Multi-agent transportation simulation

Kai Nagel

October 15, 2007

Contents

| Introduction 1
1 Introduction 1-1
2 A quick tour 2-1
2.1 Introduction. 2-1
2.2 Demandgeneration. 2-1
2.3 Trafficsimulation. L 2-2
24 Feedback. 2-3
25 Analysis. L 2-4
Il A do-it-yourself simulation package 2-6
3 Motivational start: Roundabout 3-1
4 Some basics of object-oriented programming 4-1
4.1 Introduction. 4-1
4.2 Compilation of programs underUnix. 4-1
43 Pointers. L L o422
4.4 Structs. Lo 4-2
4.5 Classes and minimal memory management 4-3
4.6 Encapsulation Lo 4-3
4.7 Constructorso 4-4
4.8 Arraysofclasses. 4-4
4.9 The Standard Template Library (STL). 4-4
4.10 Associative arrays/maps 4-5
4.11 Methods; Inlining. 4-6
4.12 References &’) insubroutinecalls. 4-6
413 “UVS. ST 4-7
4.14 General code structure 4-8
415 Review A8
5 Some programming recommendations 5-1

Contents

51 General. 5-1
5.2 Programminglanguage. 5-1
5.3 Compiler error messages for STLcode 5-2
5.4 lterators. 5-3
55 Tokenizer. 5-3
6 Street network data and data structures 6-1
6.1 Introduction. 6-1
6.2 Networkfileformats. 6-2
6.3 Nodeclass/| 6-4
6.4 SimWorldclass. 6-4
6.5 Nodesinput. 6-5
6.6 Linkclass. 6-6
6.7 Linksinput 6-6
6.8 Incoming/outgoinglinks. 6-7
7 Cellular automata micro-simulation 7-1
7.1 Introduction. L 7-1
72 Vehicles.1T1T1
7.3 \Vehiclesonlinks. 7-2
7.4 Random moves through intersections. 7-3
7.5 Fairerintersections 7-4
7.6 Initializing vehicles for testing purposes. 7-5
7.7 Mainprogram. 7-5
8 Visualizer 8-1
8.1 Introduction. 8-1
8.2 \Vehicleoutput 8-1
8.3 \Visualizationviagnuplot. 8-4
8.4 Testing the current status of the simulation. 8-5
9 Plans following in the micro-simulation 9-1
9.1 Plans 9-1
9.2 Vehicleclass 9-2
9.3 Plansformat 9-3
94 ReadPlans 9-5
95 ClassPlan 9-6
9.6 Parkqueue. 9-7
9.7 Waitqueue 9-8
9.8 \ehicleinsertion. 9-9
9.9 Plansfollowing and vehiclearrival 9-10
9.10 Computational Speed. 9-11
9.11 Eventsoutput. 9-11

file: book.tex, p.2 October 15, 2007

Contents

10 Modularization, inheritance, templates, and code re-us
10.1 Introduction.

11 Route planner
11.1 Introduction.o
11.2 FastestPath
11.3 Linktraveltimes
11.4 Library support for graph algorithms.
11.5 Generalstructure
11.6 Inputfile: Trips.
11.7 FindPath and Dijkstra.
11.8 Plansoutput

12 Congestion-dependent router
12.1 Link travel times and congestion.
12.2 Congestion dependency: Link travel times

13 Feedback/System integration
13.1 Introduction.
13.2 Subsetoftripsfile, ..
13.3 Callingtherouter.
13.4 Merging oftheroutes
13.5 Traffic simulation.
13.6 lterations

14 Activities planner: Adjust trip starting times
14.1 Introduction.
14.2 Utilities
14.3 Departuretime selection
14.4 Operationalization.
14.5 Input data: Activitiesfile.
14.6 Origin-destinationtraveltimes
14.7 Departuretimechoice.
148 Feedback.

10-1
10-1

15 Do-it-yourself transportation planning simulation: Summary15-1

16 File formats summary
16.1 Nodesfile.
16.2 Linksfile
16.3 Snapshot file (visualizer output)

16-1

file: book.tex, p.3 October 15, 2007

Contents

17

18

19

20

21

22

file:

16.4 Plansfile o 16-3
16.5 Eventsfile. o 16-4
16.6 Tripsfile. 16-5
16.7 Activitiesfile Lo 16-5
Improvements 16-6
More realistic CA traffic simulation logic 17-1
17.1 Introduction. 17-1
17.2 The stochastic traffic cellular automaton (STCA). . . .17-2
17.3 Some validation ofthe STCA. 17-3
17.4 Lanechanging. 17-5
17.5 Validation of lane changingrules. 17-7
17.6 Trafficsignals. 17-8
17.7 Validation of traffic signalrules. 17-9
17.8 Unprotectedturns 17-9
17.9 Validation of rules for unprotected turns. 17-10
17.10Discussion 17-11
The queue model for traffic dynamics 18-1
18.1 Introduction. 18-1
18.2 General. 18-1
18.3 Fairintersections. 18-4
18.4 Limitations of the queuemodel. 18-6
Routing 19-1
19.1 Time aggregation 19-1
19.2 Generalized costfunctions 19-1
19.3 Alternativeroutes 19-1
19.4 Logitforroutes. 19-2
19.5 Planning for given arrivaltime 19-2
196 Mentalmaps 19-3
Non-car modes of transportation 20-1
201 Routing 20-1
20.2 Simulation Lo 20-1
Demand 21-1
21.1 Origin-destination matrices. 21-1
21.2 Activities-based demand modeling. 21-2
Feedback 22-1
22.1 Introduction. 22-1
book.tex, p.4 October 15, 2007

Contents

22.2 Globaltriptimestable. 22-1
22.3 Agentdatabase. oL 22-2
22.4 Day-to-day vs. within-day re-planning. 22-3
23 Other Modules 23-1
24 Better file formats 24-1
24.1 Introduction. 24-1
24.2 Use headerline 24-1
24.3 XML 24-2
24.4 Somediscussian.0 24-4
25 Parallel computing 25-1
25.1 Introduction. 25-1
25.2 Micro-simulation parallelization: Domain decompimsi . 25-1
25.3 Graphpartitioning 25-3
25.4 Adaptive Load Balancing 25-6
25.5 Performance prediction for the Transims micro-sirora 25-8
25.6 Speed-up and efficiency. 25-15
25.7 Othermodules. 25-18
25.8 Summary. 25-19

26 Distributed computing and truly distributed intelligen ce 26-1

IV Some background 26-4

27 Traffic flow theory 27-1
27.1 Introduction. 27-1
27.2 Traffic flow measurements 27-1
27.3 Carfollowing. 27-4
27.4 Kinematic waves and fluid-dynamics 27-14
27.5 Capacities, especially at bottlenecks 27-21
27.6 Cost-flow curves for static assignment 27-21
27.7 Summary. e 27-24

28 Static assignment 28-1
28.1 Introduction. 28-1
28.2 Equilibriumprinciple. 28-1
28.3 Beckmann’s mathematical programming formulation . 28-3
28.4 Constrained optimization 28-4
28.5 Uniqueness. 28-4
28.6 Asolutionmethod L. 28-6
28.7 Summary. 28-7

file: book.tex, p.5 October 15, 2007

Contents

29 Discrete choice theory 29-1
29.1 Introduction. 29-1
29.2 Binarychoice. oL 29-2
29.3 Multinomialchoice. 29-8
29.4 Discussion of modeling assumptions 29-9
29.5 Maximum likelihood estimation. 29-10
29.6 Discussion 29-14
297 Summary. 29-14

30 Axhausen lecture 30-1

31 Learning and feedback 31-1
31.1 Introduction. 31-1
31.2 Replanning fraction 31-1
31.3 Individualization of knowledge 31-2
31.4 Interpretation as dynamical system 31-5
31.5 Relationtogametheory. 31-9
31.6 Relationto machinelearning. 31-10
31.7 Smart agents and non-predictability. 31-11
31.8 Conclusion 31-12

V Calibration and validation 31-14

file: book.tex, p.0 October 15, 2007

Part |

Introduction

Chapter 1

Introduction

Urban planning is not easy: People simultaneously want ve laacess
to transportation and not be bothered by it. This is a condtiaeth which

is not easily resolved, in particular not in densely popdatreas. Ur-
ban and transportation planning are the disciplines whesdl dith this

contradiction.

Any software package designed to help with these questieedsto ad-
dress the fact that humans are “intelligent”, that is, theyable to adapt
and to learn. The maybe most prominent example in the realirans-
portation planning is called induced traffic — the fact thettéx streets or
better train connections leads to more traffic. In consecgieinansporta-
tion planning isnot an exercise of how to best deal with a given and fixed
demand, but it has to balance the interests of people usenyahsporta-
tion system with the interests of people suffering from it.

A good approach to such complex problems are multi-agenilaiions.

Multi-agent means that all entities of the simulation, intgallar the trav-

elers, are resolved individually, and that they have irgbrales according
to which they make decisions and move inside the synthetnzjlated en-
vironment. Such an approach became possible with the ademidern

computers, which process rule-based logic as fast as ncaheperations.
A big advantage of this agent-based, microscopic appraatinat it can
be, at least in principle, arbitrarily improved if it turnsitoto be not re-
alistic enough in certain aspects. This is in stark conti@astggregated
methods, which eventually reach a level where small-sdédets cannot
be represented. As an example, 200 cars with 200 differestind¢ions
on a road can only be represented by having these 200 diffdestina-
tions listed somewhere in the system; there is no useful wavérage
over them. Clearly, a natural place to store this informmatginside the
agents.

We do however believe that, once one has accepted the nugiosar
agent-based paradigm, one can start with rather simple Isxo@lee pri-
mary purpose of this book is to show that full transportasanulation
packages can be coded by somewhat experienced programmreta-i
tively short time. Such a package does not only contain ef&dmicro-
simulation, which moves vehicles and travelers throughstfstem, but
also modules for route planning, for activity generatiamg,anost impor-

1-1

tantly, for human learning. It is not claimed that the resgltransporta-
tion simulation package is calibrated and validated and tiseful for

policy questions, but it is certainly complete enough to dmputational
research with respect to methodological and computatmunedtions, and
it could be a starting point for a more realistic package.drtipular, it is

possible to replace the modules one by one by more realistis and still

keep the structure of the whole system intact. This makesssiple to

pull together the efforts of many different research or caroial groups
towards a large scale realistic multi-agent transpontegionulation.

This book is based on a one-semester class with 3 hours p&r whieh
are approximately evenly distributed between lectures guded lab
work. In addition, depending on their programming skillgjoents put
in a significant homework effort (what many of them enthustadly to).
The class covers most of this book; homework comes in péati¢dtom
Part Il. The book is written in a way that Part Il should be selhtained,
that is, a reader mostly interested in basic code developsienld find
all relevent information in that part of the book. The othkapters pro-
vide additional material, in particular with respect to mgements, and
with respect to theoretical background. The perspectiveutfhout the
book is computational, that is, theoretical developmeritisout relevance
to a computational implementation are kept to a minimum.

file: book.tex, p.1-2 October 15, 2007

Chapter 2

A quick tour

2.1 Introduction

Transportation simulation packages consist of severalubesd The most
important modules for the purposes of this book are: demanémgtion,
route generation, and the traffic simulation (Fig. 2.1). ddidon, a feed-
back module provides the coupling between these. The follpsections
will give short introductions into each of these modules.

2.2 Demand generation

2.2.1 Trip generation

The demand generation module generates the demand foatisparta-
tion simulation system. Two important methods are: (i) ioHdestination
matrices, and (ii) activity-based demand modeling.

Origin-destination (OD) matrices are the more traditiomathod. OD
matrices contain the number of trips framstarting points to: destina-
tions; it is therefore an x n matrix. These matrices can refer to arbitrary
time periods. Until a couple of years ago, one typically udehour
time periods; these days, people often concentrate on ‘imgppeak” and
“afternoon peak” periods since the main direction of trasebbviously
different between these periods.

In many situations, it is desirable to have information glemand gen-
eration that goes beyond OD matrices. In such situatiorsiribre far-
reaching method of activities-based demand modeling isltamative.

Here, the simulation includes models of human behavior végipect to
the planning of a day. This includes where and when to eapsisork,

shop, etc. For example, a person may start the day at homéewmelaat

8am, work for eight hours, go shopping which takes an hoen the at
home for the rest of the day. Assuming that all the transportgieces
take half an hour, this would fix the transportation schetuléeave home
at 7:30am, be at work at 8am, leave work at 4pm, arrive at shgpt

4:30pm, leave shopping at 5:30pm, arrive home at 6pm.

2-1

2.3. Traffic simulation

demand route

microsimulation

generation generation

Figure 2.1: Modules

AGENT'’S ACTIVITIES

Figure 2.2: lllustration of a daily activity plan.

Once the simulation “knows” where and when people do thdivides,
transportation is generated via connecting activitiestdiee place at dif-
ferent locations. Note that it is not necessary (and prgbabl possible)
to forecast such activities for specific persons; howebherg is hope that
we will be able to get useful ensemble averages similarlytatiSical
Physics.

2.2.2 Route generation

Once trips (e.g. starting times, starting locations, anstidation loca-
tions) are known, the exact transportation for these nexlls generated.
This includes mode choice (walking, bicycle, train, cac,)eénd the pre-
cise routing. The output of this module are complete plang&zh indi-
vidual in the simulation.

2.3 Traffic simulation

Now these plans need to be executed. These simulations domang
different levels of resolution and fidelity, reaching frohmettraditional
steady-state flow-based cost function to very detailedarsanulations.

If one is interested in time-dependent results, as for exane queue
built-up during the onset of rush periods, the simulatioadseto be suf-

file: book.tex, p.2-2 October 15, 2007

2.4. Feedback

AGENT’S ROUTES

Figure 2.3: lllustration of a daily plan including routes.

ficiently realistic to contain such dynamics. TraditionaWftbased cost
functions arenot able to realistically deal with such dynamical effects,
at least not in a straightforward way. Thus, the right simafahas to
be chosen according to what aspects of the dynamics one toah&ve
represented for a given question.

2.4 Feedback

The traffic simulation needs input from the demand generasce it

executes the plans from the demand generation. Howeveddimand
generation depends on the traffic simulation because fanpbeaconges-
tion only shows up in the traffic simulation, and demand agjts such
shortages. In order to deal with this situation, one iterdetween de-
mand generation and traffic simulation. For example, denggameration
IS run assuming no congestion, the resulting traffic sinmats run, then
the demand generation is run again now including the corgesbom the

last traffic simulation run, etc., until a steady state i<heal. That is, the
system is systematically relaxed towards a consisterd.stat

Fig. 2.4 shows an example of replanning. The traveler firahgles his/her
route, presumably in adaptation to congestion. Eventualyshe de-
cides that the destination is too far away and switches toasendoca-
tion. Fig. 2.5 shows a systemwide consequence of replanfihg sce-
nario is one where 50 000 travelers starting at random loeatall over
Switzerland travel to Lugano, which is south of the Alps. Blenario is
for testing purposes, but it has some resemblance with ieactaffic in
Switzerland. In the initial run (left), all travelers haviapned their routes
assuming a completely empty network; in consequence, thegathe
freeways as much as possible. After many iterations (rigtatyelers have
learnt that because of the congestion other paths may betadwas; as
a result, traffic is much more spread out.

It should be noted at this point that there is no a priori reasby a real
system should be relaxed. For example, during unique esaanksas trade

file: book.tex, p.2-3 October 15, 2007

2.5. Analysis

route 1

route 2

workplace B

Figure 2.4: Result of day-to-day learning in a test examiple=T: Situa-
tion at 9:00am in the initial run. RIGHT: Situation at 9:00amthe 49th
iteration. Each pixel on the road is a car (by overlappindhim graphics
they form the traffic streams); the circle denotes where Hreygoing.
Clearly, the system has found a better solution after 4atitans.

Figure 2.5: Feedback

shows or soccer games, the transportation system is psobabielaxed.
The research here just follows the usual path in such sttostiFirst un-
derstand the steady state solution, and then move on taiingeénts. Note
that the steady state here refers to the comparison frontenagion to the
next,notto a steady state across time-of-day.

2.5 Analysis

Once a representative run or collection of runs of the tradiiculation
has been obtained, it can be analyzed. For example, one eanhsze
congestion will show up, and which people get stuck in it. e is the
other aspect of the system that influences the decision dbeul¢vel of

file: book.tex, p.2-4 October 15, 2007

2.5. Analysis

realism in the modules. For example, if one is interestedrnissions, one
needs a micro-simulation of the driving behavior with enougormation
on, e.g., acceleration in order to derive the necessarytigiean Or if one
is interested in the possible rescheduling of activities @a®nsequence
of transportation infrastructure changes, one needs teehibd effect of
“trip chaining”, i.e. the fact that people can for examplegimpping on
the way back from work, but they could also put in a stop at hbefere
they go shopping.

file: book.tex, p.2-5 October 15, 2007

Part |l

A do-it-yourself simulation
package

2-6

Chapter 3

Motivational start: Roundabout

In this chapter, we will consider the question if for an isgtion it is
better to have traffic lights or a roundabout. Our model isdineplest
version that makes some sense.

The purpose of this chapter is to familiarize the reader wh#hgeneral
thinking that is used throughout this book: Models are sthftom simple
first principles. In the following model, as in all modelsrimduced in this
book, the reader will easily detect imperfections. It ig tefthe curious
reader (and programmer) to implement and test improvements

We consider an intersection with four incoming/outgoimgsets (Fig. 3).
Streets are numbered 0, 1, 2, 3 as shown in the picture. Wenaodgl the
incoming streets; as soon as vehicles leave the roundabthe mtersec-
tion, they have left our simulation world.

At each incoming streets, vehicles enter the simulatiodwarly but with
a fixed rate. Each incoming vehicle selects any of the outgtinks as
destination, excluding its own link.

Vehicles are moved forward along the link using the so-datlellular
automata (CA) technique. This technique partitions spatoecells which
are updated via simple rules. In our situation, the strektamsist of cells
which are either empty, or occupied by exactly one vehiclee $ystem
uses a parallel update (Fig. 3): All vehicles that have antggdl in front

of them at time can move one cell; the result is the configuration for time
t + 1. Vehicles at the end of the link can only continue when th#itra
light is green, or when there is space on the roundabout.

The traffic light The traffic light has four phases as indicated in Fig. 3.
There are no “yellow” times between the phases (although tha@ be
introduced easily). Vehicles can enter the intersectigheftraffic light
allows them to go into the direction desired by the vehiclehedwise,
the vehicle will stop, blocking all other vehicles behinaehitles that are
allowed to enter the intersection are removed from the sitran, that is,
there is no interaction of vehicles inside or beyond therggetion.

3-1

e t =10 sec
- [a] \blcl\l [dle] |
O = sec
[]062 | lafb] Jcfd]| Je]
] 0 3
i AR |
L1 L
IR

Figure 3.1: (a) Schematic drawing. (b) Cellular automateiraly logic.
(c) The four traffic light phases.

The roundabout The roundabout is modeled as a circular street, that
is, it is a CA array of its own. Vehicles that leave the lastgrcell en-

ter the first array cell. There are four entry cells into thatidar array,
corresponding to the four streets. A vehicle can enter wherentry cell
and its upstream neighbor are empty. Vehicles leave onde@dre the
corresponding entry cell.

Implementation

Many possibilities exist to implement this, and experienced programmers
will find there own system. The following paragraphs will provide some
guidance, but they will not replace a programming class.

The programming style selected in this chapter is the most basic one we
could think of. Later chapters will progressively introduce somewhat more
advanced concepts.

CA links The four CA links can be implemented as

const doubl e RATE=0.2 ;
const int LL=10 ;

const int NN=4 ;

i nt cells[LL][NN] ;

i nt tmpcells[LL][NN] ;
const int EMPTY=-1 ;

/1 go through tine:
for (int tt=0; tt<TT,; tt++) {
/1l go through all streets:
for (int nn=0; nn<NN; nn++) {
/1 enter a vehicle if this is possible:
i f (cells[0][nn] == EMPTY && drand48() < RATE) {
/'l select a nunber between 0 and NN 2:
i nt destination = int((doubl €)(NN-1) =* drand48()) ;
/1 if self is selected, use NN 1:
i f (destination==nn) { destination = NN-1 ; }
tmpcells[O][nn] = destination ;
}

/1 go through all cells except cell closest to intersection:

file: book.tex, p.3-2 October 15, 2007

/1 (this | oop contained an error until 31jan05)
for (int ii=0; ii<LL-1; ii++) {

i f (cellg[ii][nn] '= EMPTY) { /'l there is a vehicle
i f (cells[ii+l][nn] == EMPTY) { /1 there is no vehicle ahead
tmpcells[ii+1][nn] = cells[ii][nn] ; /'l move
} else { // i.e. there is a vehicle ahead
tmpcells[iij[nn] = cells[ii][nn] ; /'l stay
}

/1 special treatnment for last cell:

i f (intersection_can_be entered) {
move_vehicle to_intersection ;

}

/1l copy tnp array back to main array and clear tnp array:
for (int nn=0; nn<NN; nn++) {
for (int ii=0; ii<LL; ii++) {
cellsfii][nn] = tmpcellsfii][nn] ;
tmpcellsfiij[nn] = EMPTY ;

Traffic signal Again, there are many ways to implement this. Let us, for
simplicity, assume that each of the NPHASE$hases takes PP seconds;
the phase is then given by

for (int tt=0; ...) {
int phase = (tt/PP) % NPHASES ;
}

where %is the C++ modulo operation. Let us then define a function

bool allowed (int from, int to, int phase)

which returns true when movement from link from to link to is allowed
in phase phase , and false otherwise. Intersection movement can then
be modeled as

/'l special treatment for last cell:
it (cells[LL-1][nn]!'=EMPTY) {
i nt destination = cells[LL-1][nn] ;
/1 if novement NOT al |l owed, keep vehicle:
i f (lallowed(nn, destination, phase)) {
tmpcells[LL-1][nn] = cells[LL-1][nNn] ;

Roundabout Implementation of the roundabout is left to the creativity of
the reader. Note that there are some subtle timing issues involved: A rea-
sonably clean implementation should not allow a vehicle to move two cells
in a given time step; this would mean that a vehicle that just entered the
roundabout is not allowed to make another move inside the roundabout.
This can be achieved by first computing the tmpcells for all links, and
only then copying them back to cells . In that way, a vehicle entering a
roundabout would be copied into the tmpcells of the roundabout, where
it would not be moved any further during the time step. Obviously, one has
to be careful that no other vehicle overwrites this vehicle in tmpcells

file: book.tex, p.3-3 October 15, 2007

Output Experienced programmers will have their preferred visualization
toolkit. Here we just want to point out that, to a certain extent, it is possible
to derive graphics from simple terminal operations. For example, links can
be plotted by

#include <iostream>

for (int ii=0; ii<LL; ii++) {
i f (cellsfii[nn] '= EMPTY) {
/1 if there is a vehicle, output its destination:
cout << cellg[iij[nn] ;

} else {
/1 el se output an enpty space:
cout << "

}

/'l Don't forget the newline once the link is plotted:
cout << endl ;

Most platforms have a so-called vt100 terminal; under unix this can often
be obtained by typing setenv TERM vt100 in an xterm. For example,
the command

cout << "\ 033[H 033[2J"

erases the screen, allowing the program to overwrite what was there be-
fore. This makes it possible to display the complete intersection dynamics
as a movie inside a text terminal.

