
position of it’s cell; if the cell number is i, then the position is (i+1) ℓ,
where ℓ is the length of a cell (typically 7.5 meters).

4. The coordinates of the vehicle now essentially are
[

x
y

]

=

[

xs

ys

]

+

[

d cos θ
d sin θ

]

(8.3)

5. After this calculation, vehicles are on the direct line between two
nodes. What is missing is the offset depending on the lane the
vehicle is in. This is just

[

+w sin θ
−w cos θ

]

, (8.4)

which is added to Eq. (8.3). w is the width of a lane, for exam-
ple 3.75 meters. Large values of w are often useful to “pull” road
directions apart, which is useful when zooming out.
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8.2. Vehicle output

Corresponding code is

void Link::writeVehFile ( ) {
static int first=1 ;
static ofstream snapshotFile ;
if ( first==1 ) {

first = 0 ;
snapshotFile.open( SNAP_FILE_NAME ) ;
assert( snapshotFile.is_open() ) ;
snapshotFile << "VEHICLE"

<< ’\t’ << "TIME"
<< ’\t’ << "LINK"
<< ’\t’ << "NODE"
<< ’\t’ << "LANE"
<< ’\t’ << "DISTANCE"
<< ’\t’ << "VELOCITY"
<< ’\t’ << "VEHTYPE"
<< ’\t’ << "ACCELER"
<< ’\t’ << "DRIVER"
<< ’\t’ << "PASSENGERS"
<< ’\t’ << "EASTING"
<< ’\t’ << "NORTHING"
<< ’\t’ << "ELEVATION"
<< ’\t’ << "AZIMUTH"
<< ’\t’ << "USER"
<< endl;

}
assert( snapshotFile.is_open() ) ;
// write TWO empty lines between time steps:
static Time lastTimeStep = -1 ;
if ( lastTimeStep != globalTime ) {

snapshotFile << "\n\n" << endl ;
lastTimeStep = globalTime ;

}
// go through all cells of the link:
for ( int ii=0; ii<cells_.size(); ii++ ) {

// check if cells have a vehicle on them:
if ( cells_[ii] != NULL ) {

// get the veh and its position on the link:
Veh* theVeh = cells_[ii] ;
double pos = 7.5 * (ii+1) ;
int lane = 1 ;
// calculate geographical coordinates and azimuth:
Coord DX = - fromNode()->xx() + toNode()->xx() ;
Coord DY = - fromNode()->yy() + toNode()->yy() ;
typedef double Angle ;
Angle theta = 0. ;
if ( DX > 0 ) {

theta = atan( DY/DX ) ;
} else if ( DX < 0 ) {

theta = PI + atan( DY/DX ) ;
} else {

if ( DY > 0 ) { theta = PI/2. ; }
else { theta = - PI/2. ; }

}
if ( theta < 0. ) theta += 2. * PI ;
double azimuth = theta/(2. * PI) * 360 ;
Coord easting = fromNode()->xx() + cos(theta) * pos

+ sin(theta) * LANE_WIDTH* lane ;
Coord northing = fromNode()->yy() + sin(theta) * pos

- cos(theta) * LANE_WIDTH* lane ;
Coord elevation = 0. ;
// write the information to the file:
snapshotFile << theVeh->id()

<< ’\t’ << globalTime
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8.3. Visualization via gnuplot

<< ’\t’ << id() // link id
<< ’\t’ << fromNode()->id()
<< ’\t’ << lane
<< ’\t’ << pos
<< ’\t’ << theVeh->speed()
<< ’\t’ << 1 // vehtype
<< ’\t’ << 0. // acceleration
<< ’\t’ << theVeh->id() // driver id
<< ’\t’ << 0 // number of passengers
<< ’\t’ << easting
<< ’\t’ << northing
<< ’\t’ << elevation
<< ’\t’ << azimuth
<< ’\t’ << 0 // user definable field
<< "\n" ;

}
}

}

For Transims, the header line is significant. For other systems, it may be
omitted.

Note the two empty lines between time steps. The empty lines are
important for the gnuplot visualization explained below; they are not im-
portant for the Transims visualizer and probably not for many other visu-
alizers.

The above is called via

void simulate (...) {
...
for (Links::iterator ll = links.begin(); ll != links.end(); ll ++ ) {

Link * link = ll->second;
link->writeVehFile(simTime) ;

}
...

}

8.3 Visualization via gnuplot

Gnuplot (www.gnuplot.info ) is a plotting package that is available on
most linux installations. In the following we will use it for a simple visual-
ization of our traffic simulation results.

First, generate, in the same directory as where you have the vehicle snap-
shot file, a file named gpl with the following contents:

a=a+1
set grid
set xrange[-50:6050]
set yrange[-50:2050]
print a
plot "T.veh" index a u 12:13 t ""
if ( a < 200 ) reread
a = 0

This assumes that your vehicle snapshot file is called T.veh .

Start gnuplot by typing gnuplot . Inside gnuplot, type
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Figure 8.1: Vehicle snapshot using gnuplot.

gnuplot> a=1
gnuplot> load ’gpl

The result should be a window similar to Fig. 8.1 displaying the status of
the simulation time step by time step.

8.4 Testing the current status of the simula-
tion

Task 8.1 Before one continues, one should make some tests if the simu-
lation really works. Build a square with a diagonal . As suggested before:
Just start from

http://www.matsim.org/files/test-net/network .

Try the following things, and check them with the visualizer:

1. For initialization, completely fill one of the links with vehicles. Do
they move the way you would expect? What would you expect? Are
all links used? Remember that the link decision on intersections is
random at the moment.

2. For initialization, completely fill the two links which go into the
same node with vehicles. What happens at the merge? Who has
the priority in your code? Why?
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Chapter 9

Plans following in the
micro-simulation

9.1 Plans

In our micro-simulation, travelers follow plans. In our do-it-yourself traf-
fic simulation, we only look at cars. Cars have complete routes in their
plans.

Route plans always include variants of the following information:

StartTime, StartLoc, Node1, Node2, ..., EndLoc.

• StartTime: Time-of-day when the traveler wants to start. Wealways
use seconds past midnight.

• StartLoc: Starting location. For us, this is the link ID where the trip
starts.

• Node1: First node of route plan.

• Node2, etc.: The following nodes of the route plan.

• EndLoc: The final destination of the trip. For us, this is the link ID
where the trip ends.

In terms of programming, this means:

1. We need a mechanism to read plans.

2. We need a data structure (“parking queue”) where to keep vehicles/-
plans until their starting time.

3. We need a data structure (”waiting queue”) where to keep vehicles/-
plans which are beyond their starting time, but have not beenable
to move into the traffic because of congestion.

4. We need a mechanism to move vehicles from the parking queueto
the waiting queue.
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5. We need a mechanism to move vehicles from the waiting queueon
to the start link.

6. We need a mechanism to move vehicles across an intersection so
that they follow plans.

In principle, the plans file can contain the whole daily plan for each in-
dividual traveler in the simulation. For the time being, we will however
identify car trips and vehicles, and skip the remaining information in the
plans file, if any.

Implementation

9.2 Vehicle class

First we need to extend the vehicle class. An implementation is

#include <deque>
...

class Veh {
private:

Id id_;
public:

void set_id( Id val ) { id_ = val ; }
Id id() { return id_ ; }

private:
Spd speed_ ;

public:
void set_speed( Spd tmp ) { speed_ = tmp ; }
Spd speed() { return speed_ ; }

private:
Time startTime_;

public:
void set_startTime ( Time val ) { startTime_ = val ; }
Time startTime() { return startTime_; }

private:
Id arrivalLinkId_ ;

public:
void set_arrivalLinkId( Id val ) { arrivalLinkId_ = val ; }
Id arrivalLinkId() { return arrivalLinkId_ ; }

private:
typedef deque<Id> Route;
Route route_ ;

public:
void addNodeId2Route(Id nodeId) { route_.push_back(nodeId); }
Id nextNodeID() {

if ( route_.size() >= 1 ) {
return route_.front() ;

} else {
return -1 ;

}
}
void incPlan() { route_.pop_front(); }
void writeEvent(Id linkId, Id fNodeId, int flag) ;
void dump() {

cout << " vehid: " << id()

file: book.tex, p.9-2 October 15, 2007



9.3. Plans format

<< " speed: " << speed()
<< endl ;

}
};

The writeEvent method will be explained later.

Note how the route plan is implemented as a deque, which is a data struc-
ture which makes it easy to add and remove elements at both ends.

9.3 Plans format

We use the Transims route format in order to have a well-defined stan-
dard.

For people who insist on their own format, it is in theory possible to write
converters. In practice, this is nearly always a headache, since, for exam-
ple: the converters are not maintained; third parties do not know where
the executables are located or how they are used; plans files are huge
(typically several GB) and for that reason one does not want different rep-
resentations of the same information on the hard disk.

Clearly, a better choice for what we do would be XML (eXtended Markup
Language). This is discussed in Sec. 24.3. The only disadvantage of XML
is that one needs libraries (such as expat) for parsing, which means that
our code would no longer be standalone. For that reason, for the time
being we use the Transims format.

Transims organizes trips into legs, for example: walk to car, drive to office
parking, walk to office. More precisely, a “trip” goes from one activity to
the next, and legs are characterized by different modes of transportation.
For our project here, we only look at car legs.

A typical example looks as this:

1 0 1 1 0 0
27825 100 2 1900 2
0 86400 0
1 0 1
8
1 0 40 70 100 130 160 190

Since the number of nodes varies from plan to plan, plans need to have
a variable length part. In Transims this is achieved via a fixed length and
a variable length part. The last token of the fixed length part says how
many more tokens are to follow. The meaning of the individual numbers
is as follows:

Fixed length part:

Number explanation

1 Traveler (Person) ID
2 User field. Irrelevant for us
3 Trip ID. Irrelevant for us
4 Leg ID. Irrelevant for us
5 FirstLegFlag. Irrelevant for us
6 LastLegFlag. Irrelevant for us
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7 StartTime
8 StartLocation. = StartLink for us
9 Type of StartLocation. Irrelevant for us
10 EndLocation. Irrelevant for us
11 Type of EndLocation. Irrelevant for us
12 Duration. Irrelevant for us
13 Stop Time. Irrelevant for us
14 MaxTimeFlag. Irrelevant for us
15 Driver Flag. Irrelevant for us
16 Mode. Should always be 0
17 Vehicle Type. Irrelevant for us
18 Number of additional tokens (variable length part)

The 7th token is the StartTime; the 8th token the StartLocation (which is,
for us, the link on which the vehicle starts).

An important information is the 16th token of a block/leg, which codes the
mode of transportation: “0” means “car”. If, for a given block, one finds
a different number here, we will ignore the whole block/leg and continue
with the following one.

The 18th token of a block gives the number of the tokens following from
there on.

Variable length part:

number explanation

1 Vehicle ID. Ignore
2 Number of Passengers. Needs to be zero (because the

meaning of the following data depends on this).
3 Node 1
4 Node 2
5 etc.

The 20th token (= 2nd token of variable length part) should be zero; if not,
the plan should be skipped.1

All following tokens are NodeIDs. The first NodeID after the start link is
included; as long as one uses uni-directional links (as we do), this infor-
mation is redundant.

The full Transims route plans specification is in the Transims documenta-
tion:

http://www.matsim.org/files/doc/transims-1.0/files. pdf

Important: There are differences between the transims-1.0 plans for-
mat and the transims-1.1 plans format. We use the transims-1 .0
plans format.

Important: Line breaks in the route plans are not significant . How-
ever, empty lines between blocks are significant. Each block corresponds
to a leg.

1If this token is not zero, then the following numbers are not only NodeIDs, but also
passenger IDs. We do not want to treat this case.
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Task 9.1 Write a route plans file with exactly one route for “test-net”.

9.4 ReadPlans

Here is an example of how to read plans into the simulation:

void SimWorld::readPlans (Time& simStartTime ) {
cout << "\n### entering readPlans ...\n" ;
int cnt=0 ;
Plan plan ;
simStartTime=99999 ;
while ( plan.readNextPlan()==0 ) {

if ( plan.mode()!=0 ) {
cout << " Wrong mode, skipping plan.\n" ;

} else if ( plan.nPassengers()!= 0) {
cout << " Wrong number of passngers; skipping plan.\n" ;

} else {
cnt++ ; if ( cnt%1000==0 ) { cout << " Cnt: " << cnt << endl ; }
if ( plan.startTime() < simStartTime ) simStartTime = plan.st artTime() ;
Veh* veh = new Veh ;
veh->set_id( plan.travId() ) ;
veh->set_startTime( plan.startTime() ) ;

veh->set_arrivalLinkId( plan.endLinkId() ) ;
assert( links[plan.startLinkId()]!=NULL ) ;
links[plan.startLinkId()]->addToPark(veh) ;
for ( int ii=plan.firstNodeIndex(); ii<=plan.lastNodeIndex(); i i++ ) {

veh->addNodeId2Route( plan.nodeTokens(ii) ) ;
}

}
}
cout << " nPlans: " << cnt

<< " simStartTime: " << simStartTime
<< endl ;

cout << "### leaving readPlans ...\n\n" ;
}

Notes:

• This also calls the vehicle initialization, and puts the vehicle into the
waiting queue of the starting link. Remove the temporary way in
which we had initialized vehicles earlier.

• It also checks which is the earliest vehicle start time.

Since parsing the plans is a bit messy, parsing is delegated to a subroutine
readNextPlan .

int Plan::readNextPlan ( ) {
static ifstream inFile;
// open file if necessary:
static int first=1 ; if ( first ) {

first = 0 ;
inFile.open(PLANS_FILE_NAME);

}
// always check if file is really open:
assert( inFile.is_open() ) ;
// main loop:
while (!inFile.eof()) {

// deal with junk:
string line ; char ch = inFile.peek() ;
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if ( !isdigit(ch) ) {
getline( inFile, line ) ;

}
// here is the real reading:
else {

// read fixed length part:
for ( int ii=1; ii<=18; ii++ ) {

inFile >> fixTokens_[ii] ;
}
// read variable length part:
for ( int ii=1; ii<=fixTokens_[18]; ii++ ) {

assert( ii <= MAXTOK_ ) ;
inFile >> varTokens_[ii] ;

}
return 0 ;

}
}
return 1 ;

}

9.5 Class Plan

A class plan is used to transmit the variables, which avoids an overly long
argument list in the call to ReadNextPlan . This class specification also
does the translation from numbered tokens to meaningful variables. The
following also contains functions to set variables, which is not necessary
for the purposes of this chapter. It will however become necessary in
Chap. 11.

class Plan {
private:

int fixTokens_[19] ;
static const int MAXTOK_=2000 ;
int varTokens_[MAXTOK_+1] ;
static const int firstNodeIndex_ = 1 ;
// (‘‘const’’ makes sure this cannot be changed; ‘‘static’’ is
// necessary here because of the ‘‘const’’.)

public:
Id travId() { return fixTokens_[1] ; }
void set_travId( Id tmp ) { fixTokens_[1] = tmp ; }
// --------------------------------------------
Time startTime() { return fixTokens_[7] ; }
void set_startTime ( Time tmp ) { fixTokens_[7] = int(tmp) ; }
// --------------------------------------------
Id startLinkId() { return fixTokens_[8] ; }
void set_startLinkId( Id tmp ) { fixTokens_[8] = tmp ; }
// --------------------------------------------
Id endLinkId( ) { return fixTokens_[10] ; }
void set_endLinkId( Id tmp ) { fixTokens_[10] = tmp ; }
// --------------------------------------------
int mode() { return fixTokens_[16] ; }
int nPassengers() { return varTokens_[2] ; }
// --------------------------------------------
// vtok1 vtok2 vtok3 vtok4 vtok5 vtok6 ... vtok(L-2) vtok(L-1) vtok(L)
// node1 node2 node3 node4 ... node(N-2) node(N-1) node(N)
// L = fixTokens_[18]
// N = lastNodeIndex ;
void set_nNodes( int tmp ) { fixTokens_[18] = tmp+2 ; }
int nNodes() { return fixTokens_[18] - 2 ; }
// --------------------------------------------
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int firstNodeIndex() { return firstNodeIndex_ ; }
int lastNodeIndex() { return firstNodeIndex_+nNodes()-1 ; }
// --------------------------------------------

protected:
int tokIdx( int ii ) {

return ii+3-firstNodeIndex_ ;
// ( 1 + 3 - 1 = 3, where we find the first node )
// ( N + 3 - 1 = N+2, where we find the last node )

}
// --------------------------------------------

public:
Id nodeTokens( int ii) {

int index = tokIdx(ii) ;
assert( index <= MAXTOK_ ) ;
return varTokens_[index] ;

}
void set_nodeTokens( int ii, Id tmp ) {

assert( ii >= firstNodeIndex() ) ;
assert( ii <= lastNodeIndex() ) ;
int index = tokIdx(ii) ;
assert( index <= MAXTOK_ ) ;
varTokens_[index] = tmp ;

}
int readNextTrip() ;
int readNextPlan() ;
int writePlan() ;
void dump() ;

// constructor
Plan() {

for ( int ii=0; ii<=18; ii++ ) fixTokens_[ii]=0 ;
fixTokens_[9] = 2 ; // StartLoc type = parking
fixTokens_[11] = 2 ; // EndLoc type = parking
fixTokens_[15] = 1 ; // traveler is driving
fixTokens_[17] = 1 ; // vehicle type = auto

}
} ;

9.6 Park queue

The park queue, as explained above, contains vehicles whose starting
time is in the future. Here is a mechanism for the park queue.

class Link {
...

private:
typedef multimap<Time,Veh * > ParkQueue ;
ParkQueue parkQueue_ ;

public:
void addToPark( Veh * veh ) {

parkQueue_.insert( make_pair( veh->startTime(), veh ) ) ; // see txt
}
Veh* firstInPark() {

if ( parkQueue_.size()>=1 ) {
return parkQueue_.begin()->second ;

} else {
return NULL ;

}
}
void rmFirstInPark() {

assert( parkQueue_.size() >= 1 ) ;
parkQueue_.erase( parkQueue_.begin() ) ;
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}
...

};

Note that the implementation for ParkQueue is

typedef multimap<Time,Veh * > ParkQueue ;

We have in fact already used a multimap for the implementation of “fair”
intersections (Sec. 7.5). An additional function now is erase() .

Overall, this implements a priority queue, where the element with the low-
est key is always available via begin() . “Lowest key” here means the
earliest starting time.

9.7 Wait queue

The wait queue, as also explained above, contains vehicles whose start-
ing time has passed but they have not made it into the traffic because of
congestion. The separation between park and wait queue seems some-
what arbitrary at this point. It is necessary to provide an efficient way to
write “events” when vehicles intend to start, even if they do not make it
into the traffic in the same time step (Sec. 9.11).

Here is a mechanism for the wait queue:

class Link {
...

private:
typedef deque<Veh * > WaitQueue ;
WaitQueue waitQueue_ ;

public:
void addToWait( Veh * veh ) {

waitQueue_.push_back( veh ) ;
}
Veh* firstInWait() {

if ( waitQueue_.size()>=1 ) {
return waitQueue_.front() ;

} else {
return NULL ;

}
}
void rmFirstInWait() {

assert( waitQueue_.size() >= 1 ) ;
waitQueue_.pop_front() ;

}
...

};

Task 9.2 Read your plans into your simulation.

Task 9.3 Read the network and the plans from

http://www.matsim.org/files/studies/corridor/teach

into your simulation.

A sketch of the “corridor” network is given in Fig. 9.1.
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40 70 130 160 190 220

20 50 80 110 140 170 200 230

30 60 90 120 150 180 210 240

10 100
100 400 700 1000 1300 1600 1900

200 500 800 1100 1400 1700 2000

300 600 900 1200 1500 1800 2100

40
1

50
2

501
601

Figure 9.1: Sketch of the “corridor” network. The numbers give the cor-
responding node and link IDs.

9.8 Vehicle insertion

Vehicles need to be moved from the waiting queue into the traffic. We do
this by

• moving the SimLink::move(..) function to SimLink::moveOnLink(..) ,
and then

• defining a new SimLink::move(..) function as follows:

class SimLink : public Link {
...
void move ( int& nVehs ) {

parkToWait() ;
waitToLink() ;
moveOnLink( nVehs ) ;

}
} ;

The corresponding code is

void Link::parkToWait () {
Veh* veh = firstInPark() ;
while ( veh != NULL && veh->startTime() <= globalTime ) {

rmFirstInPark() ;
addToWait( veh ) ;
Id linkId = id() ;
Id fromNodeId = fromNode()->id() ;
veh->writeEvent( linkId, fromNodeId, DEPARTURE_FLAG ) ;
veh = firstInPark() ;

}
}

and

void Link::waitToLink () {
Veh* veh = firstInWait() ;
while ( hasSpace() && veh != NULL ) {

rmFirstInWait() ;
addToLink( veh ) ;
veh->incPlan() ; // easy to forget!!
Id linkId = id() ;
Id fromNodeId = fromNode()->id() ;
veh->writeEvent( linkId, fromNodeId, WAIT_TO_LINK_FLAG ) ;
veh = firstInWait() ;

}
}

Overall, what we actually do is the following:
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• During the initialization of the simulation, we read all the plans into
computer memory. During this reading process, we also sort them
by starting time into the parking queue.

• During the simulation itself, in each time step and for each link we
check if the first vehicle in the parking queue is “due” for its entry
into the traffic. If the answer is yes, then the vehicle is moved to
the waiting queue. This is repeated until no more vehicles want to
depart on this link in this time step.

• For all vehicles in the park queue, it is attempted to insert them into
the traffic.

The meaning of writeEvent will be explained later.

9.9 Plans following and vehicle arrival

During the traffic simulation, the turning direction corresponding to the
route plan needs to be found. That is, the random turning dynamics of
Sec. 7.4 needs to be replaced by something like

void Node::move ( ) {
// generate random sequence of inlinks as discussed earlier:
typedef multimap< double,Link * > RndLinks ;
RndLinks rndLinks ;
for ( VLinks::iterator ll=inLinks().begin(); ll!=inLinks() .end(); ++ll ) {

Link * theLink = * ll ;
double rnd = myRand() ;
rndLinks.insert( make_pair( rnd, theLink ) ) ;

}
// go through that rnd sequence of inlinks and move vehicles
// across intersection if possible:
for ( RndLinks::iterator ll=rndLinks.begin(); ll!=rndLinks .end(); ll++ ) {

Link * inLink = ll->second ;
Veh* veh = inLink->firstOnLink() ; // NULL if none
if ( veh != NULL ) {

Id nextNodeId = veh->nextNodeID() ;
if ( nextNodeId>0 ) {

Link * theOutLink = findOutLink( nextNodeId ) ;
if ( theOutLink->hasSpace() ) {

inLink->rmFirstOnLink() ;
theOutLink->addToLink( veh ) ;
veh->incPlan() ;

}
} else { // end of plan

inLink->rmFirstOnLink() ;
Id arrivalLinkId = veh->arrivalLinkId() ;
// WARNING: one should check if the arrivalLink is
// connected to the current node!!
veh->writeEvent( arrivalLinkId, inLink->toNode()->id( ), ARRIVAL_FLAG ) ;
delete veh ;

}
}

}
}

Note that the event uses the id of the arrival link, not the current link id.

Task 9.4 Run your simulation with the network from
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http://www.matsim.org/files/studies/corridor/networ k

and plans from

http://www.matsim.org/files/studies/corridor/teach/ 0.plans

Results should be submitted as T.veh and T.bin files taken every 60 sec-
onds .
When does the last vehicle leave your simulation? (Answering this ques-
tion is important since it allows us to compare results.)

9.10 Computational Speed

Since in the application, many of the problems are fairly large, one needs
to keep an eye on computing speed. A useful measure for this are “vehicle
updates per second”. Let’s say that for a simulation with 104 vehicles and
103 time steps we need 10 seconds of computing time. Then we have
104×103 = 107 vehicle updates per 10 seconds, or 106 vehicle updates per
second. This number is typical for a simple implementation on a 300 MHz
CPU.

Under unix one obtains the computing speed for example via time (see
man-page). My personal result looks like

92.88user 0.00system 1:34.50elapsed 98%CPU (0avg...

We are most interested in “92.88user” (coresponding to 92.88 sec).

Transportation science sometimes does the “real time limit” (for our pur-
poses = the number of vehicles with which the simulation runs as fast as
reality).

All of these values depend on the vehicle density, which therefore always
needs to be given when giving computing speeds.

Task 9.5 How long does your simulation for the “corridor” network with
0.plans take to run? Please also tell us your implementation (C++ or Java
or ??). Do this once with output and once with output switched off. What
does this roughly correspond to in “vehicle updates per second”. How did
you obtain that number?

9.11 Events output

Besides visualizer output, we need some output that is geared more to-
wards the internal functionality of the system. We call this “events output”.
The name means that events output is triggered by some event. Typical
events are vehicle departure, vehicle arrival, or link traversal.

Specifically, our events file consists of the following fields. From now on,
we deviate from Transims formats and use our own formats. The main
reason is that the remaining files are not very large and thus converting
them when necessary seems justified. As argued elsewhere, in the longer
run these files should all be in XML format.
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Column Header type explanation

1 TIMESTEP int time step
2 VEHICLEID int vehicle id
3 LINK int Link ID
4 FROMNODE int FromNode ID for link. Irrelevant for

us since we use uni-directional links
5 FLAG int 0: vehicle arrives at final destina-

tion
2: vehicle leaves a link to go
across an intersection
4: vehicle moves from wait queue
into traffic
5: vehicle enters a link coming
from an intersection
6: vehicle is supposed to start

6 NOTES string notes (leave empty, but separate by
tab)

These events will be needed later when we introduce feedback and learn-
ing.

Task 9.6 Write code which writes all of the above events to file when they
are encountered.
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Chapter 10

Modularization, inheritance,
templates, and code re-use

10.1 Introduction

As discussed in Chap. 2, transportation simulation packages consist of
many modules. So far, we have seen the traffic simulation and the visual-
izer. The next module will be the router.

In contrast to the visualizer, our router will operate on a graph similar to
the traffic simulation. This means that it makes sense to re-use some of
the traffic simulation code. There are several options:

• If your are working as part of a team and your task is the router,
then you can just delete the pieces of code that are specific tothe
traffic simulation (example: the cell structure of the links) and go
from there.

• If you want one consistent piece of code but not many hassles in
terms of software design, then one option is to have the functionality
for the simulation and for the router combined in the same software.
A link for example would keep the cell structure, even when used
by the router.

This is quite inefficient both in terms of performance and in terms of
memory usage, but our experience is that for the examples discussed
in this text this is a workable solution. In this case, you do not need
to read this chapter.

• It is possible to separate the general purpose pieces of the net-
work reading and network construction from the simulation specific
pieces.

It is the last point that will be discussed in this chapter.
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10.2. Links, Simlinks, and Inheritance

10.2 Links, Simlinks, and Inheritance

It makes sense to separate the graph functionality that willbe used by sev-
eral modules from the graph functionality that is used by a single module
only. The mechanism to do this is inheritance. For example

class Link {
private:

Id id_ ;
public:

void set_id( Id val ) { id_ = val ; }
Id id() { return id_ ; }

private:
Len len_ ;

public:
void set_length( Len val ) { len_ = val ; }
Len length() { return len_ ;}
...

} ;

class SimLink : public Link {
private:

Cells cells_ ;
public:

void build() ;
void addVehToLink( Veh * veh ) ;
....

}

This means that SimLink can do everything that Link can do, plus addi-
tional things. For example:

...
Link * link ;
SimLink * simLink ;
...
cout << link->id() ; // o.k.
cout << simLink->id() ; // o.k., simlink is a link
link->build() ; // not o.k., link is not a simlink
simLink->build() ; // o.k.

The wordpublic in class SimLink : public Link means that
everything that was public inLink will be available forSimLink . For
the purposes of these things,SimLink will behave exactly asLink .

This is the only type of inheritance that we will consider.

10.3 Templates

Inheritance, without additional measures, does not work for graph reading
and graph construction. It is not possible to do something like

class Node ; // forward declaration
class Link {

...
Node* toNode() { return toNode_ ; }
...

} ;
...
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class SimLink : Link {
...

} ;
...
int main () {

...
SimLink * aSimLink = new SimLink( ... ) ;
...
SimNode* aSimNode = aSimLink->toNode() ; // does not work

}

becausetoNode() is of typeNode* instead of of typeSimNode* .

For C programmers and many other people, it will be clear thatit is possi-
ble to work around this problem: this is just about pointers,and it should
be possible to cast pointers to whatever one wants. In general, it is how-
ever an advantage that C++ enforces consistency between pointer objects,
and so one should not deliberately circumvent this type checking.

A possibility to work around this is the use of templates.

template < class Node> // <======
class Link {

...
Node* toNode() { return toNode_ ; }
...

} ;
...
class SimNode ; // forward declaration
class SimLink : Link<SimNode> { // <======

...
} ;
...
int main () {

...
SimLink * aSimLink = new SimLink( ... ) ;
...
SimNode* aSimNode = aSimLink->toNode() ; // works

}

In fact, not much seems to have changed. What is the difference?

Template classes are often described as “parameterized classes”. In fact,
one could have written

template < class XXnode> // <======
class Link {

...
XXNode* toNode() { return toNode_ ; }
...

} ;

where now the notationXXnode makes clear that the type of the node is
left open.

Then, when later saying

class SimNode ;
class SimLink : Link<SimNode> {

...
} ;

then this means thatSimLink inherits fromLink while usingSimNode
everywhere whereXXnode is in the definition. In consequence,
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aSimLink->toNode() ;

now returns a pointer toSimNode .

Thus, a method to translate everything we have done so far into a more
general network construction is to write things like

// --------------------------------------------
template < class Node>
class Link {

...
} ;
template < class Link>
class Node {

...
} ;
template < class Node, class Link>
class Net {
public:

typedef map<Id,Node * > Nodes ;
Nodes nodes ;
...
void readNodes() {...} ;
...

} ;
// --------------------------------------------
class SimNode ; // forward declaration
class SimLink : public Link<SimNode> {

...
} ;
class SimNode : public Node< SimLink> {

...
} ;
class SimWorld : public Net<SimNode,SimLink> {

...
} ;
// --------------------------------------------
int main () {

...
SimWorld simWorld ;
...
simWorld.readNodes() ;
simWorld.readLinks() ;
...

}
// --------------------------------------------

In spite of the above explanation, for an inexperienced programmer the
above is probably too much of a change to be done in one step andit will
be necessary to achieve some familiarity with templates based on simpler
programs before achieving this task. We hope that the above notes can
guide the necessary reading and experimentation when templatization of
the transportation simulation is the goal.

10.4 What belongs into the base class?

It is never simple to decide what belongs at what level of the hierarchy
in inheritance. A possibility is to have only the basic things for graph
construction in the base class and everything else in the derived class.
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This would mean to have ID, toNode, fromNode, and possibly inLinks
and outLinks in the base class and everything else in the derived classes.

We do however think that it makes more sense to have everything that
is in the nodes and links data files in the base class. In that way, the
programs for reading the network data can be used by all modules without
any changes, and the memory overhead is still not too bad.
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Chapter 11

Route planner

11.1 Introduction

In Chap. 9 we have modified the traffic simulation in a way that each
individual vehicle follows precomputed plans. In this Chapter, we will
discuss a simple method to generate these route plans. For the sake of
simplicity, we continue to only look at the car mode, which describes
80 percent or more of all travel in most western cities. Routing for other
modes will be discussed in Sec. 20.

For each traveler, the input to the router consists of the following informa-
tion:

• Trip Start Time.

• Trip Start Location. LinkID where the trip starts.

• Trip End Location. LinkID where the trip ends.

The output is a plans file, as specified in the previous section.

11.2 Fastest Path

The typical method to obtain routes is to calculate fastest paths. This is
achieved via a standard shortest path algorithm by using link travel time
as link cost. These algorithms typically go from node to node, which
means that we have to translate our starting and ending locations to the
corresponding nodes. Such an algorithm (Dijkstra algorithm, see e.g.?)
then can proceed as follows:

• SetarrTime at all nodes to infinity. SetisDone of all nodes to
false .

• Take the starting node from the trip. Make it the current node. Set
its arrTime to the trip starting time.
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• “Node expansion:” SetisDone of the current node totrue . Go
through all outgoing links from the current node. For each such link,
calculate arrival time attoNode as

tmpArrivalTime = now + outLinkTravelTime , (11.1)

wherenow is thearrTime at the current node.

If tmpArrivalTime is smaller thantoNode ’s currentarrTime ,
then a faster path to that node just has been found. In that case,

– SettoNode ’s arrTime time to tmpArrivalTime .

– Set a pointer attoNode pointing back to the current node.

• Out of all nodes whereisDone is false, take the one with the min-
imumarrTime . Do “node expansion” with this node.

• Etc.

One can stop when the destination node is about to be expanded. Note
that one cannot stop when the end node is touched for the first time (i.e.
when its time is set from infinity to some finite value) since some better
time can be found later.The full path can now be found by taking the end
node, and following the pointers back to the start node.

11.3 Link travel times

What is missing is the value ofoutLinkTravelTime . When no other
information is available, then we use

linkTravelTime= linkLength/linkFreeSpeed. (11.2)

For the CA traffic simulation, the free speed is one cell per time step, or
7.5 m/s.

Congestion will reduce the speeds on the links. This effect is included into
the router in Chap. 12.