Variations As said before, this is a very simplistic model, and many
modifications of this are possible. Some examples:

e The link lengths, the entry rates, the signal phases, or the size of
the roundabout could be changed. Signal phases could be made
adaptive.

e The entry conditions into the roundabout can be changed.

e There could be separate lanes for left turns. How long should they
be?

e There could be inhomogeneous demand.

e Eftc.

file: book.tex, p.3-4 October 15, 2007

Chapter 4

Some basics of object-oriented
programming

4.1 Introduction

We attempt to use relatively “lightweight” object-oriedtprogramming.
However, unfortunately this depends on the perspectiveeapdrience. |
hope that even someone without experience will be able tohgemost
important things done. However, some solid programmingggpce is
most probably helpful. If you have never seen pointers arcstfclasses,
it is going to be hard.

Before you get desperate, maybe have a look at Sec. 4.15 tmaegel-
atively) easy it will be at the end.

Implementation

4.2 Compilation of programs under Unix

If you are an unexperienced programmer, | recommend to write everything
into one file, say work.cpp . This is then compiled with

g++ work.cpp

and executed with

Ja.out

You need at least g++ version 2.96; the version number can be found out
by the command g++ -v .

You should put the following lines at the beginning of work.cpp :
#include <assert.h> // assert nmcro; see ‘‘nan assert’’
#include <iostream> /1 cin/cout

#include <math.h>
#include <stdlib.h>

4-1

4.3. Pointers

If you are using a Microsoft compiler, the following may help:

#if _MSC_VER > 1020 [l if VC++ versionis > 4.2
using namespace std; /[l std c++ libs inplemented in std
#endif

The following should print “hello world” once:

/'l put above headers here
int main() {
cout << "hello world" << endl ;

return O ;

4.3 Pointers

At first, one typically does things such as

int id=1;

doubl e xCoord = 2.34 ;
cout << id << end! ;
cout << xCoord << endl ;

Pointers allow to put the real stuff somewhere else and to reference it by
an address:

int* id ; *id =1 ;

doubl ex xCoord ; #*xCoord = 2.34 ;

cout << *id << endl ;
cout << =*xCoord << endl;

What this means is that id itself contains just a memory address, and the
real content is where this memory address points to. *(...) can thus
be read as “contents of (...) .

This does not have any advantage at this level; but it has enormous ad-
vantages as soon as the content that the memory address points to is
more than a simple number.

4.4 Structs

Plain C allows things like

struct Node {
int id ;
doubl e xCoord ;
doubl e yCoord ;

k

This means that our node has properties, such as an ID number and
coordinates. These are used as follows:

struct Node node ;

.ri;)de.id = 213 ; [/ assi ngnent of |D nunber 213
xx = node.xCoord ; /'l retrieval of xCoord

file: book.tex, p.4-2 October 15, 2007

4.5. Classes and minimal memory management

Typically, this is however used in pointer syntax; the example then is

/1 this does not work yet, see text
struct Node * node ;

node->id = 213
XX = node->xCoord ;

Note that the arrow -> comes from converting Node node into Nodex
node . That is, arrows mean that the thing to the left of them is a pointer.

There is not yet a big advantage of using it this way. If one looks at the
memory management, then struct Node * node only reserves space
for the memory address itself; we would however also need memory
space for id, xCoord, yCoord , which we don’t have at this level. This
will be solved in the next paragraph.

4.5 Classes and minimal memory manage-
ment

In C++, we can replace struct by class:

cl ass Node {
int id ;
doubl e xCoord ;
doubl e yCoord ;

3
Node* node ; // reserve space for nenory address
node = new Node() ; // reserve nenory space for contents

node->id = 213 :
xX = node->xCoord ;

the use of new also solves the memory problem.!

4.6 Encapsulation

In C++, one typically encapsulates variables. This does not have a ma-
jor advantage at the level of this text, but we do it to conform with the
standard. It goes as follows:

cl ass Node {
private:
int id_; // Convention: | add underscores to private vari abl es.
doubl e xCoord_ ;
doubl e yCoord_ ;
publ i c:
void setid(int tmp) {id_= tmp ;}
int id() { return id_ ; }
voi d set x(double tmp) { xCoord_ = tmp ; }
double x() { return xCoord_ ; }

1In C, this would be done vimalloc .

file: book.tex, p.4-3 October 15, 2007

4.7. Constructors

b
.l\'l'ode* node ;
.ri;)de = new Node() ;

node->set_id(213) :
xx = node->x() ;

private: means that everything in that block can only be accessed
by methods which are defined inside the class definition, i.e. inside the
class Node block.

4.7 Constructors

“new ... ”is also called “calling a constructor”. In the above example, we
have not defined what the constructor does; for this case, C++ provides a
so-called default constructor. One can re-define the constructor, and one
can even call it with arguments. Although that feature can lead to more
robust code, we will not use it here.?

4.8 Arrays of classes

Typically, we have more than one node. The straightforward way to do this
would be

.l\'l'ode* nodes[20] ; /1 allocate 20 menory addresses
.ri;)des[O] = new Node () ; // allocate space for ONE (!) node

nodes[0]->set_id(213) :
xx = nodes[0]->x() ;

4.9 The Standard Template Library (STL)

The above array usage is awkward because we need to know in advance
how many nodes we will have. It is better to use vectors, as follows:

#include <vector>
vector<Node =*> nodes ;
/1 menmory managenent m ssing

nodes[0]->set_id(213) :
xx = nodes[0]->x() ;

2For experts: The main reason why we do not use it is becaustraotors are not in-
herited. For templatized classes, as will be useful for #tevark construction (Sec. 10),
this means that each change of the constructor argumethis tarnplate methods neces-
sitates corresponding changes in all derived classes. Wvgfthat rather inconvenient.

file: book.tex, p.4-4 October 15, 2007

4.10. Associative arrays/maps

So the usage of this looks the same as before, but the memory manage-
ment is still missing. An easy way to enter elements without having to
worry about memory is to use one of the insertion operators:

.l\'l'ode* node = new Node(...);
nodes.push_back(node) ; /1 add array el enent at end

It helps to use typedefs:

'.[&/'pedef vector<Node *> Nodes ;
Nodes nodes ;

(instead of vector<Node > nodes;).
Note that now

Nodes nodes ;
essentially looks like and is used like
Node* nodes[20] ;

except that the memory management is different.

vector<Node =*> is template syntax; it means that we have a vector of
type Nodex* . Instead of vector, you could think “array”.

Besides vector , there are other pre-defined template classes, such as
list and deque. They all have certain insertion and removal operations
which do the memory management for us. In C++, this is known as the
Standard Template Library (STL). It is included in all new enough C++
compilers.

We will always hide templates via typedefs so in general they will not
really show up. They do however (unfortunately) make a big difference in
compiler error messages (see 5.3).

4.10 Associative arrays/maps

In C-arrays, one needs that indices start at zero and are consecutive. In
transportation and many other areas, items such as nodes and streets
have names or numbers. In our context, the nodes/links have numbers,
and they are unique, but not consecutive. What we want is a data struc-
ture that deals with this in a straightforward way, i.e. where we can retrieve
a node with ID “231” by node[231] . Associative arrays do this. They are
used as follows:

#include <map>
'.[&/'pedef map< i nt ,Node *> Nodes ;
.l\'l'odes nodes ;

// al | ocate space for new node and fill with information:
Node* node = new Node(id,xCoord,yCoord);

file: book.tex, p.4-5 October 15, 2007

4.11. Methods; Inlining

/'l register this node with the gl obal nodes array:
nodes[id] = node;
Use of this now is:

cout << "I D" << nodes[213]->id() << endl ;
cout << "X :" << nodes[213]->x() << endl ;

4.11 Methods; Inlining

We had already constructs like
cl ass Node {

;j“oubl e x() { return xCoord_ ;}

h
One can put arbitrary functions here, e.g.
cl ass Node {

thersectionLogic() {
[/ lots of stuff
}

k

This is called a method of the class. This version is the “inlined” version
of the method.

Often, this gets so long that one wants to have this outside the class
definition. In this case one would write:

cl ass Node {

intersectionLogic() ;

h
and somewhere else
Node::intersectionLogic() {

/'l lots of stuff
}

Conventionally, one would put the first part into a .h file, and the second
part into a *.cpp file. It is however also possible to leave everything in
work.cpp

Inlined functions/methods are faster during the execution but need more
memory and more compilation time.

4.12 References (“&”) in subroutine calls

C and C++ by default call subroutine arguments “by value”, which means
that they copy the complete object. For example,

file: book.tex, p.4-6 October 15, 2007

4.13. . "vs. “->7

voi d doSomething(Nodes nodes) {
}
doSomething(theNodes) ;

would copy the whole Nodes data structure and then operate on that copy.
That has two often undesired or unexpected side-effects:

e The Nodes object can be rather large: For large road networks, it
contains all pointers to all nodes.

e Changes in Nodes are not moved up to the main program.

This behavior can be avoided when references are used, as follows:
voi d doSomething(Nodes& nodes) {
doSomething(theNodes) ;

Note the “&” in the argument list. The result of this is that doSomething
will directly use the already existing nodes data structure.

In general, we will always use references in subroutine calls. Only when
we pass int or double will we, wenn we do not want to pass back a
result, omit the “&”.

References can also be used in other contexts, in particular to avoid point-
ers to objects (see below). We will not use them for that since we find the
pointer version easier to understand for non-experts.

4.13 “."vs."->"

In the above, methods inside classes are addressed via the -> operator.
Sometimes, one has to use the . operator instead. Unfortunately, we are
unable to write efficient code which uses consistently one or the other, so
you need to understand the difference. That difference is that x->y()
means that x is a pointer, while x.y() means that x is the object itself
or a reference to it. As a rule of thumb, we will use “->” when we use
objects, and “. ” when we use containers. For example:

typedef map<Id,Node *> Nodes ; // Nodes contains *pointers* to Node!
Nodes nodes ; // nodes is *not* a pointer

f”or (Nodes::iterator nn=nodes.begin() ; /1 since ‘‘nodes’’ is not a
nn!=nodes.end() /1 pointer, “*.’" is used.
++nn) {

Node* node = nn->second ; /1 **node’’ is now a pointer

cout << node->id() << endl : /I ->" is used

file: book.tex, p.4-7 October 15, 2007

4.14. General code structure

4.14 General code structure

Even if you write everything into one file, which simplifies life for non-
experts, there is some structure that should be obeyed and that helps
later to pull the code apart into several files. It is as follows:

/1 d obal declarations/definitions.

/1 This woul d becone sonething like ‘‘globals.h’
typedef doubl e Time ;

Time time = -1 ;

/'l global utilities
/1 This would beconme sonething like ‘‘utils.h’.
#include <stdlib.h>
extern " C' doubl e drand48() ;
doubl e myRand() {
return drand48() ;
}

/1l C ass declarations including definitions for ‘‘short’’ nethods.
/'l Each class would go into a separate *.h file.

class Link ; // forward declaration
cl ass Node {
private:
Id id_ ;
public:
void setid(Id val) { id_ = val ; } /1 **short’’ nethod
Link * findOutgoingLink(Id linkid) : /I **long’ method
h
/1 Definitions of ‘‘long ' class nethods.

/'l Methods for each class would go into a separate *.cpp file.
Link » Node::findOutgoingLink(Id linkld) {

}

/'l gl obal functions (should be avoided; can normally go into ‘‘class
[l Simrld’ or simlar)

/'l main:
voi d main() {

}

4.15 Review

The most important information that you hopefully take from the above is
that when you copy something like

#include <map>
;[&/.pedef map< i nt ,Node *> Nodes ;
i\.l.odes nodes ;

Node* node = new Node(...); /1 allocate space for new node

file: book.tex, p.4-8 October 15, 2007

4.15. Review

from this text, then afterwards the use of this is relatively straightforward:

cout << "I D" << nodes[213]->id() << endl ;
cout << "X :" << nodes[213]->x() << endl ;

file: book.tex, p.4-9 October 15, 2007

Chapter 5

Some programming
recommendations

Implementation

5.1 General

We recommend to use variable names which are easy to remember. We
also recommend to write “robust” code, because this piece of code will be
used over and over again, and it will be improved bit by bit. Robust means
the following for me:

e Things which can go wrong need to be tested during execution and
should lead to a program abort if the test fails. In my experience,
warnings are not useful here since in the end there will be so many
warnings that one will ignore them all. For example, one should test
for memory boundaries. assert() is a useful C/C++ command,
see man assert .

e As a minimum rule for the use of subroutines: Functionality which is
used more than once inside a program has to go into a subroutine.

Personally, | think that for simulation problems the strict observation of
these two rules are by far the most important aspects of structured pro-
gramming. This is independent from the particular programming lan-
guage; it is also independent from the object-orientedness of the pro-
gramming language although it may help.

5.2 Programming language

Many programming languages are suitable to write traffic simulations.
Here are some comments about the most common ones:

5.3. Compiler error messages for STL code

C - “small” language; fast; objects are available via struct but no
further object support; in general very little support for things that
one needs for agent-based simulation

C++ — “big” language that few people know completely (i.e. signifi-
cant risk that one writes code that nobody can read); object-oriented
language with decent support for agent-based simulation; good
support for high performance computing in particular for object-
oriented numerics; no standardized support for graphical user in-
terfaces.

java — similar to C++; includes support for graphical user interfaces.
Well-written code in java is not necessarily slower than code in C++,
but there is in general less support for high performance computing
(parallel compilers; debugging of parallel code; object-oriented nu-
merics; ...).

fortran — comes from the tradition of numerical analysis; newer ver-
sions of fortran have some support for agent-based simulation but
no comparison to C++ or java

Recommendation: C++ or java, depending on own experience.

In the following, we will often give examples in C++ style. The goal is not
to push C++ to its limits (as said above, in our experience very few people
can read and maintain the resulting code) but to end up with design pat-
terns that hopefully help average programmers. We will use the Standard
Template Library (STL) where we feel that this is helpful.

5.3 Compiler error messages for STL code

Compiler error messages for STL code are awkward. Here is an example:

In file included from sim.cpp:5:

global.h: In function

allocator<Node *> > map<Ild, Link *, less<ld>, allocator<Link

map<Ild, Veh =, less<ld>, allocator<Veh *> >) 7
gl obal . h: 358: conversion from"‘Link *" to non-scalar type ‘Link
requested

It is often helpful to first read the messages item by item and sometimes
to re-arrange the messages:

e First comes where the corresponding file was included:

In file included from sim.cpp:5:

e This is followed by the function where the error happens:

file:

global.h: In function * voi d simulate (i nt, map<ld, Node
allocator<Node *> > map<Ild, Link *, less<ld>, allocator<Link
map<id, Veh =*, less<ld>, allocator<Veh *> >)

book.tex, p.5-2 October 15, 2007

voi d Simulate (int, map<id, Node =+, less<ld>,

*> >

*, less<ld>,
*> >

5.4. lterators

As long as there is only one function void simulate(...) ,one
can ignore the rest of this part of the error message. If one does
not know about function overloading, this should be generically the
case.
Finally comes the real error message. Rearranging yields:
global.h:358: conversion from

‘Link =’
to non-scal ar type

“Li nk’
requested

That is, somehow the item on the right is a pointer to link, while the
item on the left is a link.

In this case, the offending line was
Link link = I->second;
The correct line would be

Link = link = I->second;

Ilterators

Simulations often need to iterate over all objects in a certain class, for
example over all agents or all streets.

In C++, iterators are explicitely provided for many data structures of the
STL. Code typically looks like the following:

for (Links:iterator Il = links.begin(); Il = links.end(); Il
Link * link = ll->second ;
}

The ->second is necessary if Links is, as discussed in Sec. 4.10,
a map<int,Link> . Then Il returns the “pair” (int,Link *), while
->second just returns the second item. — This will be filled with more
meaning in later examples.

5.5 Tokenizer

In order to read line-oriented input files, it is useful to first read the com-
plete line (getline), and then to parse it. This can look as follows:

assert(inFile.is_open()) ;
typedef vector<string> Tokens; Tokens tokens ;
whi | e (linFile.eof()) {

string aString ; getline(inFile, aString) ;

i f (lastring.empty()) { /1 (skip enpty lines)
tokenize(aString, tokens) ;
for (Tokens:iterator tt=tokens.begin() ; ii'=tokens.end()

cout << =ttt << "\ n"

}

book.tex, p.5-3 October 15, 2007

++) {

s i+) {

5.5. Tokenizer

As of 2003, there is unfortunately no standard tokenizer for C++. A simple
tokenizer, which separates on white spaces (such as blanks and tabs), is
the following (from the linux C++-programming-howto):

#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
#include <vector>

inline voi d tokenize (const string& str, vector<string>& tokens) {
tokens.erase(tokens.begin(), tokens.end()) ;
tokens.push_back("TRASH') ; // do not use tokens[O0] ;
string buf ;
stringstream ss(str) ;
whi l e(ss >> buf) {
tokens.push_back(buf) ;
}

}

This is slightly modified when compared to the original version in so far
as it puts “TRASH” into the zeroth element so that the counting of tokens
starts with one. This has the advantage that a token from the nth column
will be in token[n]

file: book.tex, p.5-4 October 15, 2007

Chapter 6

Street network data and data
structures

6.1 Introduction

Transportation simulations need to deal with real worldhac®s to be
useful. In order to achieve this, it makes sense to write thertnat they
can read arbitrary real world configurations, even whenrthial intention
of the project is to use artificial data. For the example caslei®text, the
minimum content of the data base is some information abatrdad
network, and some information about where people live anererpeople
work.

In this section, the information about the road network isstdered. The
basis for this is a simple coding that is usually used for gsapvith one
file/list for nodes (vertices) and one file/list for links (g$, arcs). The
traffic network then is built by identifying links with roadand intersec-
tions with nodes. Our intersections will be extremely siistps.

The node file typically contains:

e a unique ID number for each node, and

e geographical coordinates.

Additional information can be added for each node, but isnestded for
this example.

The link file for this example needs the following informatio

a unique 1D number for each link,

the ID number of the node where the link starts,

the ID number of the node where the link ends,

length of the link (length is necessary because a curvy reaslden
two nodes will be longer than the Euclidean distance),

6-1

6.2. Network file formats

Implementation

6.2 Network file formats

The first implementation question to resolve is how to store the data. We
will assume that the data is in a file, and that is uses the same format
that the transportation simulation software package Transims (?) uses.
Transims file formats are used several times in this text. The advantage is
some degree of portability; the disadvantage is that the formats often con-
tain many more entries than we truly need. Also, a more modern format
might use some kind of XML syntax; there is however no corresponding
standard for transportation simulations. We think that the advantage of
using Transims files outweighs the disadvantages. XML formats will be
discussed in Sec. 24.3.

Each Transims network file has a header line, and then zero or more lines
of entries. The header line needs to be there; it contains the keys of the
entries. Fields are separated by tabs.

The nodes file has the following entries:

| Column | Header | type | explanation

1 I D integer | Unique number of node

2 EASTI NG integer | Coordinate in x direction

3 NORTHI NG | integer | Coordinate in y direction

4 ELEVATION | integer | Coordinate in z direction. Ignore
5 NOTES string Optional notes. Ignore

In consequence, a nodes file looks as follows:

ID<tab>EASTING<tab>NORTHING<tab>ELEVATION<tab>NOTES <ret>
1<tab>651700<tab>137200<tab>0<tab><ret>
2<tab>652220<tab>137600<tab>0<tab><ret>

The entries which are important for our do-it-yourself implementation are
printed in boldface. Any information in the other columns will be ignored.
That information may, however, be important to make other Transims mod-
ules work, most importantly the visualizer (Sec. 8). In particular, note the
additional <tab> that separates a possibly empty NOTESfield from the
<ret> .

The link file has the following columns. Once more, the relevant ones are
printed in bold; the other ones are just given for complete information.

| Column | Header | Type | Explanation \

1 I D integer Unique ID number

2 NAME string Name of the link, e.g. the
street name. Ignore

3 NCDEA integer Node ID at one end of
link

4 NODEB integer Node ID at other end of
link

file: book.tex, p.6-2 October 15, 2007

6.2. Network file formats

PERMLANESA

\ integer

Number of lanes towards
A. Ignore

PERMLANESE

B integer

Number of lanes towards
B. Ignore

LEFTPCKTSA

integer

Number of left pocket
lanes towards A. Ignore

LEFTPCKTSB

integer

Number of left pocket
lanes towards B. Ignore

RGHTPCKTSA

\ integer

Number of right pocket
lanes towards A. Ignore

10

RGHTPCKTSE

B integer

Number of right pocket
lanes towards B. Ignore

11

TWOWAYTUR

Nboolean

Whether there is a two-
way link for left turns in
the middle of the road (an
American specialty). Ig-
nore

12

LENGTH

positive float

Length of link in meters

13

GRADE

float

Grade (= slope) of link. Ig-
nore

14

SETBACKA

positive float

Setback distance (in me-
ters) from the center of the
intersection at node A. Ig-
nore

15

SETBACKB

positive float

Setback distance (in me-
ters) from the center of the
intersection at node B. Ig-
nore

16

CAPACITYA

positive float

Capacity of link towards A
in vehicles per hour. Ig-
nore (but see Sec. 18)

17

CAPACITYB

positive float

Capacity of link towards B
in vehicles per hour. Ig-
nore (but see Sec. 18)

18

SPEEDLMTA

positive float

Speed limit, in meters per
second, towards A. Ignore
(but see Secs. 17 and 18)

19

SPEEDLMTB

positive float

Speed limit, in meters per
second, towards B. Ignore
(but see Secs. 17 and 18)

20

FREESPDA

positive float

Free speed, in meters per
second, towards A. Ignore
(but see Secs. 17 and 18)

21

FREESPDB

positive float

Free speed, in meters per
second, towards B. Ignore
(but see Secs. 17 and 18)

22

FUNCTCLASS

keyword

Functional class of link. Ig-
nore

file:

book.tex, p.6-3

October 15, 2007

6.3. Node class

23 THRUA integer ID of outgoing link across
A which denotes “through”
direction. Can be used for
data compression. Ignore
24 THRUB integer ID of outgoing link across
B which denotes “through”
direction. Can be used for
data compression. Ignore

25 COLOR integer Obsolete. Ignore

26 VEHICLE keywords Allowed modes on link. Ig-
nore

27 NOTES string Arbitrary notes. Ignore

Task 6.1 Generate a node file and a link file which together describe a
square with a diagonal (i.e. four nodes and five links). You can use the
files in

http://lwww.matsim.org/files/studies/test-net/networ k

as a starting point.

6.3 Node class

typedef | ong Id;
typedef doubl e Coord ;

cI ass Node {

private:
Id id_;
public:

void set id(Id val) { id_ = val ; }
Id id() { return id_ ; }

private:
Coord xx_;

publ i c:
voi d set xx(Coord val) { xx_
xx() { return xx_ ; }

val ; }

private:
Coord yy_ ;

publ i c:
voi d set yy(Coord val) { yy_
yyO { returnyy ;}

val ; }

6.4 SimWorld class

It is useful to have a SimWorld class that defines our simulation world:

cl ass SimWorld {

publ i c:
typedef map<ld,Node *> Nodes ;
Nodes nodes ;

.r.éadNodes() ;

file: book.tex, p.6-4 October 15, 2007

6.5. Nodes input

}

In this case, we will not make Nodes private, i.e. we will not encapsulate
it. The result of this is that we can directly use the access functions of the
STL. It is possible to use the STL functions even when Nodes is private,
but we find the above solution easier for non-experts.

6.5 Nodes input

Reading the nodes file would go as follows:

#include <fstream>
#include <string>

const char* NODES_FILE_NAME ="T. nodes":
cI ass Node {

3

cI ass SimWorld {

k

voi d SimWorld::readNodes () {
cout << "\ n### entering readNodes ...\n" ;
ifstream inFile ; inFile.open(NODES_FILE_NAME) ;
assert(inFile.is_open()) ;
string aString ;
vector<string> tokens ;
/'l process header |ine:
getline(inFile, aString) ;
tokenize(aString, tokens) ;

assert(tokens[1]== 1D)
assert(tokens[2]== "EASTING') ;
assert(tokens[3]== "NORTHI NG') ;

/1 main |oop:
whi | e (linFile.eof()) {
getline(inFile, aString) ;
i f (laString.empty() && isdigit(aString[0]))
[l [[skiplines with junk (e.g. last line)]]

tokenize(aString, tokens) ;

Id nodeld ; convert(tokens[1], nodeld) ;
Coord xCoord ; convert(tokens[2], xCoord) ;
Coord yCoord ; convert(tokens[3], yCoord) ;
/1 initialize node:

Node* node = new Node ;

/1l enter node into node map:
nodes[nodeld] = node ;

node->set_id(nodeld) ;
node->set_xx(xCoord);

node->set_yy(yCoord) ;

}
}
cout << " nNodes: " << nodes.size() << endl ;
cout << "### | eaving readNodes ...\n\n" ;

file: book.tex, p.6-5 October 15, 2007

6.6. Link class

The convert methods are as follows:

inline voi d convert (const string& str, int&ii) {
ii= atoi(str.c_str()) ;

}

inline voi d convert (const string& str, [ong& ii) {
ii= atol(str.c_str()) ;

}

inline voi d convert (const string& str, doubl e& dd) {
dd = atof(str.c_str()) ;

}

This would be called from the main program via
i nt main()

SimWorld simWorld ;
simWorld.readNodes() ;

Task 6.2 Write a program which reads the node data.

6.6 Link class

The link class is analogous to the node class:

typedef doubl e Len ;
typedef doubl e Spd ;

C| ass Link {

private:
Id id_;
publ i c:

void set id(Id val) { id_ = val ; }
Id id() { return id_ ; }

private:
Node* fromNode_;
publ i c:
voi d set fromNode(Node =* node) { fromNode = node ; }
Node* fromNode() { return fromNode_ ; }
private:
Node* toNode_ ;
public:

voi d set toNode(Node =* node) { toNode = node ; }
Node* toNode() { return toNode_ ; }

private:
Len len_ ;

publ i c:
voi d set length(Len val) { len_ = val ; }
Len length() { return len_ ; }

h

6.7 Links input

Again, this is analogous to the nodes.

file: book.tex, p.6-6 October 15, 2007

6.8. Incoming/outgoing links

const char* LINKS_FILE NAME = "T.1inks":

voi d SimWorld::readLinks () {
cout << "\ n### entering readLinks ...\n" ;
ifstream inFile ; inFile.open(LINKS_FILE_NAME) ;
string aString ;
vector<string> tokens ;
/'l process header |ine:
getline(inFile, aString) ;
tokenize(aString, tokens) ;

assert(tokens[1]== "D)
assert(tokens[3]== " NCDEA") ;
assert(tokens[4]== "NCDEB") ;
assert(tokens[12]== "LENGTH") ;

/1 main |oop:
whi | e (linFile.eof()) {

getline(inFile, aString) ;

i f (laString.empty() && isdigit(aString[0])) {
Il (skip lines w junk (e.g. last line))
tokenize(aString, tokens) ;

Id linkld ; convert(tokens[1], linkld) ;

Id fromNodeld ; convert(tokens[3], fromNodeld) ;
Id toNodeld ; convert(tokens[4], toNodeld) ;
Len length ; convert(tokens[12], length) ;
Link = link = new Link ;

links[linkld] = link ;

link->set_id (linkld) ;

Node* fromNode = nodes[fromNodeld] ;
assert(fromNode !'= NULL) ;
link->set_fromNode (fromNode) ;

Node* toNode = nodes[toNodeld] ;

assert(toNode != NULL) ;

link->set_toNode (toNode) ;

link->set_length (length) ;
fromNode->addOutLink(link) ;
toNode->addInLink(link) ;

}
}
cout << " nLinks: " << links.size() << endl ;
cout << "### | eaving readLinks ...\n\n" ;

}

Regarding addOutLink and addInLink see next section.
Task 6.3 Write code that does the links input.

Remember that you need to include Links into the SimWorld class sim-
ilarly to Nodes.

6.8 Incoming/outgoing links

In order to traverse the graph, for each node we need the incoming and
the outgoing links. Recall that for links we already have the corresponding
information, i.e. the fromNodes and toNodes. The construction of the
inLinks and outLinks is as follows:

First, add the corresponding entries to the node class:

file: book.tex, p.6-7 October 15, 2007

6.8. Incoming/outgoing links

cl ass Node {
private:

typedef vector<Link *> VLinks;
Vlinks outLinks_;
Vlinks inLinks_;

publ i c:

voi d addOutLink(Link * Link) { outLinks_.push_back(link): }
Link = outLink(int i) { return outLinks [i]; }
i nt nOutLinks() { return outLinks_.size(); }

voi d addInLink(Link + link) { inLinks_.push_back(link); }
Link * inLink(int i) { return inLinks_[i]; }

i nt ninLinks() { return inLinks_.size() ; }
.
Note that we do not need the associative array property here for
outLinks_ orinLinks_ , and so we use the vector class instead of
map.

Next, we generate the information of which links are incoming and outgo-
ing. The easiest way is to add this in the readLinks routine at the end,
as was already done in the previous section.

Task 6.4 Add the information about incoming/outgoing links to your code.

Task 6.5 Test if you can read the network in

http://lwww.matsim.org/files/studies/corridor/networ k

without errors.

file: book.tex, p.6-8 October 15, 2007

Chapter 7

Cellular automata
micro-simulation

7.1 Introduction

The micro-simulation executes the route plans and retwongestion lev-
els. Since we do not have plans yet, we will at this stage sed¢raffic
micro-simulation as something that moves vehicles alamgland across
intersections.

We use the same dynamics as we had used for the roundabouan &h
That is:

e The road is divided into cells of length 7.5 meters.
We will only model links with single lanes.

e Each cell is either empty or occupied by exactly one vehicle.

¢ \ehicles move deterministically by one cell between tinaad time
t + 1if the cell ahead is empty at time

e Across intersections, we will check that the first cell of teeeiving
link is empty.

Implementation

7.2 \ehicles

Now, we need vehicles. We will start very simplistic:

class Veh {

private:
Id id_ ;
public:

set id(Id val) {id_ = val ; }
Id id() { returnid_ ; }

7-1

7.3. Vehicles on links

7.3 Vehicles on links

Now we need to extend the links so that they contain the vehicles. For
our cellular automata (CA) approach, we represent the road by a 1-lane
sequence of cells. In consequence,

cl ass Link {

private:

typedef vector<Veh x> Cells ;
Cells cells_ ;

public:
build() ;

As one sees, the road is a vector of pointers to Veh. If this pointer is NULL,
then the corresponding cell is empty.

For modular programming, one would in fact introduce a new class, say
simlink , and make it inherit from the link class. Unfortunately, this
eventually means to templatize the link and node classes, which we do
not want to do at this point. Further details are discussed in Chap. 10.

The build() command builds the road, i.e. reserves memory etc.:*

voi d Link::build () {
int nCells ;
nCells = int(length() / LCELL) ;
for(int ii=0; ii<nCells; ii++) {
cells_.push_back(NULL);
}

}

LCELL is a global constant containing the length of a cell which we set to
7.5 meters. According to the code, the number of cells is

Ncells = L/A (71)

where L is the length of the link and ¢ the length of a cell. push_back is
the command to add elements to a vector .2

We also need functions to add vehicles at the upstream end and remove
them at the downstream end of the link. Similarly, one needs to be able to
test for the availability of space, and get access to the most downstream
of the vehicles. The code segment looks as follows:

cl ass Link {

voi d addToLink(Veh * veh) {
assert(cells_[0]==NULL);
cells_[0] = veh ;

vehx firstOnLink() {
return cells_.back() ;
}

voi d rmFirstOnLink() {

1Again, there are specific commands in the STL to achieve time shing. We leave
that to the experts.

20One could usallocate , but the use opush _back preserves at least somewhat
the look and feel of a traditional array.

file: book.tex, p.7-2 October 15, 2007

7.4. Random moves through intersections

assert(cells_.back()!'=NULL) ;

cells_.back() = NULL ;

}
bool hasSpace() {

return cells_.front()==NULL ;

}
}

cells_.front() and cells_.back()

are STL functions and provide

access to the first and the last element of the vector.

Finally, we need a method to move vehicles forward. This can look as

follows:

cl ass Link {

;/.;)i d moveOnLink(int& nVehs) ;

voi d move(inté& nVehs) {
moveOnLink(

int& nVehs) ;

/] nore here to be added | ater

b
and:
voi d Link::moveOnLink (

i nt
for(

last = cells_.size() - 1 ;
i nt ii=0; ii<last ; ii++) {
Vehx veh = cells_|ii] ;
if (veh != NULL) {
nVehs ++ ;
it (cells_[ii+1]

cells_Jii] = NULL ;
li++

int& nVehs) {

NULL) {
cells_Jii+1] = veh ;

veh->set_speed(LCELL) ;

} else {
veh->set_speed(0.
}

}

)

Note that this uses traditional array syntax, so alternative models can be
easily implemented even by programmers not fluent in C++.

7.4 Random moves through intersections

We also need a method to move through intersections. If there is more
than one outgoing link, then the vehicle needs to select one of those. In
Sec. 9.1 we will introduce route plans for this purpose. In order to test the
code without that functionality, here we introduce a method with random

selection of the outgoing link:
cl ass Node {

publ i c:
voi d rndmove() ;
voi d move() {
rndmove() ;

file: book.tex, p.7-3

October 15, 2007

7.5. Fairer intersections

}
and

voi d Node:rndmove () {

for (VLinks:iterator ll=inLinks().begin(); Il!=inLinks() .end(); ++l) {

Link * inLink = (Link =) =l ;
Veh* veh = inLink->firstOnLink() ; /1 NULL if none
if (veh != NULL) {
i nt nOutLinks = outLinks().size() ;
i nt outLinkldx = i nt (myRand() * nOutLinks) ;
Link * theOutLink = outLink(outLinkldx) ;
i f (theOutLink->hasSpace()) {
inLink->rmFirstOnLink() ;
theOutLink->addToLink(veh) ;

}

Note that in contrast to earlier no “->second ” is used with the iterator,
since the VLinks is a standard vector (array) structure, and not a map.

myRand() is a random number generator that returns values between
zero (included) and one (excluded), for example

doubl e myRand() {
return rand()/(RAND_MAX+1) ;
}

7.5 Fairer intersections

In this text, an attempt is made to present a simple (the simplest?) version
here, and to wait with improvements until Part Ill. In this section, there will
be an exception: The modification presented here is not strictly necessary.
Not including it does, however, result in strong artifacts and asymmetries
in the traffic dynamics.

A disadvantage of the above code for intersection movement is that cer-
tain incoming links always get served earlier than others. A useful way
to improve the situation is to go through the incoming links in random
sequence. This can be achieved by

typedef multimap< doubl e,Link *> RndLinks ;
RndLinks rnd_links ;

/1 go through all inLinks, give thema random nunber, and insert

/'l themaccording to it:

for (VLinks:iterator ll=inLinks_.begin(); ll!=inLinks_.e nd();
++I) {

Link = link = =l ;
rnd_links.insert(make_pair(myRand(), link)) ;

}
/'l retrieve the inLinks in the order of their random nunbers:
for (RndLinks:iterator Il = rnd_links.begin();
Il '= rnd_links.end(); II++) {
Link = inLink = Il->second ;

and then continue as above.

file: book.tex, p.7-4 October 15, 2007

7.6. Initializing vehicles for testing purposes

The above algorithm goes through all incoming links and gives them a
random number and then inserts them into the multimap using the random
number as key. A multimap is similar to the mapwe used for links and
nodes with the only difference that keys do not have to be unique; this is
necessary since it could happen that two random numbers are identical.
The links are then taken out of the multimap in increasing order of the
random number.

7.6 Initializing vehicles for testing purposes

We need to be able to put vehicles on the network. A useful method
for this will be discussed in Chap. 9 in conjunction with the introduction
of plans. Here we just point out that for testing purposes one can put
vehicles on links for example as follows:

Id cnt = O ;
for (Links:iterator llI=links.begin(); Il'=links.end(); ++) {
Link * link = ll->second ;

Veh* veh = new Veh ;
veh->set_id(cnt) ;

cnt++

link->addVveh(Veh) ;

7.7 Main program

Finally all the above functionality needs to be put together. This can be
done as follows:

typedef doubl e Time ;
;I.'.ime globalTime = -1 ; /1 global definition of a tine; see text

cI ass Link ; // forward decl aration
cl ass Node {

h

cl ass Link {

} .

cl,ass Veh {

.
cl ass SimWorld {

;/”oi d simulate() { /'l see later

}
J

int man () {
/1l network construction as discussed earlier

/1 build the Iinks:
for (SimWorld::Links::iterator Il =simWorld.links.begin() ;

file: book.tex, p.7-5 October 15, 2007

7.7. Main program

lI=simWorld.links.end();
++I) {
Link = link = ll->second ;
link->build() ;

/'l insert sone vehicles as explai ned above

/[l time iteration:

for (globalTime=simStartTime; globalTime<99999; globalTim e+t) {
bool done = false ;
simWorld.simulate(done) ;
if (done) break ;

}
return O;
}
and finally
voi d SimWorld::simulate (bool& done) {
i nt nVehs=0 ;
/1 1inks novenent:
for (Links:iterator ll=links.begin(); IlI'=links.end(); ++) {
Link = theLink = Il->second ;
theLink->move(nVehs) ;
}
/'l intersection novenent:
for (Nodes:iterator nn=nodes.begin(); nn!=nodes.end(); ++ nn) {
Node* theNode = nn->second ;
theNode->move() ;
}
/1 out put
i nt skip=60 ;
i f (I ong(globalTime)%skip==0) {
for (Links:iterator ll=links.begin(); ll!=links.end(); ++ Iy {
Link = theLink = ll->second ;
theLink->writeVehFile() ;
}
}
if (long(globalTime)%1000==0) {
cout << "Step: " << globalTime
<< " NVehs: " << nVehs
<< endl ;

done = false ;

if (nVehs==0) {
done = true ;

}

}

The above code fragment also contains a provision for visualizer output,
to be used in the next chapter.

Note the time is defined globally as globalTime . There are better ways
to do this; this is, as always in this text, left to the experts.

file: book.tex, p.7-6 October 15, 2007

Chapter 8

Visualizer

8.1 Introduction

For larger simulations, visualization is nearly always &saute neces-
sity. Writing a visualizer, however, goes beyond the puesad this text.
One option is the Transims visualizer, on which the outpunfas in the
following are based; since the whole Transims package itaé@ato aca-
demic institutions for an affordable license fee, this mayah option. In
some cases, visualizers of other transportation simulaadtware may
be available. In this section it will be described how a greplprogram
that plots data points based on Cartesian coordinates casdoketo gen-
erate some basic visualization. The public doman softwgmelot” will
be used. Other plotting packages with similar functiogadiould also
work.

Implementation

8.2 Vehicle output

The file format for vehicle output is as follows:

| Column | Header | type | explanation \

1 VEHI CLE integer | Vehicle ID

2 TI ME integer | Current time (in seconds past
midnight)

3 LI NK integer | Link ID

4 NODE integer | FromNode ID (i.e. ID of node
where the vehicle is coming
from)

5 LANE integer | Lane the vehicle is on

6 DI STANCE float Distance (in meters) the vehi-
cle is away from the node

7 VELOCITY float Vehicle speed (in meters per sec-
ond)

8-1

8.2. Vehicle output

8 VEHTYPE integer | Vehicle type. “1” = car.

9 ACCELER float Vehicle acceleration (in m/s per
second)

10 DRIVER integer | Driver ID

11 PASSENGERS integer | Number of passengers in vehicle

12 EASTI NG float Position of vehicle in x direc-
tion

13 NORTHI NG float Position of vehicle in y direc-
tion

14 ELEVATION | float Position of vehicle in z direction

15 AZI MUTH float Vehicle’s orientation (degrees
from east in counterclockwise
direction)

16 USER integer | User-defined data field

The most important fields for our purposes here are time and the two
spatial coordinates. When these fields are filled out correctly, the Tran-
sims visualizer will work even when all other fields are filled with dummy
variables.

Some linear algebra is necessary to calculate the position and the orien-
tation of the vehicles. It goes as follows:

1. The vector from the fromNode s to the toNode ¢ is
Lst £t Ts
p— f— _— 8-1
Lst |:yst:| [yt} [ys] 8.1)

2. When ¢ is the angle between the x axis and r, then one has

arctan (%) if x>0
Yy B arctan(%Jrﬂ') ifz <0
tan@-w or 0= %W if o =0andy > 0 (8.2)
%w fr=0andy <0

3. A vehicle’s distance on the link from the fromNode is given by the
position of it's cell; if the cell number is i, then the positionis (i+1) ¢,
where ¢ is the length of a cell (typically 7.5 meters).

4. The coordinates of the vehicle now essentially are
T T d cos 6
Mg 6

5. After this calculation, vehicles are on the direct line between two
nodes. What is missing is the offset depending on the lane the
vehicle is in. This is just

[+w sin 6] 7 (8.)

—w cos

which is added to Eq. (8.3). w is the width of a lane, for exam-
ple 3.75 meters. Large values of w are often useful to “pull” road
directions apart, which is useful when zooming out.

file: book.tex, p.8-2 October 15, 2007

8.2. Vehicle output

Corresponding code is

voi d Link:writeVehFile () {
static int first=1 ;
static ofstream snapshotFile ;
if o first==1) {
first = 0 ;
snapshotFile.open(SNAP_FILE_NAME) ;
assert(snapshotFile.is_open()) ;
snapshotFile << "VEHI CLE"
<< "\t << "TIME"
<< "\t’ << "LINK"
<< "\t’ << " NODE"
<< "\t’ << "LANE"
<< "\t’ << "DI STANCE"
<< "\t’' << "VELOCI TY"
<< "\t’' << "VEHTYPE"
<< '\t’ << "ACCELER"
<< '"\t’' << "DRI VER'
<< '\t’ << "PASSENGERS'
<< '\t’ << "EASTI NG'
<< "\t’ << "NORTHI NG'
<< "\t’ << "ELEVATI O\
<< "\ t7 << "AZI MUTH!
<< ’\t’' << "USER'
<< endl;
}
assert(snapshotFile.is_open()) ;
[l wite TWO enpty |ines between tine steps:
static Time lastTimeStep = -1 ;
i f (lastTimeStep != globalTime) {
snapshotFile << "\n\n" << endl ;
lastTimeStep = globalTime ;

/1 go through all cells of the link:
for (int ii=0; ii<cells_.size(); ii++) {
/1 check if cells have a vehicle on them
if (cells_[ii] '= NULL) {
/'l get the veh and its position on the link:
Vehx theVeh = cells_[ii] ;
doubl e pos = 7.5 =*(ii+l) ;
int lane = 1 ;
/'l cal cul ate geographi cal coordinates and azi nut h:
Coord DX = - fromNode()->xx() + toNode()->xx() ;
Coord DY = - fromNode()->yy() + toNode()->yy() ;
typedef doubl e Angle ;
Angle theta = 0. ;
if (DX >0){
theta = atan(DY/DX) ;
} elseif (DX <0){
theta = Pl + atan(DY/DX) ;
} else {
if (DY >0) { theta = Pl/2. ; }
el se { theta = - PI/2. ; }

}

if (theta < 0.) theta += 2. *Pl

doubl e azimuth = theta/(2. *Pl) »360 ;

Coord easting = fromNode()->xx() + cos(theta) * POS
+ sin(theta) * LANE_WIDTH=* lane ;

Coord northing = fromNode()->yy() + sin(theta) * POS

- cos(theta) * LANE_WIDTH=* lane ;
Coord elevation = 0. ;
/1l wite the information to the file:
snapshotFile << theVeh->id()
<< "\t’ << globalTime

file: book.tex, p.8-3 October 15, 2007

8.3. Visualization via gnuplot

<< '\t’ <<id() // link id

<< "\'t’ << fromNode()->id()

<< "\t’ << lane

<< "\t’' << pos

<< '"\'t’ << theVeh->speed()

<< ’"\t’' << 1 // vehtype

<< '"\t’ << 0. // acceleration

<< "\t’' << theVeh->id() /1 driver id
<< '"\t’ << 0 // nunber of passengers
<< "\t’' << easting

<< "\t’ << northing

<< ’\t’ << elevation

<< "\'t’ << azimuth

<< '\t’ << 0 // user definable field
<< "\n"

}

For Transims, the header line is significant. For other systems, it may be
omitted.