Implementation

11.4 Library support for graph algorithms

There are libraries for graph algorithms, such as LEDA. In the past, they
were never flexible enough to cover everything we want to do (e.g. time de-
pendence). This will eventually change, and there will be options to pass
calls to arbitrary cost functions to a graph algorithm. Once that works,
writing router code will become considerably simpler.
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11.5 General structure

The general structure of the router is as follows (not assuming the use of
templates as discussed in Chap. 10):

class Link ;
class Node {

...
};
class Link {

...
};
class Plan {

...
} ;
class RouteWorld {
private:

typedef map<Id,Node * > Nodes ;
Nodes nodes ;
typedef map<Id,Link * > Links ;
Links links ;

public:
void findPath( Plan& ) ;

} ;
...
int main() {

// instantiate routeWorld:
RouteWorld routeWorld ;

// read the network:
routeWorld.readNodes() ;
routeWorld.readLinks() ;

// main loop:
Plan plan ;
while ( plan.readNextTrip()==0 ) {

routeWorld.findPath( plan ) ;
plan.writePlan() ;

}
}

As discussed in Chap. 10, the node, link, and plan classes and methods
can be taken from previous chapters. Depending on the intention, one can
just copy them into the route code and comment out unneeded portions.
Alternatively, one can put them into a separate file and include them both
into the simulation and into the router code. As discussed in Chap. 10,
the best solution would be to use inheritance, which however implies the
use of templates.

11.6 Input file: Trips

Transims does not have a trips file; indeed, the same information can
be derived from Transims activity files (see Sec. ??). Transims activity
files contain much more information than we need here, and they have
been a continuous source of error and misunderstanding. And as a final
argument, we believe that the activities file should be an XML subset of
the plans file, as we will discuss in Sec. 24.3. For all those reasons, at
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this point we deviate once more from Transims file formats and introduce
our own file format for trips.

The format is as follows:

Column Header type explanation

1 ID integer ID number of traveller/vehicle
2 DEPTLINK integer departure location (link ID)
3 ARRLINK integer arrival location (link ID)
4 TIME integer departure time of traveller/vehi-

cle in “seconds past midnight”
5 NOTES string notes (leave empty, but separate by

tab)

This can be read in a similar way as a links or nodes file; and we will
use the already existing plan class for storing the information. In conse-
quence, reading the trips looks as follows:

int Plan::readNextTrip () {
static ifstream inFile ;
string aString ;
vector<string> tokens ;
static bool first= true ; if ( first ) {

first = false ;
// open file:
inFile.open( TRIPS_FILE_NAME ) ;
assert( inFile.is_open() ) ;
// deal with header line:
getline( inFile, aString ) ;
tokenize( aString, tokens ) ;
assert( tokens[1]== "ID" ) ;
assert( tokens[2]== "DEPTLINK" ) ;
assert( tokens[3]== "ARRLINK" ) ;
assert( tokens[4]== "TIME" ) ;

}
// always check if file is still open:
assert( inFile.is_open() ) ;
// main part:
while ( !inFile.eof() ) {

getline( inFile, aString ) ;
if ( !aString.empty() && isdigit( aString[0] ) )

// [[ skip lines with junk ]]
{

tokenize( aString, tokens ) ;
Id travId ; convert( tokens[1], travId ) ;
Id startLinkId ; convert( tokens[2], startLinkId ) ;
Id endLinkId ; convert( tokens[3], endLinkId ) ;
Time startTime ; convert( tokens[4], startTime ) ;
set_travId( travId ) ;
set_startLinkId( startLinkId ) ;
set_endLinkId( endLinkId ) ;
set_startTime( startTime ) ;
set_nNodes( 0 ) ; // set number of node tokens to zero
return 0 ;

}
}
return 1 ; // return 1 when eof is encountered

}

Note that the methods to set the plans variables were already defined in
Sec. 9.5.
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Task 11.1 Write a program that constructs the network, reads trips, and
outputs them to the screen. Trips are at

http://www.matsim.org/files/studies/corridor/teach/ 0.trips .

11.7 FindPath and Dijkstra

Remember that before calling the Dijkstra algorithm, the starting/ending
locations which are on links need to be pushed forward/backward to the
corresponding nodes. For us, links are always uni-directional, so that the
answer to this is unique. This can look as follows:

int RouteWorld::FindPath ( Plan& plan ) {
Link * startLink = links[plan.startLinkId()] ;
assert( startLink != NULL ) ;
assert( startLink->id()==plan.startLinkId() ) ;
Link * endLink = links[plan.endLinkId()] ;
assert( endLink!= NULL ) ;
assert( endLink->id()==plan.endLinkId() ) ;
Node* startNode = startLink->toNode() ;
Node* endNode = endLink->fromNode() ;
Dijkstra( startNode, endNode, plan.startTime() ) ;
Node* tmpNode = endNode ;
int cnt=0 ;
while ( tmpNode != NULL ) {

cnt++ ;
tmpNode = tmpNode->prev() ;

}
plan.set_nNodes( cnt ) ;
tmpNode = endNode ;
for ( int ii=plan.lastNodeIndex(); ii>=plan.firstNodeIndex() ; i i-- ) {

plan.set_nodeTokens( ii, tmpNode->id() ) ;
tmpNode = tmpNode->prev() ;

}
return 0 ;

}

Note that this calls Dijkstra . The code after the Dijkstra call takes
the Dijkstra algorithm result and copies it into Plan . Plan.SetNNodes
sets the number of nodes the route traverses from the start link to the
destination link. Plan.SetNodeTokens sets the corresponding tokens
to the node IDs. An implementation for this was already given earlier
(Sec. 9.5).

Dijkstra itself can look as follows. The precise meaning of nodeList
will be described afterwards; essentially, it is a container that contains all
“pending” nodes. In Sec. 11.2 this corresponds to the set of all nodes
where isDone is false but arrTime is no longer infinity.

int RouteWorld::Dijkstra ( Node * startNode, Node * endNode, Time startTime ) {
NodeList pending ;
// general initialization:
for ( Nodes::iterator nn=nodes.begin(); nn!=nodes.end(); nn ++ ) {

Node* theNode=nn->second ;
theNode->unset_isDone() ;
theNode->set_arrTime( INFTY ) ;
theNode->set_prev( NULL ) ;

}
// initialize start node:
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startNode->set_arrTime( startTime ) ;
pending.insert( make_pair( startTime, startNode ) ) ;
// Dijkstra loop proper:
while( pending.size() > 0 ) {

Node* theNode = pending.begin()->second ;
pending.erase( pending.begin() ) ;
if ( !(theNode->isDone()) ) {

// (check this because we may have nodes more than once in list)
theNode->set_isDone() ;
if ( theNode!=endNode ) {

theNode->expand( pending ) ;
} else {

return 0 ;
}

}
}
// should never get here:
assert(0==1) ;

}

The implementation for NodeList is again a multimap; the functioning
of this was already explained in the context of generating a random se-
quence of links, and in the context of the vehicle wait queue. For the
wait queue, the functionality is exactly the same has here: We need to
maintain a set of (key,pointer)-pairs such that it is possible to retrieve the
pointer which belongs to (one of) the smallest key(s).

One issue here is that, if a better ArrTime for a node is found, it should
be moved within the priority queue. This would necessitate to find that
element within the queue. Another option is to leave both entries in the
queue, but add the IsDone flag to nodes. If a node with IsDone is en-
countered, it is removed from the queue but ignored otherwise.

The expand() method is still missing. Here is a suggestion:

void Node::expand ( RouteWorld::NodeList& pending ) {
Time now = arrTime_ ;
for ( VLinks::iterator ll=outLinks().begin(); ll!=outLinks ().end(); ll++ ) {

Link * link = * ll ;
Node* nextNode = link->toNode() ;
Time linkTTime = link->tTime( now ) ;
Time nextTime = now + linkTTime ;
if ( nextTime < nextNode->arrTime() ) {

nextNode->set_arrTime( nextTime ) ;
assert( !(nextNode->isDone()) ) ;
nextNode->set_prev( this ) ;
pending.insert( make_pair( nextTime, nextNode ) ) ;

}
}

}

tTime( . ) is a method of the Link class which returns the link travel
time on that link as a function of the entering time, in the code given by
now. As discussed in Sec. 11.3, at this point this should return the length
of the link (in meters) divided by 7.5.

Task 11.2 Run FindPath on the first activity in

http://www.matsim.org/files/studies/corridor/teach/ 0.trips

Which route is returned? Why?
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11.8 Plans output

Now the plan needs to be written to file. Since we have it already in a
suitable internal representation, that is easy now:

int Plan::writePlan ( ) {
static ofstream outFile;
// open file if this is the first call:
static int first=1 ; if ( first ) {

first = 0 ;
outFile.open(PLANS_FILE_NAME);

}
// always check if file is really open:
assert( outFile.is_open() ) ;
// fixed length part
for ( int ii=1; ii<=18; ii++ ) {

outFile << fixTokens_[ii] ;
if ( ii==6 || ii==11 || ii==14 || ii==17 || ii==18 ) {

outFile << endl ;
} else {

outFile << ’ ’ ;
}

}
// variable length part
for ( int ii=1; ii<=fixTokens_[18]; ii++ ) {

outFile << varTokens_[ii] << ’ ’ ;
}
// Add an empty line:
outFile << endl << endl ;
return 0 ;

}

Task 11.3 Apply your router to

http://www.matsim.org/files/studies/corridor/teach/ 0.trips

and generate the corresponding plans file in Transims format. Note that
the result is not similar to

http://www.matsim.org/files/studies/corridor/teach/ 0.plans .
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Chapter 12

Congestion-dependent router

12.1 Link travel times and congestion

So far, the router is not sensitive to congestion. In order tomake the routes
sensitive to congestion, delays caused by congestion need to show up in
the link travel times. This can be achieved via getting the link travel times
from a separate file. Links which are congested will have linktravel times
which are longer than the free speed travel times.

In practice, we will achieve this via the events file. The events file, as dis-
cussed in Sec. 9.11, contains for each vehicle the time when it enters and
the time when it leaves each link. We will aggregate this information as a
function of the link entry times. The procedure consists of the following
steps:

• Conversion of events to link travel times. For each enter-link-
event, the corresponding leave-link-event is searched. Asa result,
one obtains for each link entry time a corresponding link travel time.

• Aggregation. Link travel times are aggregated into time slices, of
e.g. 15 min. For this, the link travel times of all vehicles entering a
link during a certain time slice are averaged. For example, if there
are vehicles entering at 9:03:22, 9:05:56, and 9:07:23, andtheir link
travel times are 1 min, 2 min, and 3 min, then the average link travel
time for all vehicles entering between 9 and 9:14:59 will be 2min.

This type of data aggregation is the simplest method possible and
it has certain drawbacks. This will be discussed in more detail in
Sec. 19.1.

Let us consider why this method works. The Dijkstra algorithm, as ex-
plained in Sec. 11.2, proceeds by “expanding” a node when no faster path
to that node can be found. For that reason, the “current time”at that
node, denoted bynow, is the time-of-day when the node is reached via
the fastest path. It is therefore also the time-of-day then the outgoing links
from that node are entered.

Note: With time-dependence as explained above, it could happen that
“waiting at a node” yields a faster path. This can happen whenthe link

12-1



12.2. Congestion dependency: Link travel times

travel time in the following time bin is shorter than the linktravel time
in the current time bin plus the remaining time in the currenttime bin. In
such a situation, the above algorithm would not return the path that is tech-
nically the fastest. In real traffic, however, this is rarelyan issue: Links
are approximately FIFO (first-in first-out), which means that entering at a
later time also means leaving at a later time. In other words:If the time-
dependent algorithm “thinks” that waiting at a node would pay off, then
this is normally an artifact of the routing algorithm – more specifically, of
the time aggregation – and not a feature of the traffic system.For those
reasons, using the algorithm as described above will normally describe
plausible routes, even if they may not be the technically fastest.

Yet, there is at least one situation where indeed waiting at anode could
pay off: This is if links are opened at a certain time-of-day.We will not
assume such complications here.

Implementation

12.2 Congestion dependency: Link travel
times

We need to get the congestion information into the router. More specif-
ically, we need that the correct link travel time information is returned by
link->tTime(now) in Sec. 11.7.

As said above, the way we do this is by reading the events file, calculating
each vehicle’s link travel times, and then aggregating those times into the
desired time bins. Here is a suggestion of a method to do this; comments
are added below.

class EnterEvent {
private:

Time time_ ;
public:

void set_time( Time val ) { time_ = val ; }
Time time() { return time_ ; }

private:
Id linkId_ ;

public:
void set_linkId( Id val ) { linkId_ = val ; }
Id linkId() { return linkId_ ; }

private:
Id vehId_ ;

public:
void set_vehId( Id val ) { vehId_ = val ; }
Id vehId() { return vehId_ ; }

} ;

void RouteWorld::readEvents () {
cout << "\n### entering readEvents ..." << endl ;
int cnt=0 ;
// preprocessing (initialize Sum and Cnt):
for ( Links::iterator ll=links.begin(); ll!=links.end() ; ++ ll ) {

Link * link=ll->second ;
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link->tTimeIni() ;
}
// open file:
ifstream inFile ; inFile.open(EVENTS_FILE_NAME) ;
assert( inFile.is_open() ) ;
string aString ;
vector<string> tokens ;
// process header line:
getline( inFile, aString ) ; tokenize( aString, tokens ) ;
const int t_idx=1 ; assert( tokens[t_idx]== "TIMESTEP" ) ;
const int v_idx=2 ; assert( tokens[v_idx]== "VEHICLEID" ) ;
const int l_idx=3 ; assert( tokens[l_idx]== "LINK" ) ;
const int n_idx=4 ; assert( tokens[n_idx]== "FROMNODE" ) ;
const int f_idx=5 ; assert( tokens[f_idx]== "FLAG" ) ;
typedef map<Id,EnterEvent * > EnterEvents ; EnterEvents enterEvents ;
// main loop:
while ( !inFile.eof() ) {

getline( inFile, aString ) ;
if ( !aString.empty() && isdigit( aString[0] ) ) {

// ( skip lines w/ junk (e.g. last line) )
tokenize( aString, tokens ) ;
Time time ; convert( tokens[t_idx], time ) ;
Id vehId ; convert( tokens[v_idx], vehId ) ;
Id linkId ; convert( tokens[l_idx], linkId ) ;
Id fromNodeId ; convert( tokens[n_idx], fromNodeId ) ;
int flag ; convert( tokens[f_idx], flag ) ;
if ( flag==ENTER_LINK_FLAG ) {

EnterEvent * enterEvent = new EnterEvent ;
enterEvent->set_time( time ) ;
enterEvent->set_linkId( linkId ) ;
enterEvent->set_vehId( vehId ) ;
assert( enterEvents.count( vehId ) == 0 ) ;
enterEvents[vehId] = enterEvent ;

} else if ( flag==LEAVE_LINK_FLAG ) {
EnterEvent * enterEvent = enterEvents[vehId] ;
assert( enterEvent != NULL ) ;
assert( enterEvent->linkId() == linkId ) ;
Link * link = links[ linkId ] ;
Time ttime = time - enterEvent->time() ;
link->addToSum( enterEvent->time(), ttime ) ;
cnt++ ;
enterEvents.erase(vehId) ;
delete enterEvent ;

}
}

}
if ( enterEvents.size() != 0 ) {

cout << " severe warning: events map not empty " << endl ;
}
cout << " nEvents: " << cnt << endl ;
cout << "### leaving readEvents ..." << endl << endl ;

}

Comments:

• In the initialization, all sums and count variables are set to zero via

void Link::tTimeIni () {
sum_.assign(maxBin_ + 1, 0);
cnt_.assign(maxBin_ + 1, 0);

}

sum and cnt are vectors (e.g. vector<int> sum etc.). The
assign(N,X) command sets elements 0 to N-1 of the vector to
value X.
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After that, the file is opened and the header line is read.

• In the main loop, the method goes through each line of the file,
puts it into aString , checks for garbage, reads the corresponding
values for time, vehicle id, link id, from-node id, and the event flag.
If the event flag denotes an enter-link-event, then this information is
added to a map with the vehicle id as key. Note that for this the
vehicle id needs to be unique. If the event flag denots a leave-
link-event, then the corresponding enter-link-event is retreived, the
link travel time is computed, and it is added to the relevant time bin.
The latter is achieved by

void Link::addToSum ( Time now, double sum ) {
unsigned bin = timeToBin( now ) ;
assert( bin < sum_.size() ) ;
sum_[bin] += sum ; cnt_[bin] ++ ;

}

This uses

int timeToBin ( Time theTime ) {
return int( theTime/900 ) ;

}

The correct link travel time is now returned by

Time Link::tTime ( Time now ) {
unsigned bin = timeToBin( now ) ;
assert( bin < sum_.size() ) ;
if ( cnt_[bin] > 0 ) {

return Time( sum_[bin]/cnt_[bin] ) ;
} else {

return Time( length()/GBL_FREE_SPEED ) ;
}

}

Note that this uses the free speed travel time if no events information is
available. Here, we use the global variable GBL FREESPEED; this could
be replaced by link-dependent free speeds in more sophisticated imple-
mentations. However, when doing this, one needs to make sure that also
the traffic simulation generates link-dependent free speeds. Our simu-
lation of Chap. 7 does not do this; improving this will be discussed in
Chap. 17.

It is useful to note that all conversions from time-of-day to time-bins is
done via the function timeToBin . The inverse conversion (from time
bins to time-of-day) is never needed. This makes sure that if the router re-
quests information for a certain time-of-day, it will always receive the same
time bin that a link entry event at the same time would have obtained.1

1Earlier versions, by Transims and also by ourselves, aggregated the event informa-
tion into the time bins either directly in the traffic simulation, or by some external module,
and wrote the result into a file. The typical information given in that file was a time, say
“900 sec”, and a corresponding link travel time. In implementations, there was then al-
ways confusion if this referred to a time bin going from 1 to 900, or to a time bin going
from 900 to 1799. The intention was the first, but unfortunately time%900 (where%
is the modulo function) puts 0 to 899 into one time bin and 900 to 1799 into another
one, resulting in many errors. Clearly, this is a trivial problem, but one that continuously
caused problems.
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Clearly, the overall integration into the router has to look as follows:

int main() {
// instantiate routeWorld:
RouteWorld routeWorld ;

// read the network:
routeWorld.readNodes() ;
routeWorld.readLinks() ;

// read the events:
routeWorld.readEvents() ;

// main loop:
...

}

Task 12.1 Write routines which read the events. Check if the processing
of

http://www.matsim.org/files/studies/corridor/teach/ test.events

leads the link travel times would expect. (Which values would you ex-
pect?)

Task 12.2 Run FindPath together with

http://www.matsim.org/files/studies/corridor/teach/ test.events

on the first trip in

http://www.matsim.org/files/studies/corridor/teach/ 0.trips

Which route is returned? Is this different from the route returned in
Task 11.2? Why?

Task 12.3 Get the events file that was produced by running the traffic
micro-simulation on

http://www.matsim.org/files/studies/corridor/teach/ 0.plans

Read those events, and then apply your router to

http://www.matsim.org/files/studies/corridor/teach/ 0.trips

Give the resulting routes file to the micro-simulation and have it executed.
Does the result make sense? Why or why not?
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Chapter 13

Feedback/System integration

13.1 Introduction

As explained in Chap. 2, “learning” or “adaptation” is an extremely im-
portant part of transportation simulations packages. The idea is that if the
execution of a plan differs from what people had expected, then they will
change their plans to adapt to what they found. For example, if congestion
lets them arrive late to work, they will leave home earlier.

We will implement this in a very straightforward way: The traffic simula-
tion will collect link travel times, and the router will use them to generate
better routes. This reflectsday-to-day learning, that is, travelers revise
their decisions from one day to the next. This is in contrast to within-day
learning, which will be treated later.

We will also allow only 10% of the travelers to replan betweenany given
two days, in order to avoid over-reactions of the system. Such over-
reactions could otherwise for example happen if alternative A was slightly
faster than another one in one iteration and as a resultall travelers would
switch to link A, making it extremely congested. There are other ways to
deal with this problem, which will also be treated later in the class.

Fig. 13.1 gives information about the data flow through the different ele-
ments.

Implementation

13.2 Subset of trips file

You want the router to compute new routes only for 10% of the travelers.
For this, you need to generate a random sample of the trips file. Do the
following:

• Write the trips file header.

• For each traveler in the trips file, decide if that traveler should be
re-planned. If yes, write the trip line into the new file.
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events
100%
plans

10%
plans

traffic
simulation

router

100%
new

plans

10% of 100% of
trips trips

Figure 13.1: Data flow through the simple feedback mechanismof this
chapter. Reading the network files is not drawn. The thick lines are the
ones which need to be done in this Chapter.

Awk is a good language for parsing line-oriented files, which is why we
introduce it here.

BEGIN {
# print header line of trips file
print "ID" , "DEPTLINK" , "ARRLINK" , "TIME", "NOTES" ;

}
{

# Skip header line and comments:
if ( $1 == "#" || $1 == "ID" ) { next; }

# w/ proba 10%, write out the line again:
if ( rand() < 0.1 ) {

print $0 ;
}

}

If the above is called SelectTrips.awk , then is is called via

gawk -f SelectTrips.awk < 0.trips > 1.trips

The code consists of three parts:

1. An optional “BEGIN” block. This is executed before anything is read.

2. A block without special identifier. For every line out of
test.events , this block is executed.

3. An optional “END” block. This is executed just before the program
is exited.

See “man awk” for more information.

IMPORTANT: Make sure you use different random seeds every ti me
you call this module, otherwise the same 10% travelers get re -
planned over and over again.

In awk, “rand()” returns a random number. See “man awk”.
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13.3. Calling the router

Task 13.1 Generate a set of 10% randomly selected trips. Use

http://www.matsim.org/files/corridor/teach/0.trips

as input.

13.3 Calling the router

You should now be able to call the router. Make sure that the router really
reads the files (events, trips) that you provide. For this, it is recommended
to re-do task 11.2 and check if the router truly responds to the files you
give to it.

Task 13.2 Generate a set of routes which have responded to congestion.

13.4 Merging of the routes

Now you have two files with routes, one with the old routes for all travelers,
and one with the new routes for 10% of the travelers. We need to merge
them.1 For the merging, we can assume that the plans are in order, since
they are generated from the same trips file. So you have to write code
which does the following:

• Open both files, old.plans and new.plans.

• Read the first plan from each file.

• If they have the same traveler id, then

– discard the old plan and write the new plan into merged.plans.

– Read the next plan from each file, and continue.

• If they do not have the same traveler id, then

– write the old plan into merged.plans.

– Read the next plan from old.plans, and continue.

Note that you could use ReadPlans and WritePlans from Secs 9.4
and 11.8. Awk does not work so well here since the format is not line
oriented.

13.5 Traffic simulation

Task 13.3 Now you should run the traffic simulation on the new plans set.
Make sure (e.g. in Vis) that some travelers really use new routes (0.plans
has all traffic on the middle road). This is called the 1st iteration. When
does the last vehicle leave your simulation?

1This is truly awkward. In our research, we put the new plans into a data base, which
keeps track ofall plans. Then we dump out the plans we want. That solution is much
cleaner, but besides being more difficult to implement, it isalso slow, so it is not the final
answer.
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13.6. Iterations

13.6 Iterations

Now we want to do systematic iterations. You should write a script which
manages those iterations. One option is perl; shell scripts work well, too.
Also, some clever Makefile writing is an option. The script does the fol-
lowing:

• Run the usim on a given plans file.

• Generate a random 10% trips file.

• Run the router on the 10% trips file using the events from the last
simulation.

• Merge the plans.

• Run the usim again.

• Etc.

Task 13.4 Do 50 iterations. Keep all information (routes, events, snap-
shot files) for every 10th iteration.

Keep events files for all iterations.

Compress (e.g. gzip) all output files.

Task 13.5 Plot the sum of all vehicle travel times as a function of the
iteration number.

Note that you can derive this information from the events files.
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Chapter 14

Activities planner: Adjust trip
starting times

14.1 Introduction

So far, we have a traffic micro-simulation module, and a routing module.
The input to all this, apart from the network information, are the trips.
However, these trips need to be generated somehow. As a first step to-
wards this, we will consider the question of departure time choice. Let
us assume that people want to arrive at work at a particular time. There
is a penalty associated with being early (which consists of wasted time),
and a penalty associated with being late (which may consist of an angry
employer). Also, the travel time may vary depending on when one travels.
The idea is that there is a trade-off between these elements.For example,
if the travel time is much shorter when traveling early, people may accept
being early in spite of the waste of time. This is in particular true if one
has a time window to start work, and the only argument againststarting
early is that one has to get up early.

14.2 Utilities

14.2.1 Basic idea

These trade-offs are operationalized via giving utitiliesto the different
aspects of the situation. The utilities in this chapter willbe negative, which
is why they are sometimes called disutilities. Let us assumethat we have
the following utilities:

• The (dis)utility of the trip time,Utrip(Ttrip). It depends on the trip
time,Ttrip.

• The (dis)utility of being early,Uearly(Tearly). It depends on how
early the traveler is. If the traveler is late, this contribution is zero.

• The (dis)utility of being late,Ulate(Tlate). It depends on how late the
traveler is. If the traveler is early, this contribution is zero.
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14.3. Departure time selection

Let us further assume that these utilities are additive (seeFig. 14.1):

Udep = Utrip(Ttrip) + Uearly(Tearly) + Ulate(Tlate) . (14.1)

An example is:

Udep = − 0.4

60 sec
Ttrip −

0.25

60 sec
Tearly −

1.5

60 sec
Tlate . (14.2)

The results of this come out in arbitrary utility units, sometimes called
“utils”.

14.2.2 Dependence on departure time

Fig. 14.1 gives the function of the different utilities as a function of the
arrival time. For the calculation that we will do later, we need them as a
function ofdeparturetime. For example, iftdes is the desired arrival time,
then

Tearly(tdep) = max
(

0, tdes − tearly

)

= max
(

0, tdes − (tdep + Ttrip)
)

.

(14.3)
Here,Ttrip again depends ontdep, and therefore

Tearly(tdep) = max
(

0, tdes − (tdep + Ttrip(tdep))
)

. (14.4)

As we will see later, we will essentially need atableof the values ofTearly

as a function oftdep wheretdep increases in 5-min time steps. Because of
this simplification, the problem can be solved as a sequence of look-ups,
resulting in a table similar to the following (wheretdes = 8 : 00)

tdep Ttrip(tdep) Tearly(tdep)

6:00 0:15 1:45
...

7:00 0:15 0:45
7:05 0:19 0:36
7:10 0:30 0:20

...

14.3 Departure time selection

In general, one would assume that travelers select the departure time with
the largest utility. Let us however assume that the above utility calculation
is somewhat fuzzy, for example because travelers do not knowthe differ-
ent contributions exactly. Then, we want that the probability to select a
certain departure time grows with the respective utility.

A typical mathematical form to achieve this if one has to select between
several different optionsi is

pi ∝ eβUi . (14.5)
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14.3. Departure time selection

U_early
+U_late

U_dep

U_trip

arrival time

Figure 14.1: Utility contributions

Since pi is a probability, this needs to be normalized, i.e. one wants
∑

i pi = 1, where the sum goes over all possible options. This results
in

pi =
eβUi

∑

j eβUj
, (14.6)

where the sum in the denominator goes over all possible options including
i.

Note that this mathematical form does exactly what we want: if Ui is large,
then optioni has a high probability of being selected. The parameterβ
changes the randomness of this choice.

• If β → 0, then the choice does not depend on theUj; in conse-
quence, it is totally random with equal weight on each option.

• If in contrastβ → ∞, then the option with the highest utility will be
selected with probability one, and all others will never be selected.

One way to see this is the following. Assume thatUmax is the largest
utility, and let us assume that there is only one optimal choice (to
simplify the argument). First let us look at a non-optimal choice i,
i.e.Ui < Umax. Then

pi =
eβUi

eβUmax
∑

j eβ(Uj−Umax)
<

eβUi

eβUmax
, (14.7)

since the sum is larger than one. (One of the contributions comes
from Uj = Umax, and all other contributions are positive.) This can
be rewritten as

eβ(Ui−Umax) β→∞−→ 0 (14.8)

(becauseUi − Umax < 0).
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14.4. Operationalization

events
100%
plans

10%
plans

100% of
acts

10% of
acts

traffic
simulation

router

100%
new

plans

(10%)

acts
replanner
(dept time

choice)

newtrips

Figure 14.2: Data flow for simple activities replanning.

Now let us look at the optimal choicek, i.e.Uk = Umax. Then

pk =
1

∑

j

eβ(Uj−Umax)
=

1

eβ·0 +
∑

j 6=k

eβ(Uj−Umax)

β→∞−→ 1

1 + 0
,

(14.9)
becauseUj − Umax < 0 for j 6= k.

14.4 Operationalization

Departure time choice will be operationalized in the following way. We
will take Eq. (14.2) as an example, and setβ = 1. Let us in addition
decide that we look at 5min time bins, and that we consider times only
between 5am and 10am. Let us consider a traveler who wants to arrive at
tdes.

This traveler would calculate, for all times between 5am and10am in 5min
time steps, and for her/his desired arrival timetdes, the valuef(tdep) =
eU(tdep). She/he would then calculate the sum of all these values,Σ. The
probabilities would then come out as

p(tdep) =
f(tdep)

Σ
. (14.10)

The traveler would then randomly select one of these departure time op-
tions according to the weights given by Eq. (14.10).

The data flow for activities replanning is given in Fig. 14.2.Note that
travelers with new departure times also get new routes. At this point we
do not perform separate re-routing for travelers whose activities have not
changed.

Implementation
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14.6. Origin-destination travel times

14.5 Input data: Activities file

Demand for travel (= trips) is driven by activities taking place at different
locations. We encapsulate this fact into a simple activities file, as follows:

Column Header type explanation

1 TRAV ID integer ID number of traveller/vehicle
2 ACT TYPE string type of the activity (“h” =

home, “w” = work)
3 LINK integer activity location (link ID)
4 DES ARR TIME integer desired arrival time at activity
5 NOTES string notes (optional)

An example is in

http://www.matsim.org/files/studies/corridor/teach/ 0.acts .

For our work here, we will assume that activities always come in pairs, i.e.
that each individual in the simulation starts at one location (“at home”) and
goes to another location (“work”). We also assume that there is a desired
arrival time for the work activity.

Task 14.1 Write a utility (e.g. using awk) that generates a new activity file
which consists of a randomly selected 10% of the input activity file. This
will be needed later.

14.6 Origin-destination travel times

For the computation of departure time choice, one needs information
about the trip times as a function of different departure times. The im-
plementation that we present here is the arguably simplest method, but it
has some caveats for large scale scenarios.

The idea is that one parses the events file, and for each origin, each des-
tination, and each time bin one averages the trip times. This is similar to
how the router treats link travel time information. That is, if an individual
departs (events flag 6), then this information is stored away somewhere.
If the same individual arrives (events flag 0), then the departure time and
departure location are retrieved, and the travel time is added by the time
bin for the departure time for the corresponding OD pair. Once the com-
plete events file is parsed, the sums are divided to the number of entries
as was done for the link travel times. If you assume that you have T time
bins, R origins, and S destinations, then this results in T × R × S entries.

Task 14.2 Write a script that averages OD travel times into 15-min time
bins. Language possibilities are awk or c++/java. As an end result, you
should have, for all OD pairs, trip time info for all 15-min time bins. Gener-
ate this information for the events file which was obtained by running the
traffic microsimulation on

http://www.matsim.org/files/studies/corridor/teach/ 0.plans .

Why does the result make sense (or not)?
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14.7. Departure time choice

Note that you have to invent some method to generate OD travel times for
time bins for which you have no information.

14.7 Departure time choice

Now the departure time needs to be chosen for each individual trav-
eler. For this, it is easiest to continue with the code written in Sec. 14.6
(Task 14.2). After retrieving the travel time information from the events file,
the code will start reading the 10% activities file produced in Sec. 14.5.
For each agent it will retreive a pair of activities. The desired arrival time
tdes comes from there as discussed above. For each activity pair in the
activities file do:

1. Retrieve or calculate, for each departure time tdep between 5am and
10am in 5min steps, the following quantities:

• the trip time Ttrip;

• the arrival time tarr;

• the early time Tearly = max[0, tdes − tarr];

• the late time Tlate = max[0, tarr − tdes];

• the resulting utility

Udep = − 0.4

60 sec
Ttrip −

0.25

60 sec
Tearly −

1.5

60 sec
Tlate (14.11)

(this is the same as Eq. (14.2));

• and the resulting non-normalized probability

πi = eUdep . (14.12)

2. Once you have done this for all time bins, sum up all the non-
normalized probabilities:

Π :=
∑

i

πi . (14.13)

Divide all non-normalized probabilities by this value:

pi := πi/Π . (14.14)

3. Make a random draw between these probabilities (see below) and
note the resulting departure time.

4. Fuzzify the departure time by ±150sec (2.5min) by something like

TDepInSec = TDepInSec - 150 + int( 300 * MyRand() ) ;

5. Write out the corresponding trip.
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14.8. Feedback

All trips then need to be routed; this is done by applying the time-
dependent router to the trips file as before.

We need to make a random draw according to the probability weights.
This is for example done as follows. Assume that we have p[i],
i=1..N given, with the sum of these p[i] being one. Then do something
like the following:

double rnd = myRand() ;
double sum = 0. ;
int ii ;
for ( ii=1; ii<=N; ii++ ) {

sum += p[ii] ;
if ( sum > rnd ) break ;

}
// ii is the desired index.