Note the two empty lines between time steps. The empty lines are
important for the gnuplot visualization explained below; they are not im-
portant for the Transims visualizer and probably not for many other visu-
alizers.

The above is called via
voi d simulate (...) {

for (Links:iterator Il = links.begin(); Il 1= links.end(); Il ++) {
Link = link = ll->second;
link->writeVehFile(simTime) ;

8.3 Visualization via gnuplot

Gnuplot (www.gnuplot.info) is a plotting package that is available on
most linux installations. In the following we will use it for a simple visual-
ization of our traffic simulation results.

First, generate, in the same directory as where you have the vehicle snap-
shot file, a file named gpl with the following contents:

a=a+l

set grid

set xrange[-50:6050]

set yrange[-50:2050]

print a

plot "T.veh" index a u 12:13 t
if (a < 200) reread

a=20

This assumes that your vehicle snapshot file is called T.veh .
Start gnuplot by typing gnuplot . Inside gnuplot, type

file: book.tex, p.8-4 October 15, 2007

8.4. Testing the current status of the simulation

oo . M occocooons #acaoosooaanay ' ' '@e .‘..&.‘.e.&.&.'
. . : : &
3
4
. . . ®
1500 oo Soaoaooacaa Eo 50000a0a00a00a Baooasaaaasaa £ 0ca0000a00a
: : : : o
®
»
&
b4
e
: : b
oo koo R Sanooonnooaoaa Gooconnooanons 2o
D
-
+
#
E
. *
e §ooaoooooooaafbonooocaacoaa 20000000000000 00000000000 -
500 ¥
: : ; : : -
: .
- #
: &
ok R R REE TS .
0 1000 2000 3000 4000 5000 B0

Figure 8.1: Vehicle snapshot using gnuplot.

gnuplot> a=1
gnuplot> load " gpl

The result should be a window similar to Fig. 8.1 displaying the status of
the simulation time step by time step.

8.4 Testing the current status of the simula-
tion

Task 8.1 Before one continues, one should make some tests if the simu-
lation really works. Build a square with a diagonal . As suggested before:
Just start from

http://lwww.matsim.org/files/test-net/network .

Try the following things, and check them with the visualizer:

1. For initialization, completely fill one of the links with vehicles. Do
they move the way you would expect? What would you expect? Are
all links used? Remember that the link decision on intersections is

random at the moment.

2. For initialization, completely fill the two links which go into the
same node with vehicles. What happens at the merge? Who has
the priority in your code? Why?

file: book.tex, p.8-5 October 15, 2007

Chapter 9

Plans following in the
micro-simulation

9.1 Plans

In our micro-simulation, travelers follow plans. In our defourself traf-
fic simulation, we only look at cars. Cars have complete ®ineheir
plans.

Route plans always include variants of the following infatiman:

StartTime, StartLoc, Nodel, Node2, ..., EndLoc.

e StartTime: Time-of-day when the traveler wants to start.aMeys
use seconds past midnight.

e StartLoc: Starting location. For us, this is the link ID wéaéhe trip
starts.

e Nodel: First node of route plan.
e Node2, etc.: The following nodes of the route plan.

e EndLoc: The final destination of the trip. For us, this is tim& ID
where the trip ends.

In terms of programming, this means:

1. We need a mechanism to read plans.

2. We need a data structure (“parking queue”) where to kekjghes/-
plans until their starting time.

3. We need a data structure ("waiting queue”) where to kebcles/-
plans which are beyond their starting time, but have not lzdxe
to move into the traffic because of congestion.

4. We need a mechanism to move vehicles from the parking gioeue
the waiting queue.

9-1

9.2. Vehicle class

5. We need a mechanism to move vehicles from the waiting qarue
to the start link.

6. We need a mechanism to move vehicles across an intersectio
that they follow plans.

In principle, the plans file can contain the whole daily plan éach in-
dividual traveler in the simulation. For the time being, wil Wwowever

identify car trips and vehicles, and skip the remaining linfation in the
plans file, if any.

Implementation

9.2 Vehicle class

First we need to extend the vehicle class. An implementation is

#include <deque>

class Veh {

private:
Id id_;
public:

void set id(Id val) { id_ = val ; }
Id id() { return id_ ; }

private:
Spd speed_ ;
public:

voi d set speed(Spd tmp) { speed_ = tmp ; }
Spd speed() { return speed_ ; }

private:
Time startTime_;
publ i c:
voi d set_startTime (Time val) { startTime_ = val ; }
Time startTime() { return startTime_; }
private:
Id arrivalLinkld_ ;
public:
voi d set_arrivalLinkld(Id val) { arrivalLinkld_ = val ; }
Id arrivalLinkld() { return arrivalLinkld_ ; }
private:

typedef deque<ld> Route;
Route route_ ;
publ i c:
voi d addNodeld2Route(ld nodeld) { route .push_back(nodeld); }
Id nextNodelD() {
if (route_.size() >= 1) {
return route_.front() ;

} else {
return -1 ;

}
}
voi d incPlan() { route_.pop_front(); }
voi d writeEvent(ld linkld, Id fNodeld, int flag) ;
voi d dump() {

cout << " vehid: " << id()

file: book.tex, p.9-2 October 15, 2007

9.3. Plans format

<< " speed: " << speed()
<< endl ;

k

The writeEvent method will be explained later.

Note how the route plan is implemented as a deque, which is a data struc-
ture which makes it easy to add and remove elements at both ends.

9.3 Plans format

We use the Transims route format in order to have a well-defined stan-
dard.

For people who insist on their own format, it is in theory possible to write
converters. In practice, this is nearly always a headache, since, for exam-
ple: the converters are not maintained; third parties do not know where
the executables are located or how they are used; plans files are huge
(typically several GB) and for that reason one does not want different rep-
resentations of the same information on the hard disk.

Clearly, a better choice for what we do would be XML (eXtended Markup
Language). This is discussed in Sec. 24.3. The only disadvantage of XML
is that one needs libraries (such as expat) for parsing, which means that
our code would no longer be standalone. For that reason, for the time
being we use the Transims format.

Transims organizes trips into legs, for example: walk to car, drive to office
parking, walk to office. More precisely, a “trip” goes from one activity to
the next, and legs are characterized by different modes of transportation.
For our project here, we only look at car legs.

A typical example looks as this:

101100

27825 100 2 1900 2

0 86400 O

101

8

1 0 40 70 100 130 160 190

Since the number of nodes varies from plan to plan, plans need to have
a variable length part. In Transims this is achieved via a fixed length and
a variable length part. The last token of the fixed length part says how
many more tokens are to follow. The meaning of the individual numbers
is as follows:

Fixed length part:

| Number | explanation

1 Traveler (Person) ID

User field. Irrelevant for us
Trip ID. Irrelevant for us

Leg ID. Irrelevant for us
FirstLegFlag. Irrelevant for us
LastLegFlag. Irrelevant for us

o0 B”lWIN

file: book.tex, p.9-3 October 15, 2007

9.3. Plans format

7 StartTime

8 StartLocation. = StartLink for us

9 Type of StartLocation. Irrelevant for us
10 EndLocation. Irrelevant for us

11 Type of EndLocation. Irrelevant for us
12 Duration. Irrelevant for us

13 Stop Time. Irrelevant for us

14 MaxTimeFlag. Irrelevant for us

15 Driver Flag. Irrelevant for us

16 Mode. Should always be 0

17 Vehicle Type. Irrelevant for us

18 Number of additional tokens (variable length part)

The 7th token is the StartTime; the 8th token the StartLocation (which is,
for us, the link on which the vehicle starts).

An important information is the 16th token of a block/leg, which codes the
mode of transportation: “0” means “car”. If, for a given block, one finds
a different number here, we will ignore the whole block/leg and continue
with the following one.

The 18th token of a block gives the number of the tokens following from
there on.

Variable length part:

| number | explanation \

1 Vehicle ID. Ignore

2 Number of Passengers. Needs to be zero (because the
meaning of the following data depends on this).

3 Node 1

4 Node 2

5 etc.

The 20th token (= 2nd token of variable length part) should be zero; if not,
the plan should be skipped.t

All following tokens are NodelDs. The first NodelD after the start link is
included; as long as one uses uni-directional links (as we do), this infor-
mation is redundant.

The full Transims route plans specification is in the Transims documenta-
tion:

http://www.matsim.org/files/doc/transims-1.0/files. pdf

Important: There are differences between the transims-1.0 plans for-
mat and the transims-1.1 plans format. We use the transims-1 .0
plans format.

Important: Line breaks in the route plans are not significant . How-
ever, empty lines between blocks are significant. Each block corresponds
to a leg.

1if this token is not zero, then the following numbers are miydNodelDs, but also
passenger IDs. We do not want to treat this case.

file: book.tex, p.9-4 October 15, 2007

9.4. ReadPlans

Task 9.1 Write a route plans file with exactly one route for “test-net”.

9.4 ReadPlans

Here is an example of how

to read plans into the simulation:

voi d SimWorld::readPlans (Time& simStartTime) {

cout << "\ n### ent
int cnt=0 ;
Plan plan ;
simStartTime=99999 ;

ering readPlans ...\n" ;

whi | e (plan.readNextPlan()==0) {
i f (plan.mode()!=0) {

cout <<

' Wong node, skipping plan.\n"

} else if (plan.nPassengers()!= 0) {

' Wong nunber of passngers; skipping plan.\n"

(cnt%1000==0) { cout << " Cnt: " << cnt << endl ;

i f (plan.startTime() < simStartTime) simStartTime = plan.st

cout <<

} else {
cnt++ ; if
Vehx veh =
veh->set_id(

new Veh ;
plan.travid()) ;

veh->set_startTime(plan.startTime()) ;

veh->set_arrivalLinkld(plan.endLinkld()) ;

assert(links[plan.startLinkld()]'=NULL) ;
links[plan.startLinkld()]->addToPark(veh) ;

ii=plan.firstNodelndex(); ii<=plan.lastNodelndex(); i

veh->addNodeld2Route(plan.nodeTokens(ii)) ;

for (int
}
}
}
cout << " nPl ans:
<< " sinBtart
<< endl ;
cout << "### | eavi
}
Notes:

<< cnt
Tinme: " << simStartTime
ng readPlans ...\n\n" ;

e This also calls the vehicle initialization, and puts the vehicle into the

waiting queue of the

starting link. Remove the temporary way in

which we had initialized vehicles earlier.

e |t also checks which is the earliest vehicle start time.

Since parsing the plans is a bit messy, parsing is delegated to a subroutine

readNextPlan

i nt Plan::readNextPlan ()

{

static ifstream inFile;
/1 open file if necessary:

static int first=1 ;
first = 0 ;

ifo(first) {

inFile.open(PLANS_FILE_NAME);

/'l always check if file is really open:

assert(inFile.is_open()

/1 main |oop:

whi | e (linFile.eof()) {
/1 deal with j
string line ;

file: book.tex, p.9-5

)

unk:
char ch = inFile.peek() ;

October 15, 2007

}

artTime() ;

i++) {

9.5. Class Plan

i f (lisdigit(ch)) {
getline(inFile, line) ;

/1 here is the real reading:
el se {
/'l read fixed length part:
for (int ii=l; ii<=18; ii++) {
inFile >> fixTokens_[ii] ;
}
/'l read variable length part:
for (int ii=1; ii<=fixTokens_[18]; ii++) {
assert(i <= MAXTOK_) ;
inFile >> varTokens_]ii] ;
return O ;
}
}
return 1 ;

9.5 Class Plan

A class plan is used to transmit the variables, which avoids an overly long
argument list in the call to ReadNextPlan . This class specification also
does the translation from numbered tokens to meaningful variables. The
following also contains functions to set variables, which is not necessary

for the purposes of this chapter.
Chap. 11.

class Plan {

private:
i nt fixTokens [19] ;
static const int MAXTOK_ =2000 ;
i nt varTokens [MAXTOK_+1] ;
static const int firstNodelndex_

1,

It will however become necessary in

/1 (''const’’ makes sure this cannot be changed; ‘‘static’’ is
/'l necessary here because of the ‘‘const’’.)
public:
Id travid() { return fixTokens [1] ; }
voi d set travld(Id tmp) { fixTokens [1] = tmp ; }
e
Time startTime() { return fixTokens [7] ; }
voi d set_startTime (Time tmp) { fixTokens [7] = int(tmp) ; }
I e R R TR
Id startLinkld() { return fixTokens [8] ; }
voi d set_startLinkld(Id tmp) { fixTokens [8] = tmp ; }
e
Id endLinkld() { return fixTokens [10] ; }
voi d set_endLinkld(Id tmp) { fixTokens_[10] = tmp ; }
I e R R TR
int mode() { return fixTokens_[16] ; }
i nt nPassengers() { return varTokens [2] ; }
e

/'l vtokl vtok2 vtok3 vtok4 vtok5 vtok6 ...

11 nodel node2 node3 node4 ...
/1 L = fixTokens_[18]

/1 N = | ast Nodel ndex ;

voi d set_ nNodes(int tmp) { fixTokens [18]

int nNodes() { return fixTokens [18] - 2 ; }

file: book.tex, p.9-6

vt ok(L-2) vtok(L-1) vtok(L)
node(N-2) node(N-1) node(N)

October 15, 2007

9.6. Park queue

i nt firstNodelndex() { return firstNodelndex_ ; }

i nt lastNodelndex() { return firstNodelndex +nNodes()-1 ; }

e
protected:

int tokldx(int i) {
return ii+3-firstNodelndex_ ;
/I (1+3-1 3, where we find the first node)
/Il (N+ 3 -1 N+2, where we find the | ast node)

}
[= e e i

publ i c:

Id nodeTokens(int ii) {
i nt index = tokldx(ii) ;
assert(index <= MAXTOK_) ;
return varTokens_[index] ;

}

voi d set_nodeTokens(int ii, Id tmp) {
assert(ii >= firstNodelndex()) ;
assert(ii <= lastNodelndex()) ;
i nt index = tokldx(i) ;
assert(index <= MAXTOK_) ;
varTokens_[index] = tmp ;

i nt readNextTrip() ;
i nt readNextPlan() ;
i nt writePlan() ;

voi d dump() ;
/'l constructor

Plan() {
for (int ii=0; ii<=18; ii++) fixTokens_[ii]=0 ;
fixTokens_[9] = 2 ; /1 StartLoc type = parking
fixTokens_[11] = 2 ; /1 EndLoc type = parking
fixTokens_[15] = 1 ; /1 traveler is driving
fixTokens [17] = 1 ; /1 vehicle type = auto

9.6 Park queue

The park queue, as explained above, contains vehicles whose starting
time is in the future. Here is a mechanism for the park queue.

cl ass Link {

private:

typedef multimap<Time,Veh *> ParkQueue ;
ParkQueue parkQueue_ ;
public:

voi d addToPark(Veh =* veh) {
parkQueue_.insert(make_pair(veh->startTime(), veh)) ;

}
Veh+ firstinPark() {
i f (parkQueue_.size()>=1) {
return parkQueue_.begin()->second ;
} else {
return NULL ;
}

}

voi d rmFirstinPark() {
assert(parkQueue_.size() >= 1) ;
parkQueue_.erase(parkQueue_.begin()) ;

file: book.tex, p.9-7 October 15, 2007

/] see txt

9.7. Wait queue

h
Note that the implementation for ParkQueue is
typedef multimap<Time,Veh *> ParkQueue ;

We have in fact already used a multimap for the implementation of “fair”
intersections (Sec. 7.5). An additional function now is erase()

Overall, this implements a priority queue, where the element with the low-
est key is always available via begin() . “Lowest key” here means the
earliest starting time.

9.7 Wait queue

The wait queue, as also explained above, contains vehicles whose start-
ing time has passed but they have not made it into the traffic because of
congestion. The separation between park and wait queue seems some-
what arbitrary at this point. It is necessary to provide an efficient way to
write “events” when vehicles intend to start, even if they do not make it
into the traffic in the same time step (Sec. 9.11).

Here is a mechanism for the wait queue:
cl ass Link {

private:
typedef deque<Veh x> WaitQueue ;
WaitQueue waitQueue_ ;
publ i c:
voi d addTowait(Veh =* veh) {
waitQueue_.push_back(veh) ;
}
Veh* firstinWait() {
i f (waitQueue_.size()>=1) {
return waitQueue_.front() ;

} else {
return NULL ;
}

voi d rmFirstinWait() {
assert(waitQueue_.size() >= 1) ;
waitQueue_.pop_front() ;

Task 9.2 Read your plans into your simulation.

Task 9.3 Read the network and the plans from

http://www.matsim.org/files/studies/corridor/teach

into your simulation.
A sketch of the “corridor” network is given in Fig. 9.1.

file: book.tex, p.9-8 October 15, 2007

9.8. Vehicle insertion

10 40 70 100 130

100 400 700 1000 1300 L 1600 190 1900 220
ol |a

20 50 80 110 140 170 200 230

200 500 800 1100 1400 1700 2000
ol |e
b |~

30 300 60 600 %0 900 120 1200 150 1500 180 1800 210 2100 240

Figure 9.1: Sketch of the “corridor” network. The numbengegihe cor-
responding node and link IDs.

9.8 Vehicle insertion

Vehicles need to be moved from the waiting queue into the traffic. We do
this by

e moving the SimLink::move(..) function to SimLink::moveOnLink(..)
and then
e defining a new SimLink::move(..) function as follows:

class SimLink : public Link {

voi d move (int& nVehs) {
parkToWait() ;
waitToLink() ;
moveOnLink(nVehs) ;

The corresponding code is

voi d Link::parkToWait () {

Vehx veh = firstinPark() ;

while (veh !'= NULL && veh->startTime() <= globalTime) {
rmFirstinPark() ;
addToWait(veh) ;
Id linkld = id() ;
Id fromNodeld = fromNode()->id() ;
veh->writeEvent(linkld, fromNodeld, DEPARTURE_FLAG) ;
veh = firstinPark() ;

}

and

voi d Link:waitToLink () {
Vehx veh = firstinWait() ;
whi | e (hasSpace() && veh !'= NULL) {
rmFirstinWait() ;
addToLink(veh) ;

veh->incPlan() ; /|l easy to forget!!

Id linkld = id() ;

Id fromNodeld = fromNode()->id() ;

veh->writeEvent(linkld, fromNodeld, WAIT_TO_LINK_FLAG)

veh = firstinWait() ;

}

Overall, what we actually do is the following:

file: book.tex, p.9-9 October 15, 2007

9.9. Plans following and vehicle arrival

e During the initialization of the simulation, we read all the plans into
computer memory. During this reading process, we also sort them
by starting time into the parking queue.

e During the simulation itself, in each time step and for each link we
check if the first vehicle in the parking queue is “due” for its entry
into the traffic. If the answer is yes, then the vehicle is moved to
the waiting queue. This is repeated until no more vehicles want to
depart on this link in this time step.

e For all vehicles in the park queue, it is attempted to insert them into
the traffic.

The meaning of writeEvent will be explained later.

9.9 Plans following and vehicle arrival

During the traffic simulation, the turning direction corresponding to the
route plan needs to be found. That is, the random turning dynamics of
Sec. 7.4 needs to be replaced by something like

voi d Node:move () {
/'l generate random sequence of inlinks as discussed earlier:
typedef multimap< doubl e,Link *> RndLinks ;
RndLinks rndLinks ;

for (VLinks:iterator ll=inLinks().begin(); Il!=inLinks() .end(); ++l) {

Link = theLink = =+l ;
doubl e rnd = myRand() ;
rndLinks.insert(make_pair(rnd, theLink)) ;

/1 go through that rnd sequence of inlinks and nmove vehicles
/| across intersection if possible:

for (RndLinks:iterator ll=rndLinks.begin(); Il'=rndLinks .end(); ll++) {
Link * inLink = ll->second ;
Veh* veh = inLink->firstOnLink() ; /1 NULL if none

if (veh != NULL) {
Id nextNodeld = veh->nextNodelD() ;
i f (nextNodeld>0) {
Link * theOutLink = findOutLink(nextNodeld) ;
i f (theOutLink->hasSpace()) {
inLink->rmFirstOnLink() ;
theOutLink->addToLink(veh) ;
veh->incPlan() ;

} else { /] end of plan
inLink->rmFirstOnLink() ;
Id arrivalLinkld = veh->arrivalLinkld() ;
/1 WARNI NG one should check if the arrivalLink is
/1 connected to the current node!!
veh->writeEvent(arrivalLinkld, inLink->toNode()->id(
delete veh ;

}

Note that the event uses the id of the arrival link, not the current link id.
Task 9.4 Run your simulation with the network from

file: book.tex, p.9-10 October 15, 2007

), ARRIVAL_FLAG) ;

9.10. Computational Speed

http://lwww.matsim.org/files/studies/corridor/networ k
and plans from
http://www.matsim.org/files/studies/corridor/teach/ O.plans

Results should be submitted as T.veh and T.bin files taken every 60 sec-
onds.

When does the last vehicle leave your simulation? (Answering this ques-
tion is important since it allows us to compare results.)

9.10 Computational Speed

Since in the application, many of the problems are fairly large, one needs
to keep an eye on computing speed. A useful measure for this are “vehicle
updates per second”. Let's say that for a simulation with 10* vehicles and
10% time steps we need 10 seconds of computing time. Then we have
10*x10% = 107 vehicle updates per 10 seconds, or 10° vehicle updates per
second. This number is typical for a simple implementation on a 300 MHz
CPU.

Under unix one obtains the computing speed for example via time (see
man-page). My personal result looks like

92.88user 0.00system 1:34.50elapsed 98%CPU (Oavg...

We are most interested in “92.88user” (coresponding to 92.88 sec).

Transportation science sometimes does the “real time limit” (for our pur-
poses = the number of vehicles with which the simulation runs as fast as
reality).

All of these values depend on the vehicle density, which therefore always
needs to be given when giving computing speeds.

Task 9.5 How long does your simulation for the “corridor” network with
0.plans take to run? Please also tell us your implementation (C++ or Java
or ?7?). Do this once with output and once with output switched off. What
does this roughly correspond to in “vehicle updates per second”. How did
you obtain that number?

9.11 Events output

Besides visualizer output, we need some output that is geared more to-
wards the internal functionality of the system. We call this “events output”.
The name means that events output is triggered by some event. Typical
events are vehicle departure, vehicle arrival, or link traversal.

Specifically, our events file consists of the following fields. From now on,
we deviate from Transims formats and use our own formats. The main
reason is that the remaining files are not very large and thus converting
them when necessary seems justified. As argued elsewhere, in the longer
run these files should all be in XML format.

file: book.tex, p.9-11 October 15, 2007

9.11. Events output

| Column | Header type | explanation \

1 TIMESTEP int time step

2 VEHICLEID | int vehicle id

3 LINK int Link ID

4 FROMNODE | int FromNode ID for link. Irrelevant for
us since we use uni-directional links
5 FLAG int 0: vehicle arrives at final destina-
tion

2: vehicle leaves a link to go
across an intersection

4: vehicle moves from wait queue
into traffic

5: vehicle enters a link coming
from an intersection

6: vehicle is supposed to start

6 NOTES string | notes (leave empty, but separate by
tab)

These events will be needed later when we introduce feedback and learn-
ing.

Task 9.6 Write code which writes all of the above events to file when they
are encountered.

file: book.tex, p.9-12 October 15, 2007

Chapter 10

Modularization, inheritance,
templates, and code re-use

10.1 Introduction

As discussed in Chap. 2, transportation simulation packagasist of
many modules. So far, we have seen the traffic simulationtasisual-
izer. The next module will be the router.

In contrast to the visualizer, our router will operate on apr similar to
the traffic simulation. This means that it makes sense tseesome of
the traffic simulation code. There are several options:

e If your are working as part of a team and your task is the router
then you can just delete the pieces of code that are specifieeto
traffic simulation (example: the cell structure of the linksid go
from there.

e If you want one consistent piece of code but not many hassles i
terms of software design, then one option is to have the iomality
for the simulation and for the router combined in the samesot.
A link for example would keep the cell structure, even wheeadus
by the router.

This is quite inefficient both in terms of performance anceimts of
memory usage, but our experience is that for the examplesstsd
in this text this is a workable solution. In this case, you dbmeed
to read this chapter.

e It is possible to separate the general purpose pieces ofdtie n
work reading and network construction from the simulatipacfic
pieces.

It is the last point that will be discussed in this chapter.

10-1

10.2. Links, Simlinks, and Inheritance

10.2 Links, Simlinks, and Inheritance

It makes sense to separate the graph functionality thabeillsed by sev-
eral modules from the graph functionality that is used bynglsi module
only. The mechanism to do this is inheritance. For example

cl ass Link {

private:
Id id_ ;
publ i c:

void set id(Id val) { id_ = val ; }
Id id() { return id_ ; }

private:
Len len_ ;
public:
voi d set length(Len val) { len_ = val ; }
Len length() { return len_ ;}
.
cl ass SimLink : public Link {
private:
Cells cells_ ;
publ i c:
voi d build() ;

voi d addVehToLink(Veh =* veh) ;

}

This means that SimLink can do everything that Link can das@ddi-
tional things. For example:

Link * link ;

SimLink * simLink ;

cout << link->id() : Il o k.

cout << simLink->id() ; /1 o.k., simink is a link

link->build() ; /1 not o.k., link is not a sinmlink
simLink->build() ; /'l o.Kk.

The wordpublic inclass SimLink : public Link means that

everything that was public ihink will be available forSimLink . For
the purposes of these thinga@mLink will behave exactly akink .

This is the only type of inheritance that we will consider.

10.3 Templates
Inheritance, without additional measures, does not warlgfaph reading
and graph construction. It is not possible to do somethke li

class Node ; // forward decl aration
cl ass Link {

.l\'l'ode* toNode() { return toNode_ ; }

file: book.tex, p.10-2 October 15, 2007

10.3. Templates

cl ass SimLink : Link {
o
int main () {
SimLink * aSimLink = new SimLink(...) :

é.imNode* aSimNode = aSimLink->toNode() ; /1 does not work

}

becauseoNode() is of typeNode* instead of of typeSimNode* .

For C programmers and many other people, it will be clearithapossi-
ble to work around this problem: this is just about pointarg] it should
be possible to cast pointers to whatever one wants. In gefitesahow-

ever an advantage that C++ enforces consistency betweetepobjects,
and so one should not deliberately circumvent this typekihgc

A possibility to work around this is the use of templates.

template < cl ass Node> |l <======
cl ass Link {

.l\'l'ode* toNode() { return toNode_ ; }

P

cI ass SimNode ; // forward decl aration

cl ass SimLink : Link<SimNode> { [l <======
J

int main () {
SimLink * aSimLink = new SimLink(...) :

é'imNode* aSimNode = aSimLink->toNode() ; /'l works

}

In fact, not much seems to have changed. What is the diffefenc

Template classes are often described as “parameterizesesla In fact,
one could have written

template < cl ass XXnode> /] <======
cl ass Link {

.>.(.XNodek toNode() { return toNode_ ; }
b

where now the notatioKXnode makes clear that the type of the node is
left open.

Then, when later saying

cl ass SimNode ;
cl ass SimLink : Link<SimNode> {

}

then this means th& mLink inherits fromLink while usingSimNode
everywhere wher&Xnode is in the definition. In consequence,

file: book.tex, p.10-3 October 15, 2007

10.4. What belongs into the base class?

aSimLink->toNode() ;

now returns a pointer t8imNode.

Thus, a method to translate everything we have done so famimbore
general network construction is to write things like

R
template < cl ass Node>
cl ass Link {

.
template < cl ass Link>
cl ass Node {

b
template < cl ass Node, cl ass Link>
class Net {
publ i c:
typedef map<ld,Node *> Nodes ;
Nodes nodes ;

voi d readNodes() {..} :

P

A P
class SimNode ; // forward decl aration

class SimLink : public Link<SimNode> {

P

cl ass SimNode : public Node< SimLink> {

i
class SimWorld : public Net<SimNode,SimLink> {

b
I e R T T
int main () {

é'imWorId simWorld ;

gi'mWorId.readNodes() ;
simWorld.readLinks() ;

In spite of the above explanation, for an inexperienced qamogner the
above is probably too much of a change to be done in one step aiid

be necessary to achieve some familiarity with templatesdas simpler
programs before achieving this task. We hope that the abotesrtan
guide the necessary reading and experimentation when atizgilon of
the transportation simulation is the goal.

10.4 What belongs into the base class?

It is never simple to decide what belongs at what level of tieeanchy
in inheritance. A possibility is to have only the basic trsnfgr graph
construction in the base class and everything else in theedeclass.

file: book.tex, p.10-4 October 15, 2007

10.4. What belongs into the base class?

This would mean to have ID, toNode, fromNode, and possiblyniks
and outLinks in the base class and everything else in theatbdasses.

We do however think that it makes more sense to have evegythit
is in the nodes and links data files in the base class. In thgt the
programs for reading the network data can be used by all reeduithout
any changes, and the memory overhead is still not too bad.

file: book.tex, p.10-5 October 15, 2007

Chapter 11

Route planner

11.1 Introduction

In Chap. 9 we have modified the traffic simulation in a way trethe
individual vehicle follows precomputed plans. In this Cteapwe will

discuss a simple method to generate these route plans. &cake of
simplicity, we continue to only look at the car mode, whicrschibes
80 percent or more of all travel in most western cities. Rayfor other
modes will be discussed in Sec. 20.

For each traveler, the input to the router consists of tHeviehg informa-
tion:

e Trip Start Time.

e Trip Start Location. LinkID where the trip starts.

e Trip End Location. LinkID where the trip ends.

The output is a plans file, as specified in the previous section

11.2 Fastest Path

The typical method to obtain routes is to calculate fastagtg This is
achieved via a standard shortest path algorithm by usikglavel time
as link cost. These algorithms typically go from node to noahich

means that we have to translate our starting and endingdosato the
corresponding nodes. Such an algorithm (Dijkstra algorjteee e.g?)

then can proceed as follows:

e SetarrTime at all nodes to infinity. SesDone of all nodes to
false

e Take the starting node from the trip. Make it the current ndslet
itsarrTime to the trip starting time.

11-1

11.3. Link travel times

¢ “Node expansion:” SeisDone of the current node ttrue . Go
through all outgoing links from the current node. For eaathdink,
calculate arrival time a@bNode as

tmpArrivalTime = now + outLinkTravelTime , (11.2)

wherenow is thearrTime at the current node.
If tmpArrivalTime is smaller thaioNode ’s currentarrTime
then a faster path to that node just has been found. In that cas
— SettoNode s arrTime time totmpArrivalTime
— Set a pointer atoNode pointing back to the current node.

e Out of all nodes wheresDone is false, take the one with the min-
imumarrTime . Do “node expansion” with this node.

e EtcC.

One can stop when the destination node is about to be expamded
that one cannot stop when the end node is touched for the finstd (i.e.
when its time is set from infinity to some finite value) sincense better
time can be found laterThe full path can now be found by taking the end
node, and following the pointers back to the start node.

11.3 Link travel times

What is missing is the value @iutLinkTravelTime . When no other
information is available, then we use

linkTravelTime= linkLength/linkFreeSpeed (11.2)

For the CA traffic simulation, the free speed is one cell pmetstep, or
7.5 m/s.

Congestion will reduce the speeds on the links. This effeictdluded into
the router in Chap. 12.

Implementation

11.4 Library support for graph algorithms

There are libraries for graph algorithms, such as LEDA. In the past, they
were never flexible enough to cover everything we want to do (e.g. time de-
pendence). This will eventually change, and there will be options to pass
calls to arbitrary cost functions to a graph algorithm. Once that works,
writing router code will become considerably simpler.

file: book.tex, p.11-2 October 15, 2007

11.5. General structure

11.5 General structure

The general structure of the router is as follows (not assuming the use of
templates as discussed in Chap. 10):

cl ass Link ;
cl ass Node {

c,l ass Link {

k

class Plan {

cl ass RouteWorld {

private:
typedef map<ld,Node *> Nodes ;
Nodes nodes ;
typedef map<ld,Link *> Links ;
Links links ;

publ i c:
voi d findPath(Plan&) ;

b

int main() {
/'l instantiate routeWrld:
RouteWorld routeWorld ;

/'l read the network:
routeWorld.readNodes() ;
routeWorld.readLinks() ;

/1 main |oop:

Plan plan ;

whi | e (plan.readNextTrip()==0) {
routeWorld.findPath(plan) ;
plan.writePlan() ;

}

As discussed in Chap. 10, the node, link, and plan classes and methods
can be taken from previous chapters. Depending on the intention, one can
just copy them into the route code and comment out unneeded portions.
Alternatively, one can put them into a separate file and include them both
into the simulation and into the router code. As discussed in Chap. 10,
the best solution would be to use inheritance, which however implies the
use of templates.

11.6 Input file: Trips

Transims does not have a trips file; indeed, the same information can
be derived from Transims activity files (see Sec. ??). Transims activity
files contain much more information than we need here, and they have
been a continuous source of error and misunderstanding. And as a final
argument, we believe that the activities file should be an XML subset of
the plans file, as we will discuss in Sec. 24.3. For all those reasons, at

file: book.tex, p.11-3 October 15, 2007

11.6. Input file: Trips

this point we deviate once more from Transims file formats and introduce
our own file format for trips.

The format is as follows:

| Column | Header | type | explanation

1 I D integer | ID number of traveller/vehicle

2 DEPTLINK | integer | departure location (link ID)

3 ARRLI NK | integer | arrival location (link ID)

4 TI ME integer | departure time of traveller/vehi-
cle in “seconds past midnight”

5 NOTES string notes (leave empty, but separate by
tab)

This can be read in a similar way as a links or nodes file; and we will
use the already existing plan class for storing the information. In conse-
quence, reading the trips looks as follows:

i nt Plan::readNextTrip () {

static ifstream inFile ;
string aString ;
vector<string> tokens ;
static bool first=
first = fal se ;

}

/1 open file:

true ;

ifo(first) {

inFile.open(TRIPS_FILE_NAME) ;
assert(inFile.is_open()) ;

/1 deal with header

| i ne:

getline(inFile, aString) ;

tokenize(aString, tokens) ;

assert(tokens[1l]== D) ;
assert(tokens[2]== "DEPTLI NK") ;
assert(tokens[3]== "ARRLI NK") ;
assert(tokens[4]== "TIME") ;

/'l always check if file is still open:

assert(inFile.is_open()) ;

/1 main part:

whi | e (linFile.eof()) {

getline(inFile, aString) ;

i f (laString.empty() && isdigit(aString[0]))
[l [[skip lines with junk]]

}

{

tokenize(aString, tokens) ;

Id travid ; convert(tokens[1], travid) ;

Id startLinkld ; convert(tokens[2], startLinkld) ;
Id endLinkld ; convert(tokens[3], endLinkid) ;

Time startTime ;

convert(tokens[4], startTime) ;

set_travld(travid) ;
set_startLinkld(startLinkld) ;
set_endLinkld(endLinkld) ;
set_startTime(startTime) ;
set_nNodes(0) ;

return O

}

’

/] set nunber of node tokens to zero

return 1 ; // return 1 when eof is encountered

Note that the methods to set the plans variables were already defined in
Sec. 9.5.

file:

book.tex, p.11-4

October 15, 2007

11.7. FindPath and Dijkstra

Task 11.1 Write a program that constructs the network, reads trips, and
outputs them to the screen. Trips are at

http://www.matsim.org/files/studies/corridor/teach/ 0.trips .

11.7 FindPath and Dijkstra

Remember that before calling the Dijkstra algorithm, the starting/ending
locations which are on links need to be pushed forward/backward to the
corresponding nodes. For us, links are always uni-directional, so that the
answer to this is unique. This can look as follows:

i nt RouteWorld::FindPath (Plan& plan) {
Link = startLink = links[plan.startLinkld()] ;
assert(startLink !'= NULL) ;
assert(startLink->id()==plan.startLinkld()) ;
Link = endLink = links[plan.endLinkld()] ;
assert(endLink!= NULL) ;
assert(endLink->id()==plan.endLinkld()) ;
Node* startNode = startLink->toNode() ;
Nodex endNode = endLink->fromNode() ;
Dijkstra(startNode, endNode, plan.startTime()) ;
Node* tmpNode = endNode ;

int cnt=0 ;
whi |l e (tmpNode !'= NULL) {
cnt++ ;

tmpNode = tmpNode->prev() ;

plan.set_nNodes(cnt) ;

tmpNode = endNode ;

for (int ii=plan.lastNodelndex(); ii>=plan.firstNodelndex() ; i i--) {
plan.set_nodeTokens(ii, tmpNode->id()) ;
tmpNode = tmpNode->prev() ;

return O ;

}

Note that this calls Dijkstra . The code after the Dijkstra call takes
the Dijkstra algorithm result and copies it into Plan . Plan.SetNNodes
sets the number of nodes the route traverses from the start link to the
destination link. Plan.SetNodeTokens sets the corresponding tokens
to the node IDs. An implementation for this was already given earlier
(Sec. 9.5).

Dijkstra itself can look as follows. The precise meaning of nodelList
will be described afterwards; essentially, it is a container that contains all
“pending” nodes. In Sec. 11.2 this corresponds to the set of all nodes
where isDone s false but arrTime is no longer infinity.

i nt RouteWorld::Dijkstra (Node * startNode, Node * endNode, Time startTime) {
NodelList pending ;
/1l general initialization:
for (Nodes:iterator nn=nodes.begin(); nn!=nodes.end(); nn ++) {
Node* theNode=nn->second ;
theNode->unset_isDone() ;
theNode->set_arrTime(INFTY) ;
theNode->set_prev(NULL) ;

/[l initialize start node:

file: book.tex, p.11-5 October 15, 2007

11.7. FindPath and Dijkstra

startNode->set_arrTime(startTime) ;
pending.insert(make_pair(startTime, startNode)) ;
/1 Dijkstra | oop proper:
whi | e(pending.size() > 0) {
Node* theNode = pending.begin()->second ;
pending.erase(pending.begin()) ;
i f (Y(theNode->isDone())) {
/'l (check this because we nay have nodes nore than once in |ist)
theNode->set_isDone() ;
i f (theNode!=endNode) {
theNode->expand(pending) ;
} else {
return O ;
}

}

/'l shoul d never get here:
assert(0==1) ;

}

The implementation for NodeList is again a multimap; the functioning
of this was already explained in the context of generating a random se-
quence of links, and in the context of the vehicle wait queue. For the
wait queue, the functionality is exactly the same has here: We need to
maintain a set of (key,pointer)-pairs such that it is possible to retrieve the
pointer which belongs to (one of) the smallest key(s).

One issue here is that, if a better ArrTime for a node is found, it should
be moved within the priority queue. This would necessitate to find that
element within the queue. Another option is to leave both entries in the
queue, but add the IsDone flag to nodes. If a node with IsDone is en-
countered, it is removed from the queue but ignored otherwise.

The expand() method is still missing. Here is a suggestion:

voi d Node::expand (RouteWorld::NodeList& pending) {
Time now = arrTime_ ;
for (VLinks:iterator ll=outLinks().begin(); Il'=outLinks O.end(); ll++) {
Link = link = =« ;
Node* nextNode = link->toNode() ;
Time linkTTime = link->tTime(now) ;
Time nextTime = now + linkTTime ;
i f (nextTime < nextNode->arrTime()) {
nextNode->set_arrTime(nextTime) ;
assert(!(nextNode->isDone())) ;
nextNode->set_prev(this) ;
pending.insert(make_pair(nextTime, nextNode)) ;

}

tTime(.) isamethod of the Link class which returns the link travel
time on that link as a function of the entering time, in the code given by
now. As discussed in Sec. 11.3, at this point this should return the length
of the link (in meters) divided by 7.5.

Task 11.2 Run FindPath on the first activity in

http://www.matsim.org/files/studies/corridor/teach/ 0.trips

Which route is returned? Why?

file: book.tex, p.11-6 October 15, 2007

11.8. Plans output

11.8 Plans output

Now the plan needs to be written to file. Since we have it already in a
suitable internal representation, that is easy now:

i nt Plan:writePlan () {
static ofstream outFile;
/1l open file if this is the first call:
static int first=1 ; ifo(first) {
first = 0 ;
outFile.open(PLANS_FILE_NAME);

/'l always check if file is really open:
assert(outFile.is_open()) ;
/1 fixed length part
for (int ii=l; ii<=18; ii++) {
outFile << fixTokens_]ii] ;
ifo(ii==6 || ii==11 || ii==14 || ii==17 || ii==18) {
outFile << endl! ;
} else {
outFile <<
}

/'l variable length part
for (int ii=1; ii<=fixTokens_[18]; ii++) {
outFile << varTokens_Jii] << r

/1 Add an enpty line:
outFile << endl << endl ;
return O ;

Task 11.3 Apply your router to
http://www.matsim.org/files/studies/corridor/teach/ 0.trips

and generate the corresponding plans file in Transims format. Note that
the result is not similar to

http://www.matsim.org/files/studies/corridor/teach/ O.plans .

file: book.tex, p.11-7 October 15, 2007

Chapter 12

Congestion-dependent router

12.1 Link travel times and congestion

So far, the router is not sensitive to congestion. In ordena&e the routes
sensitive to congestion, delays caused by congestion westbtv up in

the link travel times. This can be achieved via getting thk travel times

from a separate file. Links which are congested will have tiakel times

which are longer than the free speed travel times.

In practice, we will achieve this via the events file. The dsdite, as dis-
cussed in Sec. 9.11, contains for each vehicle the time viresrers and
the time when it leaves each link. We will aggregate thisrimfation as a
function of the link entry times. The procedure consistshef fiollowing
steps:

e Conversion of events to link travel times. For each enter-link-
event, the corresponding leave-link-event is searcheda fesult,
one obtains for each link entry time a corresponding linkdét&ame.

e Aggregation. Link travel times are aggregated into time slices, of
e.g. 15 min. For this, the link travel times of all vehicledeeing a
link during a certain time slice are averaged. For exampkbere
are vehicles entering at 9:03:22, 9:05:56, and 9:07:23tlzidlink
travel times are 1 min, 2 min, and 3 min, then the average talel
time for all vehicles entering between 9 and 9:14:59 will baig.

This type of data aggregation is the simplest method passibd
it has certain drawbacks. This will be discussed in moreildieta
Sec. 19.1.

Let us consider why this method works. The Dijkstra algontas ex-
plained in Sec. 11.2, proceeds by “expanding” a node wheasterf path
to that node can be found. For that reason, the “current tiatghat

node, denoted byow, is the time-of-day when the node is reached via

the fastest path. It is therefore also the time-of-day theroutgoing links
from that node are entered.

Note: With time-dependence as explained above, it coulgpémphat
“waiting at a node” yields a faster path. This can happen wthenink

12-1

12.2. Congestion dependency: Link travel times

travel time in the following time bin is shorter than the litdavel time

in the current time bin plus the remaining time in the curteang bin. In

such a situation, the above algorithm would not return thie fhet is tech-
nically the fastest. In real traffic, however, this is raralyissue: Links
are approximately FIFO (first-in first-out), which meanstthiatering at a
later time also means leaving at a later time. In other wolfd$te time-

dependent algorithm “thinks” that waiting at a node woulg p#, then

this is normally an artifact of the routing algorithm — mopeesifically, of

the time aggregation — and not a feature of the traffic systeon.those
reasons, using the algorithm as described above will ndyndalscribe
plausible routes, even if they may not be the technicallie&ts

Yet, there is at least one situation where indeed waiting radde could
pay off: This is if links are opened at a certain time-of-dsye will not
assume such complications here.