Task 14.3 Take the events file from the 50th iteration of the corridor prob-
lem. Generate, for travelers 1–250 in

http://www.matsim.org/files/studies/corridor/teach/ 0.acts ,

the departure times (= new trips). Plot the resulting new departure time
distribution (see below). Does this correspond to your expectations? Why
(or why not)?

Note: Departure time distribution means that on the x-axis you have the
departure time, and on the y-axis you have how many vehicles/travelers
depart at that time. For this, you again need to introduce time bins, for
example 5 minutes wide.

14.8 Feedback

Task 14.4 Do 100 iterations. Make the following plots:

• Sum of all trip times as function of iteration number.

• Computing time

• veh.bin files for days 1, 10, 20, 100.

• Departure time distribution for days 1, 10, 20, 100.1

Is the final departure time distribution plausible? Why (or why not)?

Task 14.5 Question: Is is possible that everybody finds a departure time
so that she/he arrives exactly at her/his desired arrival time?

1We are looking for the departure time distribution of thewholepopulation, not just
of the replanned population. This is best retrieved from theevents file.
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Chapter 15

Do-it-yourself transportation
planning simulation: Summary

The previous chapters have led you through a do-it-yourselfversion of
a transportation planning simulation. Irrespective of thefact if you have
really implemented all of it, or just pieces, or none at all, several things
should have become clear:

• Transportation simulations do not only consist of the traffic mod-
ules, where cars and people move through the system, but also
of strategic/tactical modules which simulate the human decision-
making that generate the traffic in the first place.

• Although a whole transportation simulation package is a complex
software system, programming a “lite” version that concentrates on
the most important aspects is a manageable task.

• Modern computer science tools, in particular object-oriented pro-
gramming languages, are very helpful for programming thesetypes
of simulations. The challenge is to find a good balance between
where these additional language features really help and where they
make things uncomprehensible to the uninitiated.

These past chapters have attempted to concentrate on the bare-boned es-
sentials. Clearly, what is essential and what not depends onone’s prefer-
ences and taste. The focus of this text is on themulti-agentview, i.e. the
fact that a transportation simulation can be seen as a simulation of many
intelligent, interacting agents. In consequence, we have stressed that all
individual travelers make their individual plans, and thatthese plans can
be revised in iterated simulations – in other words, the agents learn. The
underlying traffic simulation, a 1-lane cellular automata simulation, was
designed such that it could execute individual plans in a meaningful way,
but it was not attempted to make that simulation realistic.

The following chapters of this text will show how that simulation can be
improved. Improvements are primarily into two directions:(i) more real-
ism; (ii) truly agent-based view. These aspects will be discussed in more
detail in the introduction to Sec.??.
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• More realism. In particular the traffic simulation can be made much
more realistic. We will first show one version (the queue simula-
tion) which is both more realistic and computationally muchfaster;
it however models traffic on a higher level of abstraction which is
sometimes more difficult to grasp. Higher levels of realism are also
introduced for the router (time dependence, other modes of trans-
portation), and, to some extent, for activity generation. All these are
researched intensely, since multi-agent simulation has opened the
way to new exciting possibilities.

• Truly agent-based view. The simulation described in the last chap-
ters depends on file-based interfaces, and these interfacesimply
that the sequencing of the simulation is organized around modules.
In general, modules will run sequentially, each module modifying
some aspect of the system state that is displayed by the collection of
input and output files. One will however easily recognize that this
organization of the simulation is not truly agent-based, that is, the
agent is not truly at the center. For example, programming anagent
that uses mutation and crossover to create new strategies from the
ones it has already tried out is awkward with the described frame-
work.
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Chapter 16

File formats summary

16.1 Nodes file

Column Header type explanation

1 ID integer Unique number of node
2 EASTING integer Coordinate in x direction
3 NORTHING integer Coordinate in y direction
4 ELEVATION integer Coordinate in z direction. Ignore
5 NOTES string Optional notes. Ignore

16.2 Links file

Column Header Type Explanation

1 ID integer Unique ID number
2 NAME string Name of the link, e.g. the

street name. Ignore
3 NODEA integer Node ID at one end of

link
4 NODEB integer Node ID at other end of

link
5 PERMLANESA integer Number of lanes towards

A. Ignore
6 PERMLANESB integer Number of lanes towards

B. Ignore
7 LEFTPCKTSA integer Number of left pocket

lanes towards A. Ignore
8 LEFTPCKTSB integer Number of left pocket

lanes towards B. Ignore
9 RGHTPCKTSA integer Number of right pocket

lanes towards A. Ignore
10 RGHTPCKTSB integer Number of right pocket

lanes towards B. Ignore
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16.2. Links file

11 TWOWAYTURNboolean Whether there is a two-
way link for left turns in
the middle of the road (an
American specialty). Ig-
nore

12 LENGTH positive float Length of link in meters
13 GRADE float Grade (= slope) of link.

Ignore
14 SETBACKA positive float Setback distance (in me-

ters) from the center of the
intersection at node A. Ig-
nore

15 SETBACKB positive float Setback distance (in me-
ters) from the center of the
intersection at node B. Ig-
nore

16 CAPACITYA positive float Capacity of link towards A
in vehicles per hour. Ig-
nore (but see Sec. 18)

17 CAPACITYB positive float Capacity of link towards B
in vehicles per hour. Ig-
nore (but see Sec. 18)

18 SPEEDLMTA positive float Speed limit, in meters per
second, towards A. Ignore
(but see Secs. 17 and 18)

19 SPEEDLMTB positive float Speed limit, in meters per
second, towards B. Ignore
(but see Secs. 17 and 18)

20 FREESPDA positive float Free speed, in meters per
second, towards A. Ignore
(but see Secs. 17 and 18)

21 FREESPDB positive float Free speed, in meters per
second, towards B. Ignore
(but see Secs. 17 and 18)

22 FUNCTCLASS keyword Functional class of link.
Ignore

23 THRUA integer ID of outgoing link
across A which denotes
“through” direction.
Can be used for data
compression. Ignore

24 THRUB integer ID of outgoing link
across B which denotes
“through” direction.
Can be used for data
compression. Ignore

25 COLOR integer Obsolete. Ignore
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16.4. Plans file

26 VEHICLE keywords Allowed modes on link.
Ignore

27 NOTES string Arbitrary notes. Ignore

16.3 Snapshot file (visualizer output)

Column Header type explanation

1 VEHICLE integer Vehicle ID
2 TIME integer Current time (in seconds past

midnight)
3 LINK integer Link ID
4 NODE integer FromNode ID (i.e. ID of node

where the vehicle is coming
from)

5 LANE integer Lane the vehicle is on
6 DISTANCE float Distance (in meters) the vehi-

cle is away from the node
7 VELOCITY float Vehicle speed (in meters per sec-

ond)
8 VEHTYPE integer Vehicle type. “1”= car.
9 ACCELER float Vehicle acceleration (in m/s per

second)
10 DRIVER integer Driver ID
11 PASSENGERS integer Number of passengers in vehicle
12 EASTING float Position of vehicle in x direc-

tion
13 NORTHING float Position of vehicle in y direc-

tion
14 ELEVATION float Position of vehicle in z direction
15 AZIMUTH float Vehicle’s orientation (degrees

from east in counterclockwise
direction)

16 USER integer User-defined data field

16.4 Plans file

Fixed length part:

Number explanation

1 Traveler (Person) ID
2 User field. Irrelevant for us
3 Trip ID. Irrelevant for us
4 Leg ID. Irrelevant for us
5 FirstLegFlag. Irrelevant for us
6 LastLegFlag. Irrelevant for us
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16.5. Events file

7 StartTime
8 StartLocation. = StartLink for us
9 Type of StartLocation. Irrelevant for us
10 EndLocation. Irrelevant for us
11 Type of EndLocation. Irrelevant for us
12 Duration. Irrelevant for us
13 Stop Time. Irrelevant for us
14 MaxTimeFlag. Irrelevant for us
15 Driver Flag. Irrelevant for us
16 Mode. Should always be 0
17 Vehicle Type. Irrelevant for us
18 Number of additional tokens (variable length part)

Variable length part:

number explanation

1 Vehicle ID. Ignore
2 Number of Passengers. Needs to be zero (because the mean-

ing of the following data depends on this).
3 Node 1
4 Node 2
5 etc.

16.5 Events file

Column Header type explanation

1 TIMESTEP int time step
2 VEHICLEID int vehicle id
3 LINK int Link ID
4 FROMNODE int FromNode ID for link. Irrelevant

for us since we use uni-directional
links

5 FLAG int 0: vehicle arrives at final destina-
tion
2: vehicle leaves a link to go
across an intersection
4: vehicle moves from wait queue
into traffic
5: vehicle enters a link coming
from an intersection
6: vehicle is supposed to start

6 NOTES string notes (leave empty, but separate by
tab)
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16.7. Activities file

16.6 Trips file

Column Header type explanation

1 ID integer ID number of traveller/vehicle
2 DEPTLINK integer departure location (link ID)
3 ARRLINK integer arrival location (link ID)
4 TIME integer departure time of traveller/vehi-

cle in “seconds past midnight”
5 NOTES string notes (leave empty, but separate by

tab)

16.7 Activities file

Column Header type explanation

1 TRAV ID integer ID number of traveller/vehi-
cle

2 ACT TYPE string type of the activity (“h” =
home, “w” = work)

3 LINK integer activity location (link ID)
4 DES ARR TIME integer desired arrival time at activ-

ity
5 NOTES string notes (optional)
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Part III

Improvements
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Chapter 17

More realistic CA traffic
simulation logic

17.1 Introduction

The focus of this whole text is to emphasize the modular structure of trans-
portation simulation packages, and in particular that besides the movement
of the cars through the system considerable effort needs to be spent on
modules which model human learning and decision-making, and on mech-
anisms which couple those modules. In consequence, we have started (in
Chap. 7) with a simple micro-simulation which is able to support our ap-
proach, which means that it has individual vehicles which follow indi-
vidual plans. However, the simple approach of Chap. 7 neither looks at
correct vehicle speed not at correct link flow capacities.

In this chapter, it will be discussed how the CA traffic simulation from
Chap. 7 can be made more realistic. In fact, this type of simulation is
used in the Transims simulation package for transportationplanning. Ul-
timately, also the CA approach has its limits and is better replaced by an
approach where the spatial coordinates are continuous (Chap. ??). The
CA approach has however the advantage that its implementation is rather
straightforward. This is due to the simple spatial structure, in which the
existence of a vehicle at a specific location can be checked via a simple
direct lookup at the corresponding cell. Techniques with continuous coor-
dinates typcally store the position of the particle together with the particle,
i.e.not together with the spatial substrate, so that the existence of vehicles
at specific locations needs to me made computationally efficient via other
methods. These problems can be overcome, and the resulting models are
as efficient as CA models, but they represent some conceptualand pro-
gramming overhead that needs to be recognized.

17-1



17.2. The stochastic traffic cellular automaton (STCA)
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Figure 17.1: Definition of a more general CA for traffic

17.2 The stochastic traffic cellular automaton
(STCA)

The CA introduced in Chap. 7 can be made more general by allowing
vehicles to travel more than one cell per time step. Also, it makes the si-
mulation more realistic and more robust against artifacts if one introduces
some randomness. Both are achieved with the following update rules (also
see Fig. 27.4):

• Car-following rule:

vsafe = min[vt + 1, gt, vmax] . (17.1)

gt is the number of empty spaces to the car in front (“gap”);vmax is
the maximum velocity of the car under consideration.

• Randomization:

vt+1 =

{

max[vsafe − 1, 0] with probabilitypn

vsafe else
(17.2)

• Moving:
xt+1 = xt + vt+1 (17.3)

t andt + 1 here refer to the actual time-steps of the simulation. The first
rule describes deterministic car-following: try to accelerate by one veloc-
ity unit except when the gap is too small or when the maximum velocity
is reached.

The second rule describes random noise: with probabilitypn, a vehicle
ends up being slower than calculated deterministically. This parameter
simultaneously models three effects:

1. Speed fluctuations during free driving: Assume a vehicle with no
other vehicles are nearby. It will eventually have speedvmax − 1 or
vmax. In both cases,vsafe will be vmax. After the randomization,
the speed will be atvmax − 1 with probabilitypn, and atvmax else.
That is, the speed of a single undisturbed vehicle fluctuatesbetween
vmax andvmax − 1.
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2. Over-reactions at braking and car-following: Assume a vehicle with
vmax that approaches a slower vehicle from behind. Eventually, it
will reach a gapgt < vmax − 1. vsafe will be equal to thisgt, and
vt+1 will either be equal togt or one smaller (without becoming
negative). That is, with probabilitypn, the braking vehicle will not
be at speedgt but slower.

The argument for car following is similar: Assume a leading vehicle
with speedvlead < vmax. The follower will attempt to follow with
gt = vlead but in fact will fluctuate around that speed.

3. Randomness during acceleration: Assume a single vehiclewith
speed zero. Instead of acceleration0 → 1 → 2 → 3 → . . ., the ac-
celeration will typically look like0 → 0 → 1 → 2 → 2 → 3 → . . ..
Note that the rules are such that the velocity neverdecreases during
acceleration.

Obviously, these effects overlap to a certain extent; for example, ifgt =
vmax one cannot say ifpn refers to car following or to driving at free speed.

A translation into real-world units can be obtained as follows: The lengthℓ
of a cell is given by the average space a car occupies in a jam, since under
jammed conditions each cell is filled by one car. Thus,ℓ = 1/ρjam ≈
7.5 m. A simulation time step typically corresponds to one secondin
reality, and the order of magnitude of this can be justified byreaction time
arguments (Sec. 27.3.1). One of the side-effects of this convention is that
space can be measured in “cells” and time in “time steps”, andusually
these units are assumed implicitly and thus left out of the equations. A
speed of, say,v = 5, means that the vehicle travels five cells per time step,
or 37.5 m/s, or 135 km/h, or approx. 85 mph.

pn is often set to1/2 for theoretical work, while for realistic traffic mod-
elling pn = 0.2 is a better choice.

17.3 Some validation of the STCA

Despite somewhat unrealistic features on the level of individual vehicles,
these models describe aspects of the macroscopic behavior correctly. If
we assume the values given above, i.e. a cell size ofℓ = 7.5 m and a time
step of∆t = 1 sec, then speeds are given in multiples of7.5 m/sec =
27 km/h = 16.875 mph. More correctly, average free speed is given by
(1 − pnoise) vmax. With pnoise = 0.2, one obtains the following possible
average link speeds:

file: book.tex, p.17-3 October 15, 2007



17.3. Some validation of the STCA

vmax vmax − pnoise m/sec km/h mph

1 0.8 6.0 21.6 13.500
2 1.8 13.5 48.6 30.375
3 2.8 21.0 75.6 47.250
4 3.8 28.5 102.6 64.125
5 4.8 36.0 129.6 81.000
6 5.8 43.5 156.6 97.875
7 6.8 51.0 183.6 114.750

Since drivers typically do not observe speed limits exactly, it is uncriti-
cal that these speeds do not correspond to any “round” numbers. Also,
there is enough flexibility to model differences between, e.g., residential
streets, urban arterials, freeways with speed limits, and freeways without
speed limits. There is however not enough resolution to model, say, the
difference between a speed limit of 60 vs. 65 mph. If such differences are
of interest, a different model needs to be selected.

A typical measurement for real-world traffic is the flow-density fundamen-
tal diagram. For this, one measures flow and density at a fixed location
over fixed periods of time, for example over 5 minutes. The resulting data
is plotted with density on the x-axis and flow on the y-axis (see Fig. 17.2).
There are some subtleties involved with measuring fundamental diagrams,
which are discussed in Sec. 27.2. For the purposes of this section, let us
assume that the two quantities are measured in the CA as follows:

• Flow: Count the number of vehicles,Nq, that cross a given location
during timeT . Flow qT is given as

qT =
Nq

T
. (17.4)

• Density: Assume a “measurement area” which spreads acrossvmax

contiguous cells. Sum up the number of vehicles on the measure-
ment area overT time steps. This includes that a vehicle that spends
more than one time step on the measurement area is counted several
times. If this number isNρ, then density is given as

ρT =
Nρ

T vmax

. (17.5)

Note that usingvmax cells makes sure that every vehicle is counted
at least once.

The result is the density in “number of vehicles per cell”, corre-
sponding to “number of vehicles per 7.5 meters”. Multiplying by
1000/7.5 converts this into “number of vehicles per kilometer”.

Flow-density fundamental diagrams, as in Fig. 17.2, start at zero flow
when the density is zero (no cars on the road), and eventuallycome back
to zero flow when the jam density is reached. In between, they show a
roughly tri-angular shape as can be seen in Fig. 17.2. Theoretical dis-
cussions will be postponed until Chap.??, but it is important to note that
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Figure 17.2: One-lane fundamental diagram as obtained withthe standard
cellular automata model for traffic usingpnoise = 0.2. From (Nagel et al.,
1997).

there is some value of maximum flow, about2000 veh/h in Fig. 17.2.
For the STCA, this value depends mostly onpnoise: Largerpnoise leads to
smaller maximum flows. These maximum flow values, also calledcapac-
ities, need to come out approximately correctly if one wants a model that
is useful for reality. 2000 vehicles per hour and lane is a plausible value.
Regional differences could be accomodated by different values ofpnoise;
this could even be made a function of the link. One however hasto note
that changes inpnoise also change the average acceleration of vehicles,
which will, for example, change signal timing requirementsor emissions.
This is the reason why the CA approach can only be seen as a first, rela-
tively rough starting point for a regional model. Once all other problems
(such as demand generation) are sufficiently solved, the CA driving logic
should be replaced by a model with continuous coordinates such as the
ones discussed in Chap.??.

17.4 Lane changing

All lane changing rules, no matter if for CA or other models, follow a
similar scheme (e.g. Sparmann, 1978): In order to change lanes, drivers
need an incentive, and the lane change needs to be safe. An incentive can
be that the other lane is faster, or that the driver eventually needs to make
a turn. Safety implies that one needs enough space on the target lane.
Thus, a simple lane changing condition can read as (Rickert et al., 1996)
(Fig. 17.3):

(I) Incentive: min[v + 1, vmax, gapother] > min[v + 1, vmax, gap], i.e.
the gap on the other lane is larger than the gap on the current lane,
allowing a higher speed on the other lane.

Bounding the comparison atmin[v + 1, vmax] makes sure that only
gaps sizes which are relevant for the car’s current speed areconsid-
ered.
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17.4. Lane changing

Figure 17.3: Lane changing. A smalle “gap” will give an incentive to
change lanes. The lane change is actually executed if both “forward gap”
and “backward gap” are large enough.

(S) Safety: gapother,back > vback, i.e. thebackwardsgap on the other
lane is large enough that a vehicle approaching withvback does not
have to slow down immediately.

Lane changing includes an additional sub-timestep, which is best exectued
before the car following step. The full sequence is:

1. Go through whole system and tag vehicles for lane change.

2. Go through whole system and execute lane changes for tagged ve-
hicles (sideways movement of vehicles).

3. Go through whole system and compute new velocities.

4. Go through whole system and execute forward movement of vehi-
cles.

The separation of the lane change into a tagging and a movement step is
useful to maintain the parallel update: Because of reactiondelays, driver
decisions should be based on “old” information.

The above lane changing rules may have vehicles from both sides com-
pete for the same cell in a middle lane. This can be overcome bymaking
lane changes to the right only in even and lane changes to the left only in
odd time steps. Another possible artifact are long rows of vehicles syn-
chronously oscillating between left and right lane. This can be suppressed
by executing the above lane changes with a probability smaller than one,
for example 0.99.

All this together is essentially the lane changing criterion currently used
in the Transims micro-simulation, and it seems to work reasonably well
for U.S. traffic (Nagel et al., 1997).

The above lane changing criterion is symmetric, since changing to the left
happens according to the same criterion as changing to the right. One
result of this is that people stay in the left lane until some incentive pushes
them out of it, again not totally unrealistic for traffic in the United States.
For European (and other) countries, one has the constraint that passing on
the right is not allowed, at least not when traffic is not congested. There
are many ways to implement this. A fairly straightforward version is to
change to the left when either on the same lane or on the left lane a slower
vehicle is present:
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(I’.a) Incentive to go to left: “v ≥ vr .OR. v ≥ vl” , wherevr refers to
the vehicle in front on the same lane, andvl refers to the vehicle in
front one lane to the left.

Since the lane changing is no longer symmetric, many plausible rules are
possible to trigger lane changes to the right. A good construction criterion
for rules is to make lane changes to the right based on the logical negation
of lane changes to the left. This results in

(I’.b) Incentive to go to right: “v < vr .AND. v < vl”. Note that nowvl

now refers to the same lane, andvr refers to the lane to the right.

This leaves as a free parameter the distanced how far vehicles look for-
ward for vehicles in the same and in the other lane. Largerd results in a
stronger incentive to go to the left.

An important observation is that microscopic lane changingrules need not
be realistic in order to generate plausible macroscopic traffic. For exam-
ple, all lane changes according to the above rules happen in one simulation
time step, which is usually one second, whereas in reality this takes longer
(3–5 seconds). Also, the above rules result in too many lane changes when
traffic on both lanes is similar – an effect that is annoying inanimations
(see, for example, one of the Transims videos), but macroscopic relations
such as fundamental diagrams still come out correct (Rickert et al., 1996;
Nagel et al., 1998).

As noted above, the incentive to change lanes could also comefrom an
intended turn movement at the end of the link, and one can partially over-
ride the safety criterion with increasing urgency of the incentive criterion.

17.5 Validation of lane changing rules

The most important issue for lane changing is that the fundamental dia-
gram should remain plausible, i.e. with a maximum flow of about 2000 veh
per hour and lane. This is indeed the case both with the above symmetric
and the above asymmetric lane changing rules. A fundamentaldiagram
for a simulation with asymmetric rules is in Fig. 17.5; compare this to a
fundamental diagram from (German) reality in Fig. 17.5.

Another quantity of interest is the fraction of vehicles in each lane. For the
symmetric rules and 2-lane traffic, this should always be at 50%. For the
assymmetric lane changing rule introduced above, lane usage is plotted in
Fig. 17.5, which was obtained with a look-ahead distance ofd = 16 cells.
Fig. 17.5 shows a plot of the same quantities from (German) reality. Ad-
ditional rules, which can bring the simulations even closerto reality, are
discussed by Nagel et al. (1998).

Another validation of lane changing rules concerns vehicles that change
lanes in order to be in the correct lane for a turn. Two important ques-
tions here are how many vehicles do not reach their desired lane, and how
much the lane changing disturbs the throughput. The first question is more
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Figure 17.4: Multi-lane fundamental diagrams. (a) STCA with vmax = 5,
pnoise = 0.25. From Nagel et al. (1998). (b) Reality (Germany). From
Wiedemann, published in Nagel et al. (1998).
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Figure 17.5: Asymmetric lane usage. (a) Simulation. (b) Reality (Ger-
many).

critical under congested conditions, and one needs a set-upwhere the in-
tersection capacity is smaller than the link capacity, caused for example
by traffic lights. The second question is most critical near maximum flow;
for example, one could test if at a traffic light just turned green, outflow is
reduced when there is a lot of last-second lane changing.

17.6 Traffic signals

We now turn to intersections, where links, with car following and lane
changing dynamics, are connected. The easiest case are fully signalized
intersections since the signal (assuming it is working correctly) is taking
care of avoiding crashes. The dynamics resulting from a red light can be
generated by placing a virtual car with speed zero into the last spot on the
link, and removing this car once lights turn green.
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Figure 17.6:Number of vehicles going through the intersection per greenphase, re-
scaled to hourly flow rates per lane.

17.7 Validation of traffic signal rules

The most important quantity for traffic lights is the time headway between
vehicles when the traffic light turns green. As a rough estimate, one can
take the above-mentioned value of 2000 vehicles per hour andconvert it
into time headways, resulting in3600/2000 = 1.8 seconds per vehicle.
More exact values need to be taken from local field data.

There is discussion if maximal flow on a freeway can be larger than the
outflow from a queue, such as at a traffic light. For the STCA model that
we are using so far, this issue is not critical; for other car following models
it may play a role. More discussion of this is in Chap. 27.

17.8 Unprotected turns

Somewhat more difficult are unprotected turns, i.e. turns that are not reg-
ulated by traffic signals and where vehicles need to merge on their own
without accidents. Typical examples of this are yield, stop, “right on red”,
left turns against oncoming traffic, and on-ramps to freeways. The mecha-
nism here is again a “gap acceptance” similar to the safety criterion (S) for
lane changes (Fig. 17.7). That is, the vehicle on the incoming road moves
into the major road if the gap there is big enough. This gap stretches up-
stream, since the incoming driver does not want the car upstream on the
major road to crash into him/herself. The standard reference for high-
way engineers, the Highway Capacity Manual (Transportation Research
Board, 1994a) states that drivers accept gaps that correspond to time head-
ways of approximately 5 seconds or more, which means that thespatial
gap needs to be proportional to the speed of the oncoming car (Fig. 17.7).
In our standard CA implementation, this would mean that the accepted
gap would have to be at least five times the oncoming vehicle’svelocity.
When implementing this rule, it turns out that a factor of three instead of
five gives much more realistic flow rates (Nagel et al., 1997).It is not
totally clear why this is the case.
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Figure 17.7: Illustration of gap acceptance for a left turn against oncoming
traffic. From Nagel et al. (1997).

17.9 Validation of rules for unprotected turns

The typical measurement for unprotected turns is the maximum incoming
flow rate as a function of the flow on the priority street. Such plots look
like those in Fig. 17.8 with flow on the minor road (y-axis) as function of
flow on the major road (x-axis). For interpretation, best start in the top left
corner. Since there is no flow on the major road, flow from the minor road
can enter at a high rate. With increasing flow on the major road, flow from
the minor road is reduced. When the major road reaches capacity, the flow
from the minor road is nearly zero. When the density on the major road
goes above the maximum-flow density, then the flow on the majorroad is
again reduced, but this time by congestion. In Fig. 17.9, vehicles from the
minor road still have a hard time entering. In contrast, the gap acceptance
rule from Fig. 17.9 allows vehicles from the minor road to enter into the
major road under congested conditions, effectively modelling a “zipping”
effect.

Two important messages are:

• Seemingly small changes, such as the change of gap acceptance
from “>” to “≥”, can have large consequences. Such small changes
can also easily be caused by the actual implementation of therules.
For example, in the Transims micro-simulation traffic on themajor
street reserves cells on the outgoing link, even if in the endthe vehi-
cle does not claim it. This clearly reduces opportunities for vehicles
from the minor road.

• Further details need to be taken from local conditions. For example,
the flow from the minor into the major road when there is no traffic
on the major road depends on speed limits and intersection layout,
such as the curvature of the turn. This situation will rarelyoccur
in reality, since if there is traffic on the minor road, there is usually
also traffic on the major road. Exceptions are situations such as the
end of soccer games or evacuation scenarios.
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Figure 17.8:Two different rules for the case of a 1-lane minor road controlled
by a yield sign merging into a 1-lane major road. (a) Acceptance rule “accept
if gap > 3 · voncoming”. vmax = 3. (b) Acceptance rule “accept ifgap ≥
3 · voncoming”. Note that this seemingly small difference has a strong effect on
throughput in the congested situation. (a) models that vehicles from the minor
road cannot enter the major road once the major road is congested; (b) essentially
models a “zipping” behavior, i.e. that vehicles from the major and the minor road
alternate once the major road is congested.

Similarly, there are differences between yield and stop, and if the
traffic from the minor street merges with the traffic from the major
street, or crosses. Again, although the tendency of these changes are
clear, exact flow values need to be taken from local conditions.

17.10 Discussion

In this chapter, we have further discussed improvements to the CA traffic
simulation. It turns out that, for car traffic, such models consist of only
four aspects:

• Car following

• Lane changing

• Protected turns

• Unprotected turns

Once these four aspects are implemented in a reasonable way,one has
a basic model. From here on, considerable work is necessary to cali-
brate and validate individual details. In particular, lanechanging needs
to include lane changing to reach a particular lane for a turn, and lange
changing on merge/acceleration lanes.

A problem with such a microsimulation approach is that the necessary
input data is often not available. For example, as a minimum one needs
lane connectivities (which incoming lanes are connected towhich out-
going lanes, Fig. 17.9), and signal plans. Furthermore, although it is an
advantage that such simulations generate link capacity instead of taking
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Figure 17.9: Lane connectivities across intersections. This information is
needed for realistic multi-lane simulations.

it as input data, considerable adjustments need to be done. For example,
the Gotthard tunnel, as a 1-lane road without traffic light, should have a
capacity of 2000 vehs/hour. According to the local police, however, the
capacity not more than half of that. The reason, presumably,is that the
tunnel entrance has a strong uphill slope, and accelerationof vehicles is
less than normal.
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Chapter 18

The queue model for traffic
dynamics

18.1 Introduction

In Chap. 7 we have introduced a simple cellular automata micro-
simulation. The reason to chose that particular modelling technique was
that it is conceptually simple, relatively easy to implement, somewhat re-
alistic, and it fulfilled the functionality that was needed at that point in
the project. In this chapter, an alternative will be presented, the so-called
queue model (Gawron, 1998a). For experts: The queue model isessen-
tially a standard queueing model, but with storage constraints added. Stor-
age constraints mean that links can be full, which causes spillback across
intersections.

The queue model is in our view the simplest dynamic model thatis some-
what useful for real world predictions (see Chap.??). Despite some ob-
vious shortcomings in the description of the dynamics (see Chap.??) in
particular with respect to traffic jam wave backpropagation, we are not
aware of any empirical evidence showing that more sophisticated models
are truly better with respect to their predictive power. However, the path to
more realistic simulations does not go via the queue model, but is a con-
tinuation of the explicit spatial methods, such as the CA. Making those
methods, possibly on continuous rather than cellular space, useful for the
real world (Chap. 17) is considerably more work than making the queue
model useful for the real world. In consequence, if one intends to use the
methods presented in this text for real world applications,one needs to
carefully weigh advantages and disadvantages: The queue model of this
Chapter is the fastest path to some usefulness, but is eventually limited;
the CA model of Chaps. 7 and 17 (or non-cell based variants of this) are
considerably more work but ultimately more realistic and more flexible.

18.2 General

18-1



18.2. General

18.2.1 Requirements

From our general framework, we have the following requirements for a
traffic simulation:

• Vehicles need to be able to follow plans. This implies that the si-
mulation needs to be dynamic (i.e. time-dependent), and that some
notion of individual vehicles needs to be present in the simulation.

• The simulation needs to be reasonably fast. A computationalspeed
of at least 100 times faster than real time (i.e. simulating 24 hours
of traffic in 0.24 hours of computing time) is desirable in order to
obtain bearable waiting times for the feedback/learning. This com-
puting speed can be achieved by selecting small scenarios, by using
simple models, or by parallel computing. This text concentrates on
the last two aspects.

The important numbers characterizing a road from the perspective of
transportation planning are:

• Free speed. This is the speed that vehicles drive on a link when no
other constraints are present.

• Flow capacity. This is the maximum number of vehicles per time
unit that can move over a link when no other constraints are present.
In city traffic, the flow capacity is often determined by a traffic light
at the end.

• Storage constraint. This is the maximum number of vehicles that
can be on a link under jammed conditions. This is known under the
name ofphysical queuesin the literature, “physical” meaning that
the queue has a spatial extension which eventually makes thelink
full.

The first two numbers are also used in all traditional transportation plan-
ning software (based on static assignment, see Chap. 28) andare therefore
typically available with standard data files for transportation planning. The
third number is necessary when a link is full and no more vehicles can en-
ter, causing spillback. Without the storage constraint, flow demand above
the flow capacity would allow an unlimited number of vehicleson the link,
which is clearly not realistic.

18.2.2 Input data

The queue model bases its dynamics on free speed, flow capacity, and
storage constraint only. Typical input data are, for each link a, the at-
tributes free flow velocityv0,a, lengthLa, capacityCa and number of lanes
nlanes,a. Free flow travel time is calculated byT0,a = La/v0,a. The stor-
age constraint of a link is calculated asNsites,a = La · nlanes,a/ℓ, where
ℓ is the space a single vehicle in the average occupies in a jam,which is
the inverse of the jam density. One can useℓ = 7.5 m, as for the CA
technique.
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for all links do
while vehicle has arrived at end of link
AND vehicle can be moved according to capacity
AND there is space on destination linkdo

move vehicle to next link
end while

end for

Figure 18.1: Algorithm A – Arguably simplest intersection algorithm

Figure 18.2: Illustration of queue model dynamics

18.2.3 Simple intersection logic

The arguably simplest intersection logic (Gawron, 1998b) is that all links
are processed in arbitrary but fixed sequence, and a vehicle is moved to
the next link if (1) it has arrived at the end of the link, (2) itcan be moved
according to capacity, and (3) there is space on the destination link (see
Algorithm A in Fig. 18.1). More formally, the following happens:

• Free speed:A vehicle that enters linka at timet0 cannot leave the
link before timet0 + T0,a, whereT0,a is the free speed link travel
time as explained above.

• Flow capacity: The condition “vehicle can be moved according to
capacity” is determined as

N < int(Ca) or
(

N = int(Ca) and rnd < fr(Ca)
)

(18.1)

whereint(Ca) is the integer part of the capacity of the link (in ve-
hicles per time step),fr(Ca) is the fractional part of the capacity
of the link, andN is the number of the vehicles which already left
the same link in the same time step.rnd is a random number such
that0 ≤ rnd < 1. What it is meant by this formula is that the ve-
hicles can leave the link if leaving capacity of the link has not been
exceeded yet in this time step. If the capacity per time step is non-
integer, then we move the last vehicle with a probability which is
equal to the non-integer part of the capacity per time step.

• “Space on destination link”: If the destination link is full, the ve-
hicle will not move across the intersection.
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18.3 Fair intersections

The queue model has the same problem as our simple CA model with
respect to “fair” intersections (cf. Sec. 7.5). That problem is that the queue
model dynamics as described so far goes through the links in afixed order,
meaning that some links always have the priority, and these may not be the
links that should have the priority.1

A somewhat better way is to process the links in random order.We have
already seen in Sec. 7.5 how to do this. Eventually however, one needs
to introduce a proper intersection dynamics. A clean way to do this is the
following:

1. Move to a parallel update. In a parallel update, all links are pro-
cessed simultaneously. This means that all rules in order tomove a
configuration from timet to timet+1 can only depend on informa-
tion from timet.

For the queue model, this is achieved by remembering the number
of empty cells on a link from timet. That is, if a link is full at time
t, then no vehicles can enter during the update fromt to t + 1, even
if the link opens up during that time step.

A parallel update is also important in anticipation of parallel com-
puting (Chap. 25).

2. Separate link dynamics from intersection dynamics.

For the link dynamics, we introduce an additional buffer at the end
of the link, as in Fig. 18.3. The size of the buffer is⌈Ca⌉, i.e. the
smallest integer that is larger or equal to the capacity in “vehicles
per time step”. Vehicles are moved from the link proper into the
buffer if the travel time constraint and the capacity constraint are
fulfilled, and if the buffer has empty space. That is, this is exactly
the same dynamics as before, except that we move vehicles into the
buffer instead of across the intersection. – This update is done by
iterating over all links.

For the intersection dynamics, an additional loop is introduced,
which is over all nodes. Here, vehicles are moved from the (incom-
ing) buffers to the outgoing links. Neither travel time nor capacity
constraints need to be considered here because they were already
treated before.

This approach is borrowed from lattice gas automata, where particle
movements are also separated into a “propagate” and a “scatter”
step (Frisch et al., 1986).

1Note that the winning links are not the ones that come first, but the ones that come
first after the outgoing link was treated. For example, assume a configuration where
links 1 and 3 are incoming into link 2, and assume that they areprocessed in sequence
1, 2, 3. Also assume that under congested conditions initially all links are completely
full. Then link 1 is processed first, but link 2 is full, so no vehicle can move. Then link 2
is processed, and some vehicles move out, opening up some space. Finally, link 3 is
processed, and since there is some space on link 2, some vehicles can move.
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move according
to capacity

move according
to space availability

Figure 18.3: The separation of flow capacity from intersection dynamics.

// PROPAGATE VEHICLES ALONG LINKS:
for all links do

while vehicle has arrived at end of link
AND vehicle can be moved according to capacity
AND there is spacein the buffer(see Fig below)do

move vehicle from linkto buffer
end while

end for
// MOVE VEHICLES ACROSS INTERSECTIONS:
for all nodesdo

Mark all links that are incoming to this node
while there are marked linksdo

Select a marked link randomly proportional to capacity
Un-mark link
while there are vehicles in the buffer of that linkdo

Check the first vehicle in the buffer of the link
if its destination link has spacethen

Move vehicle from buffer to destination link
end if

end while
end while

end for

Figure 18.4: Algorithm B – Links and Intersections separated

When looking to our framework from Sec. 7.7, one notices thatwe have
already the provisions for separating link dynamics from intersection dy-
namics: there are already two loops, one going over all linksand the other
over all nodes/intersections.

Regarding the intersection dynamics for the queue model, many solutions
are possible. For example, it is possible to go through the incoming links
in random order weighted by capacity, thus giving a higher priority to links
with high capacity. Again, there are several ways to do this,for example
to re-select the link for each vehicle to move until all movesare exhausted,
or to process one link until its moves are exhausted and only then move to
the next link. Although none of these are difficult to implement, there are
subtle differences between them when used for complicated intersections.
A possible algorithm is given as Algorithm B in Fig. 18.4.
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18.4 Limitations of the queue model

In the introduction to this chapter, it was pointed out that the queue simu-
lation is eventually limited in terms of its realism. In thissection, these
limitations will be discussed.

A first limitation concerns the dynamics of traffic jams. In the queue
model, when a vehicle leaves a link, that free spot becomes available for
entering vehicles very quickly: In Algorithm A, it becomes available im-
mediately; in Algorithm B, it is somewhat delayed by the buffer dynamics
and the parallel update. In both cases, however, the time that it takes un-
til it becomes available for entering vehiclesdoes not depend on the link
length. This is in stark contrast to reality, where such “holes” travel with
a finite speed of approximately15 km/h. The reason for the real-world
behavior becomes immediately obvious if one looks at the corresponding
dynamics in the CA, where a hole in a completely dense jam is slowly
passed on against the traffic direction by at most one vehiclemovement in
each time step; this is discussed in more detail in Chap. 27.

This limited realism in terms of traffic jam dynamics shows upwhen solid
jams in the queue model, for example caused by an accident, are dissolved:
Instead of being dissolved at the downstream end only, such jams in the
queue model are dissolved quasi-simultaneously along the whole length.
It seems however that this problem can be resolved via additional rules,
such as a limitation on the “speed of holes” (?).

Other limitations are concerned with the limited vehicularand spatial res-
olution:

• Interaction between slow and fast vehicles.On multi-lane roads,
fast cars can pass slow cars as long as traffic is light. Only when
traffic becomes denser, then fast cars are caught between slow cars.
In the queue simulation, all cars are assumed to drive with the same
speed.

• Interaction between different vehicle types. Examples for this
are interactions between pedestrians and cars, bicycles and cars, or
between buses/light rail and cars.

• Signal phases.Diligent signal phasing can make an enormous dif-
ference to an intersection capacity. This cannot be captured by sim-
ple intersection capacities, since it depends on how trafficstreams
and signal phases work together.

• Complicated street layouts.Merging, turning, and weaving lanes
make a substantial difference to traffic flow. Most importantly, turn-
ing lanes, i.e. the separation of vehicle streams by turningdirection,
prevents situations such as in Fig. 18.5, where a left turning vehicle
blocks all the traffic behind it. This becomes particular important
in conjunction with signal phases, since optimally the turning lanes
are emptied out during each green phase. That is, turning lanes of
the correct length ensure that the green phases of an intersection are
used optimally.
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in the way.

Red cars cannot move
because green car is

Figure 18.5: Problem of FIFO-based models

• Weaving, in particular if large numbers of vehicles enter a street on
the right lane(s) but want to exit it on the left lane(s).

For such effects, the simple queue simulation is no longer sufficient.
Sometimes, parameterizations of certain effects are available, but in gen-
eral it will be necessary to resort to a more realistic type ofmicro-
simulation. In such a more realistic micro-simulation, onewill not only
have individual cars with different individual characteristics, but also re-
alistic street layouts, signals, bicycles, pedestrians, light rail and buses,
etc.
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Chapter 19

Routing

19.1 Time aggregation

19.2 Generalized cost functions

19.3 Alternative routes

In our approach, each new route was generated as what would have been
the fastest route on the previous iteration.1 It is improbable that real people
solve this problem exactly, and for that reason alternativeroute generation
algorithms are desirable. Somewhat interestingly, it turns out that finding
alternative routes is considerably more difficult than finding the fastest
path alone.

One option is to systematically compute the second-fastest, third-fastest,
..., k-fastest path. This is however much more compute-intensivethan
computing the shortest path alone (Yen, 1971; Perko, 1986; Clarke et al.,
1963; Chabini, 1998). In addition, most of these paths are not plausible
for the real world. Often, they are just small variations of already existing
paths, with for example leaving the freeway and returning toit at the same
entry/exit point. Only very few of the paths generated in this way are true
innovations.

As an alternative, one could attempt to generate routes heuristically, in-
stead of systematically. This is also not a simple problem (?). Typical
heuristic approaches start searching in the geographic direction of the
destination, and in consequence often miss freeway connections which
demand some backtracking in order to reach them. More sophisticated
approaches will be necessary here.

One may think that heuristic approaches might also be desirable for com-
putational speed reasons in very large road networks. In practice, we have
never found this to be a problem. In a typical transportationplanning
network, with a size of about 10 000 nodes and 20 000 links, a straight-

1To be entirely precise, one would have to say that the route isbest based on the
time-averaged information that the router uses.
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19.4. Logit for routes

forward implementation of the time-dependent Dijkstra algorithm allows
the computation of 10 000 new routes per second on a typicaly 500 MHz
CPU (Jacob et al., 1999), which is fast enough for practical cases. In much
larger networks, this may no longer be sufficient. In such cases, some hi-
erarchical pre-processing can help. This is a topic of ongoing research.

19.4 Logit for routes

Another major problem of our approach is that all travellerswith the same
situation will be put on the same route, that is, there is no “spread” of
solutions.

A typical way to obtain some spread of solutions is to use a logit approach.
Remember, a logit means that the probability of picking a solution i is set
to

pi =
eβ Ui

∑

j eβ Uj
, (19.1)

whereUi is the utility of solutioni. When the utility of a solution is high,
then it will be selected with a high probability.

For routes, utility is negative, and it becomes more negative the longer
the driving time. For example, one could setUj = −Tj , whereTj is the
driving time for route choicej.

A major problem with this is that it is not easy to generate routing alterna-
tives. Two approaches, and their drawbacks, are:

• It is possible to computek-shortest paths.

Then, it is problematic to use logit on routes (e.g. (Cascetta and
Papola, 1998)). This is actually easy to see: In Fig. 19.1, there are
three paths from A to B. Assume they have all the same travel time.
The plausible solution then is that path 1 is used with probability
0.5, and paths 2 and 3 are used with probability0.25 each.

The logit solution will however be that all three paths are used with
equal probabilities1/3.

The example can be made arbitrarily pathologic by adding more
“short” alternatives.

It is however possible to use more sophisticated models thanthe
logit models (Cascetta and Papola, 1998).

• Another method is to only generate routes which are “real” alterna-
tives (?). This is however not an easy problem in itself.

And the problem with the logit still applies, although to a weaker
extent.

19.5 Planning for given arrival time
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A B

1
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3

Figure 19.1: Correlations between paths

19.6 Mental maps
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Chapter 20

Non-car modes of
transportation

20.1 Routing

Another problem is how to include public transportation. Itis possible
to do this in the router, that is, the router should figure out if, say, public
transportation or car is a better route for a certain trip (Barrett et al., 2000).

An alternative is to include the mode choice into the activities generation,
i.e. where we have adjusted the trip starting time in the past.

20.2 Simulation

Realistic micro-simulations also need to simulate other modes of trans-
portation besides the car, such as buses, light rail, walking, bicycle. This
makes micro-simulation codes considerably more complicated to program
and to run, the latter in particular since all the additionalinformation needs
to be coded into file, which need to be interpreted correctly by the simula-
tion.

There is however a trick which considerably simplifies the situation in
many cases: As long as there is no congestion and no interaction between
modes, modes can be treated as “following there schedule”. That is, with-
out congestion a subway or a bus will just depart and arrive asnoted in
the schedule, and a pedestrian will walk exactly with the expected speed.
Since this means predictable behavior, such trips or legs can be preplanned
by the router, and the microsimulation just follows the plan. More tech-
nically, if a car-only microsimulation encounters a leg which is not car-
based, it would process the leg according to departure and arrival infor-
mation from the plan. In this way, the problem of multi-modaltraffic is
delegated to the router.

The situation changes when the other modes suffer from congestion, or
when there is interaction between modes. Examples of the former are
pedestrian congestion in subway stations, or overcrowded buses. An ex-
ample of the latter is the interaction between pedestrians and cars on cross-
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20.2. Simulation

walks. In those cases, a direct implementation of other modes into the
micro-simulation will be necessary. Some elements, such asbuses or light
rail stuck in traffic, can be modeled within the queue model. For other
aspects, more realistic micro-simulations will be necessary.

In such a more realistic micro-simulation, some aspects canin fact be
modeled without too much effort. For example, buses are treated simi-
larly to cars (i.e. they follow a route), with the distinction that every time
they approach a bus stop, they move into the right lane and stop there. A
light rail (“Tram”) is modelled essentially a bus but with very strong lane
restrictions, that is, it has to stay on its tracks. If the tracks are embedded
in regular traffic, then the tram will just do standard car following; if the
tracks are separate, then the tram will run at free speed except for stops.

Other interactions are more difficult to model and need additional or sep-
arate models. For example, pedestrian congestion follows different rules
than traffic congestion; there are computer codes which simulate this. One
could connect such a pedestrian code with a traffic simulation code. Major
implementation problems occur when such simulations need to be cou-
pled, for example, when pedestrians crossing a street interact with the car
traffic on the street. Little technology seems to be known to couple these
simulations without having to rewrite at least one of them tointegrate it
into the code of the other. Our own expectation is that for theforeseeable
future enough progress can be made by working on other aspects of the
problem, until some better technology becomes available. Clearly, other
areas of simulation have similar problems.
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Chapter 21

Demand

Once the synthetic population is generated, all other modules act directly
on the agents. What is necessary here is a procedure that as a result gen-
erates travel demand, i.e. the wish of people to move from onelocation
to another. As already said in 2.2, two important methods here are:
(i) origin-destination matrices, and (ii) activity-baseddemand modeling.

21.1 Origin-destination matrices

As also already said in Sec. 2.2, 2.2, origin-destination (OD) matrices
contain the number of trips fromn starting points ton destinations; it
is therefore ann × n matrix. As also said, these matrices can refer to
arbitrary time periods; these days, one typically uses “morning peak” and
“afternoon peak” periods.

There are many ways to obtain origin-destination matrices.In transporta-
tion planning, the typical methods is to anchor them to the land use, and to
use behavioral “rates” to determine trip frequencies (e.g.(Lohse, 1997)).
Residential areas “produce” so and so many trips per capita;commercial
areas “attract” so and so many trips per capita. The matchingof origins to
destinations is done via gravity methods, i.e. the probability of a trip to go
to a certain destination is some function of the attraction of this destination
and the generalized cost of getting there.

Another method is to derive OD matrices from traffic counts. Here, one
collects counts on as many links of the transportation network as possible,
and then uses statistical estimators to derive OD matrices from this (e.g.
(Cascetta et al., 1993)). Statistical estimators are necessary because the
problem is under-determined. Sometimes, the two approaches are com-
bined, i.e. the historical OD-matrices are used as startingpoints, but they
are corrected via traffic counts (DYNAMIT www page, accessed2005).
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HOME

WORK
LUNCH

WORK

DOCTOR

SHOP

HOME

AGENT’S ACTIVITIES

Figure 21.1: Example of a sequence of activities for a personin Port-
land/Oregon. From R.J. Beckman.

21.2 Activities-based demand modeling

The problem with OD matrices is that they fix the travel demandonce
they have been derived. Thus, they fail to generate the effect of “induced”
travel, which usually happens when one expands capacity. For example,
a new freeway may induce people to make more trips, thus increasing
overall travel. This means that one needs a demand generation method
that is elastic with changing supply.

Activity-based methods attempt to achieve this by generating directly
what people do during a day and where; transportation demandis thus
derived by connecting activities at different locations (Fig. 21.1). There
are at least two different methods to generate activities: econometric, and
heuristic.

In principle, one can derive OD-matrices from activities, and many groups
do this because it connects activity-based demand generation to existing
models. This has, however, to be done with care since one loses important
information. An important example of lost information are trip chains,
where a person may go to work, may go shopping, and then home. If
the person gets stuck on the way to shopping, the trip from shopping to
home will take place later than anticipated; such effects donot get picked
up in the OD matrix. Also, a universal reaction to changes in conges-
tion seems to be to add or suppress intermediate stops at home, i.e. to
replace home-work-home-shop-home by home-work-shop-home or vice
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21.2. Activities-based demand modeling

versa. One would have to be careful to not suppress these possibilities
when translating the trip chains into OD-matrices.

Econometric Econometric methods (Ben-Akiva and Lerman, 1985;
Domencich and McFadden, 1975) are based on random utility theory,
which will be explained in more detail in Chap. 29. An often-used choice
model is the so-called logit model. If there are several optionsi = 1..N ,
then the logit model predicts that the probability to selectoptioni is

pa,i =
eβ Va,i

∑

j eβ Va,j
, (21.1)

whereVa,i is the utility (“score”) of optioni for a particular individual
a, andβ is a parameter characterizing randomness. This equation was
already used in Sec. 14.3, and the consequence of varyingβ was discussed
there.

For demand generation, one needs to makeVa,i dependent on the attributes
of the options, and on the properties of the individual underconsideration.
A typical assumption is to make this dependence linear:

Vi = β1 xa,1 + ... + βk xa,k + βk+1 xi,k+1 + ... , (21.2)

where thexa,j , j ≤ k are person attributes, and thexi,j, j > k are option
attributes. For example, one could have

Utility theory assumes that the utility a personi sees in a certain actiona
is composed of a measurable and a non-measurable part:

U(i, a) = V (i, a) + η(i, a) . (21.3)

Under a variety of assumptions, e.g. thatη is a random variable and fol-
lows a certain distribution, this leads to an equation for the probability to
choose actiona.

An often-used discrete choice model is the so-called logit model. Its main
assumptions are:

• Individuals and actions are characterized by certain attributes, that
is, two individuals with the same attributes will be modeledby the
same equation. This also means thati anda are replaced by a vector
of attributes,xi,a.

• The measurable part of the utilities,V , is a linear function of the
attributes, i.e.V = β · x.

• The random variablesη do not depend on the attributesxi,a, and
they are Gumbel distributed, i.e. the generating function is

F (η) = exp[−e−µ (η−γ)] , (21.4)

which results in the distribution

f(η) = µ e−µ (η−γ) exp[−e−µ (η−γ)] (21.5)
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γ is a location parameter, andµ is a positive scale parameter. This
distribution is somewhat similar to an asymmetric version of the
normal distribution; its main advantage is that it leads to aclosed
form solution of the choice model.

With a logit model, the probability to choose the bus in a decision between
bus and car could look as follows:

P (bus) =
exp[−βb tb]

exp[−βb tb] + exp[−βc tc]
. (21.6)

tb andtc are the respective travel times the trip would take by bus or by
car. βb andβc are factors which weigh time in the bus vs. time in the car,
i.e. they are “values of time”. For example, one could say that time in
the bus is more productive than in the car because one can read, resulting
in βb > βc. However, usually the car is faster, compensating for this
effect. – Note that Eq. 21.6 has the same functional form as a Boltzmann
distribution.

Theβb andβc are estimated from surveys, for example via maximum like-
lihood methods. A sample of the population with different car and bus
travel times is asked about their choices, and theβx are determined such
that the probability according to Eq. 21.6 to re-generate the survey is max-
imized.

For applications inside a transportation simulation, thisbecomes a lot
more complicated. An implementation for Portland/Oregon (Bowman,
1998) determines activity patterns (for example home-work-home or
home-work-shop-home), activity timing, activity locations, mode choice,
etc. As long as one wants to treat all alternatives simultaneously, this has
the problem that the number of coefficients grows exponentially. For ex-
ample, if one has five activities patterns, and three modes oftransportation,
this means 15 different choices and thus 15 parameters. If however one
does not treat the alternatives simultaneously, one can make mistakes: For
example, a person could have a strong preference for a pattern home-work-
home-shop-home when averaged overall possible circumstances, but may
prefer home-work-shop-home when really good bus service isavailable.
When choosing first the pattern and then the transportation mode, this in-
formation gets misrepresented.

Heuristic methods The econometric method has a solid theoretical
foundation, and it is currently the only method that is functional for trans-
portation simulations. However, sometimes it seems like itdoes not really
represent how people behave. The discrete choice method pretends that
people calculate utilities for all possible alternatives and then choose the
alternative with the highest utility. (Remember that the randomization just
comes in because of “unobserved attributes”.) However, people do not do
this. For example, they may discard an activity pattern home-shop-work-
home right away without calculating the utilities of all possible constella-
tions.

Heuristic methods attempt to better represent such human planning pro-
cesses. For example, research shows that humans make their planning
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decisions on many time scales simultaneously (Doherty and Axhausen,
1998). The time for work is usually alloted way in advance, shopping
may be planned a day in advance, and then the whole schedule may be
changed short-term because the child gets sick. Prototypesfor such mod-
els exist, but they seem currently far away from being operational in any
meaningful way.

It should be noted that heuristic and econometric methods can be com-
bined. For example, one could use a heuristic method to determine which
decisions are made how far in advance, and use an econometricmethod to
make the actual decision. Or the econometric method could calculate the
probability for each activities pattern, the heuristic method could decide
to retain the two most important patterns, the econometric method than
could calculate the utilities for these two patterns for allmode and time
combinations, etc.

Summary of activities-based methods Activities-based demand gen-
eration models are a promising method for transportation simulation.
Some implementations of these methods have reached the state where
they can be used for actual applications (Bradley, 1997). However, so
far there are only very few results about coupling these methods together
with transportation micro-simulations, as intended with the transportation
planning simulation packages described in this article. The only func-
tional system that we are aware of uses a very simple method ofdemand
generation; it is described in the appendix. But we are optimistic that
research in the next couple of years will expand the boundaries in these
areas enormously.
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Chapter 22

Feedback

22.1 Introduction

A major shortcoming of the departure time choice of Chap. 14 is that
the trip time is treated as being independent from the starting time. This
is obviously not realistic. There are many ways to improve this. Two
possibilities are described in the following. In addition,the difference
between day-to-day and within-day replanning is shortly discussed.

22.2 Global trip times table

Recall that the missing information is the expected trip time for a given
starting time. One option is to generate a global trip times table, i.e. for
each time slice and each origin-destination pair the information about the
trip time for a departure time within that time slice. This table would be
generated from actual performance of simulated travelers/vehicles, that is,
all travelers/vehicles departing during the time slice from the same starting
location to the same destination would be included, for example by aver-
aging. The table would then be used by the activities generation module
to provide estimated trip time information.

The main disadvantages of this approach are:

• In a large network, there are easily several hundred thousand links,
corresponding to several hundred thousand potential origins/desti-
nations. That is, for a single time slice, our table would have more
than105 × 105 = 1010 entries, corresponding to 40 GByte per time
slice, which is clearly too much for most current computing envi-
ronments.

• Going along with the last is that in such a network, with a realistic
number of107 travelers, most entries of the trip time table would be
left empty, implying some other method to fill the missing cells.
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22.3. Agent data base

Implementation
For our simulations, this could be implemented as follows:

From the events file, generate a table of 5min-by-5min origin-destination
trip times. That is, for each origin-destination pair and for each 5min bin,
you average the travel times of vehicles during that 5min bin.

For example, if there were, between 8:00 and 8:05 (planned departure
times), two vehicles traveling from link 100 to link 1900, and the trip took
them 30 and 32minutes, respectively, then the expected trip time for a
departure between 8:00 and 8:05 is 31 minutes.

Generating this table would concern the system integration specialists.

That table now is read into the activities generation module, and the de-
parture time choice is based on that information.

This would concern the route/acts gen specialists.

If there is information missing between time bins, then interpolate. If there
is information missing for early or late times, think about some intelligent
solution.

22.3 Agent data base

An approach which seems in general much more robust is the useof an
agent database. Here, we mean that each traveler/agent keeps a memory
of options that he/she tried out, and some measure of the performance of
each option. This approach is similar to classifier systems,genetic algo-
rithms, or reinforcement learning, with the difference that the number of
agents, typically several millions, is much higher in largescale transporta-
tion simulations than in typical applications of the mentioned areas.

The simulation would start with each agent having one or moreoptions,
which all have preliminary scores. Each iteration would consist of the
following steps:

• Each agent would chose an option according to the scores, forex-
ample taking the option with the best score.

• The simulation would be carried out.

• Each agent would note the new score of the option that it just carried
out.

In addition, it is necessary to inject new options into the system. For
example, in each iteration one could give new options to a fraction of the
agents, and then “force” those agents to immediately try them out. If these
options lead to bad scores, the agents will rarely or never try them again.

Although such an approach is easy to state in principle, it isdifficult to
implement in practice because of performance limitations.Using a rela-
tional database such as MySQL is possible but slow with several millions
of agents. Also, although a relational database provides support such as
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indexing and sorting, it’s emphasis is on consistent and secure operation,
not on computational speed. This is a subject of active research.

Implementation
With respect to our practical examples, the easiest solution is to not worry
about the routing choice, but remember starting times and performance
only. That is, after a simulation run one would parse the events file, and for
each agent note the starting time and the corresponding trip time. That
information would be merged together with pre-existing information into
some agent data base.

(One could for example do a flat file of agent performance for each itera-
tion; the departure time choice module would then read all these files.)

For each agent that does departure time choice, the experienced trip
times would be used as a base. For departure times outside the expe-
rienced interval, free speed travel times could be used. For departure
times in between experienced travel times, some kind of interpolation (e.g.
linear) could be used.

Note that agent memory needs to age, otherwise agents may remember
information that is no longer relevant. One possibility would be to only
read the agent experience from the last 10 iterations.

This would again be a cooperation between the systems integration spe-
cialists and the route/acts gen specialists.

22.4 Day-to-day vs. within-day re-planning

Day-to-day replanning assumes, in a sense, “dumb” particles. Particles
follow routes, but the routes are pre-computed, and once thesimulation
is started, they cannot be changed, for example to adapt to unexpected
congestion and/or a traffic accident. In other words, the strategic part of
the intelligence of the agents is external to the micro-simulation. In that
sense, such micro-simulations can still be seen as, albeit much more so-
phisticated, version of the link cost functionca(xa) from static assignment,
now extended by influences from other links and made dynamic through-
out time. And indeed, many dynamic traffic assignment (DTA) systems
work exactly in that way (e.g. (Bottom, 2000)). In terms of game the-
ory, this means that we only allow unconditional strategies, i.e. strategies
which cannot branch during the game depending on the circumstances.

Another way to look at this is to say that one assumes that the emergent
properties of the interaction have a “slowly varying dynamics”, meaning
that one can, for example, consider congestion as relatively fixed from
one day to the next. This is maybe realistic under some conditions, such
as commuter traffic, but clearly not for many other conditions, such as ac-
cidents, adaptive traffic management, impulsive behavior,stochastic dy-
namics in general, etc. It is therefore necessary that agents are adaptive
(intelligent) also on short time scales not only with respect to lane chang-
ing, but also with respect to routes and activities. It is clear that this can
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be done in principle, and the importance of it for fast relaxation (Esser,
1998; Rickert, 1998) and for the realistic modeling of certain aspects of
human behavior (Axhausen, 1990; Doherty and Axhausen, 1998) has been
pointed out.
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Chapter 23

Other Modules
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Chapter 24

Better file formats

24.1 Introduction

In the longer run, the file formats used in the “do-it-yourself” part are not
very robust. The main problem is that with each change of the file format,
several pieces of the simulation package need to be adapted consistently.
Two ways to improve the situation are (a) use the header line not just for
consistency checking, but to obtain the information of the content of each
column; (b) use XML (extended markup language). This will bedescribed
in the following.

24.2 Use header line

In the “do-it-yourself” part, the header line was only used for consistency
checking, for example for the nodes file

// process header line:
for ( int ii=1; ii<=NTOKENS; ++ii ) {

inFile >> aString ;
switch( ii ) {
case 1: assert( aString== "ID" ) ; break ;
case 2: assert( aString== "EASTING" ) ; break ;
case 3: assert( aString== "NORTHING" ) ; break ;
}

}

A more robust alternative would be to use the header line as anindica-
tion of what each column contains. Processing of the header line would
essentially become

// process header line:
for ( int ii=1; ii<=NTOKENS; ++ii ) {

inFile >> aString ;
if ( aString== "ID" ) {

column_id=ii ;
} else if ( aString== "EASTING" ) {

column_east=ii ;
...
}

}
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These columns would later be used during the file reading, forexample
via

// main loop:
while( !inFile.eof() ) {

...
for ( int ii=1; ii<=NTOKENS ; ii++ ) {

if ( ii==column_id ) {
inFile >> nodeId ;

} else ( ii==column_east ) {
inFile >> xCoord ;

...
}

}
}

This is in fact not much more work to program, and considerably more
robust. The main reason why it was not introduced ealier is that it does
not solve one of the main inconveniences, which is the parsing of the
route-plans file. The problem with route-plans is that they are not column-
oriented, and they cannot be, since the number of nodes in a route is chang-
ing from one route to the next. The next section discusses a robust way
out of this dilemma.

24.3 XML

XML (extendsible markup language) is a system to describe unstructured
data for computers. The main idea is that each item of the datais de-
scribedright where it shows upinstead of somewhere else in the file or
even outside it. An XML nodes file would look like

<nodes>
<node id= "15" x="123.45" y="678.9" />
...
</nodes>

That is, the information of where the id or the x/y coordinates are is
repeated for each entry. This makes for larger files and slower parsing
speeds, but the disadvantages are not that big:

• Since this is a standardized method, fast parsers are available.

• The overhead is not more than a factor of two.

• If keywords are repeated often (as they are for our files), compres-
sion tools will find that out so that compressed XML files are not
much larger than compressed files without XML tags.

In general, parsers of XML files will not break when the input format is
extended. For example, when additional keyword-value-pairs are added,
they will just be ignored.

The main advantage of XML files is for the description of travelers’ plans,
where one now does not need all those awkward conventions anymore. A
route-plans file will for example look like
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...
<person id= "34">
<trip starttime= "8h03" dplink= "123" arlink= "456" eta= "8h33">
<nodes> 23 34 63 62 24 </nodes>
</trip>
</person>
...

This describes a trip from link 123 to link 456, with a starting time at
8h03, and an estimated arrival time at 8h33.

Further information, such as deomgraphic data or activities, can now just
be added to the same file structure, e.g.

...
<person id= "34" income= "10000">
<act type= "h" link= "123" etime= "8h03" />
<trip mode= "car" starttime= "8h03" dplink= "123" arlink= "456" eta= "8h33" >
<nodes> 23 34 63 62 24 </nodes>
</trip>
<act type= "w" link= "456" duration= "8h" />
<trip mode= "car" starttime= "16h33" dplink= "123" arlink= "456" eta= "17h00">
<nodes> 24 62 63 34 23 </nodes>
</trip>
<act type= "h" link= "123" />
</person>
...

This would describe a person with id 34 and an income of 10000,which, at
the beginning of the simulation, is doing at “at-home” activity, at link 123.
At 8h03, the person starts driving to work, where she expectsto be at 8h33.
The person works for 8 hours, and then drives back home.

This is in principle a very flexible concept. In particular, there are no
longer different files for activities, trip requests, (route-)plans, etc; every-
thing is just one file format. For example, the router request(formerly
“trips file”) would just be

...
<person id= "34" income= "10000">
<act type= "h" link= "123" etime= "8h03" />
<trip mode= "car" dplink= "123" arlink= "456"/>
<act type= "w" link= "456" duration= "8h" />
<trip mode= "car" dplink= "123" arlink= "456"/>
<act type= "h" link= "123" />
</person>
...

and the router would calculate all trip starting times, estimated arrival
times, and sequences of routes.

As an alternative, there could be separate scheduling and routing modules.

The main issue here is that there is absolutely no standardization available
yet. It is neither clear which concepts are simple in terms ofmodeling and
simulation, nor which concepts are faithful in terms of human behavior.
We will return to some of the latter in Chap.??.
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24.4 Some discussion

Why has the do-it-yourself package of this text not used XML?The main
problem is that the parsers are not yet standardized. For example, for unix
the C++ computer by itself is no longer sufficient; one needs to add some
additional software. We expect the situation to be similar under other
operating systems. In addition, the situation with parsersstill is in a state
of flux. That is, a parser that works today may not work any longer is a
couple of months from now. For all other pieces of our package, we expect
that it will work on standard systems for many years into the future.

For all those reasons,this text does not use XML files, but standard text
files. However, there is a public domain version of our work, currently at
, which uses XML and which can be used as a starting point for further
development.
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Chapter 25

Parallel computing

25.1 Introduction

As we have seen, the computational requirements for a large scale simu-
lation can be rather large, and eventually waiting for a result can take too
much time. Using parallel computers is a way to improve the situation.
When done right, using 100 parallel computers can reduce thewaiting
time by a factor of 100, for example from 100 days to one. Aspects of this
are described in the following.

Note: The following still refers to cellular automata simulation methods.
The spirit of the results is however also valid for the queue simulation
used in the class.

25.2 Micro-simulation parallelization: Do-
main decomposition

An important advantage of the CA is that it helps with the design of a
parallel and local simulation update, that is, the state at time stept + 1
depends only on information from time stept, and only from neighboring
cells. (To be completely correct, one would have to considerour sub-
time-steps.) This means that domain decomposition for parallelization is
straightforward, since one can communicate the boundariesfor time step
t, then locally on each CPU perform the update fromt to t + 1, and then
exchange boundary information again.

Domain decomposition means that the geographical region isdecomposed
into several domains of similar size (Fig. 25.1), and each CPU of the paral-
lel computer computes the simulation dynamics for one of these domains.
Traffic simulations fulfill two conditions which make this approach effi-
cient:

• Domains of similar size: The street network can be partitioned into
domains of similar size. A realistic measure for size is the accumu-
lated length of all streets associated with a domain.
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• Short-range interactions: For driving decisions, the distance of in-
teractions between drivers is limited. In our CA implementation,
on links all of the Transims1999 rule sets have an interaction range
of 37.5 meters (= 5 cells) which is small with respect to the av-
erage link length. Therefore, the network easily decomposes into
independent components.