Implementation

12.2 Congestion dependency: Link travel
times

We need to get the congestion information into the router. More specif-
ically, we need that the correct link travel time information is returned by
link->tTime(now) in Sec. 11.7.

As said above, the way we do this is by reading the events file, calculating
each vehicle’s link travel times, and then aggregating those times into the
desired time bins. Here is a suggestion of a method to do this; comments
are added below.

cl ass EnterEvent {

private:
Time time_ ;
publ i c:
voi d set_time(Time val) { time_ = val ; }
Time time() { return time_ ; }
private:
Id linkld_ ;
publ i c:
voi d set linkld(Id val) { linkld_ = val ; }
Id linkld() { return linkld_ ; }
private:
Id vehld_ ;
publ i c:

voi d set vehld(Id val) { vehld_ = val ; }
Id vehld() { return vehld_ ; }

voi d RouteWorld::readEvents () {
cout << "\ n### entering readEvents ..." << endl ;
int cnt=0 ;
/'l preprocessing (initialize Sumand Cnt):
for (Links:iterator ll=links.begin(); Il'=links.end() ; ++) {
Link = link=Il->second ;

file: book.tex, p.12-2 October 15, 2007

12.2. Congestion dependency: Link travel times

link->tTi

}
/'l open fi
ifstream inFil

melni() ;

| e:
e ; inFile.open(EVENTS_FILE_NAME) ;

assert(inFile.is_open()) ;
string aString ;
vector<string> tokens ;

/'l process

header |i ne:

getline(inFile, aString) ; tokenize(aString, tokens) ;

const int tidx=1 ; assert(tokens[t_idx]== "TI MESTEP") ;
const int v_idx=2 ; assert(tokens|v_idx]== "VEH CLEI D") ;
const int |idx=3 ; assert(tokens[l_idx]== "LINK") ;

const int n_idx=4 ; assert(tokens[n_idx]== " FROVNCDE") ;
const int f idx=5 ; assert(tokens[f_idx]== "FLAG') ;

typedef map<Id,EnterEvent *> EnterEvents ; EnterEvents enterEvents ;
/1 main |oop:

whi | e (linFile.eof()) {

getline(
if (la
11

inFile, aString) ;
String.empty() && isdigit(aString[0])) {
(skiplines w junk (e.g. last line))

tokenize(aString, tokens) ;
Time time ; convert(tokens[t_idx], time) ;

Id
Id
Id
in
if

}

}

vehld ; convert(tokens[v_idx], vehld) ;
linkld ; convert(tokens[l_idx], linkld) ;
fromNodeld ; convert(tokens[n_idx], fromNodeld) ;
t flag ; convert(tokens|f_idx], flag) ;
(flag==ENTER_LINK_FLAG) {
EnterEvent =+ enterEvent = new EnterEvent ;
enterEvent->set_time(time) ;
enterEvent->set_linkld(linkld) ;
enterEvent->set_vehld(vehld) ;
assert(enterEvents.count(vehld) == 0) ;
enterEvents[vehld] = enterEvent ;

el se i f (flag==LEAVE_LINK_FLAG) {
EnterEvent * enterEvent = enterEvents[vehld] ;
assert(enterEvent != NULL) ;
assert(enterEvent->linkld() == linkid) ;
Link = link = links[linkld] ;
Time ttime = time - enterEvent->time() ;
link->addToSum(enterEvent->time(), ttime) ;
cnt++ ;
enterEvents.erase(vehld) ;
delete enterEvent ;

i f (enterEvents.size() = 0) {

cout << severe warni ng: events map not enpty " << endl ;
}
cout << nEvents: " << cnt << endl ;
cout << "### | eaving readEvents ..." << endl << endl ;
}
Comments:
¢ In the initialization, all sums and count variables are set to zero via
voi d Link:tTimelni () {
sum_.assign(maxBin_ + 1, 0);
cnt_.assign(maxBin_ + 1, 0);
}
sum_ and cnt _ are vectors (e.g. vector<int> sum etc.). The
assign(N,X) command sets elements 0 to N-1 of the vector to
value X.
file: book.tex, p.12-3 October 15, 2007

12.2. Congestion dependency: Link travel times

After that, the file is opened and the header line is read.

¢ In the main loop, the method goes through each line of the file,
puts it into aString , checks for garbage, reads the corresponding
values for time, vehicle id, link id, from-node id, and the event flag.
If the event flag denotes an enter-link-event, then this information is
added to a map with the vehicle id as key. Note that for this the
vehicle id needs to be unique. If the event flag denots a leave-
link-event, then the corresponding enter-link-event is retreived, the
link travel time is computed, and it is added to the relevant time bin.
The latter is achieved by

voi d Link::addToSum (Time now, doubl e sum) {
unsigned bin = timeToBin(now) ;
assert(bin < sum_.size()) ;
sum_[bin] += sum ; cnt_[bin] ++ ;

}
This uses

i nt timeToBin (Time theTime) {
return int(theTime/900) ;
}

The correct link travel time is now returned by

Time Link::tTime (Time now) {
unsigned bin = timeToBin(now) ;
assert(bin < sum_.size()) ;
if (cnt_[bin] >0) {
return Time(sum_[bin})/cnt_[bin]) ;
} else {
return Time(length())GBL_FREE_SPEED) ;
}

}

Note that this uses the free speed travel time if no events information is
available. Here, we use the global variable GBLLFREESPEED this could
be replaced by link-dependent free speeds in more sophisticated imple-
mentations. However, when doing this, one needs to make sure that also
the traffic simulation generates link-dependent free speeds. Our simu-
lation of Chap. 7 does not do this; improving this will be discussed in
Chap. 17.

It is useful to note that all conversions from time-of-day to time-bins is
done via the function timeToBin . The inverse conversion (from time
bins to time-of-day) is never needed. This makes sure that if the router re-
quests information for a certain time-of-day, it will always receive the same
time bin that a link entry event at the same time would have obtained.*

LEarlier versions, by Transims and also by ourselves, agtgdghe event informa-
tion into the time bins either directly in the traffic simuéat, or by some external module,
and wrote the result into a file. The typical information give that file was a time, say
“900 sec”, and a corresponding link travel time. In implertations, there was then al-
ways confusion if this referred to a time bin going from 1 t®96r to a time bin going
from 900 to 1799. The intention was the first, but unfortulyatiene%900 (where%
is the modulo function) puts 0 to 899 into one time bin and 39A 799 into another
one, resulting in many errors. Clearly, this is a trivial lplem, but one that continuously
caused problems.

file: book.tex, p.12-4 October 15, 2007

12.2. Congestion dependency: Link travel times

Clearly, the overall integration into the router has to look as follows:

int main() {
[/l instantiate routeWrl! d:
RouteWorld routeWorld ;

/'l read the network:
routeWorld.readNodes() ;
routeWorld.readLinks() ;

/'l read the events:
routeWorld.readEvents() ;

/1 main |oop:

Task 12.1 Write routines which read the events. Check if the processing
of

http://www.matsim.org/files/studies/corridor/teach/ test.events
leads the link travel times would expect. (Which values would you ex-
pect?)

Task 12.2 Run FindPath together with

http://www.matsim.org/files/studies/corridor/teach/ test.events

on the first trip in

http://lwww.matsim.org/files/studies/corridor/teach/ 0.trips

Which route is returned? Is this different from the route returned in
Task 11.2? Why?

Task 12.3 Get the events file that was produced by running the traffic
micro-simulation on

http://lwww.matsim.org/files/studies/corridor/teach/ 0.plans

Read those events, and then apply your router to

http://lwww.matsim.org/files/studies/corridor/teach/ 0.trips

Give the resulting routes file to the micro-simulation and have it executed.
Does the result make sense? Why or why not?

file: book.tex, p.12-5 October 15, 2007

Chapter 13

Feedback/System integration

13.1 Introduction

As explained in Chap. 2, “learning” or “adaptation” is anrexaely im-

portant part of transportation simulations packages. dha is that if the
execution of a plan differs from what people had expectesh they will

change their plans to adapt to what they found. For exanfgengestion
lets them arrive late to work, they will leave home earlier.

We will implement this in a very straightforward way: Theffiasimula-
tion will collect link travel times, and the router will uskdm to generate
better routes. This reflectyay-to-day learning, that is, travelers revise
their decisions from one day to the next. This is in contrastithin-day
learning, which will be treated later.

We will also allow only 10% of the travelers to replan betweery given
two days, in order to avoid over-reactions of the system. hSmeer-
reactions could otherwise for example happen if altereadiwas slightly
faster than another one in one iteration and as a rafiutlavelers would
switch to link A, making it extremely congested. There atgeotwvays to
deal with this problem, which will also be treated later ie ttlass.

Fig. 13.1 gives information about the data flow through ttHtedént ele-
ments.

Implementation

13.2 Subset of trips file

You want the router to compute new routes only for 10% of the travelers.
For this, you need to generate a random sample of the trips file. Do the
following:

e Write the trips file header.

e For each traveler in the trips file, decide if that traveler should be
re-planned. If yes, write the trip line into the new file.

13-1

13.2. Subset of trips file

100%
plans traffic events

simulation

10%

plans
S~ 10%of < 100% of

V trips trips

100%
new
plans

Figure 13.1: Data flow through the simple feedback mechamwisthis
chapter. Reading the network files is not drawn. The thickdiare the
ones which need to be done in this Chapter.

Awk is a good language for parsing line-oriented files, which is why we
introduce it here.

BEGIN {

print header line of trips file

print "ID" , "DEPTLINK" , "ARRLINK' , "TIME", "NOTES"
}
{

Skip header line and comments:
if (%L == "#" || $1 = "ID") { next; }

w/ proba 10%, write out the line again:
if (rand() < 0.1) {
print $0 ;
}
}
If the above is called SelectTrips.awk ,then is is called via

gawk -f SelectTrips.awk < O.trips > L1.trips

The code consists of three parts:

1. Anoptional “BEGIN” block. This is executed before anything is read.

2. A block without special identifier. For every line out of
test.events , this block is executed.

3. An optional “END” block. This is executed just before the program
is exited.

See “man awk” for more information.

IMPORTANT: Make sure you use different random seeds every ti me
you call this module, otherwise the same 10% travelers get re -
planned over and over again.

In awk, “rand()” returns a random number. See “man awk”.

file: book.tex, p.13-2 October 15, 2007

13.3. Calling the router

Task 13.1 Generate a set of 10% randomly selected trips. Use
http://lwww.matsim.org/files/corridor/teach/0.trips

as input.

13.3 Calling the router

You should now be able to call the router. Make sure that the router really
reads the files (events, trips) that you provide. For this, it is recommended
to re-do task 11.2 and check if the router truly responds to the files you
give to it.

Task 13.2 Generate a set of routes which have responded to congestion.

13.4 Merging of the routes

Now you have two files with routes, one with the old routes for all travelers,
and one with the new routes for 10% of the travelers. We need to merge
them.! For the merging, we can assume that the plans are in order, since
they are generated from the same trips file. So you have to write code
which does the following:

Open both files, old.plans and new.plans.

Read the first plan from each file.

If they have the same traveler id, then

— discard the old plan and write the new plan into merged.plans.
— Read the next plan from each file, and continue.

If they do not have the same traveler id, then

— write the old plan into merged.plans.
— Read the next plan from old.plans, and continue.

Note that you could use ReadPlans and WritePlans from Secs 9.4
and 11.8. Awk does not work so well here since the format is not line
oriented.

13.5 Traffic simulation

Task 13.3 Now you should run the traffic simulation on the new plans set.
Make sure (e.g. in Vis) that some travelers really use new routes (0.plans
has all traffic on the middle road). This is called the 1st iteration. When
does the last vehicle leave your simulation?

This is truly awkward. In our research, we put the new platsadata base, which
keeps track ofll plans. Then we dump out the plans we want. That solution ishmuc
cleaner, but besides being more difficult to implement, éi$® slow, so it is not the final
answer.

file: book.tex, p.13-3 October 15, 2007

13.6. Iterations

13.6 Iterations

Now we want to do systematic iterations. You should write a script which
manages those iterations. One option is perl; shell scripts work well, too.
Also, some clever Makefile writing is an option. The script does the fol-
lowing:

e Run the usim on a given plans file.
e Generate a random 10% trips file.

e Run the router on the 10% trips file using the events from the last
simulation.

e Merge the plans.
e Run the usim again.
e Eftc.

Task 13.4 Do 50 iterations. Keep all information (routes, events, snap-
shot files) for every 10th iteration.

Keep events files for all iterations.
Compress (e.g. gzip) all output files.

Task 13.5 Plot the sum of all vehicle travel times as a function of the

iteration number.
Note that you can derive this information from the events files.

file: book.tex, p.13-4 October 15, 2007

Chapter 14

Activities planner: Adjust trip
starting times

14.1 Introduction

So far, we have a traffic micro-simulation module, and a rautnodule.
The input to all this, apart from the network informatione dahe trips.
However, these trips need to be generated somehow. As atépsts
wards this, we will consider the question of departure tiheice. Let
us assume that people want to arrive at work at a particutee.tiThere
is a penalty associated with being early (which consistsasted time),
and a penalty associated with being late (which may consish@ngry
employer). Also, the travel time may vary depending on whaatoavels.
The idea is that there is a trade-off between these eleméntexample,
if the travel time is much shorter when traveling early, deapay accept
being early in spite of the waste of time. This is in particutae if one
has a time window to start work, and the only argument agaitasting
early is that one has to get up early.

14.2 Utilities

14.2.1 Basic idea

These trade-offs are operationalized via giving utititiesthe different
aspects of the situation. The utilities in this chapter bdinegative, which
is why they are sometimes called disutilities. Let us asstiraewe have
the following utilities:

e The (dis)utility of the trip time/l/;,.,(73,;,). It depends on the trip
time, 7},

e The (dis)utility of being early[/. 1, (7%.01,). It depends on how
early the traveler is. If the traveler is late, this conttibao is zero.

e The (dis)utility of being latel/;,;. (7).). It depends on how late the
traveler is. If the traveler is early, this contribution &ra.

14-1

14.3. Departure time selection

Let us further assume that these utilities are additive Fsgel4.1):
Udep — Utrip(ﬂrip) + Uea'rly (Tearly) + Ulate (ﬂate) . (141)

An example is:

0.4 0.25 1.5
Lo Atrip T L5 Learly T L5 Ta e - 14.2
60 sec brap 60 sec ty 60 sec fat ()

The results of this come out in arbitrary utility units, samees called
“utils”.

Udep —

14.2.2 Dependence on departure time

Fig. 14.1 gives the function of the different utilities asumétion of the
arrival time. For the calculation that we will do later, we need thesaa
function ofdeparturetime. For example, if,. is the desired arrival time,
then

Tearly(tdep) = max (07 Ldes — tearly) = max (07 Ldes — (tdep + Erip)) .
(14.3)
Here, 7}, again depends ofy.,, and therefore

Tea'rly (tdep> = max (07 tdes - (tdep + Ttm’p (tdep>)) . (144)

As we will see later, we will essentially needableof the values of’ .,

as a function of ., wheret,, increases in 5-min time steps. Because of
this simplification, the problem can be solved as a sequehlo®k-ups,
resulting in a table similar to the following (whetg, = 8 : 00)

‘ tdep ‘ Ttrip(tdep) ‘ Tem’ly(tdep) ‘

6:00 0:15 1:45
7:00 0:15 0:45
7:05 0:19 0:36
7:10 0:30 0:20

14.3 Departure time selection

In general, one would assume that travelers select the tepdme with

the largest utility. Let us however assume that the abovligadalculation

is somewhat fuzzy, for example because travelers do not khewliffer-

ent contributions exactly. Then, we want that the probigbib select a
certain departure time grows with the respective utility.

A typical mathematical form to achieve this if one has to cebetween
several different optionsis

pi o Vi (14.5)

file: book.tex, p.14-2 October 15, 2007

14.3. Departure time selection

arrival time

U_early
+U_late

U_trip \f
U_dep

Figure 14.1: Utility contributions

Since p; is a probability, this needs to be normalized, i.e. one wants
>.;pi = 1, where the sum goes over all possible options. This results
in

B

Pi = —Zj eﬂUJ 9

where the sum in the denominator goes over all possiblempiieluding
1.

Note that this mathematical form does exactly what we waudf; is large,

then option: has a high probability of being selected. The paramegter
changes the randomness of this choice.

(14.6)

e If 3 — 0, then the choice does not depend on the in conse-
qguence, it is totally random with equal weight on each option

e Ifin contrastd — oo, then the option with the highest utility will be
selected with probability one, and all others will never bkested.

One way to see this is the following. Assume that,.. is the largest
utility, and let us assume that there is only one optimal obdgto
simplify the argument). First let us look at a non-optimabicie 7,
i.e.U; < U,z Then

eBUi eBUi

Pi 8U, B(U;—Unmaz) < BUmas
max .) J max) max
e) i€ e

(14.7)

since the sum is larger than one. (One of the contributionseso
from U; = U,,...,, and all other contributions are positive.) This can

be rewritten as
oPUi=Unaz) =00 (14.8)

(becausé/; — U,,,., < 0).

file: book.tex, p.14-3 October 15, 2007

14.4. Operationalization

100%

0,
plans traffic events 100% of

acts

simulation

acts
replanner
(dept time
choice)

10% of
acts

10%

plans
S newtrips

(10%)

100%
new
plans

Figure 14.2: Data flow for simple activities replanning.

Now let us look at the optimal choide i.e.U, = U,,... Then

1

Z oBUi~Unaz)
J

becausé/; — U,,., < 0for j # k.

B—o0 1

1 3o 7
630 + Z ea(UjfUmaz) 1 + O
J#k

Pk

(14.9)

14.4 COperationalization

Departure time choice will be operationalized in the foliogvway. We
will take Eg. (14.2) as an example, and get= 1. Let us in addition
decide that we look at 5min time bins, and that we consideegionly
between 5am and 10am. Let us consider a traveler who wantgue at
tdes-

This traveler would calculate, for all times between 5amHdam in 5min
time steps, and for her/his desired arrival time, the valuef(t,.,) =

eVltaer) - She/he would then calculate the sum of all these valieg,he
probabilities would then come out as

f(tdep)
S

P(taep) = (14.10)

The traveler would then randomly select one of these degatime op-
tions according to the weights given by Eq. (14.10).

The data flow for activities replanning is given in Fig. 14.Rote that
travelers with new departure times also get new routes. iatgbint we
do not perform separate re-routing for travelers whoseitie have not
changed.

Implementation

file: book.tex, p.14-4 October 15, 2007

14.6. Origin-destination travel times

14.5 Input data: Activities file

Demand for travel (= trips) is driven by activities taking place at different
locations. We encapsulate this fact into a simple activities file, as follows:

| Column | Header | type | explanation \
1 TRAV.I D integer | ID number of traveller/vehicle
2 ACT_TYPE string type of the activity (“h” =
home, “w” = work)
3 LI NK integer | activity location (link ID)
4 DES_ARR TI ME | integer | desired arrival time at activity
5 NOTES string notes (optional)

An example is in

http://www.matsim.org/files/studies/corridor/teach/ O.acts .

For our work here, we will assume that activities always come in pairs, i.e.
that each individual in the simulation starts at one location (“at home”) and
goes to another location (“work”). We also assume that there is a desired
arrival time for the work activity.

Task 14.1 Write a utility (e.g. using awk) that generates a new activity file
which consists of a randomly selected 10% of the input activity file. This
will be needed later.

14.6 Origin-destination travel times

For the computation of departure time choice, one needs information
about the trip times as a function of different departure times. The im-
plementation that we present here is the arguably simplest method, but it
has some caveats for large scale scenarios.

The idea is that one parses the events file, and for each origin, each des-
tination, and each time bin one averages the trip times. This is similar to
how the router treats link travel time information. That is, if an individual
departs (events flag 6), then this information is stored away somewhere.
If the same individual arrives (events flag 0), then the departure time and
departure location are retrieved, and the travel time is added by the time
bin for the departure time for the corresponding OD pair. Once the com-
plete events file is parsed, the sums are divided to the number of entries
as was done for the link travel times. If you assume that you have 7' time
bins, R origins, and .S destinations, then this results in T' x R x S entries.

Task 14.2 Write a script that averages OD travel times into 15-min time
bins. Language possibilities are awk or c++/java. As an end result, you
should have, for all OD pairs, trip time info for all 15-min time bins. Gener-
ate this information for the events file which was obtained by running the
traffic microsimulation on

http://www.matsim.org/files/studies/corridor/teach/ O.plans .

Why does the result make sense (or not)?

file: book.tex, p.14-5 October 15, 2007

14.7. Departure time choice

Note that you have to invent some method to generate OD travel times for
time bins for which you have no information.

14.7 Departure time choice

Now the departure time needs to be chosen for each individual trav-
eler. For this, it is easiest to continue with the code written in Sec. 14.6
(Task 14.2). After retrieving the travel time information from the events file,
the code will start reading the 10% activities file produced in Sec. 14.5.
For each agent it will retreive a pair of activities. The desired arrival time
tqes cOmes from there as discussed above. For each activity pair in the
activities file do:

1. Retrieve or calculate, for each departure time ¢4, between 5am and
10am in 5min steps, the following quantities:
e the trip time T},
e the arrival time t,,.,;
o the early time 7, = max|0, tges — tarr;
e the late time T}, = max[0,tyrr — tges;

e the resulting utility

0.4 0.25 1.5
Upp = —— Ty — ——— - 14.11
dep 60 sec " 60 sec carly 60 sec tate)
(this is the same as Eq. (14.2));
e and the resulting non-normalized probability
m; = eVder (14.12)

2. Once you have done this for all time bins, sum up all the non-
normalized probabilities:

Mi=> . (14.13)

Divide all non-normalized probabilities by this value:

3. Make a random draw between these probabilities (see below) and
note the resulting departure time.

4. Fuzzify the departure time by +150sec (2.5min) by something like

TDepIinSec = TDepInSec - 150 + i nt(300 *MyRand()) ;

5. Write out the corresponding trip.

file: book.tex, p.14-6 October 15, 2007

14.8. Feedback

All trips then need to be routed; this is done by applying the time-
dependent router to the trips file as before.