We decided to cut the street network in the middle of links rather than at
intersections (Fig. 25.2); THOREAU does the same (Niedringhaus et al.,
1994). This separates the traffic complexity at the intersections from the
complexity caused by the parallelization and makes optimization of com-
putational speed easier.

In the implementation, each divided link is fully represented in both CPUs.
Each CPU is responsible for one half of the link. In order to maintain
consistency between CPUs, the CPUs send information about the first five
cells of “their” half of the link to the other CPU. Five cells is the interaction
range of all CA driving rules on a link. By doing this, the other CPU
knows enough about what is happening on the other half of the link in
order to compute consistent traffic.

The resulting simplified update sequence on the split links is as follows
(Fig. 25.3):1

• Change lanes.

• Exchange boundary information.

• Calculate speed and move vehicles forward.

• Exchange boundary information.

The Transims1999 microsimulation also includes vehicles that enter the
simulation from parking and exit the simulation to parking,and logic for
public transit such as buses. These additions are implemented in a way
that no further exchange of boundary information is necessary.

The implementation uses the so-called master-slave approach. Master-
slave approach means that the simulation is started up by a master, which
spawns slaves, distributes the workload to them, and keeps control of the
general scheduling. Master-slave approaches often do not scale well with
increasing numbers of CPUs since the workload of the master remains the
same or even increases with increasing numbers of CPUs. For that reason,
in Transims1999 the master has nearly no tasks except initialization and
synchronization. Even the output to file is done in a decentralized fashion.
With the numbers of CPUs that we have tested in practice, we have never
observed the master being the bottleneck of the parallelization.

The actual implementation was done by defining descendent C++ classes
of the C++ base classes provided in a Parallel Toolbox. The underly-
ing communication library has interfaces for both PVM (Parallel Virtual

1Instead of “split links”, the terms “boundary links”, “shared links”, or “distributed
links” are sometimes used. As is well known, some people use “edge” instead of “link”.
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Machine (PVM www page, accessed 2005)) and MPI (Message Passing
Interface (MPI www page, accessed 2005)). The toolbox implementation
is not specific to transportation simulations and thus beyond the scope of
this paper. More information can be found in (Rickert, 1998).

CPU link

CPU 2

CPU 3

CPU 1
CPU 2

CPU 1

Master Slave

edge
boundary edge

intersection CPU
tile boundary

CPU 0 CPU 0

Figure 25.1: Domain decomposition of transportation network. Left:
Global view.Right: View of a slave CPU. The slave CPU is only aware of
the part of the network which is attached to its local nodes. This includes
links which are shared with neighbor domains.

CPN 1
CPN 2

boundary boundary

active Range [0.5, 1.0]

localremote

0.0 1.00.5

active Range [0.0, 0.5]

remotelocal

Figure 25.2: Distributed link.

25.3 Graph partitioning

Once we are able to handle split links, we need to partition the whole
transportation network graph in an efficient way. Efficient means several
competing things: Minimize the number of split links; minimize the num-
ber of other domains each CPU shares links with; equilibratethe compu-
tational load as much as possible.

One approach to domain decomposition is orthogonal recursive bi-section.
Although less efficient than METIS (explained below), orthogonal bi-
section is useful for explaining the general approach. In our case, since
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After 2nd exchange of boundaries:

At beginning of time step:

CPU 1

CPU 2

CPU 1

CPU 2

After lane changes:

CPU 1

CPU 2

After boundary exchanges (parallel implementation):

CPU 1

CPU 2

CPU 1

CPU 2

After movements:

Figure 25.3: Example of parallel logic of a split link with two lanes. The
figure shows the general logic of one time step. Remember thatwith a
split link, one CPU is responsible for one half of the link andanother CPU
is responsible for the other half. These two halves are shownseparately
but correctly lined up. The dotted part is the “boundary region”, which is
where the link stores information from the other CPU. The arrows denote
when information is transferred from one CPU to the other viaboundary
exchange.

we cut in the middle of links, the first step is to accumulate computational
loads at the nodes: each node gets a weight corresponding to the compu-
tational load of all of its attached half-links. Nodes are located at their
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geographical coordinates. Then, a vertical straight line is searched so that,
as much as possible, half of the computational load is on its right and the
other half on its left. Then the larger of the two pieces is picked and cut
again, this time by a horizontal line. This is recursively done until as many
domains are obtained as there are CPUs available, see Fig. 25.4. It is im-
mediately clear that under normal circumstances this will be most efficient
for a number of CPUs that is a power of two. With orthogonal bi-section,
we obtain compact and localized domains, and the number of neighbor
domains is limited.

Another option is to use the METIS library for graph partitioning (see
(METIS www page, accessed 2005) and references therein). METIS uses
multilevel partitioning. What that means is that first the graph is coars-
ened, then the coarsened graph is partitioned, and then it isuncoarsened
again, while using an exchange heuristic at every uncoarsening step. The
coarsening can for example be done via random matching, which means
that first edges are randomly selected so that no two selectedlinks share
the same vertex, and then the two nodes at the end of each edge are col-
lapsed into one. Once the graph is sufficiently collapsed, itis easy to find
a good or optimal partitioning for the collapsed graph. During uncoarsen-
ing, it is systematically tried if exchanges of nodes at the boundaries lead
to improvements. “Standard” METIS uses multilevel recursive bisection:
The initial graph is partitioned into two pieces, each of thetwo pieces is
partitioned into two pieces each again, etc., until there are enough pieces.
Each such split uses its own coarsening/uncoarsening sequence.k-METIS
means that allk partitions are found during a single coarsening/uncoars-
ening sequence, which is considerably faster. It also produces more con-
sistent and better results for largek.

METIS considerably reduces the number of split links,Nspl, as shown in
Fig. 25.5. The figure shows the number of split links as a function of the
number of domains for (i) orthogonal bi-section for a Portland network
with 200 000 links, (ii) METIS decomposition for the same network, and
(iii) METIS decomposition for a Portland network with 20 024links. The
network with 200 000 links is derived from the TIGER census data base,
and will be used for the Portland case study for TransimsṪhe network
with 20 024 links is derived from the EMME/2 network that Portland is
currently using. An example of the domains generated by METIS can
be seen in Fig. 25.6; for example, the algorithm now picks up the fact
that cutting along the rivers in Portland should be of advantage since this
results in a small number of split links.

We also show data fits to the METIS curves,Nspl = 250 p0.59 for the
200 000 links network andNspl = 140 p0.59−140 for the 20 024 links net-
work, wherep is the number of domains. We are not aware of any theoret-
ical argument for the shapes of these curves for METIS. It is however easy
to see that, for orthogonal bisection, the scaling ofNspl has to be∼ p0.5.
Also, the limiting case where each node is on a different CPU needs to
have the sameNspl both for bisection and for METIS. In consequence, it
is plausible to use a scaling form ofpα with α > 0.5. This is confirmed
by the straight line for largep in the log-log-plot of Fig. 25.5. Since for
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Figure 25.4: Orthogonal bi-section for Portland 20 024 links network.

p = 1, the number of split linksNspl should be zero, for the 20 024 links
network we use the equationA pα−A, resulting inNspl = 140 p0.59−140
. For the 200 000 links network, the resulting fit is so bad thatwe did not
add the negative term. This leads to a kink for the corresponding curves
in Fig. 25.12.

Such an investigation also allows to compute the theoretical efficiency
based on the graph partitioning. Efficiency is optimal if each CPU gets
exactly the same computational load. However, because of the granularity
of the entities (nodes plus attached half-links) that we distribute, load im-
balances are unavoidable, and they become larger with more CPUs. We
define the resulting theoretical efficiency due to the graph partitioning as

edmn :=
load on optimal partition
load on largest partition

, (25.1)

where the load on the optimal partition is just the total loaddivided by the
number of CPUs. We then calculated this number for actual partitionings
of both of our 20 024 links and of our 200 000 links Portland networks,
see Fig. 25.7. The result means that, according to this measure alone,
our 20 024 links network would still run efficiently on 128 CPUs, and our
200 000 links network would run efficiently on up to 1024 CPUs.

25.4 Adaptive Load Balancing

In the last section, we explained how the street network is partitioned into
domains that can be loaded onto different CPUs. In order to beefficient,
the loads on different CPUs should be as similar as possible.These loads
do however depend on the actual vehicle traffic in the respective domains.
Since we are doing iterations, we are running similar trafficscenarios over
and over again. We use this feature for an adaptive load balancing: During
run time we collect the execution time of each link and each intersection
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Figure 25.5: Number of split links as a function of the numberof
CPUs. The top curve shows the result of orthogonal bisectionfor the
200 000 links network. The middle curve shows the result of METIS for
the same network – clearly, the use of METIS results in considerably fewer
split links. The bottom curve shows the result for the Portland 20 024 links
network when again using METIS. The theoretical scaling fororthogonal
bisection isNspl ∼ √

p, wherep is the number of CPUs. Note that for
p → Nlinks, Nspl needs to be the same for both graph partitioning meth-
ods.

Figure 25.6: Partitioning by METIS. Compare to Fig. 25.4.

(node). The statistics are output to file. For the next run of the micro-
simulation, the file is fed back to the partitioning algorithm. In that itera-
tion, instead of using the link lengths as load estimate, theactual execution
times are used as distribution criterion. Fig. 25.8 shows the new domains
after such a feedback (compare to Fig. 25.4).
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Figure 25.7: Top: Theoretical efficiency for Portland network with
20 024 links. Bottom: Theoretical efficiency for Portland network with
200 000 links. “OB” refers to orthogonal bisection. “METIS (k-way)”
refers to an option in the METIS library.

To verify the impact of this approach we monitored the execution times per
time-step throughout the simulation period. Figure 25.9 depicts the results
of one of the iteration series. For iteration 1, the load balancer uses the link
lengths as criterion. The execution times are low until congestion appears
around 7:30 am. Then, the execution times increase fivefold from 0.04 sec
to 0.2 sec. In iteration 2 the execution times are almost independent of the
simulation time. Note that due to the equilibration, the execution times for
early simulation hours increase from 0.04 sec to 0.06 sec, but this effect is
more than compensated later on.

The figure also contains plots for later iterations (11, 15, 20, and 40).
The improvement of execution times is mainly due to the routeadaptation
process: congestion is reduced and the average vehicle density is lower.
On the machine sizes where we have tried it (up to 16 CPUs), adaptive
load balancing led to performance improvements up to a factor of 1.8.
It should become more important for larger numbers of CPUs since load
imbalances have a stronger effect there.

25.5 Performance prediction for the Transims
micro-simulation

It is possible to systematically predict the performance ofparallel micro-
simulations (e.g. (Jakobs and Gerling, 1993; Nagel and Schleicher,
1994)). For this, several assumptions about the computer architecture
need to be made. In the following, we demonstrate the derivation of such
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Figure 25.8: Partitioning after adaptive load balancing. Compare to
Fig. 25.4.

Figure 25.9: Execution times with external load feedback. These results
were obtained during the Dallas case study (Beckman et al, 1997; Rickert,
1998).

predictive equations for coupled workstations and for parallel supercom-
puters.

The method for this is to systematically calculate the wall clock time for
one time step of the micro-simulation. We start by assuming that the time
for one time step has contributions from computation,Tcmp, and from
communication,Tcmm. If these do not overlap, as is reasonable to assume
for coupled workstations, we have

T (p) = Tcmp(p) + Tcmm(p) , (25.2)

wherep is the number of CPUs.2

Time for computation is assumed to follow

Tcmp(p) =
T1

p
·
(

1 + fovr(p) + fdmn(p)
)

. (25.3)

Here,T1 is the time of the same code on one CPU (assuming a problem
size that fits on available computer memory);p is the number of CPUs;
fovr includes overhead effects (for example, split links need tobe admin-
istered bybothCPUs);fdmn = 1/edmn − 1 includes the effect of unequal
domain sizes discussed in Sec. 25.3.

2For simplicity, we do not differentiate between CPUs and computational nodes.
Computational nodes can have more than one CPU — an example isa network of cou-
pled PCs where each PC has Dual CPUs.
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Time for communication typically has two contributions: Latency and
bandwidth. Latency is the time necessary to initiate the communication,
and in consequence it is independent of the message size. Bandwidth de-
scribes the number of bytes that can be communicated per second. So the
time for one message is

Tmsg = Tlt +
Smsg

b
, (25.4)

whereTlt is the latency,Smsg, is the message size, andb is the bandwidth.

However, for many of today’s computer architectures, bandwidth is given
by at least two contributions: node bandwidth, and network bandwidth.
Node bandwidth is the bandwidth of the connection from the CPU to the
network. If two computers communicate with each other, thisis the max-
imum bandwidth they can reach. For that reason, this is sometimes also
called the “point-to-point” bandwidth.

The network bandwidth is given by the technology and topology of the
network. Typical technologies are 10 Mbit Ethernet, 100 Mbit Ethernet,
FDDI, etc. Typical topologies are bus topologies, switchedtopologies,
two-dimensional topologies (e.g. grid/torus), hypercubetopologies, etc. A
traditional Local Area Network (LAN) uses 10 Mbit Ethernet,and it has
a shared bus topology. In a shared bus topology, all communication goes
over the same medium; that is, if several pairs of computers communicate
with each other, they have to share the bandwidth.

For example, in our 100 Mbit FDDI network (i.e. a network bandwidth
of bnet = 100 Mbit) at Los Alamos National Laboratory, we found node
bandwidths of aboutbnd = 40 Mbit. That means that two pairs of com-
puters could communicate at full node bandwidth, i.e. using80 of the
100 Mbit/sec, while three or more pairs were limited by the network
bandwidth. For example, five pairs of computers could maximally get
100/5 = 20 Mbit/sec each.

A switched topology is similar to a bus topology, except thatthe network
bandwidth is given by the backplane of the switch. Often, thebackplane
bandwidth is high enough to have all nodes communicate with each other
at full node bandwidth, and for practical purposes one can thus neglect the
network bandwidth effect for switched networks.

If computers become massively parallel, switches with enough backplane
bandwidth become too expensive. As a compromise, such supercom-
puters usually use a communications topology where communication to
“nearby” nodes can be done at full node bandwidth, whereas global com-
munication suffers some performance degradation. Since wepartition our
traffic simulations in a way that communication is local, we can assume
that we do communication with full node bandwidth on a supercomputer.
That is, on a parallel supercomputer, we can neglect the contribution com-
ing from thebnet-term. This assumes, however, that the allocation of street
network partitions to computational nodes is done in some intelligent way
which maintains locality.
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As a result of this discussion, we assume that the communication time per
time step is

Tcmm(p) = Nsub ·
(

nnb(p) Tlt +
Nspl(p)

p

Sbnd

bnd

+ Nspl(p)
Sbnd

bnet

)

, (25.5)

which will be explained in the following paragraphs.Nsub is the number of
sub-time-steps. As discussed in Sec. 25.2, we do two boundary exchanges
per time step, thusNsub = 2 for the 1999 Transims micro-simulation
implementation.

nnb is the number of neighbor domains each CPU talks to. All informa-
tion which goes to the same CPU is collected and sent as a single message,
thus incurring the latency only once per neighbor domain. For p = 1, nnb

is zero since there is no other domain to communicate with. For p = 2, it
is one. Forp → ∞ and assuming that domains are always connected, Eu-
ler’s theorem for planar graphs says that the average numberof neighbors
cannot become more than six. Based on a simple geometric argument, we
use

nnb(p) = 2 (3
√

p − 1) (
√

p − 1)/p , (25.6)

which correctly hasnnb(1) = 0 andnnb → 6 for p → ∞. Note that
the METIS library for graph partitioning (Sec. 25.3) does not necessarily
generate connected partitions, making this potentially more complicated.

Tlt is the latency (or start-up time) of each message.Tlt between 0.5 and
2 milliseconds are typical values for PVM on a LAN (Rickert, 1998; Don-
garra et al., 1998).

Next are the terms that describe our two bandwidth effects.Nspl(p) is the
number of split links in the whole simulation; this was already discussed
in Sec. 25.3 (see Fig. 25.5). Accordingly,Nspl(p)/p is the number of split
links per computational node.Sbnd is the size of the message per split link.
bnd andbnet are the node and network bandwidths, as discussed above.

In consequence, the combined time for one time step is

T (p) =
T1

p

(

1 + fovr(p) + fdmn(p)
)

+ (25.7)

Nsub ·
(

nnb(p) Tlt +
Nspl(p)

p

Sbnd

bnd

+ Nspl(p)
Sbnd

bnet

)

. (25.8)

According to what we have discussed above, forp → ∞ the number
of neighbors scales asnnb ∼ const and the number of split links in the
simulation scales asNspl ∼

√
p. In consequence forfovr andfdmn small

enough, we have:

• for a shared or bus topology,bnet is relatively small and constant,
and thus

T (p) ∼ 1

p
+ 1 +

1√
p

+
√

p → √
p ; (25.9)
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• for a switched or a parallel supercomputer topology, we assume
bnet = ∞ and obtain

T (p) ∼ 1

p
+ 1 +

1√
p
→ 1 . (25.10)

Thus, in a shared topology, adding CPUs will eventuallyincrease the si-
mulation time, thus making the simulationslower. In a non-shared topol-
ogy, adding CPUs will eventually not make the simulation anyfaster, but
at least it will not be detrimental to computational speed. The dominant
term in a shared topology forp → ∞ is the network bandwidth; the dom-
inant term in a non-shared topology is the latency.

The curves in Fig. 25.10 are results from this prediction fora switched
100 Mbit Ethernet LAN; dots and crosses show actual performance re-
sults. The top graph shows the time for one time step, i.e.T (p), and the
individual contributions to this value. The bottom graph shows the real
time ratio (RTR)

rtr(p) :=
∆t

T (p)
=

1 sec

T (p)
, (25.11)

which says how much faster than reality the simulation is running. ∆t is
the duration a simulation time step, which is1 sec in Transims1999. The
values of the free parameters are:

• Hardware-dependent parameters. We assume that the switch has
enough bandwidth so that the effect ofbnet is negligeable. Other
hardware parameters areTlt = 0.8 ms andbnd = 50 Mbit/s.3

• Implementation-dependent parameters. The number of message
exchanges per time step isNsub = 2.

• Scenario-dependent parameters. Except when noted, our per-
formance predictions and measurements refer to the Portland
20 024 links network. We use, for the number of split links,
Nspl(p) = 140 · p0.59 − 140, as explained in Sec. 25.3.

• Other Parameters. The message size depends on the plans for-
mat (which depends on the software design and implementation),
on the typical number of links in a plan, and on the frequency
per link of vehicles migrating from one CPU to another. We use
Sbnd = 200 Bytes. This is an average number; it includes all the
information that needs to be sent when a vehicle migrates from one
CPU to another. The new Transims multi-modal plans format easily
has 200 entries per driver and trip, resulting in 800 bytes ofinfor-
mation just for the plan. In addition, there is information about the
vehicle (ID, speed, maximum acceleration, etc.); however,not in
every time step a vehicle is migrated across a boundary on every

3Our measurements have consistently shown that node bandwidths are lower than
network bandwidths. Even CISCO itself specifies 148 000 packets/sec, which translates
to about 75 Mbit/sec, for the 100 Mbit switch that we use.
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25.5. Performance prediction for the Transims micro-simulation

split link. In principle it is however possible to compress the plans
information, so improvements are possible here in the future. Also,
we have not explicitely modelled simulation output, which is indeed
a performance issue on Beowulf clusters.

These parameters were obtained in the following way: First,we obtained
plausible values via systematic communication tests usingmessages simi-
lar to the ones used in the actual simulation (Rickert, 1998). Then, we ran
the simulation without any vehicles (see below) and adaptedour values
accordingly. Running the simulation without vehicles means that we have
a much better control ofSbnd. In practice, the main result of this step was
to settlat to 0.8 msec, which is plausible when compared to the hardware
value of 0.5 msec. Last, we ran the simulations with vehiclesand adjusted
Sbnd to fit the data. — In consequence, for the switched 100 Mbit Ether-
net configurations, within the data range our curves are model fits to the
data. Outside the data range and for other configurations, the curves are
model-based predictions.

The plot (Fig. 25.10) shows that even something as relatively profane as
a combination of regular Pentium CPUs using a switched 100Mbit Eth-
ernet technology is quite capable in reaching good computational speeds.
For example, with 16 CPUs the simulation runs 40 times fasterthan real
time; the simulation of a 24 hour time period would thus take 0.6 hours.
These numbers refer, as said above, to the Portland 20 024 links network.
Included in the plot (black dots) are measurements with a compute clus-
ter that corresponds to this architecture. The triangles with lower perfor-
mance for the same number of CPUs come from using dual insteadof
single CPUs on the computational nodes. Note that the curve levels out
at about forty times faster than real time, no matter what thenumber of
CPUs. As one can see in the top figure, the reason is the latencyterm,
which eventually consumes nearly all the time for a time step. This is one
of the important elements where parallel supercomputers are different: For
example the Cray T3D has a more than a factor of ten lower latency under
PVM (Dongarra et al., 1998).

As mentioned above, we also ran the same simulation without any vehi-
cles. In the Transims1999 implementation, the simulation sends the con-
tents of each CA boundary region to the neighboring CPU even when
the boundary region is empty. Without compression, this is five integers
for five sites, times the number of lanes, resulting in about 40 bytes per
split edge, which is considerably less than the 800 bytes from above. The
results are shown in Fig. 25.11. Shown are the computing times with
1 to 15 single-CPU slaves, and the corresponding real time ratio. Clearly,
we reach better speed-up without vehicles than with vehicles (compare to
Fig. 25.10). Interestingly, this does not matter for the maximum compu-
tational speed that can be reached with this architecture: Both with and
without vehicles, the maximum real time ratio is about 80; itis simply
reached with a higher number of CPUs for the simulation with vehicles.
The reason is that eventually the only limiting factor is thenetwork latency
term, which does not have anything to do with theamountof information
that is communicated.
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25.5. Performance prediction for the Transims micro-simulation

Fig. 25.12 (top) shows some predicted real time ratios for other comput-
ing architectures. For simplicity, we assume that all of them except for
one special case explained below use the same 500 MHz Pentiumcom-
pute nodes. The difference is in the networks: We assume 10 Mbit non-
switched, 10 Mbit switched, 1 Gbit non-switched, and 1 Gbit switched.
The curves for 100 Mbit are in between and were left out for clarity; values
for switched 100 Mbit Ethernet were already in Fig. 25.10. One clearly
sees that for this problem and with today’s computers, it is nearly impos-
sible to reachanyspeed-up on a 10 Mbit Ethernet, even when switched.
Gbit Ethernet is somewhat more efficient than 100 Mbit Ethernet for small
numbers of CPUs, but for larger numbers of CPUs, switched Gbit Eth-
ernet saturates at exactly the same computational speed as the switched
100 Mbit Ethernet. This is due to the fact that we assume that latency
remains the same – after all, there was no improvement in latency when
moving from 10 to 100 Mbit Ethernet. FDDI is supposedly even worse
(Dongarra et al., 1998).

The thick line in Fig. 25.12 corresponds to the ASCI Blue Mountain par-
allel supercomputer at Los Alamos National Laboratory. On aper-CPU
basis, this machine is slower than a 500 MHz Pentium. The higher band-
width and in particular the lower latency make it possible touse higher
numbers of CPUs efficiently, and in fact one should be able to reach a
real time ratio of 128 according to this plot. By then, however, the gran-
ularity effect of the unequal domains (Eq. (25.1), Fig. 25.7) would have
set in, limiting the computational speed probably to about 100 times real
time with 128 CPUs. We actually have some speed measurementson that
machine for up to 96 CPUs, but with a considerably slower codefrom
summer 1998. We omit those values from the plot in order to avoid con-
fusion.

Fig. 25.12 (bottom) shows predictions for the higher fidelity Portland
200 000 links network with the same computer architectures.The as-
sumption was that the time for one time step, i.e.T1 of Eq. (25.3), in-
creases by a factor of eight due to the increased load. This has not been
verified yet. However, the general message does not depend onthe partic-
ular details: When problems become larger, then larger numbers of CPUs
become more efficient. Note that we again saturate, with the switched
Ethernet architecture, at 80 times faster than real time, but this time we
need about 64 CPUs with switched Gbit Ethernet in order to get40 times
faster than real time — for the smaller Portland 20 024 links network with
switched Gbit Ethernet we would need 8 of the same CPUs to reach the
same real time ratio. In short and somewhat simplified: As long as we
have enough CPUs, we can micro-simulate road networks ofarbitrarily
largesize, with hundreds of thousands of links and more, 40 times faster
than real time, even without supercomputer hardware. — Based on our
experience, we are confident that these predictions will be lower bounds
on performance: In the past, we have always found ways to makethe code
more efficient.
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Figure 25.10: 100 Mbit switched Ethernet LAN.Top: Individual time
contributions.Bottom: Corresponding Real Time Ratios. The black dots
refer to actually measured performance when using one CPU per cluster
node; the crosses refer to actually measured performance when using dual
CPUs per node (they-axis still denotes the number of CPUs used). The
thick curve is the prediction according to the model. The thin lines show
the individual time contributions to the thick curve.

25.6 Speed-up and efficiency

We have cast our results in terms of the real time ratio, sincethis is the
most important quantity when one wants to get a practical study done.
In this section, we will translate our results into numbers of speed-up,
efficiency, and scale-up, which allow easier comparison forcomputing
people.

Let us define speed-up as

S(p) :=
T (1)

T (p)
, (25.12)
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Figure 25.11: 100 Mbit switched Ethernet LAN; simulation without ve-
hicles. Top: Individual time contributions.Bottom: Corresponding Real
Time Ratios. The same remarks as to Fig. 25.10 apply. In particular, black
dots show measured performance, whereas curves show predicted perfor-
mance.

wherep is again the number of CPUs,T (1) is the time for one time-step
on one CPU, andT (p) is the time for one time step onp CPUs. Depending
on the viewpoint, forT (1) one uses either the running time of the parallel
algorithm on a single CPU, or the fastest existing sequential algorithm.
Since Transims has been designed for parallel computing andsince there
is no sequential simulation with exactly the same properties, T (1) will
be the running time of the parallel algorithm on a single CPU.For time-
stepped simulations such as used here, the difference is expected to be
small.4

4An event-driven simulation could be a counter-example: Depending on the imple-
mentation, it could be extremely fast on a single CPU up to medium problem sizes, but
slow on a parallel machine.
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Figure 25.12: Predictions of real time ratio for other computer configu-
rations. Top: With Portland EMME/2 network (20 024 links).Bottom:
With Portland TIGER network (200 000 links). Note that for the switched
configurations and for the supercomputer, the saturating real time ratio is
the same for both network sizes, but it is reached with different numbers
of CPUs. This behavior is typical for parallel computers: They are partic-
ularly good at running larger and larger problems within thesame com-
puting time. — All curves in both graphs are predictions fromour model.
We have some performance measurements for the ASCI maschine, but
since they were done with an older and slower version of the code, they
are omitted in order to avoid confusion.

Now note again that the real time ratio isrtr(p) = 1 sec/T (p) . Thus, in
order to obtain the speed-up from the real time ratio, one hasto multiply all
real time ratios byT (1)/(1 sec). On a logarithmic scale, a multiplication
corresponds to a linear shift. In consequence, speed-up curves can be
obtained from our real time ratio curves by shifting the curves up or down
so that they start at one.

This also makes it easy to judge if our speed-up is linear or not. For exam-
ple in Fig. 25.12 bottom, the curve which starts at 0.5 for 1 CPU should
have an RTR of 2 at 4 CPU, an RTR of 8 at 16 CPUs, etc. Downward devi-
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25.7. Other modules

ations from this mean sub-linear speed-up. Such deviationsare commonly
described by another number, called efficiency, and defined as

E(p) :=
T (1)/p

T (p)
. (25.13)

Fig. 25.13 contains an example. Note that this number contains no new
information; it is just a re-interpretation. Also note thatin our logarithmic
plots,E(p) will just be the difference to the diagonalp T (1). Efficiency
can point out where improvements would be useful.
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Figure 25.13: Efficiency for the same configurations as in Fig. 25.12 bot-
tom. Note that the curves contain exactly the same information.

25.7 Other modules

As explained in the introduction, a micro-simulation in a software suite
for transportation planning would have to be run many times (“feedback
iterations”) in order to achieve consistency between modules. For the mi-
crosimulation alone, and assuming our 16 CPU-machine with switched
100 Mbit Ethernet, we would need about 30 hours of computing time in
order to simulate 24 hours of traffic fifty times in a row. In addition, we
have the contributions from the other modules (routing, activities genera-
tion). In the past, these have never been a larger problem than the micro-
simulation, for several reasons:

• The algorithms of the other modules by themselves did significantly
less computation than the micro-simulation.

• Even when these algorithms start using considerable amounts of
computer time, they are “trivially” parallelizable by simply dis-
tributing the households across CPUs.5

5This is possible because of the specific purpose Transims is designed for. In real time
applications, where absolute speed between request and response matters, the situation
is different (Chabini, 1998).
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25.8. Summary

• In addition, during the iterations we never replan more thanabout
10% of the population, saving additional computer time.

In summary, the Transims modules besides the traffic micro-simulation
currently do not contribute significantly to the computational burden;
in consequence, the computational performance of the traffic micro-
simulation is a good indicator of the overall performance ofthe simulation
system.

25.8 Summary

This paper explains the parallel implementation of the Transims micro-
simulation. Since other modules are computationally less demanding
and also simpler to parallelize, the parallel implementation of the micro-
simulation is the most important and most complicated pieceof par-
allelization work. The parallelization method for the Transims micro-
simulation is domain decomposition, that is, the network graph is cut into
as many domains as there are CPUs, and each CPU simulates the traffic on
its domain. We cut the network graph in the middle of the linksrather than
at nodes (intersections), in order to separate the traffic dynamics complex-
ity at intersections from the complexity of the parallel implementation.
We explain how the cellular automata (CA) or any technique with a simi-
lar time depencency scheduling helps to design such split links, and how
the message exchange in Transims works.

The network graph needs to be partitioned into domains in a way that
the time for message exchange is minimized. Transims uses the METIS
library for this goal. Based on partitionings of two different networks of
Portland (Oregon), we calculate the number of CPUs where this approach
would become inefficient just due to this criterion. For a network with
200 000 links, we find that due to this criterion alone, up to 1024 CPUs
would be efficient. We also explain how the Transims micro-simulation
adapts the partitions from one run to the next during feedback iterations
(adaptive load balancing).

We finally demonstrate how computing time for the Transims micro-
simulation (and therefore for all of Transims) can be systematically pre-
dicted. An important result is that the Portland 20 024 linksnetwork runs
about 40 times faster than real time on 16 dual 500 MHz Pentiumcom-
puters connected via switched 100 Mbit Ethernet. These are regular desk-
top/LAN technologies. When using the next generation of communica-
tions technology, i.e. Gbit Ethernet, we predict the same computing speed
for a much larger network of 200 000 links with 64 CPUs.
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Chapter 26

Distributed computing and truly
distributed intelligence

Once the traffic micro-simulation is parallelized, it becomes considerably
more difficult to add within-day replanning. As long as one runs every-
thing on a single CPU, it is in principle possible to write onemonolithic
software package. In such a software, an agent who wants to change plans
calls a subroutine to compute a new plan, and during this timethe compu-
tation of the traffic dynamics is suspended. On a parallel computer, if one
traveler on one CPU does this,all other CPUs have to suspend the traffic
simulation since it is not possible (or very difficult) to have simulated time
continue asynchronously (Fig. 26.1 left).

A better approach is to have the re-planning module on a different CPU.
The traveler then sends out the re-planning request to that CPU, and the
traffic simulation keeps going (Figs.?? and 26.1 right). Eventually, the
re-planning will be finished, and its result will be sent to the simulated
traveler, who picks it up and starts acting on it. An experimental imple-
mentation of this using UDP (User Datagram Protocol) for communica-
tion shows that it is possible to transmit up to 100 000 requests per second
per CPU (Gloor, 2001), which is far above any number that is relevant for
practical applications. This demonstrates that such a design is feasible and
efficient.

Race conditions

Some readers may have noticed that success of the re-planning operation
is not guaranteed. For example, the new plan may say to make a turn at
a specific intersection, and by the time the new plan reaches the traveler,
she/he may have driven past that point. Such situations are however not
unusual in real life – how often does one recognize that a different decision
some time ago would have been beneficial. Thus, in our view thekey to
success for large scale applications it to not fight asynchronous effects
but to use them to advantage. For example, once it is acceptedthat such
messages can arrive late, it is also not a problem to not have them arrive
at all, which greatly simplifies message passing.

No memory problems etc.
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An additional advantage of such a distributed design is thatthe implemen-
tation of a separate “mental map” (Sec. 31.3) for each individual traveler
does not run into memory or CPU-time problems. Specific routeguid-
ance services can be simulated in a similar way. Also, non-local interac-
tion between travelers becomes a matter of direct interaction between the
corresponding “strategic” CPUs, without involving the rest of the com-
putational engine. This occurs for example for ride sharing, or when
family members re-organize the kindergarten pick-up when plans have
changed during the day, and will necessitate complicated negotiations be-
tween agents. However, neither the models nor the computational methods
for this are developed.

Similarity to robot design and humans

This design is similar to many robot designs, where the robots are au-
tonomous on short time scales (tactical level) while they are connected
via wireless communication to a more powerful computer for more dif-
ficult and more long-term time scales (strategic level); see, e.g., Ref.
(Kim, 1997) for robot soccer. Also, the human body is organized along
these lines – for example, in ball catching, it seems that thebrain does
an approximate pre-“computation” of the movements of the hands, while
the hands themselves (and autonomously) perform the fine-tuning of the
movements as soon as the ball touches them and haptic information is
available (Sternad). This approach is necessitated by the relatively slow
message passing time between brain and hands, which is of theorder of
1/10 sec, which is much too slow to directly react to haptic information
(Rothwell, 1994).

That is, in summary we have a design where there is some kind of“real
world dynamics” (the traffic simulation), which keeps goingat its own
pace. Agents can make strategic decisions, which may take time, but the
world around them will keep going, meaning that they will have to con-
tinue driving, or deliberately park the car. As pointed out,such an archi-
tecture is very well supported by current distributed computers, although
the actual implementation still needs to be done.
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Chapter 27

Traffic flow theory

27.1 Introduction

This text has started with a minimal representation of traffic on a link, the
single-lane deterministic CA with maximum speed one. We have then ex-
plored ways to make that model more realistic, for example with respect
to fundamental diagrams, or with respect to multi-lane traffic. The focus
of this chapter will be to provide some basic underlying theory. Under-
standing some theory is necessary in particular if one wantsto use simple
models, because then one needs to understand their deficiencies and the
consequences of this.

27.2 Traffic flow measurements

It was already pointed out in Sec. 17.3 that important real world quantities
for traffic are flow and density. A third quantity is speed. In fact, there
are two different ways to measure traffic: space-averaged measurements,
and point (= spot) measurements. The space-averaged measurements are
done at specific points in time, and they correspond to what one is used to
from, say, fluid-dynamics. The point measurements are closer to what is
measured in reality: A sensor, e.g. an induction loop, usually covers only
a small amount of space. It is common use to average point measurements
over sometimeT , for exampleT = 60 sec or T = 5 min.1 These dif-
ferences are not particularly intereresting, but they are necessary to avoid
some caveats.

27.2.1 Speed

The two measurements are:
1From a theoretical perspective, it is questionable if this averaging is a good idea. It

is however necessary to compare with field data.
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27.2. Traffic flow measurements

• Space-mean speed, also calledtravel velocity:

vL =
1

NL

NL
∑

i=1

vi . (27.1)

Thus, one averages over a stretch of road of lengthL.

• Point velocity, also calledspot speedor instantaneous velocity:
We observe at a fixed position, and we average over the velocities
of all vehicles that pass by. WhenNT is the number of vehicles that
passed by, then spot speed is

ṽT =
1

NT

∑

vi . (27.2)

One can immediately see that there is a difference between space-mean
speed and spot speed by noting that space-mean speed includes vehicles
of speed zero into the average while spot speed does not. If, however, all
vehicles always have the same velocity, then both measurements lead to
the same result. The formal relationship is a bit more complicated.2

Travel velocityv is the more relevant quantity sinceL/v is the time an
average traveller needs for a distanceL. It is also the quantity which is
relevant for fluid-dynamical relations, for exampleq = ρ v.

27.2.2 Flow

(alsothroughput ). This is traditionally the most important quantity, since
it is easy to measure (one just has to count the number of passing vehi-
cles at a fixed location), and it is important for the performance of the
transportation system as a whole. In order to allow comparison, it is often
useful to divide flow by the number of lanes. Say that during timeT we
have measuredNT vehicles.(Point) flow then is

qT =
NT

T Nlanes

. (27.4)

A typical unit of flow is “(number of) vehicles per hour and lane”.

Transportation science also uses the termvolume. According to Gerlough
and Huber (1975), this should be reserved to hourly flows (i.e. measured

2Assume that(vi)i is a sequence of speed measurements of different vehicles for the
space-mean speed. The probability of a vehicle of veloctiyvi to cross a sensor within a
given time period is proportional tovi. Thus, in order to obtain spot speed from(vi)i,
eachvi has to be weighted bywi = vi:

vspot =

∑

wivi
∑

wi

=

∑

v2
i

∑

vi

=

∑

(v2
i − v2) +

∑

v2

∑

vi

=
N σ2 + Nv2

Nv
= v+

σ2

v
, (27.3)

whereσ is the variance of the velocity measurement. This confirms that spot speed
is larger than space-mean speed, and the difference increases with increasing velocity
fluctuations. – An alternative derivation is, for example, in (Gerlough and Huber, 1975).

file: book.tex, p.27-2 October 15, 2007



27.2. Traffic flow measurements

over one hour and expressed in “vehicles per hour”). Maximumflow is
also calledcapacity.

There is no direct way to measurespace-mean flow. However, sometimes
it is useful to use the relationq = ρv. We then have

qL = ρL vL =
1

L Nlanes

Nveh
∑

i=1

vi (27.5)

whereρL is taken from the next section.

27.2.3 Density

Space-averaged densityρL is the number of vehicles on a certain stretch of
road, divided by the lengthL of that stretch. In order to allow comparison,
it is useful to also divide by the number of lanes:

ρL =
Nveh

L Nlanes

. (27.6)

The resulting density is for example given in “(number of) vehicles per
km and lane”.

Point density has no natural measurement. One can useρT = qT /vT .

An alternative method for point density is the “fraction of time that a sen-
sor is covered by a vehicle”, also calledoccupancy. Unfortunately, this
quantity is difficult to obtain from a time-discrete simulation. Since the
duration a sensor is covered by a vehicle isℓi/vi, the correct measurement
in a simulation would be

ρT =
1

T

∑

ℓi/vi . (27.7)

In the CA context,ℓi = const = 1. In field measurements, it is usu-
ally impossible to obtainℓi for each vehicle, which means that an exact
translation of occupancy into density is impossible.

27.2.4 Fundamental diagrams

As already stated in Sec. 17.3, often speed, flow, and densityare not sim-
ply plotted as time series, but the relations between them are plotted as
so-called fundamental diagrams. Typical fundamental diagrams are speed
or flow as the function of density or occupancy. Fig. 27.2 shows the fun-
damental diagram of flow vs. density obtained from the data ofFig. 27.1.
Plausibly, flow is low at low densities (because no vehicle ison the road),
and it is low at high densities (because all vehicles are stuck). The behav-
ior in between is however more complex than one maybe would expect,
and no complete theoretical explanation is available (Kerner and Rehborn,
1996b; Daganzo et al., 1999; Jost and Nagel, 2003).
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27.3. Car following
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27.3 Car following

27.3.1 Reaction time argument for car following

Any more realistic car micro-simulation first needs to have amethod for
simple car following. Such methods can be developed on single-lane
loops, similar to a single-lane race track. A good way to start is the rule
of thumb of “two seconds time headway”, that many of us learn at driving
school. We are supposed to have two seconds between the time when the
car ahead passes a certain location, and the time when we passit. The
reason for this is related to our reaction time. If the car ahead starts brak-
ing really hard right when its back bumper is at that location, and if, after
a reaction time, we start braking when our front bumper is at that same
position, we will barely avoid a crash (see Fig. 27.3). Thus,time head-
way needs to be larger than reaction time, which translates into a space
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Figure 27.3: Reaction time argument. The left figure shows the trajecto-
ries of the front bumpers of two vehicles. Att1, the leader starts breaking;
at t2, she has come to a standstill. The follower starts breaking at t1+ trct;
and since his breaking follows exactly the same characteristics, he comes
to a standstill att2 + trct. The right figure shows the same, with vehicle
outlines superimposed. If att1 + trct, the follower’s front bumper is be-
yond where the back bumper of the leader was when she started breaking,
and accident cannot be avoided (but happens slightly later).

headway proportional to speed. As a consequence, most car following
models have as their most important term one that makes the velocity a
roughly linear function of the space headway or gap, although usually a
reaction delay of one instead of two seconds is used.3 All car following
models based on this principle have a similar dynamical behavior. For
example, the transition from laminar to start-stop traffic is similar for all
these models (Krauß et al., 1998). Car following models which are used
in micro-simulations are usually designed to be free of accidents.

27.3.2 Discrete space and discrete time: Cellular au-
tomata rules

Incarnations of car following can use continuous or discrete time, and con-
tinuous or discrete space. While continuous space and continuous time
is more realistic, discrete space and time are more natural for a digital
computer. And recent research has shown that, in the spirit of Statistical
Physics, extremely simple and even unrealistic rules on themicroscopic
level can still lead to reasonable behavior on the macroscopic level (Krauß,
1997; Nagel, 1996, 1999; Nagel et al., 1998; Brilon and Wu, 1998). In
consequence, cellular automata (CA) techniques, which arediscrete in
space and time, plus have a parallel local update, can actually simulate
traffic quite well. They also have a didactic advantage, since coding many

3“Gap” denotes the space from my front bumper to the rear bumper of the car ahead,
sometimes minus some safety space one would like to have. Space headway is used less
uniformly; for example, it sometimes denotes the front-bumper-to-front-bumper space,
thus including the length of the car ahead.
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Figure 27.4: Definition of a more general CA for traffic

aspects of traffic flow such as car following, lane changing, or gap accep-
tance, is straightforward with a CA approach.

*

Deterministic traffic CA

As already discussed in Secs. 7 and 17, typical CA for traffic represent
the single-lane road as an array of cells of lengthℓ, each cell either empty
or occupied by a single vehicle. Vehicles have integer velocities between
zero andvmax. A possible update rule is (Nagel and Herrmann, 1993)

(1) vt+1 = min[g, vt + 1, vmax]

(2) xt+1 = xt + vt+1

g is the number of empty cells between the vehicle under consideration
and the vehicle ahead, andv is measured in “cells per time step”.

As will be discussed below, this model has some important features of
traffic, such as start-stop waves, but it is unrealistically“stiff” in its dy-
namics.

As also already discussed in Sec. 17,ℓ is the length a vehicle occupies in a
jam, it is often taken asℓ = 7.5 m. In order to get realistic results, a time
step of one second is a good choice (remember the reaction time), and then
vmax = 5 corresponding to 135 km/h is a good choice. In applications,
vmax can be set according to a speed limit on the link. Note that in the
traffic CA community distances and speeds are often given without units,
which means that they refer to “cells” or “cells per time step”, respectively.

This rule is similar to the CA rule 184 according to the so-called Wolfram
classification (Wolfram, 1986); indeed, forvmax = 1 it is identical.

It turns out that, after transients have died out, there are two regimes
(Figs. 27.5 and 27.6):

• Laminar traffic. All vehicles have gaps ofvmax or larger, and speed
vmax. Flow in consequence isq = ρ vmax.

• Congested traffic. All vehicles have gaps ofvmax or smaller. It
turns out that they allways have a speed equivalent to their gap. This
means that

∑

vi =
∑

gi = Nveh ×〈g〉. Since densityρ = 1/(〈g〉+
1), this leads to

q = ρ v = 1 − ρ . (27.8)

file: book.tex, p.27-6 October 15, 2007



27.3. Car following

..00001.2..3...3...2..3...4....1.01.1.2..3...4.

...00001.2..3...3...2..3...4....1.01.1.2..3...4
3...00001.2..3...3...2..3...4....1.01.1.2..3...
.3...00001.2..3...3...2..3...4....1.01.1.2..3..
..3...00001.2..3...3...2..3...4....1.01.1.2..3.
...3...00001.2..3...3...2..3...4....1.01.1.2..3
....3...00001.2..3...3...2..3...4....1.01.1.2..
.....3...00001.2..3...3...2..3...4....1.01.1.2.
5.....3...00001.2..3...3...2..3...4....1.01.1.2
.5.....3...00001.2..3...3...2..3...4....1.01.1.

....................5.....5.....5..............

...............5.....5.....5...................

..........5.....5.....5....................5...

.....5.....5.....5....................5.....5..

Figure 27.5: Space-time plot of deterministic CA. Each linea configura-
tion of the simulated road; traffic goes from left to right; time is going
downward. Numbers denote the velocity for the next movement(in cells
per time step). TOP: Laminar traffic. BOTTOM: Congested traffic. Some
trajectories are added to guide the eye. Note that thestructuresmove back-
wards while the vehicles themselves move forwards. These structures are
what the deterministic CA model generates in terms of trafficjams.
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Figure 27.6: Fundamental diagram for the deterministic CA.

The two regimesmeet whereρ vmax = 1 − ρ, i.e. at

ρ∗ =
1

vmax + 1
. (27.9)

This is also the point of maximum flow, with

qmax =
vmax

vmax + 1
. (27.10)

*

Stochastic traffic CA (STCA)

One can add noise to the CA model by adding a randomization term:

(1b) With probabilitypnoise do: vt+1 = max[vt+1 − 1, 0] ; the “max” is
needed to prevent negative speeds.
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Figure 27.7: Space-time plot of stochastic CA. Each line is aconfigura-
tion of the simulated road; traffic goes from left to right; time is going
downward. TOP: Laminar traffic. BOTTOM: Jam out of nowhere leading
to congested traffic.

This makes the dynamics of the model significantly more realistic
(Fig. 27.7). pnoise = 0.5 is a standard choice for theoretical work; as
already discussed in Sec. 17.3,pnoise = 0.2 is more realistic with re-
spect to the resulting value for maximum flow (capacity). Thestylized
fundamental diagram for the STCA looks the same way as the fundamen-
tal diagram for the deterministic CA, i.e. as Fig. 27.5. Despite the same
shape, the value of maximum flow will however be much lower than with
the deterministic CA: about2000 veh/hr for the STCA withvmax = 5
andpnoise = 0.2 (Fig. 17.2) in contrast to5 veh/6 sec = 3000 veh/hr
(Eq. 27.10) for the deterministic CA withvmax = 5.

*

STCA with slow-to-start rules (s2s-STCA)

Real traffic may have a strong hysteresis effect near maximumflow; there
is however no agreement among researchers if or under which circum-
stances this effect truly exists. If it exists, it looks as follows: When
coming from low densities, traffic stays laminar and at free speed up to
a certain densityρ2 (see Fig. 27.8). Above that, traffic “breaks down” into
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Figure 27.8: Stylized fundamental diagram for slow-to-start STCA.

start-stop traffic. When lowering the density again, however, it does not
become laminar again untilρ < ρ1, which is significantly smaller thanρ2,
up to 30% (Kerner and Rehborn, 1996a,b). This effect can be included
into the above rules by making acceleration out of stopped traffic weaker
than acceleration at all other speeds, for example by:

• if
(

vt = 0 andgt ≤ 1
)

thenvt+1 = 0

• elsevt+1 = min[gt, vt + 1, vmax].

This means that the vehicle needs a largerg than before to start mov-
ing. Such rules are called “slow-to-start” rules in the physics community
(Barlovic et al., 1998; Chowdhury et al., 1999).

*

Time-oriented CA (TOCA)

A modification to make the STCA more realistic is the so-called time-
oriented CA (TOCA) (Brilon and Wu, 1998). The motivation is to intro-
duce a higher amount of elasticity in the car following, thatis, vehicles
should accelerate and decelerate at larger distances to thevehicle ahead
than in the STCA, and resort to emergency braking only if theyget too
close. For the TOCA velocity update, the following operations need to be
done in sequence for each car:

1. if ( g > v · τH ) then, with probabilitypac,

v := min{v + 1, vmax} ; (27.11)

2. v := min{v, g}

3. if ( g < v · τH ) then, with probabilitypdc,

v := max{v − 1, 0} . (27.12)
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Typical values for the free parameters are(pac, pdc, τH) = (0.9, 0.9, 1.1).
The TOCA generates more realistic fundamental diagrams than the orig-
inal STCA, in particular when used in conjunction with lane-changing
rules on multi-lane streets.

*

Dependence on the velocity of the car ahead

It makes sense to assume that velocity difference between vehicles should
be included. The idea is that if the car ahead is faster, then this adds to
one’s effective gap and one may drive faster than without this. In the CA
context, the challenge is to retain a collision-free parallel update. Wolf
(1999) achieves this by going through the velocity update twice, where
in the second round any major velocity changes of the vehicleahead are
included. Barrett et al. (1996) instead additionally look at the gap of the
vehicle ahead. The idea here is that, if we know the gap of the vehicle
ahead, and we make assumptions about the driver behavior of the vehicle
ahead, then we can compute bounds on the behavior of the vehicle ahead
in the next time step.

*

Theory

CA rules can also be analyzed analytically, by means of statistical tech-
niques which look at sequences of configurations of the dynamical evolu-
tion of the system (e.g. Schadschneider and Schreckenberg,1993; Schad-
schneider, 1998; Chowdhury et al., 2000). Note that this is possible be-
cause the cellular approach makes the dynamical states countable: There
is only a finite number of possible states for a given number ofcells.

27.3.3 Continuous space and continuous time

Making both space and time continuous results in coupled differential
equations. Such models for car following were established quite some
time ago (e.g. Gerlough and Huber, 1975, and references therein). Most of
them also use in one way or other the reaction time argument ofSec. 27.3.1
(as they should). For example, one could use

v(t + τ) = α ∆x(t) , (27.13)

where∆x is the distance to the car ahead.4 This just means that, after
some time delay, our velocity is proportional to∆x, as it should be ac-
cording to the reaction time argument.

4Car-following models have a tendency to not distinguish cleanly betweeng (which is
space between cars) and∆x (which is usually front-bumper-to-front-bumper distance).
As long as vehicles do not pass each other, these differencesare indeed irrelevant.
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One can expandv(t + τ) = v(t) + τ v̇(t) + ..., drop second order terms,
and rearrange, resulting in

v̇(t) =
1

τ

(

α ∆x(t) − v(t)
)

(27.14)

That is, we adjust our velocity change so that we are adjusting towards the
“correct” velocityv = α∆x. Eqs. (27.13) and (27.14) do not in general
generate the same dynamics, in spite of having the same dynamic origin.

A generalization of Eq. (27.14) is to replaceα ∆xt with a function
V (∆x(t)):

v̇(t) =
1

τ

(

V (∆x(t)) − v(t)
)

(27.15)

We will need this again later.

The “classic” car-following model family (Gerlough and Huber, 1975)
comes from taking a time-derivative of the reaction-time relation
Eq. (27.13), leading to

v̇(t + τ) = α∆v(t) . (27.16)

After adding some more or less plausible prefactors, this leads to

v̇(t + τ) = α
[v(t + τ)]l

[∆x(t)]m
∆v(t) . (27.17)

These models are however unstable (e.g. Nagel et al., 2003).The reason
behind that is that they allow vehicles to follow each other at extremely
close distances with very high speeds as long as there is no velocity differ-
ence between them: From∆v = 0 follows v̇ = 0. Once a small velocity
difference shows up, they react with violent fluctuations. Note that neither
Eq. (27.13) nor (27.14) allow such a solution.

For computer implementations, models with continuous timeare inconve-
nient, since time needs to be discretized in one way or other.Because of
the reaction delay, many of these car-following equations are delay equa-
tions, where considerable effort needs to be spent for faithful numerical
results. Given this observation, it seems to be simpler to build models that
use discretized time to their advantage (see next section).This is not to
say that continuous car-following models are useless; indeed, they con-
tinue to contribute to our understanding of the matter (e.g.Bando et al.,
1994, 1995). We would expect, however (see below), that any faithful
discretization of these equations will run a lot more slowlyon a computer
than the model presented in the next section, which explicitly uses discrete
time.

Another possible implementation of continuous space and time would be
event-driven. This works best when particles move with constant velocity
for periods of time, interrupted by events where they changeit. Molecular
dynamics with hard core interactions is an example. Since human driv-
ing behavior can probably indeed be characterized like that(Wiedemann,

file: book.tex, p.27-11 October 15, 2007



27.3. Car following

1994), this should be a promising approach. However, parallel imple-
mentations of event-driven simulations are hard and therefore large scale
simulations currently not done with this method.

27.3.4 Discrete time and continuous space car follow-
ing

A disadvantage of the CA approach to traffic is that the coarse-gained
description makes fine tuning of many properties difficult. For example, it
is difficult to represent fine-grained differences in speed limits, or different
acceleration profiles.

On the other hand, the use of coupled ordinary differential equations turns
out to be inconvenient for traffic simulations, in particular because of the
explizit handling of the reaction time, which means that fornumerical
integration one needs to maintain the entire dynamical history betweent
andt − τ in increments of the time discretization∆t. There are however
also models that are continuous in space but coarse-graineddiscrete in
time which work extremely well for traffic (Gipps, 1981; Krauß, 1997;
Krauß et al., 1997; Yukawa and Kikuchi, 1995; Sauermann and Herrmann,
1998). The reason for this is that drivers have a reaction delay of about one
second, and it is advantageous to use this reaction delay as the time step
for the micro-simulation. From a practical point of view, traffic models
which use discrete time but continuous space are numerically as efficient
as the CA models but are much easier to calibrate. Obviously,a multitude
of models is possible here – as is with CAs. We want to concentrate on
a single model, a model described by Krauß (Krauß, 1997; Krauß et al.,
1997). This model is particularly well understood.

The approach starts again from the reaction time argument (Sec. 27.3.1),
this time taking into account the possibility that the two cars can have dif-
ferent velocities. This results in the condition that one’sbraking distance
plus the distance that one drives until one reacts should be smaller than
the braking distance of the car ahead plus the space in between the two
vehicles. Formally, this yields

d(v) + v τ ≤ d(ṽ) + g , (27.18)

whered(v) is the braking distance of a car moving with speedv, τ is the
reaction time,g is the distance to the car ahead, andṽ is the speed of the
car ahead (“leader”).5

This can be used to derive (see Fig. 27.9) a simple update scheme for the
dynamical state of a car:

vsafe = ṽt +
gt − ṽtτ

v/b + τ
(27.19)

vdes = min{vt + a h, vsafe, vmax} (27.20)

vt+h = max{0, vdes − ǫ a η} (27.21)

xt+h = xt + h vt+h . (27.22)
5Note that this formulation includes the effect of differentvelocities, but it assumes

that acceleration of the follower is zero (?).
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Derivation of the safe velocity
Let us first Taylor-expand the functiond(v) describing the braking dis-
tance around the operating pointv := (v + ṽ)/2, wherev and ṽ are
again the velocity of the follower and leader, respectively:

d(v) = d(v) + (v − v) d′(v) +
(v − v)2

2
d′′(v) + O

(

(v − v)3
)

.

Inserting this into Eq. 27.18, one obtains first

(v − v) d′(v) + v τ ≤ (ṽ − v) d′(v) ṽ + g

and then
v d′(v) + v τ ≤ ṽ d′(v) ṽ + g . (∗)

Note that this is correct up to and including second order, since the
second order terms cancel out.
Next, we note the kinematic relation

d′(v) ≡ d

dv
d(v) =

v

b(v)
,

whereb(v) is the deceleration of the car. This relation can be easily
derived when one assumes a constantb until the car is stopped, but is
also true for an arbitrary braking profileb(v).
Inserting this into Eq. (∗) and rearranging terms yields

v ≤ ṽ +
g − ṽ τ

τ + v/b(v)
.

Showing the collision freeness
In continuous time and after the assumptions made, the aboveis the
condition for collision-free driving. This is true also forthe discrete
analogue of this formula, provided the step-sizeh is smaller thanτ :
First, in general one obtains for the gap

gt+h = gt + h
(

ṽt+h − vt+h

)

.

After using Eq. (27.19) of the main text, rearranging terms,and using
the notationξt := gt − h ṽt one gets

ξt+h ≥ ξt

(

1 − h

τ + v/b

)

+ h ṽ
τ − h

τ + v/b
,

a mapξt → ξ(t+h). Thus,h ≤ τ is a sufficient condition to ensure that
if ξt ≥ 0, thenξt + h ≥ 0, meaning thatξt ≥ 0 for all t if ξt=0 ≥ 0.
Because of the definition ofξ, this ensures thatgt ≥ 0 for all t ≥ 0.

Figure 27.9: Derivation of the model by Krauss.

v = (v + ṽ)/2 is the average velocity of the two cars involved,a is the
maximum acceleration of the vehicles,b their maximum deceleration,ǫ is
the noise amplitude, andη is a random number following a flat distribution
in [0, 1].

The terms can be interpreted as follows:

• The first rule (i.e. Eq. 27.19) can be rewritten as

vsafe = α
gt

τ
+ (1 − α) ṽt (27.23)
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with

α =
1

v/(b τ) + 1
. (27.24)

That is,vsafe is a weighted average ofg/τ and ṽ. Forα < 1, the
velocity of the car ahead is added to the calculation in the following
way: If the car ahead is faster, then one can be a little fasterthan
allowed by the gap alone; if the car ahead is slower, then one needs
to be slower than allowed by the gap alone.

Note that forα = 1 andτ = 1 we recover the STCA rule.

• The second rule (i.e. Eq. (27.20)) just states that the velocity is
limited by the desired accelerationa, by the safe velocityvsafe as
calculated above, and by the maximum velocityvmax .

Note that this is the same as the CA rule.

• In the third term, noiseη is added by randomly making the vehicle
slower than so far calculated.η denotes a random variable between
zero and one,ǫ is a noise scaling factor.

Again, this is the same as the CA rule.

• The fourth term denotes the forward movement.

For h ≤ τ one can show that this model is free of collisions (Fig. 27.9);
normally, one usesh = τ . Typical values for(a, b, ǫ) are(0.2, 0.6, 1).

27.4 Kinematic waves and fluid-dynamics

27.4.1 The Lighthill-Whitham-Richards equation

The intuition for kinematic waves is easy to understand. Start with five
vehicles of velocity zero in five adjoining cells. In the firsttime step, only
the first vehicle can move. In the second time step, the secondvehicle can
start, etc. However, in the meantime it can happen that another vehicle
joins the queue at the tail.

Given the right conditions (more vehicles joining at the tail than leaving
at the head), this results in a cluster of vehicles of velocity zero and that
cluster will move against the traffic direction. Note that the vehicle com-
position of this cluster is constantly changing – from the perspective of a
driver, you join the jam from the end, the jam “moves through you”, and
then you can start again (look at the two trajectories in the lower part of
Fig. 27.5 for an illustration). This is a standard wave phenomenon.

A detailed introduction into such waves can for example be found by
Haberman (1977). Here, we will just give an overview for people who
have some prior knowledge about partial differential wave equations.
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Figure 27.10: Illustration of Eq. (27.26).

One way to see all the connections is to start from the standard equation
of continuity, which needs to be fulfilled as long as our traffic obeys mass
conservation (no vehicles leaving or joining). This equation is

∂tρ + ∂xq = 0 (27.25)

(equation of continuity).

This equation can be easily understood when it is discretized (with dis-
cretization constants∆t = 1 and∆x = 1):

Nt+1(x) = Nt(x) −
(

qt(x + 1
2
) − qt(x − 1

2
)
)

= Nt(x) + qt(x − 1
2
) − qt(x + 1

2
)

(27.26)

whereNt(x) is the number of vehicles in a spatial interval of size∆x = 1.
The notation mirrors the computational implementation, where the spatial
index would be represented by an array index, while the temporal index
would typically not show up at all. The equation states that the number
of vehicles at timet + 1 is equal to the number of vehicles at timet, plus
what flows in from the left, and minus what flows out to the right.

We now need a relation betweenq andρ. Let us assume thatq is a func-
tion of ρ only, i.e. the total differential isdq = dq

dρ
dρ. The meaning of this

(instantaneous velocity adaptation) will be discussed below. The result-
ing theory is also called theLighthill-Whitham-Richards (LWR) theory
(Lighthill and Whitham, 1955). The equation of continuity can immedi-
ately re-written as

∂tρ +
dq

dρ
(ρ) ∂xρ = 0 (27.27)

(LWR equation), whereq(ρ) is some externally given function.

That function needs not to be specified here, but it is useful to imagine
something plausible. Useful examples are:

• q(ρ) = vfree ρ (1 − ρ/ρjam)

• q(ρ) = min[ρ vfree, Q∗(1 − ρ/ρjam)]

Because ofq = ρ v andρ = 1/∆x, this is equivalent tov(ρ) =
min[vfree, Q∗(∆x− (∆x)jam)] = min[vfree, Q∗ gap] , meaning it is
just another incarnation ofv ∝ gap.

Diese letzte Form ist traditionell un”ublich, wird aber seit einigen
Jahren verst”arkt in der Praxis verwendet (Newell’s zero order the-
ory, Daganzo’s cell transmission model)
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27.4. Kinematic waves and fluid-dynamics

27.4.2 Linearization

Since we now have a fully defined partial differential equation, we can
try to understand some of it. A typical first step is “linearization”. For
this, ρ is replaced byρ + ρ′, with ∂tρ = 0 (stationary) and∂xρ = 0
(homogeneous); this is always possible. One nowassumesthatρ′ is small.
Functions inρ are Taylor-expanded:

F (ρ) = F (ρ) + ρ′dF

dρ
(ρ) + ... ; (27.28)

in our case, we needF = dq/dρ. This results in

∂tρ
′ +

(dq

dρ
(ρ) + ρ′ d2q

dρ2
(ρ) + . . .

)

∂xρ
′ = 0 . (27.29)

Finally, higher-order terms (i.e. which contain products of ρ′) are dropped,
resulting in

∂tρ
′ +

dq

dρ
(ρ) ∂xρ

′ = 0 . (27.30)

This is now a linear equation inρ′, since in each termρ′ occurs at most
once. In such cases, one knows that one can make the ansatz

ρ′ = A ei(ωt−kx) . (27.31)

If one has never seen this before, it is probably impossible to explain this
in two minutes.6 Inserting Eq. (27.31) into Eq. (27.30) leads to

ω − dq

dρ
(ρ) k = 0 (27.33)

and therefore to

c :=
ω

k
=

dq

dρ
(ρ) . (27.34)

This is thephase velocityof the travelling wave. That is, this wave will
travel in traffic direction whenq(ρ) is increasing (dq

dρ
(ρ) positive), and

against the traffic direction whenq(ρ) is decreasing (Fig. 27.11).

6There are several elements:

• The notation using the complex numberi essentially means an equation of type

ρ′ = A cos(ωt − kx) . (∗) (27.32)

What is missing in this simplification is the so-called phaseinformation.

• Eq. (∗) is a wave equation. As one can easily verify, it has wave length 2π/k,
that is, the function is periodic under additions of2π/k to x. k is called the wave
number. Similarly, the function is periodic under additions of 2π/ω to t; ω is
called the frequency.

• One can also verify that, say, a wave crest travels with velocity c := ω/k. In
Eq.(∗), at timet = 0 there is a wave crest at positionx = 0. At time t, the wave
crest is whereωt − kx = 0, which means a velocityx/t = ω/k.
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Figure 27.11: Phase speeds of kinematic waves

27.4.3 Macroscopic shocks

Linearization is not very useful for traffic, since it assumes smallρ′, which
is often not fulfilled in traffic. Let us thus look at a macroscopic front with
speedc. Let us go to the same reference system as the front. Let us denote
variables in the reference system of the front with a tilde. In that reference
system, the flow to the left of the front needs to be the same as the flow to
the right of the front, because otherwise there would eitherbe an excess
or a lack of “material” at the front. In equations, the statement means

q̃l = q̃r . (27.35)

Now q̃ = ρ ṽ, where the densityρ does not need a tilde because it is
independent from the speed of the reference system. That is,one has

ρl ṽl = ρr ṽr . (27.36)

For the translation into a non-moving coordinate system, one has̃v = v+c,
and therefore

ρl (vl + c) = ρr (vr + c) (27.37)

Rearranging yields

ρlvl − ρrvr

ρl − ρr
=:

∆q

∆ρ
= c . (27.38)

One can see geometrically that this is just the slope of the line connecting
the corresponding points on the fundamental diagram (Fig. 27.12).

density

flo
w

Secant sloping down:
wave travelling backw.

rho_1 rho_2

Figure 27.12: Speed of discontinuous fronts
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27.4. Kinematic waves and fluid-dynamics

27.4.4 Deterministic CA in terms of kinematic waves
(important!)

We can now analyse our deterministic CA (Sec. 27.3.2) in terms of kine-
matic waves (see also Fig. 27.6):

• In the laminar regime, we havedq/dρ = vmax. This means that
our waves have the same speed as the traffic — that is, they are the
“clusters” or “platoons” of cars.

• In the congested regime,dq/dρ = −1. This can be seen in the
space-time diagram via the fact that the “patterns” move backwards
one cell in each time step (Fig. 27.5 bottom).

• With respect to our introductory problem with the five cars: The jam
has densityρ = 1 and speedv = 0, thus alsoq = 0. Outflow from
the jam is eventually atv = vmax andρ = 1/(vmax + 1) (this can be
seen by following the dynamics). In consquence,

∆q

∆ρ
=

vmax/(vmax + 1) − 0

1/(vmax + 1) − 1
= −1 . (27.39)

Thus, the downstream front of the jam moves backwards with speed
c = −1. — One could also have seen that by noticing that the
outflow is equal to the maximum flow in this model, and then do the
geometric solution similar to Fig. 27.12.

The inflow is somewhere on the “laminar” branch of the fundamen-
tal diagram. That means that the slope of the line connectingto
(ρ = 0, q = 0) is either−1 or less steep. The inflow front thus
moves backwards with speed1 or less — that is, the jam will even-
tually vanish except when inflow is exactly equal to maximum flow.