We need to make a random draw according to the probability weights.
This is for example done as follows. Assume that we have pli],
i=1..N given, with the sum of these p|[i] being one. Then do something
like the following:

doubl e rnd = myRand() ;
doubl e sum = 0. ;
int i ;
for (ii=1; ii<=N; ii++) {
sum += pJii] ;
if (sum > rnd) break ;

}

// ii is the desired index.

Task 14.3 Take the events file from the 50th iteration of the corridor prob-
lem. Generate, for travelers 1-250 in

http://www.matsim.org/files/studies/corridor/teach/ O.acts ,

the departure times (= new trips). Plot the resulting new departure time
distribution (see below). Does this correspond to your expectations? Why
(or why not)?

Note: Departure time distribution means that on the x-axis you have the
departure time, and on the y-axis you have how many vehicles/travelers
depart at that time. For this, you again need to introduce time bins, for
example 5 minutes wide.

14.8 Feedback

Task 14.4 Do 100 iterations. Make the following plots:

Sum of all trip times as function of iteration number.

Computing time

veh.bin files for days 1, 10, 20, 100.

Departure time distribution for days 1, 10, 20, 100.%

Is the final departure time distribution plausible? Why (or why not)?

Task 14.5 Question: Is is possible that everybody finds a departure time
so that she/he arrives exactly at her/his desired arrival time?

We are looking for the departure time distribution of thieole population, not just
of the replanned population. This is best retrieved frometrents file.

file: book.tex, p.14-7 October 15, 2007

Chapter 15

Do-it-yourself transportation
planning simulation: Summary

The previous chapters have led you through a do-it-youkssakion of
a transportation planning simulation. Irrespective of fénet if you have
really implemented all of it, or just pieces, or none at adlyeyal things
should have become clear:

e Transportation simulations do not only consist of the tcaffiod-
ules, where cars and people move through the system, but also
of strategic/tactical modules which simulate the humarnisi@a-
making that generate the traffic in the first place.

e Although a whole transportation simulation package is amem
software system, programming a “lite” version that concaes on
the most important aspects is a manageable task.

e Modern computer science tools, in particular object-dgdmpro-
gramming languages, are very helpful for programming tiygses
of simulations. The challenge is to find a good balance betwee
where these additional language features really help ardexthey
make things uncomprehensible to the uninitiated.

These past chapters have attempted to concentrate on thédraed es-
sentials. Clearly, what is essential and what not dependameis prefer-
ences and taste. The focus of this text is onrthdti-agentview, i.e. the
fact that a transportation simulation can be seen as a dionlaf many
intelligent, interacting agents. In consequence, we haessed that all
individual travelers make their individual plans, and ttiese plans can
be revised in iterated simulations — in other words, the egearn. The
underlying traffic simulation, a 1-lane cellular automatadation, was
designed such that it could execute individual plans in animggdul way,
but it was not attempted to make that simulation realistic.

The following chapters of this text will show how that simtide can be
improved. Improvements are primarily into two directioi¥:more real-
ism; (ii) truly agent-based view. These aspects will bewised in more
detail in the introduction to Se€”.

15-1

e More realism. In particular the traffic simulation can be maalich

file:

more realistic. We will first show one version (the queue $anu
tion) which is both more realistic and computationally md&ster;
it however models traffic on a higher level of abstraction ahhis
sometimes more difficult to grasp. Higher levels of realismalso
introduced for the router (time dependence, other modesantt
portation), and, to some extent, for activity generatiohtifese are
researched intensely, since multi-agent simulation haneg the
way to new exciting possibilities.

Truly agent-based view. The simulation described in thedaap-
ters depends on file-based interfaces, and these interiiaqxg

that the sequencing of the simulation is organized aroundutes.
In general, modules will run sequentially, each module ryiraly

some aspect of the system state that is displayed by thetohef
input and output files. One will however easily recognizé thes

organization of the simulation is not truly agent-basedi ih, the
agent is not truly at the center. For example, programmingggemt
that uses mutation and crossover to create new strategiestire
ones it has already tried out is awkward with the describaché-
work.

book.tex, p.15-2 October 15, 2007

Chapter 16

File formats summary

16.1 Nodes file

A} %4

| Column| Header | type | explanation
1 | D integer | Unique number of node
2 EASTI NG integer | Coordinate in x direction
3 NORTHI NG | integer | Coordinate in y direction
4 ELEVATION | integer | Coordinate in z direction. Ignore
5 NOTES string | Optional notes. Ignore
16.2 Links file
| Column| Header | Type Explanation |
1 | D integer Unique ID number
2 NAME string Name of the link, e.g. the
street name. Ignore
3 NODEA integer Node ID at one end of
link
4 NODEB integer Node ID at other end of
link
5 PERMLANESA integer Number of lanes toward
A. Ignore
6 PERMLANESB integer Number of lanes toward
B. Ignore
7 LEFTPCKTSA| integer Number of left pocket
lanes towards A. Ignore
8 LEFTPCKTSB| integer Number of left pocket
lanes towards B. Ignore
9 RGHTPCKTSA integer Number of right pockef
lanes towards A. Ignore
10 RGHTPCKTSB integer Number of right pockef
lanes towards B. Ignore

16-1

16.2. Links file

11

TWOWAYTUR

Nboolean

Whether there is a two
way link for left turns in
the middle of the road (a
American specialty). 191
nore

-

12

LENGTH

positive float

Length of link in meters

13

GRADE

float

Grade & slope) of link.
Ignore

14

SETBACKA

positive float

Setback distance (in me

ters) from the center of th
intersection at node A. Ig
nore

1Y

[1%)

15

SETBACKB

positive float

Setback distance (in me

ters) from the center of th
intersection at node B. Ig
nore

1Y

16

CAPACITYA

positive float

Capacity of link towards A

in vehicles per hour. Ig;

nore (but see Sec. 18)

17

CAPACITYB

positive float

Capacity of link towards B

in vehicles per hour. Ig;

nore (but see Sec. 18)

18

SPEEDLMTA

positive float

Speed limit, in meters pe
second, towards A. Ignor
(but see Secs. 17 and 18

D =

19

SPEEDLMTB

positive float

Speed limit, in meters pe
second, towards B. Ignor
(but see Secs. 17 and 18

D =

20

FREESPDA

positive float

Free speed, in meters p
second, towards A. Ignor
(but see Secs. 17 and 18

21

FREESPDB

positive float

Free speed, in meters p
second, towards B. Ignor
(but see Secs. 17 and 18

22

FUNCTCLASS

keyword

Functional class of link
Ignore

23

THRUA

integer

ID of outgoing link
across A which denote
“through” direction.
Can be used for dat
compression. Ignore

24

THRUB

integer

ID of outgoing link
across B which denote
“through” direction.
Can be used for dat
compression. Ignore

25

COLOR

integer

S

Obsolete. Ignore

file:

book.tex, p.16-2

October 15, 2007

16.4. Plans file

26 VEHICLE keywords Allowed modes on link,
Ignore
27 NOTES string Arbitrary notes. Ignore

16.3 Snapshot file (visualizer output)

| Column| Header | type | explanation |

1 VEHI CLE integer | Vehicle ID

2 Tl VE integer | Current time (in seconds past
midnight)

3 LI NK integer | Link ID

4 NODE integer | FromNode ID (i.e. ID of node
where the vehicle is coming
from)

5 LANE integer | Lane the vehicle is on

6 DI STANCE float Distance (in meters) the vehi-
cle is away from the node

7 VELOCITY float Vehicle speed (in meters per sgc-
ond)

8 VEHTYPE integer | Vehicle type. “1"= car.

9 ACCELER float Vehicle acceleration (in m/s per
second)

10 DRIVER integer | Driver ID

11 PASSENGERS$ integer | Number of passengers in vehigle

12 EASTI NG float Position of vehicle in x direc-
tion

13 NORTHI NG float Position of vehicle in y direc-
tion

14 ELEVATION | float Position of vehicle in z direction

15 AZI MUTH float Vehicle’s orientation (degrees
from east in counterclockwise
direction)

16 USER integer | User-defined data field

16.4 Plans file

Fixed length part:

| Number| explanation

1

Traveler (Person) ID

User field. Irrelevant for us

Trip ID. Irrelevant for us

Leg ID. Irrelevant for us

FirstLegFlag. Irrelevant for us

OO B WN

LastLegFlag. Irrelevant for us

file:

book.tex, p.16-3

October 15, 2007

16.5. Events file

7 StartTime

8 StartLocation. = StartLink for us

9 Type of StartLocation. Irrelevant for us
10 EndLocation. Irrelevant for us

11 Type of EndLocation. Irrelevant for us
12 Duration. Irrelevant for us

13 Stop Time. Irrelevant for us

14 MaxTimeFlag. Irrelevant for us

15 Driver Flag. Irrelevant for us

16 Mode. Should always be 0

17 Vehicle Type. Irrelevant for us

18 Number of additional tokens (variable length part)

Variable length part:

| number| explanation |

1 Vehicle ID. Ignore

2 Number of Passengers. Needs to be zero (because the mean-
ing of the following data depends on this).

3 Node 1

4 Node 2

5 etc.

16.5 Events file

| Column| Header | type | explanation

1 TIMESTEP int time step

2 VEHICLEID | int vehicle id

3 LINK int Link ID

4 FROMNODE | int FromNode ID for link. Irrelevant
for us since we use uni-directional
links

5 FLAG int 0: vehicle arrives at final destina-
tion

2: vehicle leaves a link to go
across an intersection

4: vehicle moves from wait queue
into traffic

5: vehicle enters a link coming
from an intersection

6: vehicle is supposed to start

6 NOTES string | notes (leave empty, but separate by
tab)

file: book.tex, p.16-4 October 15, 2007

16.7. Activities file

16.6 Trips file

| Column| Header type | explanation |

1 | D integer | ID number of traveller/vehicle

2 DEPTLINK | integer | departure location (link ID)

3 ARRLI NK | integer | arrival location (link ID)

4 Tl VE integer | departure time of traveller/vehi-
cle in “seconds past midnight”

5 NOTES string | notes (leave empty, but separate by

tab)
16.7 Activities file
| Column| Header | type | explanation |
1 TRAV_I D integer | ID number of traveller/vehi-
cle
2 ACT_TYPE string | type of the activity (“h” =
home, “w” = work)
3 L1 NK integer | activity location (link ID)
4 DES_ARR.TI ME | integer | desired arrival time at activ-
ity
5 NOTES string | notes (optional)

file: book.tex, p.16-5 October 15, 2007

Part |l

Improvements

16-6

Chapter 17

More realistic CA traffic
simulation logic

17.1 Introduction

The focus of this whole text is to emphasize the modular sireof trans-
portation simulation packages, and in particular thatdessthe movement
of the cars through the system considerable effort needg &pbnt on
modules which model human learning and decision-makingjpanrmech-
anisms which couple those modules. In consequence, we taateds(in
Chap. 7) with a simple micro-simulation which is able to sopur ap-
proach, which means that it has individual vehicles whiclto¥o indi-
vidual plans. However, the simple approach of Chap. 7 nelteks at
correct vehicle speed not at correct link flow capacities.

In this chapter, it will be discussed how the CA traffic sintida from

Chap. 7 can be made more realistic. In fact, this type of st is
used in the Transims simulation package for transportgtianning. Ul-
timately, also the CA approach has its limits and is bettpltaged by an
approach where the spatial coordinates are continuou(Cha The

CA approach has however the advantage that its implementatrather
straightforward. This is due to the simple spatial strugtim which the
existence of a vehicle at a specific location can be checlkaead gimple
direct lookup at the corresponding cell. Techniques withticwous coor-
dinates typcally store the position of the particle togethiéh the particle,
i.e. nottogether with the spatial substrate, so that the existeihvehicles
at specific locations needs to me made computationally efficiia other
methods. These problems can be overcome, and the resulbidglsnare
as efficient as CA models, but they represent some concegtuaapro-
gramming overhead that needs to be recognized.

17-1

17.2. The stochastic traffic cellular automaton (STCA)

gap=3

Figure 17.1: Definition of a more general CA for traffic

17.2 The stochastic traffic cellular automaton
(STCA)

The CA introduced in Chap. 7 can be made more general by altpwi
vehicles to travel more than one cell per time step. Also,akes the si-
mulation more realistic and more robust against artifdciae introduces
some randomness. Both are achieved with the following @pddes (also
see Fig. 27.4):

e Car-following rule:
Usafe = IniH[Ut + 17 Gt vmaa:] . (171)

g, 1s the number of empty spaces to the car in front (“gap,);. is
the maximum velocity of the car under consideration.

e Randomization:

[max[vsefe — 1,0] with probabilityp,,
Vb1 = {vsafe else (17.2)
e Moving:
T4l = Tt + Vgt (17.3)

t andt + 1 here refer to the actual time-steps of the simulation. Tise fir
rule describes deterministic car-following: try to accate by one veloc-
ity unit except when the gap is too small or when the maximutoorgy

Is reached.

The second rule describes random noise: with probabiljitya vehicle
ends up being slower than calculated deterministicallyis Parameter
simultaneously models three effects:

1. Speed fluctuations during free driving: Assume a vehidate wo
other vehicles are nearby. It will eventually have speed. — 1 or
Umaz- IN bOth casesy,, ;. will be v,,,,. After the randomization,
the speed will be at,,., — 1 with probabilityp,,, and atv,,,. else.
That is, the speed of a single undisturbed vehicle fluctuztseen
Unae @NAU,0 — 1.

file: book.tex, p.17-2 October 15, 2007

17.3. Some validation of the STCA

2. Over-reactions at braking and car-following: Assumetlaate with
Umae that approaches a slower vehicle from behind. Eventually, i
will reach a gapy, < vy0. — 1. vsqpe Will be equal to thisy, and
v.1 Will either be equal toy; or one smaller (without becoming
negative). That is, with probability,,, the braking vehicle will not
be at speed; but slower.

The argument for car following is similar: Assume a leadiegicle
with speedv;..q < Ve The follower will attempt to follow with
g: = Vjeqq DUt in fact will fluctuate around that speed.

3. Randomness during acceleration: Assume a single vetitke
speed zero. Instead of acceleration» 1 — 2 — 3 — ..., the ac-
celeration will typically look like) - 0 — 1 —2 —2 —3 — ...
Note that the rules are such that the velocity nelgereases during
acceleration.

Obviously, these effects overlap to a certain extent; faneple, ifg, =
Umaz ONE Ccannot say if,, refers to car following or to driving at free speed.

A translation into real-world units can be obtained as feoThe length

of a cell is given by the average space a car occupies in a jaog snder
jammed conditions each cell is filled by one car. Thtus; 1/pju, ~

7.5 m. A simulation time step typically corresponds to one second
reality, and the order of magnitude of this can be justifieddaction time
arguments (Sec. 27.3.1). One of the side-effects of thigeattion is that
space can be measured in “cells” and time in “time steps”, wndhlly
these units are assumed implicitly and thus left out of theaigns. A
speed of, say; = 5, means that the vehicle travels five cells per time step,
or 37.5 m/s, or 135 km/h, or approx. 85 mph.

pn IS Often set tal /2 for theoretical work, while for realistic traffic mod-
elling p,, = 0.2 is a better choice.

17.3 Some validation of the STCA

Despite somewhat unrealistic features on the level of idd& vehicles,
these models describe aspects of the macroscopic behavrecty. If

we assume the values given above, i.e. a cell siZe-ef’.5 m and a time
step of At = 1 sec, then speeds are given in multiples©$ m/sec =

27 km/h = 16.875 mph. More correctly, average free speed is given by
(1 = Proise) Umaz- With p,.se = 0.2, one obtains the following possible
average link speeds:

file: book.tex, p.17-3 October 15, 2007

17.3. Some validation of the STCA

‘ Urnaz H Umaz — Proise ‘ m/sec ‘ km/h ‘ mph ‘
1 0.8 6.0 21.6| 13.500
2 1.8 13.5| 48.6| 30.375
3 2.8 21.0| 75.6| 47.250
4 3.8 28.5| 102.6| 64.125
5 4.8 36.0| 129.6| 81.000
6 5.8 43.5| 156.6| 97.875
7 6.8 51.0| 183.6| 114.750

Since drivers typically do not observe speed limits exadtlis uncriti-
cal that these speeds do not correspond to any “round” nienlddso,
there is enough flexibility to model differences betweeq,,@esidential
streets, urban arterials, freeways with speed limits, aeeWays without
speed limits. There is however not enough resolution to medg, the
difference between a speed limit of 60 vs. 65 mph. If suclecsffices are
of interest, a different model needs to be selected.

Atypical measurement for real-world traffic is the flow-digpfundamen-
tal diagram. For this, one measures flow and density at a foeatibn
over fixed periods of time, for example over 5 minutes. Theltewy data
is plotted with density on the x-axis and flow on the y-axie(Bey. 17.2).
There are some subtleties involved with measuring fundéahdimgrams,
which are discussed in Sec. 27.2. For the purposes of thimselet us
assume that the two quantities are measured in the CA asvillo

e Flow: Count the number of vehicled],, that cross a given location
during timeT'". Flow ¢ is given as
N,

== (17.4)

e Density: Assume a “measurement area” which spreads aerQss
contiguous cells. Sum up the number of vehicles on the measur
ment area over time steps. This includes that a vehicle that spends
more than one time step on the measurement area is countgdlsev
times. If this number isV,, then density is given as

N,

pr= L. (17.5)

Note that using,,... cells makes sure that every vehicle is counted
at least once.

The result is the density in “number of vehicles per cell’yree
sponding to “number of vehicles per 7.5 meters”. Multiptyiby
1000/7.5 converts this into “number of vehicles per kilometer”.

Flow-density fundamental diagrams, as in Fig. 17.2, sta#eao flow
when the density is zero (no cars on the road), and eventu@ihe back
to zero flow when the jam density is reached. In between, thewsa
roughly tri-angular shape as can be seen in Fig. 17.2. Ttiealrelis-
cussions will be postponed until Chag, but it is important to note that

file: book.tex, p.17-4 October 15, 2007

17.4. Lane changing

Fundamental Diagram for 1-lane Circle simulation

2000

1500+
T

Flow [vihr/lan
s

5
3
3

= *
f Circle =1000 P

P_Brake = 0.2

V_MAX =5

@
g
S

Figure 17.2: One-lane fundamental diagram as obtainedthatstandard
cellular automata model for traffic using,;,. = 0.2. From (Nagel et al.,
1997).

there is some value of maximum flow, abai)0 veh/h in Fig. 17.2.
For the STCA, this value depends mostly;9p;... Largerp,,.;s. leads to
smaller maximum flows. These maximum flow values, also caliguhc-
ities, need to come out approximately correctly if one wants a rhibde
is useful for reality. 2000 vehicles per hour and lane is aglae value.
Regional differences could be accomodated by differentesabfp,,;s.;
this could even be made a function of the link. One howevertba®ote
that changes im,.;;. also change the average acceleration of vehicles,
which will, for example, change signal timing requiremenmt&missions.
This is the reason why the CA approach can only be seen as,adiest
tively rough starting point for a regional model. Once ahert problems
(such as demand generation) are sufficiently solved, the itsnd logic
should be replaced by a model with continuous coordinatel as the
ones discussed in Chap?.

17.4 Lane changing

All lane changing rules, no matter if for CA or other modelslldw a
similar scheme (e.g. Sparmann, 1978): In order to changssairivers
need an incentive, and the lane change needs to be safe. éutiireccan
be that the other lane is faster, or that the driver eventugéds to make
a turn. Safety implies that one needs enough space on thet tare.
Thus, a simple lane changing condition can read as (Rickeit,e1996)
(Fig. 17.3):

() Incentive: minfv + 1, Vyae, 9aPother] > minfv + 1, Ve, gap), 1.€.
the gap on the other lane is larger than the gap on the cuaeet |
allowing a higher speed on the other lane.

Bounding the comparison atin[v + 1, v,,,,.] makes sure that only
gaps sizes which are relevant for the car’s current speecbaisd-
ered.

file: book.tex, p.17-5 October 15, 2007

17.4. Lane changing

backwrard gap forsvard gap

i

—

gap

Figure 17.3: Lane changing. A smalle “gap” will give an intea to
change lanes. The lane change is actually executed if botvérd gap”
and “backward gap” are large enough.

(S) Safety: gapotherback > Vback, 1.€. thebackwardsgap on the other
lane is large enough that a vehicle approaching wjth. does not
have to slow down immediately.

Lane changing includes an additional sub-timestep, wisiblest exectued
before the car following step. The full sequence is:

1. Go through whole system and tag vehicles for lane change.

2. Go through whole system and execute lane changes fordagge
hicles (sideways movement of vehicles).

3. Go through whole system and compute new velocities.

4. Go through whole system and execute forward movementtof ve
cles.

The separation of the lane change into a tagging and a movestegnis
useful to maintain the parallel update: Because of react@ays, driver
decisions should be based on “old” information.

The above lane changing rules may have vehicles from bo#s sidm-
pete for the same cell in a middle lane. This can be overconmadking
lane changes to the right only in even and lane changes tefthenly in
odd time steps. Another possible artifact are long rows ticles syn-
chronously oscillating between left and right lane. This ba suppressed
by executing the above lane changes with a probability &n#ian one,
for example 0.99.

All this together is essentially the lane changing critercurrently used
in the Transims micro-simulation, and it seems to work reabty well
for U.S. traffic (Nagel et al., 1997).

The above lane changing criterion is symmetric, since cimgrtg the left
happens according to the same criterion as changing to ghé rOne
result of this is that people stay in the left lane until someentive pushes
them out of it, again not totally unrealistic for traffic inetunited States.
For European (and other) countries, one has the constnainpassing on
the right is not allowed, at least not when traffic is not castgd. There
are many ways to implement this. A fairly straightforwardsien is to
change to the left when either on the same lane or on the tedtdaslower
vehicle is present:

file: book.tex, p.17-6 October 15, 2007

17.5. Validation of lane changing rules

(I'.a) Incentive to go to left: ¥ > v, .OR.v > v, wherew, refers to
the vehicle in front on the same lane, andefers to the vehicle in
front one lane to the left.