One can treat queues at traffic lights similarly. While the traffic light is red,
qout = 0 and thus the outflow front does not move (which we know since
the first car is waiting at the red light). The inflow front moves backwards
with cin = qin/(ρin − 1).

Once the traffic light turns green, the outflow front now movesbackwards
with −1, while the inflow front keeps moving backwards withcin. The
situation remains like that until the outflow front catches up with the inflow
front. And if the traffic light turns red before that, one needs to include
that effect (Fig. 27.13).

27.4.5 More advanced fluid-dynamical models

The kinematic theory is entirely sufficient to understand the most impor-
tant theoretical aspects of traffic flow. This section goes a little bit beyond
that, by providing an outlook what else could be done.

The STCA and in particular the slow-to-start model are not entirely de-
scribed by the kinematic theory. This is in part due to the stochastic ele-
ments, which are not captured in the equation. It is also due to the hys-
teresis which is displayed by the slow-to-start model (Fig.27.8) but not by
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Figure 27.13: Traffic light in terms of kinematic waves

kinematic theory. This motivates to look for fluid-dynamical equations for
traffic that capture effects beyond the kinematic theory. Two extensions of
the kinematic theory will be discussed.

*

Addition of diffusive terms

Diffusive terms can be justified for many reasons. The resultis an equation
like

∂tρ + ∂xq = D∂2
xρ . (27.40)

The wave solution after linearization now is

ρ′ = A e−k2Dt ei(ωt−kx) (27.41)

which means that it has the same phase velocityc = dq/dρ as before but
in addition a decreasing amplitude — waves slowly die out.

*

Addition of inertia

Above, we have assumed that flowq is a function of the densityρ only.
This is in general not true — if a driver suddenly comes into denser traffic,
she/he will need some time to adjust; the same is true if density suddenly
decreases. That means that velocity will be delayed in its adaptation to
density.
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27.4. Kinematic waves and fluid-dynamics

A way to capture this is to add an equation for the velocity. One can for
example use the car following equation (27.15)

a =
Dv

Dt
=

1

τ

(

V (∆x) − v
)

. (27.42)

The translation of the particle-orientedDv/Dt into the fluid-dynamical
∂tv + v ∂xv yields

∂tv + v ∂xv =
1

τ

(

V (∆x) − v
)

. (27.43)

We need howeverV (ρ) instead ofV (∆x), and we also needρ measured
at the location of the vehicle and not in the middle between two vehicles,
where∆x is measured.7 This is the mathematical reason for what is usu-
ally called theanticipation term

−c2
0

ρ
∂xρ . (27.46)

If density goes up in the driving direction, then∂xρ is positive, thus the
term causes negative acceleration, which is plausible.

In addition, we will again add a diffusion term,ν ∂2
xv. Overall, one obtains

themomentum equation

∂tv + v ∂xv =
1

τ

(

V (ρ) − v
)

− c2
0

ρ
∂xρ + ν ∂2

xv . (27.47)

Note that we still need to specifyV (ρ), which is the same information
asq(ρ) introduced after Eq. (27.25). The only difference is that wenow
allow that it can take some time until velocities have adjusted accordingly.
Indeed, the relaxation time isτ . If we let τ go to zero, then the momentum
equations becomesv = V (ρ), which means instantaneous adaptation.

There is quite a lot of theory about this equation and its meaning for traffic
(e.g. Helbing, 1997; Kerner, 1998). Much of the behavior of the micro-
simulation models can be explained using these equations; in fact, much
of it was first observed in the fluid-dynamical equations. This, however,
would be a full class in traffic flow theory and would thus go beyond the
scope of this text.

7Linearization yields

V (ρ(∆x/2)) = V (ρ(0)) +
∆x

2

dV

dρ
∂xρ + ... (27.44)

The second term (“anticipation term”) is usually approximated by

−c2
0

ρ
∂xρ (27.45)

in analogy to the sound wave solution of the Navier-Stokes equations.
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Figure 27.14: Fundamental diagrams when node capacity is smaller than
link capacity.

27.5 Capacities, especially at bottlenecks

An important concept iscapacity. The capacity of a link is its maximum
flow. As we see from our fundamental diagrams, this looks likea fairly
well-defined quantity. For field measurements, a question iswhich time
averages one wants to use. Another question comes up when traffic can
“break down”, something that we have not discussed in this course.

However, in city traffic, the main obstruction to flow is not the dynamics
along the link, but the dynamics at intersections. As an approximate num-
ber, an unobstructed link has a capacity of 2000 vehs/hour/lane. If at the
end of the link we have a traffic light which is green half of thetime, then
the result will be a link capacity of approximately 1000 vehs/hour/lane.
This is a time-averaged number; we have already learned how to describe
queue dynamics at traffic lights more realistically via kinematic waves.
Here, we will however use the time-averaged description.

If, via the link, there are more cars flowing towards the node than the node
can process, then a queue will form. The density inside that queue can be
found via the fundamental diagram by going to the high density branch
for the given node capacity (point “A” in Fig. 27.14). In consequence, in a
situation where the node capacity is smaller than the link capacity, certain
density ranges of the fundamental diagram do not occur understeady state
conditions.

27.6 Cost-flow curves for static assignment

Traditional models for transportation planning, called “static assignment”,
do not use any representation of link dynamics at all. The purpose of this
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27.6. Cost-flow curves for static assignment

Figure 27.15: Illustration of steady-state network flow.

section is to explain the traffic dynamics representation ofstatic assign-
ment, and how that relates to the traffic dynamics we have seenso far.

Quite in general, any assignment method needs to be able to calculate link
travel times from demand for traffic on a link. Intuitively, travel times
increase with demand. The problem seems to be to find a good equation
for that – it will however turn out that there is no simple solution.

Static assignment generates steady state solutions. So from a dynamic
point of view, steady state assignmentwould be a better name. This
means that continuousstreamsof traffic are fed into the system at the
origins, and they move via their routes to their destinations, where they
are removed. In consequence, demand for a link comes as a flow.So for
a simple demand-cost relation we need to find link delay as a function of
link flow.

This is actually similar to electricity, where steady-state currents follow an
equilibrium pattern through a network according to Kirchhoff’s laws. The
cost function is Ohm’s law,U = RI. With constantR, cost is proportional
to flow, butR can also depend onI, making this non-linear. The main
difference to steady state assignment is that in traffic the particles have
fixed destinations which cannot be interchanged.

Now let us construct link travel time as a function of steady state flow for
link dynamics. We start from simplified link fundamental diagramsv(ρ)
andq(ρ), see Fig. 27.16 left and top, where dashed lines are used in the
congested regimes. One can construct or calculatev(q) from that (center
right in Fig. 27.16). Link travel time isT (q) = L/v(q); a sketch of this is
shown at the bottom of Fig. 27.16.

A problem with this is that there is in general either more than one or
no velocity/time value for every given flow value. Looking atthe case
where the node capacity is the restricting quantity (Fig. 27.17), we see
that the problem remains similar for that case. The normal simplification
for static assignment has been to only use the upper branch ofv(q), which
corresponds to the lower branch ofTlink(q). This results in functionsT (q)
which in general start at the free speed travel time for zero flow, and which
increase with increasing flow, which is plausible.

However, what happens if the assignment model assigns more flow to a
link than capacitycap? We know that this is dynamically impossible under
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Figure 27.16: Construction ofv(q) and thusT (q) for link dynamics. Start-
ing points are thev(ρ) diagram at the left and theq(ρ) diagram at the top.
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Figure 27.17: Construction of speed and link travel time as function of
flow, now for a link with a bottleneck at the end. Inputs are thespeed-
density relation on the left and the flow-density relation onthe bottom.

steady state conditions. So the only consistent choice for this situation is
to set the link travel time to infinity forq > cap. This is in fact what static
assignment models essentially do, except that they use a smooth function
(i.e. no jump atq = cap). The main difference between different cost-
flow-curves is which cost they give to assigned flows above capacity.
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Even more time later:

At onset of rush period:

Some time later:

Figure 27.18: A freeway ending in a bottleneck.

In that sense, it is more reasonable to think about capacity for static as-
signment as just a free parameter of a cost-flow curve. The calibration of
a cost-flow curve is quite difficult, and given the fact that there is no dy-
namical basis for such a curve, it is clear that it has to be more an art than
a science. Nevertheless, the resulting models work quite well, and in spite
of knowing better from a theoretical perspective, it is difficult to come up
with models that work better in practice.

So far, we have described steady state traffic dynamics and how they are
mapped on cost-flow curves for steady state assignment. We have de-
scribed that one aspect that such models do not pick up are queues up-
stream of bottlenecks. Note that such queues can well exist under steady
state conditions; they violate however the condition that there should only
be one velocity/travel time value for each flow value.

There are dynamic aspects of traffic that steady state modelscannot pick
up at all. A typical scenario is that we have a wide freeway eventually
ending in a bottleneck. During rush-hour build-up, the freeway may be
used at capacity, resulting in a growing queue at the bottleneck, which
will not vanish until the end of the rush period (Fig. 27.18).The steady-
state solution would not allow that amount of traffic for the freeway. So
here lies one of the reasons why assigment models that are used in practice
allow flows above capacity.

There have been attempts to make static assignment models dynamic by
solving separate models for several time slices. It is clearthat from a dy-
namical perspective this is not a realistic solution – e.g.,the above example
with the freeway being used above the bottleneck capacity could still not
be picked up.

27.7 Summary

• Komponenten von “Netzwerk-Lade-Modellen”: Einspurverkehr;
Mehrspurverkehr; Kreuzungen mit Ampeln; Kreuzungen ohne
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Ampeln; Abbiegebeziehungen ”uber die Kreuzungen (einschl.
entsprechend angepasster Spurwechselregeln)

• Vieles geht bereits mit einfachen Modellen (z.B. Zellularautomat,
andere tun’s aber auch); makroskopische Auswirkungen von Regeln
m”ussen allerdings gestestet werden (z.B. Fundamentaldiagramme;
bedenke Bsp. mitgap > 3v vsgap ≥ 3v)

Schwierig sind in meiner Erfahrung die modifizierten Spurwechsel-
regeln, wenn man sich in Richtungsfahrspuren einordnen muss.

• Basis von Einspurverkehr ist “Abstand halber Tacho”.

Mathematisch ist dasgap ∝ v.

Herleiten l”asst sich dies aus einem Argument bzgl. Reaktionszeit.

Merke: Man bekommt eben nichtgap ∝ v2, wie ein Argument bzgl.
geschwindigkeitsabh”angigem Bremsweg nahe legen w”urde.

Viele (wenn nicht alle) Fahrmodelle enthalten “Abstand halber
Tacho” in irgendeiner Form.

• Makroskopische (= fluiddynamische) Theorie startet mit der Kon-
tinuit”atsgleichung, welche sich gut erkl”aren l”asst alsBilanzgle-
ichung zwischen Stra”sensegmenten.

“Kinematische” Theorie (= LWR-Theorie) bedeutet die Annahme,
dassq nur vonρ abh”angt. Dies f”uhrt zur Theorie der kinematis-
chen Wellen, welche man f”ur praktische Belange am besten aus
einer Bilanzgleichung an der Schockfront erh”alt.

Bzgl. q(ρ) gibt es verschiedene Versionen, eine davon ist (wieder)
“Abstand halber Tacho”.

Der deterministische Zellularautomat l”asst sich mit kinematischen
Wellen erkl”aren. Hier ist das “Ampelbeispiel” wichtig, insbeson-
dere die Geschwindigkeit der Fronten. Wenn man das verstanden
hat, dann hat man bereits einiges ”uber Verkehrsfluss verstanden.

• Es gibt aufw”andigere fluid-dynamische Modelle; die haben wir
nicht mehr behandelt. F”urgro”sr”aumige Planung oder Steuerung
spielen sie m.E. derzeit keine wichtige Rolle.
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Chapter 28

Static assignment

28.1 Introduction

The traditionally (and currently) most important method for transportation
planning is Static Assignment. As said in Sec. 27.6, from ourpoint of view
a better word might be Steady State Assignment, since the assumption is
that one has constant traffic streams. In fact, the model is very similar to
steady state current calculations for electricity or water, where electrons
or water molecules enter the system at certain points and areremoved at
certain other points. The main difference is that for trafficthe particles
have destinations which they need to reach, which means thatin traffic we
cannot exchange particles.

This is an extremely basic introduction into static assignment. An in-
troduction at the same level, but with much more material in particular
with respect to the history of static assignment, can be found in (Ortúzar
and Willumsen, 1995). A comprehensive but still didactic treatment is in
(Sheffi, 1985).

28.2 Equilibrium principle

The steady state assignment of electric or water currents toa network fol-
lows an equilibrium principle: Along any path through the network, the
sum of the voltages is the same. This means that the amount of energy
(cost) necessary to go from one point in the network to another one does
not depend on the path.

For traffic, the situation is similar, except that our particles have destina-
tions. We thus characterize particles/streams by their (origin,destination)
(OD). Only particles which have the same origin and the same destination
are treated as interchangeable.

The equilibrium principle is stated as

Under equilibrium conditions traffic arranges itself in such a
way that no individual trip maker can reduce his/her path costs
by switching routes.

28-1



28.2. Equilibrium principle

A

B

Figure 28.1: Three different path flows connecting A and B.

This isWardrop’s (first) principle .

If all trip makers perceive the same cost functions, then onecan move the
point of view from individual travelers to OD flows:

Under equilibrium conditions traffic arranges itself such that
all used routes between an OD pair have equal costs while all
unused routes have a cost equal to that or greater.

The idea behind this is: If, for a given OD pair, there is a faster path, then
people will start using it, thus making it slower. This process will stop
once the new path is as slow as the other paths which are used for this OD
pair.

For a mathematical formulation, one needs notation:

• qa: Flow on linka.1 q = (q1, q2, ...) is the vector of all link flows.

• ta = ta(qa): Link travel time, as a function of the link flow.Remem-
ber that we have discussed (Sec. 27.6) that such a function does not
exist if one looks at the full dynamics. This is the main “problem”
with static assignment.

• Qrs OD flow from r to s (OD matrix).

• There are usually multiple pathsp from r to s. f rs,p is the path flow
of pathp (see Fig. 28.1). In consequence:

∑

p

f rs,p = Qrs . (28.1)

We also reasonably assume that path flows cannot be negative:

f rs,p ≥ 0 . (28.2)

• δrs,p
a indicates if pathrs, p uses linka or not:

δrs,p
a =

{

1 if used
0 if not used

. (28.3)

• The link flow is the sum of all path flows which use that link
(Fig. 28.2):

qa =
∑

rs,p

f rs,p δrs,p
a . (28.4)
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28.3. Beckmann’s mathematical programming formulation

Figure 28.2: A link flow consisting of three path flows.

• crs,p is the cost of pathrs, p. It is the sum of all link cost contribu-
tions:

crs,p =
∑

a

ta δrs,p
a . (28.5)

The translation of Wardrop’s equilibrium principle into our new notation
means that we we are searching for an assignment of the OD streams to
the network so that we have

crs,p

{

= crs if pathp used forrs
≥ crs if pathp not used forrs

(28.6)

28.3 Beckmann’s mathematical programming
formulation

Define a function

z(q) :=
∑

a

∫ qa

0

ta(ω) dω . (28.7)

The sum is over all linksa; for each link, we integrate over the travel time
as flow increases, up to the flowqa actually used on that link.

This is a function which maps high-dimensional space into a scalar num-
ber. The number of dimensions is the number of links in the network.

I am not aware of an intuitive motivation for this function. It just turns out
that it works: Minimization of this function subject to

∑

p

f rs,p = Qrs , f rs,p ≥ 0 (28.8)

and together with the definitions from above gives the desired equilibrium
solution. This is actually not too hard to show. However, thederivation
does not give any intuitive insight whyz(q) is the correct function.

1Conventionally, one usesx here; I will useq because that’s what we have used in
traffic flow theory.
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28.4. Constrained optimization

constraint

q1

q2

height contours of z(q)

constraint
global
optimum
within

Figure 28.3: Constrained optimization

With this transformation, the equilibrium problem is transformed into a
constrained optimization problem. Optimization problemsare in general
much better understood than equilibrium problems.

28.4 Constrained optimization

Can one provide some intuition of how to solve the problem defined by
Eqs. (28.7) and (28.8)? First, ignore the right hand side of Eq. (28.7) and
recall thatz(q) is just a scalar function in high dimensional space. Ifq had
only two dimensions, thenz(q) could be interpreted as a height function.

The task is to find the global minimum of this function. This isfor example
similar to finding a global maximum of a fitness function in evolutionary
computing.

Sincez(q) is analytically given, one can use mathematics to find can-
didates for global minima. As is known from calculus, allq∗ where
∇z (q∗) = 0 are such candidates. If the problem is constrained, additional
candidates are along the boundaries of the allowed regions,see Fig. 28.3.
A formal description of this leads to notions such as theKuhn-Tucker-
conditions andLagrangian multipliers .

28.5 Uniqueness

One of the major advantages of static assignment is that, under certain
conditions, it has one unique solution. This means that no matter what
the solution method, all solutions are the same.This is vastly different
from our simulation approach, and certainly one of the big drawbacks of
simulation that we have to consider in our work.

Sufficient conditions for uniqueness of Static Assignment are:
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28.5. Uniqueness

• strict convexity ofz(q)

together with

• convexity of the feasible region.

These conditions are not minimal, but they are normally usedin practice.
They will be described in more detail in the following.

28.5.1 Convexity of z(q)

Strict convexity ofz(q) means, intuitively, that it is “bent” (curved) up-
wards everywhere. In one dimension, this would be ensured byhaving a
second derivative that is> 0 everywhere. In higher dimensions, it is en-
sured by having a Hessian (= matrix of second derivatives) that positive
definite. A matrixH is positive definite ifv · Hv > 0 for all v 6= 0

– this is just the higher dimensional version of “second derivative > 0
everywhere”.

For an unconstrained problem, the intuitive interpretation is as follows:
Assume there is one locationq∗ where∇z (q∗) ≡ 0, which is therefore
a candidate for an optimum. Now ifz(q) is curved upwards everywhere,
then candidate is a localminimum, and there cannot be a second place
where∇z(q) ≡ 0.

For constrained optimization, one has in addition to make sure that the
boundaries cooperate. This is indeed achieved by the convexity of the
feasible region, see Sec. 28.5.2.

For Static Assignment, it is possible to simplify the condition of a positive
definite Hessian. The calculus for this is a bit tricky, but workable. The
result is that the statement

H positive definite⇒ z(q) strictly convex (28.9)

can be replaced by

∀a:
∂ta(qa)

∂qa
> 0 ⇒ z(q) strictly convex. (28.10)

So what we need is that link travel time increases strictly monotonically
with link flow. Given the assumptions that we have already accepted, this
one is easy to accept.

One has to note that the above will prove convexity ofz(q) with respect
to the link flowsqa, not with respect to the path flowsf rs,p. And indeed,
the solution is unique with respect to the link flows, but not with respect
to the path flows.

28.5.2 Convexity of the feasible region

The feasible region is the set of all solutions which fulfill the constraints.
That is, all path flows which fulfill the OD matrix.
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28.6. A solution method

Convexity of the feasible region means that any convex combination of
feasible solutions is again feasible. A convex combinationis a normalized
linear combination: IfX1 andX2 are both feasible, then

X3 := α X1 + (1 − α) X2 (28.11)

should also be feasible (α ≤ 1).

f rs,p ≥ 0 together with
∑

p f rs,p = Qrs will always result in a convex
feasible region.

28.6 A solution method

Constrained optimization is a large area of mathematics, with very sophis-
ticated techniques. Some of these techniques can be used forthe static
assignment problem (Patriksson, 1994).

Here we want to outline one well-known technique. It is knownas Frank-
Wolfe algorithm, or convex combinations method. It can be explained in
a general way, and then be applied to static assignment, but it can also be
applied directly to static assignment, which allows to takeadvantage of
some simplifications right from the beginning. Here we will do the latter.

The idea is to iteratively apply three steps:

1. Linearizez(q) around some operating pointqn, wheren denotes
the iteration. That is, approximatez(q) ≡ z(qn + y) by

z(qn) + y · ∇z (qn) . (28.12)

The result of this is that the fitness landscapez(q) is replaced by
a hyperplane which goes throughz(qn) and which has the correct
slope atqn.

2. Search, on that hyperplane, for the best solution. On a plane, the
best solution is necessarily at the border, so it is sufficient to search
the border. Denote this solution byxn = qn + yn.

3. Use a convex combination ofqn andxn for a new solution:

qn+1 = αqn + (1 − α)xn . (28.13)

Ad Item 1: Let us calculate∇z when applied toz(q) as defined in
Eq. (28.7). Let us do that by component, i.e.(∇z)b ≡ ∂b ≡ ∂

∂qb
. This

is the partial derivative with respect to thebth link flow. Only one contri-
bution of the sum depends onqb at all, and for this one the derivative is
trivial:

∂b

∑

a

∫ qa

0

ta(ω) dω = ∂b

∫ qb

0

tb(ω) dω = tb . (28.14)
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28.7. Summary

Therefore, Eq. (28.12) becomes

z̃ := z(qn) +
∑

a

ya ta(q
n
a ) . (28.15)

Ad Item 2: Eq. (28.15) is maybe a little difficult to interpret at first sight,
but it is actually rather straightforward. The task is to minimize z̃ such
that the constraints are fulfilled. The constraints are thatqn +y fulfills the
OD flow conditions. Note that there is no difference if one minimizesz̃ or

ẑ :=
∑

a

(qn
a + ya) ta(q

n) . (28.16)

ẑ just means that one has to find feasible flowsx = qn + y such that the
sum of all link travel times is minimized,together with the property that
link travel times do not depend on the flows(sinceqn is fixed; onlyya is
varied). This is achieved when every flow takes the fastest path through
the network. In other words,̃z is minimized when OD flows are assigned
according tofastest paths based on the last iteration.

Interpret that in terms of our agent-based approach: one finds that, given
an iteration, progress is made be rerouting some of the OD flows according
to what would have been fastest in the last iteration. This isexactly the
same in both approaches.

Ad Item 3: The remaining task is to combine the previous solutionqn

and the solution, let us call itxn, which minimizes̃z. As said above, this
is done via a convex combination, i.e.

qn+1 = αqn + (1 − α)xn . (28.17)

In the agent-based approach,α was just set to 10%, corresponding to a
replanning rate of 10%. Because of the analytic formulationin Static As-
signment, one can actually search systematically for an optimal α. Al-
ternatively, it is possible to makeα dependent on the iteration number
via αn = 1/n (method of successive averages, MSA). For MSA one can
prove that the method converges towards the correct solution, although
convergence may be slow.2

28.7 Summary

The two most important ingredients to static assignment arethe assump-
tion of equilibrium and the assumption of steady state, i.e.steady state
OD flows. Equilibrium is plausible; and variants of it are currently also
used in simulation approaches. The assumption of steady state in contrast
leads to the unrealistic distortions of the traffic flow dynamics that we have
discussed earlier.

2The intuitive reason both for convergenceand for slowness is that
∑

∞

n=m 1/n always
diverges, no matter whatm is. This means that any initial contributions toq can always
be fully corrected by later iterations. However, it is also clear that such late corrections
take very many iteration steps.
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28.7. Summary

Once these assumptions are made, it turns out that one can formulate the
resulting problem as a constrained minimization problem. Under weak
additional assumptions (strict monotonicity of the cost-flow-relation), the
problem has a unique solution in the link flows. This is a very desirable
property, since the solution will not depend on the particular computa-
tional method that is used. This is very different from simulation, and
certainly an important reason why static assignment is liked so well.
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Chapter 29

Discrete choice theory

29.1 Introduction

We have seen: Proba to select an alternativeA

PA ∝ eVA , (29.1)

whereVA utility of option A.

Today: Some formal background.

• Get intuition where functional formeVA comes from and how other
plausible forms can be obtained.

• Learn to interpret coefficient tables ( Axhausen).

• Understand how the coefficients are obtained.

Note: Marketing (“toothpaste A or toothpaste B”) uses exactly the same
technology.

Contents

Binary choice (two alternatives):

• Explain random component.

• Explain choice based on “systematic plus random”.

• Understand examples.

• Binary probit or binary logit, depending on distriubtion ofrandom-
ness.

Multinomial choice (many alternatives). Recover functional form from
exercise.

Estimation of theβi from a survey.

29-1



29.2. Binary choice

29.2 Binary choice

= choice between two options.

29.2.1 Systematic vs random component of utility

OptionA, for example “go swimming”.

Has systematic utility (that we compute):VA.

Assume that (for whatever reason) there is also a random component:

UA = VA + ǫA . (29.2)

Choice is made according toUA.

Possible interpretations:

• Person making the choice is not determinstic.

• Person making the choice is deterministic, but there are additional
criteria (for example “was swimming yesterday”) which are not in-
cluded.

If they were included, then there would be noǫA in this interpreta-
tion.

29.2.2 Choice based on random utilities

Now let us assume there are two options,A (“go swimming”) andB (“stay
home”).

We assume that the option with the larger utility is selected(cf. Fig. 29.1):

Pr(A) = Pr(UA > UB) = Pr(VA + ǫA > VB + ǫB) (29.3)

= Pr(ǫB − ǫA < VA − VB) (29.4)

29.2.3 Linear decomposition of systematic part of util-
ity

Assume thatVA, VB are linear in contributions:

VA = β1 xA,1 + β2 xA,2 + ... = β · xA (29.5)

and similarly
VB = ... = β · xB . (29.6)

In principle, thexX,i can be arbitrary functions. In practice, they are usu-
ally simple transformations of basic variables, e.g. time,or distance, or
distance squared.
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29.2. Binary choice
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Figure 29.1: Two random distributions, centered around〈UA〉 = 3 and
〈UB〉 = 9. Normally, solution B will win because it has higher utility, but
there is a finite probability thatUB will come out really low andUA comes
out really high, in which case A will win.

29.2.4 Simple example

A result from discrete choice modeling often looks like this:

Car Bus Coeff
1 0 -1.4

time with car[min] time with bus[min] -0.1
cost with car[cent] cost with bus[cent] -0.012

(29.7)

Interpretation: Systematic utility with car is

Vcar = −1.4 − 0.1

min
× time w/ car− 0.012

cents
× cost w/ car; (29.8)

systematic utility with bus is

Vbus = 0 − 0.1

min
× time w/ bus− 0.012

cents
× cost w/ bus. (29.9)

(Compare: departure time ex.; but this here has only two options.)

For example: Time with car 10min; with bus 20min. Cost with car
200cents; with bus 100cents. Then

Vcar = −1.4 − 1 − 2.4 = −4.8 ; (29.10)

Vbus = 0 − 2 − 1.2 = −3.2 . (29.11)

The probas to select car/bus (see later) will be something like

Pcar =
eVcar

eVcar + eVbus
. (29.12)

Pbus =
eVbus

eVcar + eVbus
. (29.13)
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29.2. Binary choice

29.2.5 2nd example

Car Bus Coeff
1 0 -1.4
time with car[min] time with bus[min] -0.1
cost with car[cent] cost with bus[cent] -0.012
1 if female 0 0.6
1 if ( unmarried OR spouse cannot drive OR
travels to work w/ spouse )

0 -0.2

1 if ( married AND spouse is working AND
spouse drives to work indep’y )

0 1.2

Meanings:

If person is female, utility of car is increased.

If person is unmarried OR if spouse cannot drive OR if person travels to
work with spouse, then utility of car is decreased.

Etc.

29.2.6 Probability distributions, generating functions,
etc.

From this point on, progress is made by making assumptions about the
statistical distributions of the noise parametersεi. Different assumptions
will lead to different models.

Before looking into some specific forms, it makes sense to quickly recall
probability distributions and generating functions.

A probability density function essentially gives the probability that a
certain option is selected. For example, the Gaussian probability density
function

f(x) =
1√
2π σ

exp

(

−1

2

(x

σ

)2
)

. (29.14)

gives the probability that optionx is selected. More precisely, one would
have to say that

∫ x+∆x

x

f(x) (29.15)

is the probability that anything betweenx andx + ∆x is selected.

The generating function F (x) is the integral of the probability density
function. That is

f(x) = F ′(x) . (29.16)

In some cases, the generating function is simpler than the probability den-
sity function.

The generating function can be used to compute the probability that the
selected value is smaller than some given valueX. Rather obviously, one
has

Pr(x < X) =

∫ X

−∞

f(x) = F (X) − F (−∞) . (29.17)
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29.2. Binary choice
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Figure 29.2: Gaussian distribution.

29.2.7 Binary Probit (Randomness is Gaussian)

Recall: We have

Pr(A) = Pr(UA > UB) = Pr(ǫB − ǫA < VA − VB) . (29.18)

We are now looking for mathematical forms ofPr(A).

Assume thatεA andεB are Gaussian distributed.

Gaussian distributions have the property that sums/differences of Gaussian
distributed variables are still Gaussian distributed. In consequence,ǫ :=
ǫB − ǫA is Gaussian distributed, for example (with mean zero and “width”
σ):

f(ε) =
1√
2π σ

exp

(

−1

2

( ǫ

σ

)2
)

. (29.19)

See Fig. 29.2.

Now we needPr(ǫ < C), whereC := VA − VB, and we know thatǫ is
normally distributed. As equation:

Pr(ǫ < C) =
1√
2π σ

∫ C

−∞

exp

(

−1

2

( ǫ

σ

)2
)

. (29.20)

The solution of this needs the so-called error function, sometimes denoted
by erf, or double erf(double x) under linux. Before the age of
electronic computers, the error function was inconvenientto use, which is
why the main theoretical development followed a different path, described
in the following.

An important piece of knowledge is what happens when random variables
are combined. For example, the sum of two Gaussian-distributed random
variables are again Gaussian-distributed.

29.2.8 Gumbel distribution

As preparation, learn about the so-called Gumbel distribution:
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29.2. Binary choice

• Generating function

F (ǫ) = exp[−e−µ (ǫ−η)] . (29.21)

• Probability denstity function

f(ǫ) = F ′(ǫ) = µ e−µ (ǫ−η) exp[−e−µ (ǫ−η)] . (29.22)

Location of maximum:η (location parameter).

Variance: π2

6µ2 ∼ 1
µ2 (µ = width parameter).

29.2.9 Combination of Gumbel-distributed variables

(Remember: Sum of two Gaussian rnd variables new Gaussian rnd
variable with properties ...)

For Gumbel:

• If ǫ1 and ǫ2 indep Gumbel with sameµ, then max(ǫ1, ǫ2) also
Gumbel-distributed with the sameµ and a newη of

µ−1 ln[eµη1 + eµη2 ] . (29.23)

• If ǫ1 andǫ2 indep Gumbel with sameµ, thenǫ = ǫ1 − ǫ2 is logisti-
cally distributed (see below) with generating function

F (ǫ) =
1

1 + eµ (η2−η1−ǫ)
. (29.24)

29.2.10 Logistic distribution

• Generating function:

F (ǫ) =
1

1 + e−µ ǫ
. (29.25)

Note that

F (−∞) =
1

1 + e∞
=

1

∞ = 0 ; F (+∞) =
1

1 + e−∞
= 1 ,

(29.26)
as it should be for a generating function.
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Figure 29.3: Logistic distribution vs. Gaussian distribution, TOP: linear
y-axis, BOTTOM: logarithmic y-axis. The logistic distribution is more
pointed at its maximum, but has fatter tails (i.e. towards small/largex).

• Probability density function:

f(ǫ) =
µ e−µ ǫ

(1 + e−µ ǫ)2
. (29.27)

The logistic probability density function looks somewhat similar to
the Gaussian probability density function (Fig. 29.3).µ is the width
parameter.

29.2.11 Binary logit (randomness is Gumbel dis-
tributed)

Coming back to binary choice, one now assumes thatǫA andǫB are Gum-
bel distributed, meaning thatǫ = ǫB − ǫA is logistically distributed.

Again, findPr(ǫ < C). This is

∫ C

−∞

f(ǫ) dǫ = F (C) − F (−∞) =
1

1 + e−µ C
. (29.28)

If we re-translate this into our original variables, we obtain

Pr(A) =
1

1 + e−µ VA+µ VB
=

eµ VA

eµ VA + eµ VB
. (29.29)

This is similar to what we have seen in the departure time choice (except
that here are only two options; for departure time choice we had many).
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29.3. Multinomial choice

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4

-5  0  5  10  15

f_
X

(U
_X

)

U_X

f_A
f_B
f_C

Figure 29.4: Multiple probability density functions for different options.
If one picksUA andUB, then the probability that C is selected is given by
the probability thatUC is larger than themaximumof UA andUB.

Note that the noise parameterµ comes from the width parameter of the
logistic distribution. Large noise= smallµ (= small inverse temperature)
= choice more random.

29.3 Multinomial choice

Now more than two choices, e.g.:

• Go swimming, go shopping, stay home, go to movies, ...

• Many possible times-to-depart (discretized into 5-min bins).

See Fig. 29.4.

Concentrate on option “1”.

P1 = Pr(U1 > Uj , ∀j 6= 1) (29.30)

= Pr(V1+ǫ1 > Vj+ǫj, ∀j 6= 1) = Pr(ǫj < ∆V1j+ǫ1, ∀j 6= 1) . (29.31)

Alternatively:

P1 = Pr

[

ǫ1 > max
j 6=1

[∆V1j + ǫj ]

]

. (29.32)

This is similar to binary choice, i.e. Eq. (29.3). In binary choice, progress
was made by assuming that theεi were either Gaussian or Gumbel dis-
tributed. The same will happen here.

As in binary choice, a Gaussian distribution will lead to useof the error
function. This will not be discussed any further here.

A Gumbel distribution will lead to the use of the logistic distribution.

29.3.1 Multinomial logit (MNL)

= multinomial choice with Gumbel-distributed randomness.
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29.4. Discussion of modeling assumptions

We had:

P1 = Pr

[

ǫ1 > max
j 6=1

[∆V1j + ǫj ]

]

. (29.33)

Two steps:

1. ǫj (j 6= 1) Gumbel-distributed

⇒ ǫ∗ := maxj 6=1[∆V1j + ǫj ] also Gumbel-distributed.

2. ǫ1 andǫ∗ Gumbel-distributed

⇒ ǫ∗ − ǫ1 logistically distributed.

Only problem is to keep track of the transformations of the two parameters
η andµ.

Result of second step is (remember: similar to binary logit)

1

1 + eµ (V∗−V1)
=

eµ V1

eµ V1 + eµ V∗
. (29.34)

Either via normalization or via really computingV∗ as the newη of the
Gumbel distribution one obtains

=
eµ V1

∑

j eµVj
. (29.35)

29.4 Discussion of modeling assumptions

29.4.1 Independence from irrelevant alternatives (IID)

The multinomial logit model (MNL) predicts that theratio between two
options does not depend on other options:

pi

pj

=
eµ Vi

eµ Vj
. (29.36)

There are many cases where this assumption is too strong. Themaybe
most famous case is the “red bus, blue bus” example. Assume that a trav-
eler has the choice between taking the car, taking a blue bus,and taking
a red bus. Assume that the two buses have exactly the same service char-
acteristics; for example, assume that the traveler is the only passenger.
Further assume that the probabilities to select the car, theblue bus, and
the red bus are50%, 25%, and25%, respectively, corresponding to the
ratios2 : 1 : 1. In consequence, the model predicts that the traveler will
take her/his car with probability1/2.
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29.5. Maximum likelihood estimation

Now assume that the blue bus is taken out of service. The modelnow
predicts that the ratio between car and red bus will be2 : 1, meaning that
the traveler will now take her/his car with probability2/3. This is rather
implausible since one would assume that the availability ofseveral colors
for the bus will not affect the mode choice behavior significantly.

The reason for this behavior can be traced back to the assumption that
theεi are all statistically independent from each other; this assumption is
used when the statistical properties ofmaxj[∆V1j + εj] and ofε∗ − ε1 are
derived. If they are not statistically independent, then other (usually more
complicated) formulations result.

29.5 Maximum likelihood estimation

Situation:

• Have survey ofn = 1..N persons, and optionsA, B.

• Also have attributesxn,A,1, xn,A,2, ... = xn,A as well asxn,B,1, xn,B,2,
... = xn,B.

[This means for example that we know the “time by bus” even if the
person never tried that option.]

Note that we now have a person indexn everywhere.

• Also have model specification

VA = β1 xA,1 + β2 xA,2 + ... = β · xA . (29.37)

How to findβ1, ..., βk?

29.5.1 ... for binary choice in general

Assume set of personsn = 1..N that were asked.

yn,A = 1 means personn chose optionA. (Implies thatyn,B = 0.)

Assuming that we have our model, what is the proba that persons
(1, 2, 3, 4, ...) make choices(A, B, A, A, ...)? It is (as usual, assuming that
the choices are indep)

PA,B,A,A,... = P1,A P2,B P3,A P4,A ... . (29.38)

Using theyn,B:

Psurvey =
∏

n

P
yn,A

n,A P
yn,B

n,B . (29.39)

We want, via varying the(β1, ..., βk), to maximize this function.
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29.5. Maximum likelihood estimation

In words, again: Want high probability that survey answers would come
out of our model.

Maximizing in 1d means: Set first derivative to zero, and check that sec-
ond derivative negative.

Maximizing in multi-d means: Set all first partial derivaties to zero; check
that matrix of mixed second derivaties is negative semi-definite.

Instead of maximizing the above function, we can maximize its log
(monotonous transformation). Usual trick with probas since it converts
products to sums.

L = log Psurvey =
∑

n

[yn,A log Pn,A + yn,B log Pn,B] . (29.40)

So far this is general; next it will be applied to Logit.

29.5.2 ... for binary logit model

(Remember: “Logit” means “Gumbel distributed randomness”.)

Strategy: ReplacePn,X in Eq. (29.39) or in Eq. (29.40) by specific from
of logit model, i.e.

Pn,X =
eβ·xX

eβ·xA + eβ·xB
(29.41)

and then find valuesβi such thatPsurvey or L are maximized.

*

Computer science solution

From a computer science perspective, the maybe easiest way to understand
this is to just define a multidimensional function in the variablesβ0, β1, ...
and then to use a search algorithm to optimize it.

This function would essentially look like

double psurvey ( Array beta ) {
double prod = 1. ;
for ( all surveyed persons n ) {

// calculate utl of option A:
double utlA = 0. ;
for ( all betas i ) {

// utl contrib of attribute i:
utlA += beta[i] * xA[n,i] ;

}
double expUtlA = exp( utlA ) ;

// calculate utl of option B:
double utlB = 0. ;
for ( all betas i ) {

// utl contrib of attribute i:
utlB += beta[i] * xB[n,i] ;

}
double expUtlB = exp( utlB ) ;
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29.5. Maximum likelihood estimation

// contribution to prod:
if ( person n had selected A ) {

prod * = expUtlA/(expUtlA+expUtlB) ;
} else {

prod * = expUtlB/(expUtlA+expUtlB) ;
}

}
return prod ;

}

Search algorithms could for example come from evolutionarycomputing.

The “computer science” way is almost certainly more computer inten-
sive and less robust than the conventional strategy, lined out next. It does
however have the advantage of being applicable also to caseswhere the
conventional strategy fails.

*

Conventional strategy

The conventional strategy, mathematically more sound but also conceptu-
ally somewhat more difficult, is to first invest everything that one knows
analytically and only then use computers.

The analytical knowledge mostly involves that one can search for max-
ima in high-dimensional differentiable functions by first taking the first
derivative and then setting it to zero. This is lined out in the following.

Preparations

• Define

ξ
n

= xn,A − xn,B . (29.42)

In consequence

Pn,A =
1

1 + e−β·ξ
n

(29.43)

and

Pn,B =
e−β·ξ

n

1 + e−β·ξ
n

=
1

1 + e+β·ξ
n

. (29.44)

(Left version is sometimes useful.)

• First derivative oflog Pn,A:

∂ log Pn,A

∂βk

= − ∂

∂βk

log(1 + e−...) = − 1

(1 + e−...)
e−... (−ξn,k)

(29.45)
or

∂ log Pn,A

∂βk
= ξn,k Pn,B . (29.46)
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Similarly

∂ log Pn,B

∂βk

= −ξn,k Pn,A . (29.47)

• We will also need

∂Pn,A

∂βk

= (−1)
1

(1 + e−...)2
e−... (−ξk) = Pn,B Pn,A ξk . (29.48)

Core calculation

Now we can do

∂L

∂βk

=
∑

n

(

yn,A Pn,B ξn,k − yn,B Pn,A ξn,k

)

(29.49)

=
∑

n

(

yn,A (1−Pn,A) − (1−yn,A) Pn,A

)

ξn,k = ... (29.50)

=
∑

n

(

yn,A − Pn,A

)

ξn,k . (29.51)

When replacingPn,A:

=
∑

n

(

yn,A − 1

1 + e−β·ξ
n

)

ξn,k . (29.52)

Very good. Now remember that we need to set this,simultaneously for all
k, equal to zero in order to obtain the values forβ which maximizeL.

(E.g. Newton in higher dimensions.)

Uniqueness (no contribution to understanding)

Need to check that this is a max (and not a min), and that it is the global
max and not a local one.

Reminder: 1d function has max if 1st derivative is zero and 2nd deriv is
negative. If 2nd deriv is globally negative, then this is thealso the global
max.

Translation to higher dimensions: Matrix of 2nd derivatives is globally
negative semidefinite.

M negativ semidefinite:xT Cx > 0 except forx = 0.

Note: AssumeC = MT M . ThenxT MT Mx = (Mx)T (Mx) > 0 except
for x = 0 as long as all entries ofMx are real (i.e. not complex).

Now

(∇2L)kl =
∂2L

∂βk ∂βl

∑

n

(

...
)

= −
∑

n

Pn,A Pn,B ξn,k ξn,l . (29.53)
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29.6. Discussion

Def

Mn,k =
(

Pn,A Pn,B

)1/2

ξn,k . (29.54)

Then
∇2L = −MT M . (29.55)

Since all entries ofM are real,MT M is positive definite, and therefore
−MT M negativ definite.

29.6 Discussion

29.6.1 The beta parameter from earlier

Sec. 14.3 had used a factorβ in front of the utilities, and it was said that
smallerβ leads to a more random choice, while largerβ leads to a stronger
preference for the best options. What happened to thisβ in the theoretical
treatment of this chapter?

In fact, theβ from Sec. 14.3 is related to the width parameterµ showing
up in some equations of this chapter. It is however not systematically
treated by this text. The reason for this is that in the maximum likelihood
estimation, it does not show up as a separate variable anyway. But what is
the reason for this now?

What happens here is that the maximum likelihood estimationautomati-
cally includes the meaning of the prefactorβ or µ into the otherβi. So if
the theoretical form says

pX ∝ eµ VX (29.56)

and
VX =

∑

k

βk xX,k , (29.57)

then the maximum likelihood estimation in practice estimates the products

β̃k := µ βk . (29.58)

The consequence of this is that, if a set of attributes is not useful to predict
the choice, then all estimated̃βk will be small, leading to quasi-random
choice.

29.7 Summary

Foundation: Add random component to systematic utility. We only know
systematic component. Assume that max of the sums always wins, which
because of random component means that the lower systematicutility
sometimes “wins” anyway.
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29.7. Summary

Specific model depends on the distribution function of the random com-
poment.

Binary choice:

• Gaussian randomness Binary Probit . No closed form solution.

• Gumbel randomness Binary Logit . Closed form solutionPA ∝
eVA .

Multinomial choice:

• Gaussian randomness Multinomial Probit . Not treated; no
closed form solution. Feasible with computers, and has manytheo-
retical advantages.

• Gumbel randomness Multinomial Logit (MNL) . Result again
PA ∝ eVA .

Max likelihood estimation ofβ: Adjust theβ so that the probability for
the model to generate the survey is maximized.
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Chapter 31

Learning and feedback

31.1 Introduction

In Chap. 22, some pragmatic ways to improve the feedback dynamics were
described. This chapter will discuss some background. It will turn out that
there are many relations to fixed point relaxation techniques, to Markovian
processes, to game theory, and to machine learning. For someaspects, it is
possible to provide computational evidence about partial aspects. In gen-
eral, it however turns out that significant parts of “learning in transporta-
tion systems” is a challenging topic where many open questions remain.

31.2 Replanning fraction

With the exception of Sec. 22.4, we have concentrated on day-to-day
learning. Our typical approach is:

1. Generate some initial option for each traveler.

2. Execute that option in the micro-simulation.

3. Allow a certain fraction of the travelers to replace theiroption with
another one, generated by an external module.

4. Goto 2.

In all our implementations, we have suggested to use a randomly selected
10% sample of the population for replanning. Fig. 31.1 showsthe effect of
different replanning schedules with respect to the sum of all travel times.
This figure suggests that all relaxation series relax to the same final result;
looking at traffic patterns provides additional support forthis statement.
There are however important differences in terms of relaxation speed. In
particular, runs 4 and 5 were done with a replanning fractionof one per-
cent. Note that in this case, the probability of a traveler never having
undergone replanning after 100 iterations is0.99100 ≈ 0.366, more than
one third of the population. This is an unacceptably high number, and it
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Figure 31.1: Different relaxation paths in day-to-day replanning. The plot
shows the sum of all travel times VTT (Vehicle Time Traveled)as a func-
tion of the iteration for different relaxation methods. Allmethods relax to
the same value of VTT. From (Rickert, 1998).

explains why even after so many iterations the sum of the travel times is
not at the same level as for the others.

All other runs represent higher replanning fractions. Run 1uses a sched-
ule: 20% replanning in iterations 1–3, 10% replanning in iterations 4–6,
5% in iterations 7–9, and 2% afterwards. Runs 7, 8, and 11 use 5% re-
planning throughout the iterations, but with a bias towardsagents which
have not been replanned for a long time. Run 7 in addition loads the net-
work successively, i.e. in the zeroth iteration only 20% of the traffic is put
on the network, another 20% is added in the first iteration, etc. Run 10
uses a deterministic instead of a random selection of the travelers for re-
planning. The advantage is that, with 5% replanning, after 20 iterations
one is certain that each traveler was picked exactly once forreplanning.
In comparison, run 12 uses a simple 5% arbitrary random sample of the
population.

The overall result seems to be that, when done right, about 30iterations
are enough to reach relaxation. Also, more complicated selection of agents
has no significant advantages over just plain and simple random selection.
All simulations refer to the replanning of routes only.

31.3 Individualization of knowledge

31.3.1 Classifier System and Agent Database

Knowledge of agents should be private, i.e. each agent should have a dif-
ferent set of knowledge items. For example, people typically only know
a relatively small subset of the street network (“mental map”), and they
have different knowledge and perception of congestion. This suggests the
use of Complex Adaptive Systems methods (e.g. (Holland, 1992)). Here,
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31.3. Individualization of knowledge

each agent has a set of strategies from which to choose, and indicators of
past performance for these strategies. The agent normally choses a well-
performing strategy. From time to time, the agent choses oneof the other
strategies, to check if its performance is still bad, or replaces a bad strategy
by a new one.

This approach divides the problem into three parts (see also(Ben-Akiva,
2001)):

• Generation of new options. Here new options are generated.

• Evaluation. Here, plans (or strategies) are evaluated. In our context
this means that travelers try out all their different strategies, and the
strategies obtain scores.

• Exploitation. Eventually, the agents settle down on the better-
performing strategies.

As usual, the challenge is to balance exploration (including generation)
and exploitation. This is particularly problematic here because of the co-
evolution aspect: If too many agents do exploration, then the system per-
formance is not representative of a “normal” performance, and the explor-
ing agents do not learn anything at all. If, however, they explore too little,
the system will relax too slowly (cf. “run 4” and “run 5” in Fig. 31.1). We
have good experiences with the following scheme:

• A randomly selected 10% of the population obtains new options,
and tries them out immediately in the following simulation run.

• All other travelers choose between their existing options,where the
probability of selecting optioni is taken as

pi ∝ e−β Ti , (31.1)

whereTi is the remembered travel time for that option.β was taken
as1/360 sec, which lead (in the scenario that was used) to another
10% of travelersnot selecting the optimal option.

A major advantage of this approach is that it becomes more robust against
artifacts of the router: if an implausible route is generated, the simula-
tion as a whole will fall back on a more plausible route generated earlier.
Fig. 31.2 shows an example. The scenario is the same as in Fig.2.4 of
Chap. 2; the location is slightly north of the final destination of all trips.
We see snapshots of two relaxed scenarios. The left plot was generated
with a standard relaxation method as described in the previous section,
i.e. where individual travelers have no memory of previous routes and
their performance. The right plot in contrast was obtained from a relax-
ation method which usesexactly the same routerbut which uses an agent
data base, i.e. it retains memory of old options. In the left plot, we see
that many vehicles are jammed up on the side roads while the freeway is
nearly empty, which is clearly implausible; in the right plot, we see that at
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the same point in time, the side roads are empty while the freeway is just
emptying out – as it should be.

The reason for this behavior is that the router miscalculates at which time
it expects travelers to be at certain locations – specifically, it expects trav-
elers to be much earlier at the location shown in the plot. In consequence,
the router “thinks” that the freeway is heavily congested and thus suggests
the side road as an alternative. Without an agent data base, the method
forces the travelers to use this route; with an agent data base, agents dis-
cover that it is faster to use the freeway.

This means that now the true challenge is not to generate exactly the cor-
rect routes, but to generate a set of routes which is a superset of the correct
ones (Ben-Akiva, 2001). Bad routes will be weeded out via theperfor-
mance evaluation method. For more details see (?). Other implementa-
tions of partial aspects are (Unger, 1998, 2002; Gloor, 2001; Weinmann,
in preparation).

31.3.2 Individual plans storage

The way we have explained it, each individual needs computational mem-
ory to store his/her plan or plans. The memory requirements for this are
of the order ofO(Npeople×Ntrips×Nlinks×Noptions), whereNpeople is the
number of people in the simulation,Ntrips is the number of trips a person
takes per day,Nlinks is the average number of links between starting point
and destination, andNoptions is the number of options remembered per
agent. For example, for a 24-hour simulation of all traffic inSwitzerland,
we haveNpeople ∼ 7.5 mio, Ntrips ∼ 3, Nlinks ∼ 50, andNoptions ∼ 5,
which results in

7.5 · 106 persons× 3 trips per person× 50 links per trip (31.2)

× 5 options× 4 bytes per link= 22.5 GByte (31.3)

of storage if we use 4-byte words for storage of integer numbers. Let us
call thisagent-oriented plans storage.

Since this is a large storage requirement, many approaches do not store
plans in this way. They store instead the shortest path for each origin-
destination combination. This becomes affordable since one can organize
this information in trees anchored at each possible destination. Each in-
tersections has a “signpost” which gives, for each destination, the right
direction; a plan is thus given by knowing the destination and following
the “signs” at each intersection. The memory requirements for this are of
the order ofO(Nnodes×Ndestinations ×Noptions), whereNnodes is the num-
ber of nodes of our network, andNdestinations is the number of possible
destinations.Noptions is again the number of options, but note that these
are optionsper destination, so different agents traveling to the same des-
tination cannot have more thanNoptions different options between them.
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Traditionally, transportation simulations use of the order of 1000 destina-
tion zones, and networks with of the order of 10 000 nodes, which results
in a memory requirement of

1 000 destinations× 10 000 nodes× 5 options per destination× 4 bytes per node
(31.4)

= 200 MByte, considerable less than above. Let us call thisnetwork-
oriented plans storage.

The problem with this second approach is that it explodes with more re-
alistic representations. For example, for our simulationswe usually re-
place the traditional destinations zones by the links, i.e.each of typically
30 000 links is a possible destination. In addition, we need the informa-
tion time-dependent. If we assume that we have 15-min time slices, this
results in a little less than 100 time slices for a full day. The memory
requirements for the second method now become

30 000 links × 10 000 nodes× 100 time slices (31.5)

× 5 options× 4 bytes per entry≈ 600 GByte, (31.6)

already more than for the agent-oriented approach. In contrast, for agent-
oriented plans storage, time resolution has no effect. The situation be-
comes worse with high resolution networks (orders of magnitude more
links and nodes), which leaves the agent-oriented approachnearly unaf-
fected while the network-oriented approach becomes impossible. As a
side remark, we note that in both cases it is possible to compress plans by
a factor of at least 30 (Bush, 1998).

31.4 Interpretation as dynamical system

We like to interpret our agents and in consequence the whole system as
“learning”. It is however difficult to exactly define the term“learning”; for
example, what is the difference between learning and adaptation? Simi-
larly, it is difficult to formally state the goal of our agents. In the tradi-
tional interpretation of economics, reflected in Wardrop’sfirst principle in
Chap. 28, agents try to reach a Nash equilibrium, meaning that they are
not able to improve by unilaterally changing their strategy. This is how-
ever well-defined only within relatively confined formal frameworks and
difficult to apply both in complex simulations such as ours and in the real
world.

As a first step, it is useful to treat our learning dynamics as atime-discrete
dynamical system, and ignore all interpretation. The learning system iter-
ates from one day (period) to the next; a state is all information the system
possesses or generates during that day, including agent memory and the
trajectory of the simulation through one day; an iteration is the update
from one day to the next (Fig. 31.3, although that figure excludes agent
memory).
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31.4. Interpretation as dynamical system

Figure 31.2: Individualization of plans and interaction with router arti-
facts. LEFT: All vehicles are re-planned according to the same informa-
tion; vehicles do not use the freeway (arrrows) although thefreeway is
empty. As explained in the text, this happens because the router makes
erroneous predictions about where a vehicle will be at what time. RIGHT:
Vehicles treat routing results as additional options, thatis, they can revert
to other (previously used) options. As a result, the side road now empty
out before the freeway. – The time is 7pm.

Let us, in order to have some formal symbols at our disposal, denote the
state of the system on dayn asXn, and let us denote the operator which
maps the system from dayn to dayn + 1 asΦ:

Xn+1 = Φ(Xn) . (31.7)

This operator subsumes everything that our simulation system does: gen-
eration of new options, selection of options, running of thetransportation
simulation, extraction of scores etc.

In such a dynamical system, one can search for properties like fixed points,
steady state probabilities, multiple basins of attraction, strange attractors,
etc. The assumption behind all these concepts is that the system starts out
with some arbitrary state, given by the experimentators, but from there on
goes to some other state where it will remain.

We will assume that our simulations areMarkovian , meaning that the
state at periodn + 1 depends on information from the periodn only. If
some knowledge about earlier history is involved, then we assume that this
is made part of the state at periodn. An example for this are the scores
of the agents, which contain knowledge from earlier periods. We also
assume that the knowledge space of the agents does not infinitely increase,
i.e. there is a limit on how many options they remember, and a limit on
how much information about the past they remember. For example, when
trying the same option several times, the information couldbe subsumed
into a moving average.

Next, we differentiate between deterministic and stochastic systems.
Clearly, our transportation simulations are stochastic. Nevertheless, the
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Figure 31.3: Schematic representation of the mapping generated by the
feedback iterations. Traffic evolution as a function of time-of-day can be
represented as a trajectory in a high dimensional phase space. Iterations
can be seen as mappings of this trajectory into a new one. Notethat this
figure excludes the additional update of agent memory.

theory of deterministic dynamic systems provides useful insights and of-
ten a language to describe what we observe in our systems.

31.4.1 Deterministic systems

It is often of interest to describe the behavior of a system for long times.
The following are examples of what can happen. The phenomenado not
exclude each other:

• Fixed point: A state which repeats itself:

X∗ = Φ(X∗) . (31.8)

See, for example, Newton iteration in numerical analysis.

• Periodic behavior: A cycle which repeats itself:

Xn+k = Xn (31.9)

for some givenk.

• Chaotic behavior: Complicated movement, seemingly without
rules or structure. Slightly different initial conditionseventually
lead to total divergence of the trajectories.

• Attractor : A sub-region in state space where the system goes to.
Attractors can for example be fixed points, periodic or chaotic.

A basin of attraction is the region of state space which leads to a
specific attractor.

• Ergodic behavior: The long time trajectory comes arbitrarily close
to every point in state space.
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Note, for example, that static assignment (Chap. 28) has, under certain
conditions, only one optimum. That means that plausible learning dynam-
ics for the static assignment problem have exactly one basinof attraction,
and they all lead to the same fixed point solution. This lets usspeculate
that the result of Sec. 31.2, i.e. that many learning algorithms seem to
lead to the same steady state behavior, is caused by structural aspects of
the problem, which carry over from static assignment to the simulation
variant.

31.4.2 Stochastic systems

In stochastic systems, a state at periodn can typically go to more than
one state at periodn + 1. This means that in general the notion of a fixed
point does not make sense, and needs to be replaced by atime-invariant
probability distribution . That is, one looks at the probabilityp(X) for
each stateX, and how it behaves under our update. Such a probability
distribution is time-invariant if

p∗ = Φ(p∗) . (31.10)

Note that this identifies the update operatorΦ(X) for a state with the up-
date operatorΦ(p) for a whole distribution. In stochastic simulation prac-
tice, already the computation ofΦ(X) is difficult since it involves running
one time iteration over and over again, each time with a different random
seed. The computation of aΦ(p) is normally impossibe and thus useful
mostly as a theoretical construct.

Often the words “in equilibrium ”, “ steady-state”, or “stationary” are
used instead of time-invariant probability distribution.

Again, very little can be said in general about when a system reaches equi-
librium. Two conditions which when simultaneously fulfilled lead to con-
vergence to equilibrium are “ergodic” and “mixing”:

• Ergodic: A system is ergodic if the system can get arbitrarily close
to each state from every other state, possibly via a chain of interme-
diate states.

• Mixing: Any initial distribution in state space will spread out and
eventually cover the whole state space.

What this means intuitively is: Let us start with infinitely many
replicas of the same stateX0 but with different random seeds. Be-
ing in the same state means thatp(X) = δ(X − X0). If the system
is mixing, then after infinite time the probability to find a randomly
picked system in stateX is p∗(X), i.e. the steady state density.

In simulation practice, these characterizations are closeto useless. Even
when a system is both ergodic and mixing, it can displaybroken ergod-
icity , meaning that it can remain in a part of the state space for arbitrarily
long time (Palmer, 1989). For those who happen to know this, afinite
size Ising model below the critical temperature is an example. Another
example is a stochastic search algorithm being stuck in a local optimum.
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31.5. Relation to game theory

31.4.3 Transients

To make matters worse, we are not necessarily interested in the steady
state learning solution, but possibly in the transients. For example, when
an important bridge is closed for construction, predictionof the first days
after the closure may be as important as prediction of the long term be-
havior. Worse, aspects such as land use or the housing marketin practice
probably never reach the steady state.

To put this into context, consider a simple ordinary differential equation,

df

dt
= −f . (31.11)

The steady state solution to this can be found by settingdf/dt = 0, that
is, it is f = 0 . The well-known complete solution is

f(t) = f0 e−t , (31.12)

wheref0 is the initial state. What this means is that we are used to systems
where we can describe not only the steady state solution, butalso the tran-
sients. It is not clear if we will ever reach a similar level ofunderstanding
of learning dynamics.

31.5 Relation to game theory

A Nash Equilibrium (NE) is a state where no agent can improve its pay-
off by unilaterally changing its strategy. In terms of this text, this means
the system is at a NE if no agent can improve its score by unilaterally
selecting a different (routing/activity/...) option. An equilibrium in game
theory is a static concept; it is in consequence not the same as an equilib-
rium in dynamical systems.

For static assignment (Chap. 28), we have seen this as Wardrop’s first
principle, and the theory of static assignment started fromthere. We have
also seen that in the case of static assignment, under certain conditions the
solution was unique, meaning that there was only one NE.

The construct of a NE does not say anything about how a system can reach
it. In standard game theory, it is assumed that each agent completely pre-
computes its moves and then submits a “strategy book” to the referee,
who will then play the game for the agents. The Nash Equilibrium defi-
nition implies that the solution is (marginally) stable if exactly one player
deviates from the NE. Nothing is said about stability if two players simul-
taneously deviate from the NE.

Sometimes, a NE is a fixed point of a certain type of deterministic learning
dynamics. A typical example isbest reply, where each player plays what
would have been optimal in the last period. If an agent has several best
options, it choses the same as in the last period (if applicable). Under
best reply, a NE, once reached, is repeated forever. Again, this does not
say anything about stability, since fixed points can be attractive (= stable),
neutral, or repulsive (= unstable).

file: book.tex, p.31-9 October 15, 2007



31.6. Relation to machine learning

There are subtleties involved in a translation from game theory to dynam-
ical systems. Most importantly, one has to assume that in thedynamical
system interpretation, the agents do not actively optimizeany given quan-
tity beyond the prescription of the dynamics. Rather, theirbehavior is
completely given by the dynamic description, and this dynamics some-
times happens to have the NE as a fixed point. For example, the situation
is different if an agent attempts to optimize the average reward over all
iterations.

When moving from deterministic to stochastic simulations,the usual
changes are necessary. In particular, the NE has to be suitably redefined,
for example that each agent should not be able to improve theexpected
reward. Although this sounds feasible in theory, it is difficult in practice,
since we do not know how to compute the expected reward via simulation.
An approximation to the expected reward would be to simulatethe transi-
tion from n to n + 1 with many different random seeds and average over
all occuring rewards; however, this is neither computationally efficient nor
plausible from the point of view of reality.

In conclusion, it seems that we are left with a system which has some
relation to game theory, but they are not exactly the same. Itis possible
to change our system so that it maps exactly on game theory, but only by
moving it farther away from what we would expect as plausiblehuman
behavior.

31.6 Relation to machine learning

There is also a connection of our simulations to machine learning. This
connection becomes clear if we consider each agent as a learning machine
– in consequence, all knowledge from machine learning (which typically
considers a single agent in an environment) could be appliedto our agents.
In other word, each agent could be programmed as a learning machine,
using the best of methods available from machine learning. This leads to
several issues:

• In how far are machine learning methods applicable under thecon-
straints that we face? In particular, we need to have of the order
of 107 learning agents, and we have a non-stationary environment
(since also the other agents learn).1

On the other hand, very little of what we have considered concerns
states being dependent on each other, i.e. the situation faced in re-
inforcement learning that the expected pay-off has both immediate
and long-term contributions. This is however a simplification in
transportation that does not truly apply. For example, pathfinding
could also be considered as a state-dependent operation; and weekly
activity lists where leisure, shopping, going to the doctorhas to be
distributed across several days leads to similar issues.

1More precisely: The agent cannot assume that the probabilities are constant since the
other agents also learn. However, in the long run all probabilities will become constant.
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• In how far does the result resemble human learning? In other words,
how far different is human learning and machine learning forthe
questions we are interested in?

• Does our system have anything to do withdistributed machine
learning? That is, can the whole transportation system be consid-
ered as a large multi-agent learning system? In contrast to typical
approaches in artificial intelligence, there is no obvious goal that the
transportation system attempts to optimize.

In other words: How large is the difference between distributed
learning systems for solving a given task, and distributed learning
systems as models for human society?

The last aspect also becomes apparent when comparing the concept of a
Nash Equilibrium with the concept of aSystem Optimum (SO). Whereas
the first assumes that every agent opimizes its own utility, the latter as-
sumes that some system-wide quantity is optimized. For example, one
could optimize the sum of all travel times rather than havingeach indi-
vidual agent optimizing its travel time. The results are in generalnot the
same; the NE solutions lead to larger travel times.

31.7 Smart agents and non-predictability

A curious aspect of making the agents “smarter” is that, whenit goes be-
yond a certain point, it may actuallydegrade system performance. More
precisely, while average system performance may be unaffected, system
variance, and thus unpredictability, invariably goes up. An example is
Fig. 31.4, which shows average system performance in repeated runs as
a function of the fractionf of travelers with within-day replanning ca-
pability. While average system performance improves withf increasing
from zero to 40%, beyond that both average system performance and pre-
dictability (variance) of the system performance degrade.In other words,
for high levels of within-day replanning capability, the system shows
strong variance between uncongested and congested. From a user per-
spective, this is often not any better than bad average system performance
– for example, for a trip to the airport or to the opera, one usually plans
according to a worst case travel time. Also, if the system becomes non-
predictable, route guidance systems are no longer able to help with effi-
cent system usage. The system “fights back” against efficientutiliziation
by reducing predictability.

Results of this type seem to be generic. For example, Kelly reports a sce-
nario where many travelers attempt to simultaneously arrive at downtown
for work at 8am (Kelly, 1997). In this case, the mechanism at work is
easy to see: If, say, 2000 travelers want to go to downtown, and all roads
leading there together have a capacity of 2000 vehicles per hour, then the
arrival of the travelers at the downtown location necessarily will be spread
out over one hour. Success or failure to be ahead of the crowd will decide
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Figure 31.4: Predictability as function of within-day rerouting capabili-
ties. The result was obtained in the context of a simulation study of route
guidance systems. The x-axis shows the fraction of equippedvehicles;
the y-axis shows average travel time of all vehicles in the simulation. For
each value of market saturation, five different simulationswith different
random seeds were run. When market saturation increases from zero to
40%, system performance improves. Beyond that, the averagesystem per-
formance, and, more importantly, also the predictability (variance) of the
system performance degrade. From (Rickert, 1998).

if one is early or late, very small differences in the individual average de-
parture time will result in large differences in the individual average arrival
time, and because of stochasticity there will be strong fluctuations in the
arrival time from day to day even if the departure time remains constant.
Ref. (Nagel and Rasmussen, 1994) reports from a scenario where road
pricing is used to push traffic closer towards the system optimum. Also in
this case, the improved system performance is accompanied by increased
variability. Both results were obtained with day-to-day replanning.

31.8 Conclusion

The approach of this class to agent learning was that the learning method
is first described as a computer algorithm, and the behavior of the algo-
rithm is analyzed later. The first level of analysis is the analysis of the
resulting dynamics, without any normative statements. Day-to-day dy-
namics is discrete in time, and can be analyzed as any time-discrete deter-
ministic or stochastic system. In all generality, this doesnot help much,
since possible outcomes range from fixed points to chaotic attractors; it
does however provide a language to describe resulting behavior and to
classify what to expect.

In terms of a normative theory, game theory comes in. Our system can
be interpreted as all agents attempting to find their best solution, given
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the behavior of all other agents (Nash Equilibrium). With appropriate
care, some versions of a learning dynamics will contain NashEquilibria
as fixed points. The mapping of our learning dynamics into game theory
does however move the simulations away from what seems behaviorally
plausible.

Third, there are relations to machine learning. In particular, each agent
can be seen as a learning machine. The two most important differences to
standard machine learning are: We have many more agents, andthere is
no common goal.

Finally, the chapter has described some examples of where smarter agents
lead to larger instabilities. Such examples seem to be generic, also outside
the area of transportation. Care needs therefore to be takento not make
simulations and reality more unstable by adding more information.
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