Since the lane changing is no longer symmetric, many pléusittes are
possible to trigger lane changes to the right. A good con8tmi criterion
for rules is to make lane changes to the right based on thedbigegation
of lane changes to the left. This results in

(I'.b) Incentive to go to right: ¥ < v, .AND. v < v;”. Note that nowy,
now refers to the same lane, andrefers to the lane to the right.

This leaves as a free parameter the distahbew far vehicles look for-
ward for vehicles in the same and in the other lane. Lafigesults in a
stronger incentive to go to the left.

An important observation is that microscopic lane changubgs need not
be realistic in order to generate plausible macroscopftidra=or exam-

ple, all lane changes according to the above rules happereisimulation

time step, which is usually one second, whereas in realisytélkes longer
(3-5 seconds). Also, the above rules result in too many laaeges when
traffic on both lanes is similar — an effect that is annoyingmmations
(see, for example, one of the Transims videos), but macpascelations

such as fundamental diagrams still come out correct (Riekeal., 1996;

Nagel et al., 1998).

As noted above, the incentive to change lanes could also é@mean
intended turn movement at the end of the link, and one carepiaover-
ride the safety criterion with increasing urgency of theeiniive criterion.

17.5 Validation of lane changing rules

The most important issue for lane changing is that the fureddath dia-
gram should remain plausible, i.e. with a maximum flow of al2000 veh
per hour and lane. This is indeed the case both with the alyonmstric
and the above asymmetric lane changing rules. A fundamdiggfam
for a simulation with asymmetric rules is in Fig. 17.5; comgthis to a
fundamental diagram from (German) reality in Fig. 17.5.

Another quantity of interest is the fraction of vehicles atk lane. For the
symmetric rules and 2-lane traffic, this should always beD&b 5For the
assymmetric lane changing rule introduced above, lanesusggotted in
Fig. 17.5, which was obtained with a look-ahead distancé-6f16 cells.
Fig. 17.5 shows a plot of the same quantities from (Germaalitye Ad-
ditional rules, which can bring the simulations even cldsereality, are
discussed by Nagel et al. (1998).

Another validation of lane changing rules concerns vekithat change
lanes in order to be in the correct lane for a turn. Two impurtpues-
tions here are how many vehicles do not reach their desire &nd how
much the lane changing disturbs the throughput. The firsttoureis more

file: book.tex, p.17-7 October 15, 2007

17.6. Traffic signals

v/h

@

4000 §

3000 ,'Qﬁ@
R '.:l

2000 -~

! .
2000 +} i
f

flow [veh / (h * 2 lanes)]

=

0

!
} : : :
0 10 80 120 160 wv/km

40 80 120 160 200 u
density [veh / (km * 2 lanes)]

I

Figure 17.4: Multi-lane fundamental diagrams. (a) STCAwit, .. = 5,
Pnoise = 0.25. From Nagel et al. (1998). (b) Reality (Germany). From
Wiedemann, published in Nagel et al. (1998).

1 :
o d (e)
& o8k
c 4
Q K
o 0.6 *
o) :
o R BX
o 0.4 %
>
% 0.2 | | -
0 a an P 120 160 v/kn

0 40 80 120 160 200
density [veh / (km * 2 lanes)]

I

Figure 17.5: Asymmetric lane usage. (a) Simulation. (b)liReéGer-
many).

critical under congested conditions, and one needs a setigpe the in-
tersection capacity is smaller than the link capacity, edusr example
by traffic lights. The second question is most critical neaximum flow;

for example, one could test if at a traffic light just turnedem, outflow is
reduced when there is a lot of last-second lane changing.

17.6 Traffic signals

We now turn to intersections, where links, with car follogiand lane
changing dynamics, are connected. The easiest case arsifyiblized
intersections since the signal (assuming it is workingexdty) is taking
care of avoiding crashes. The dynamics resulting from aigid tan be
generated by placing a virtual car with speed zero into teiesipot on the
link, and removing this car once lights turn green.

file: book.tex, p.17-8 October 15, 2007

17.7. Validation of traffic signal rules

Time ~ Flow Diagram for traffic light controlled T-intersection
1200 . - . -

1150
2
S 1100-
E]

2
21050

1t

5 P
§1000F 1 0
g

Flow T-I
©
&
S

900

850

800 L L L L
0 5 10 15 20 25

Figure 17.6:Number of vehicles going through the intersection per greease, re-
scaled to hourly flow rates per lane.

17.7 Validation of traffic signal rules

The most important quantity for traffic lights is the time Heay between
vehicles when the traffic light turns green. As a rough edtmane can
take the above-mentioned value of 2000 vehicles per houcandert it
into time headways, resulting B600/2000 = 1.8 seconds per vehicle.
More exact values need to be taken from local field data.

There is discussion if maximal flow on a freeway can be largantthe
outflow from a queue, such as at a traffic light. For the STCA ehtitat
we are using so far, this issue is not critical; for other ciipfving models
it may play a role. More discussion of this is in Chap. 27.

17.8 Unprotected turns

Somewhat more difficult are unprotected turns, i.e. turas dne not reg-
ulated by traffic signals and where vehicles need to mergéne@n dwn
without accidents. Typical examples of this are yield, staght on red”,
left turns against oncoming traffic, and on-ramps to freevdye mecha-
nism here is again a “gap acceptance” similar to the safégriom (S) for
lane changes (Fig. 17.7). That is, the vehicle on the incgmoad moves
into the major road if the gap there is big enough. This gagtctties up-
stream, since the incoming driver does not want the car egstron the
major road to crash into him/herself. The standard referdoc high-
way engineers, the Highway Capacity Manual (Transpormtafesearch
Board, 1994a) states that drivers accept gaps that corrd$pdime head-
ways of approximately 5 seconds or more, which means thasghgal
gap needs to be proportional to the speed of the oncomindrizarl(7.7).
In our standard CA implementation, this would mean that theepted
gap would have to be at least five times the oncoming vehickdiscity.
When implementing this rule, it turns out that a factor oethinstead of
five gives much more realistic flow rates (Nagel et al., 1997)s not
totally clear why this is the case.

file: book.tex, p.17-9 October 15, 2007

17.9. Validation of rules for unprotected turns

= 4
<5 7 ‘

L ‘ ‘ ‘B>‘ ‘ ‘ ‘@‘ gap = 3 * velocity(oncoming vehicle)

Figure 17.7: lllustration of gap acceptance for a left tuyaiast oncoming
traffic. From Nagel et al. (1997).

17.9 Validation of rules for unprotected turns

The typical measurement for unprotected turns is the maximmgoming
flow rate as a function of the flow on the priority street. Sudtgplook
like those in Fig. 17.8 with flow on the minor road (y-axis) asdtion of
flow on the major road (x-axis). For interpretation, besttstethe top left
corner. Since there is no flow on the major road, flow from theanroad
can enter at a high rate. With increasing flow on the major rtiew from
the minor road is reduced. When the major road reaches t¢apaei flow
from the minor road is nearly zero. When the density on theomaad
goes above the maximum-flow density, then the flow on the nmapat is
again reduced, but this time by congestion. In Fig. 17.9ickeifrom the
minor road still have a hard time entering. In contrast, the gcceptance
rule from Fig. 17.9 allows vehicles from the minor road toegnihto the
major road under congested conditions, effectively maatgh “zipping”
effect.

Two important messages are:

e Seemingly small changes, such as the change of gap acceptanc

from “>"to " >”", can have large consequences. Such small changes
can also easily be caused by the actual implementation atitbs.
For example, in the Transims micro-simulation traffic on najor
street reserves cells on the outgoing link, even if in theteedehi-
cle does not claim it. This clearly reduces opportunities/éhicles
from the minor road.

e Further details need to be taken from local conditions. kan®le,
the flow from the minor into the major road when there is ndicaf
on the major road depends on speed limits and intersectyauia
such as the curvature of the turn. This situation will raretgur
in reality, since if there is traffic on the minor road, theseusually
also traffic on the major road. Exceptions are situations siscthe
end of soccer games or evacuation scenarios.

file: book.tex, p.17-10 October 15, 2007

17.10. Discussion

(b) no reservation; gap > 3*v; vmax = 3 (a) no reservation of first cell; gap >= 3*v; vmax = 3
2000

— . . - —. 2000 . . -

% study simulation % study simulation

s | =

H - 5 I

2, 1500 F <7 2 1500 © %, .

@ - o

c c

E s 3

B v B

S 1000 - + ‘© 1000

o Q

g g g :

S t, =3 -

€ <

E ot £ N

S 500 Lk S 500 |

3 L 3

o B <}

£ e T £

= o e xﬁr# i = N

R e R R : ‘ ‘ e

0 500 1000 1500 2000 0 500 1000 1500 2000

[] flow of opposing lane(s) [veh/h/lane] [] flow of opposing lane(s) [veh/h/lane]

Figure 17.8:Two different rules for the case of a 1-lane minor road cdiedo
by a yield sign merging into a 1-lane major road. (a) Accegarule “accept
if gap > 3 - Voncoming” Vmax = 3. (D) Acceptance rule “accept ffap >
3 Voncoming”- NOte that this seemingly small difference has a strongafon
throughput in the congested situation. (a) models thatclehifrom the minor
road cannot enter the major road once the major road is ctatjd€b) essentially
models a “zipping” behavior, i.e. that vehicles from the onand the minor road
alternate once the major road is congested.

Similarly, there are differences between yield and stop, iathe
traffic from the minor street merges with the traffic from thajan
street, or crosses. Again, although the tendency of theseels are
clear, exact flow values need to be taken from local condstion

17.10 Discussion

In this chapter, we have further discussed improvementsa @i traffic
simulation. It turns out that, for car traffic, such modelsgist of only
four aspects:

e Car following
e Lane changing
e Protected turns

e Unprotected turns

Once these four aspects are implemented in a reasonableonayhas
a basic model. From here on, considerable work is necesearglit
brate and validate individual details. In particular, la@nging needs
to include lane changing to reach a particular lane for a, tamd lange
changing on merge/acceleration lanes.

A problem with such a microsimulation approach is that theessary
input data is often not available. For example, as a minimam eeds
lane connectivities (which incoming lanes are connectedhh out-
going lanes, Fig. 17.9), and signal plans. Furthermorapatih it is an
advantage that such simulations generate link capacitgadsof taking

file: book.tex, p.17-11 October 15, 2007

17.10. Discussion

Figure 17.9: Lane connectivities across intersectionss iffiormation is
needed for realistic multi-lane simulations.

it as input data, considerable adjustments need to be damweexemple,
the Gotthard tunnel, as a 1-lane road without traffic lighgdd have a
capacity of 2000 vehs/hour. According to the local policewaver, the
capacity not more than half of that. The reason, presumabthat the
tunnel entrance has a strong uphill slope, and accelerafigrhicles is
less than normal.

file: book.tex, p.17-12 October 15, 2007

Chapter 18

The queue model for traffic
dynamics

18.1 Introduction

In Chap. 7 we have introduced a simple cellular automata awicr
simulation. The reason to chose that particular model@ofpique was
that it is conceptually simple, relatively easy to implemeomewhat re-
alistic, and it fulfilled the functionality that was needettlaat point in
the project. In this chapter, an alternative will be presdnthe so-called
queue model (Gawron, 1998a). For experts: The queue modsken-
tially a standard queueing model, but with storage congsadded. Stor-
age constraints mean that links can be full, which causdbagk across
intersections.

The queue model is in our view the simplest dynamic modelithadme-
what useful for real world predictions (see Chaf). Despite some ob-
vious shortcomings in the description of the dynamics (skeapC??) in
particular with respect to traffic jam wave backpropagatiwe are not
aware of any empirical evidence showing that more sophisttcmodels
are truly better with respect to their predictive power. doer, the path to
more realistic simulations does not go via the queue modkliska con-
tinuation of the explicit spatial methods, such as the CAkiva those
methods, possibly on continuous rather than cellular spesedul for the
real world (Chap. 17) is considerably more work than makimgdueue
model useful for the real world. In consequence, if one idssto use the
methods presented in this text for real world applicatiar®e needs to
carefully weigh advantages and disadvantages: The quedelmbthis
Chapter is the fastest path to some usefulness, but is algniimited;
the CA model of Chaps. 7 and 17 (or non-cell based variantsisf are
considerably more work but ultimately more realistic andetexible.

18.2 General

18-1

18.2. General

18.2.1 Requirements

From our general framework, we have the following requiretador a
traffic simulation:

e \ehicles need to be able to follow plans. This implies that i
mulation needs to be dynamic (i.e. time-dependent), arndstitae
notion of individual vehicles needs to be present in the &tin.

e The simulation needs to be reasonably fast. A computatgpeed
of at least 100 times faster than real time (i.e. simulatiddn@urs
of traffic in 0.24 hours of computing time) is desirable in erdo
obtain bearable waiting times for the feedback/learnings Tom-
puting speed can be achieved by selecting small scenayios;iog
simple models, or by parallel computing. This text concaets on
the last two aspects.

The important numbers characterizing a road from the petsgeof
transportation planning are:

e Free speed This is the speed that vehicles drive on a link when no
other constraints are present.

e Flow capacity. This is the maximum number of vehicles per time
unit that can move over a link when no other constraints agsqnt.
In city traffic, the flow capacity is often determined by afiafight
at the end.

e Storage constraint This is the maximum number of vehicles that
can be on a link under jammed conditions. This is known uner t
name ofphysical queuedn the literature, “physical” meaning that
the queue has a spatial extension which eventually makedmthe
full.

The first two numbers are also used in all traditional transpion plan-
ning software (based on static assignment, see Chap. 2&yariderefore
typically available with standard data files for transpootaplanning. The
third number is necessary when a link is full and no more \Jekican en-
ter, causing spillback. Without the storage constrainty fiemand above
the flow capacity would allow an unlimited number of vehiadegshe link,
which is clearly not realistic.

18.2.2 Input data

The queue model bases its dynamics on free speed, flow cgpacit
storage constraint only. Typical input data are, for eank di, the at-
tributes free flow velocityy ., lengthL,, capacityC,, and number of lanes
Nianes.a- Free flow travel time is calculated by, = L, /v ,. The stor-
age constraint of a link is calculated 85;,.; . = Lq - Nanes.o/(, Where
¢ is the space a single vehicle in the average occupies in awaiuoh is
the inverse of the jam density. One can dse: 7.5 m, as for the CA
technique.

file: book.tex, p.18-2 October 15, 2007

18.2. General

for all links do
while vehicle has arrived at end of link
AND vehicle can be moved according to capacity
AND there is space on destination lidk
move vehicle to next link
end while
end for

Figure 18.1: Algorithm A — Arguably simplest intersectidg@ithm

&
\

\aom
e

Figure 18.2: lllustration of queue model dynamics

18.2.3 Simple intersection logic

The arguably simplest intersection logic (Gawron, 1998lihat all links
are processed in arbitrary but fixed sequence, and a vebic®ved to
the next link if (1) it has arrived at the end of the link, (2r#&n be moved
according to capacity, and (3) there is space on the destinitk (see
Algorithm A'in Fig. 18.1). More formally, the following hagms:

e Free speed:A vehicle that enters link at timet, cannot leave the
link before timet, + 1 ,, whereT;, is the free speed link travel
time as explained above.

e Flow capacity: The condition “vehicle can be moved according to
capacity” is determined as

N < int(C,) or (N — int(C,) and rnd < fr(Ca)) (18.1)

whereint(C,) is the integer part of the capacity of the link (in ve-
hicles per time step)fr(C,) is the fractional part of the capacity
of the link, andNV is the number of the vehicles which already left
the same link in the same time stepud is a random number such
that0 < rnd < 1. What it is meant by this formula is that the ve-
hicles can leave the link if leaving capacity of the link has been
exceeded yet in this time step. If the capacity per time Sewn-
integer, then we move the last vehicle with a probability athis
equal to the non-integer part of the capacity per time step.

e “Space on destination link”: If the destination link is full, the ve-
hicle will not move across the intersection.

file: book.tex, p.18-3 October 15, 2007

18.3. Fair intersections

18.3 Fair intersections

The queue model has the same problem as our simple CA model wit
respect to “fair” intersections (cf. Sec. 7.5). That probis that the queue
model dynamics as described so far goes through the linkBxadaorder,
meaning that some links always have the priority, and thesemot be the
links that should have the priority.

A somewhat better way is to process the links in random oherhave
already seen in Sec. 7.5 how to do this. Eventually howeves,reeds
to introduce a proper intersection dynamics. A clean wayotthds is the
following:

1. Move to a parallel update. In a parallel update, all links are pro-
cessed simultaneously. This means that all rules in orderoice a
configuration from time to timet + 1 can only depend on informa-
tion from timet.

For the queue model, this is achieved by remembering the aumb
of empty cells on a link from time. That is, if a link is full at time

t, then no vehicles can enter during the update ftdo + 1, even

if the link opens up during that time step.

A parallel update is also important in anticipation of pklatom-
puting (Chap. 25).

2. Separate link dynamics from intersection dynamics.

For the link dynamics, we introduce an additional bufferregt €énd
of the link, as in Fig. 18.3. The size of the buffer[is, |, i.e. the
smallest integer that is larger or equal to the capacity ghieles
per time step”. Vehicles are moved from the link proper irte t
buffer if the travel time constraint and the capacity caaistr are
fulfilled, and if the buffer has empty space. That is, thisxaaly
the same dynamics as before, except that we move vehictethimt
buffer instead of across the intersection. — This updateme dy
iterating over all links.

For the intersection dynamics, an additional loop is intet,
which is over all nodes. Here, vehicles are moved from theofim
ing) buffers to the outgoing links. Neither travel time napacity
constraints need to be considered here because they weaelalr
treated before.

This approach is borrowed from lattice gas automata, whertécfe
movements are also separated into a “propagate” and aégcatt
step (Frisch et al., 1986).

Note that the winning links are not the ones that come firgtftmiones that come
first after the outgoing link was treated. For example, agsantonfiguration where
links 1 and 3 are incoming into link 2, and assume that theypaseessed in sequence
1, 2, 3. Also assume that under congested conditions iyitidlllinks are completely
full. Thenlink 1 is processed first, but link 2 is full, so nohiele can move. Then link 2
is processed, and some vehicles move out, opening up soroe.spaally, link 3 is
processed, and since there is some space on link 2, soméagatan move.

file: book.tex, p.18-4 October 15, 2007

18.3. Fair intersections

move according move according
to capacity to space availability

Figure 18.3: The separation of flow capacity from interggttdynamics.

/I PROPAGATE VEHICLES ALONG LINKS:
for all links do
while vehicle has arrived at end of link
AND vehicle can be moved according to capacity
AND there is spacé the buffer(see Fig belowjio
move vehicle from linko buffer
end while
end for
/I MOVE VEHICLES ACROSS INTERSECTIONS:
for all nodesdo
Mark all links that are incoming to this node
while there are marked linkso
Select a marked link randomly proportional to capacity
Un-mark link
while there are vehicles in the buffer of that lidk
Check the first vehicle in the buffer of the link
if its destination link has spacieen
Move vehicle from buffer to destination link
end if
end while
end while
end for

Figure 18.4: Algorithm B — Links and Intersections sepatate

When looking to our framework from Sec. 7.7, one notices Wahave
already the provisions for separating link dynamics frotersection dy-
namics: there are already two loops, one going over all lariéthe other
over all nodes/intersections.

Regarding the intersection dynamics for the queue modelyrsalutions
are possible. For example, it is possible to go through tbermng links
in random order weighted by capacity, thus giving a highirjiy to links
with high capacity. Again, there are several ways to do foisexample
to re-select the link for each vehicle to move until all moaesexhausted,
or to process one link until its moves are exhausted and bely inove to
the next link. Although none of these are difficult to implerhehere are
subtle differences between them when used for complicatedsections.
A possible algorithm is given as Algorithm B in Fig. 18.4.

file: book.tex, p.18-5 October 15, 2007

18.4. Limitations of the queue model

18.4 Limitations of the queue model

In the introduction to this chapter, it was pointed out tiet queue simu-
lation is eventually limited in terms of its realism. In ttgsction, these
limitations will be discussed.

A first limitation concerns the dynamics of traffic jams. Iretqueue
model, when a vehicle leaves a link, that free spot becomataale for
entering vehicles very quickly: In Algorithm A, it becomeg#dable im-
mediately; in Algorithm B, it is somewhat delayed by the luafflynamics
and the parallel update. In both cases, however, the tintétttakes un-
til it becomes available for entering vehicldses not depend on the link
length This is in stark contrast to reality, where such “holes¥élavith

a finite speed of approximatelys k£m/h. The reason for the real-world
behavior becomes immediately obvious if one looks at theesponding
dynamics in the CA, where a hole in a completely dense jamois|gl
passed on against the traffic direction by at most one vehokement in
each time step; this is discussed in more detail in Chap. 27.

This limited realism in terms of traffic jam dynamics showswdgen solid
jams in the queue model, for example caused by an accidertissolved:
Instead of being dissolved at the downstream end only, @arals jn the
gueue model are dissolved quasi-simultaneously along bodewength.
It seems however that this problem can be resolved via additirules,
such as a limitation on the “speed of holeS}).(

Other limitations are concerned with the limited vehicwad spatial res-
olution:

e Interaction between slow and fast vehiclesOn multi-lane roads,
fast cars can pass slow cars as long as traffic is light. Onlgrwh
traffic becomes denser, then fast cars are caught betwegrcats.
In the queue simulation, all cars are assumed to drive wélséme
speed.

e Interaction between different vehicle types. Examples for this
are interactions between pedestrians and cars, bicyctesaas, or
between buses/light rail and cars.

e Signal phasesDiligent signal phasing can make an enormous dif-
ference to an intersection capacity. This cannot be caphtoyesim-
ple intersection capacities, since it depends on how traffeams
and signal phases work together.

e Complicated street layouts.Merging, turning, and weaving lanes
make a substantial difference to traffic flow. Most imporgrtirn-
ing lanes, i.e. the separation of vehicle streams by turdiregtion,
prevents situations such as in Fig. 18.5, where a left tgrmehicle
blocks all the traffic behind it. This becomes particular ortpnt
in conjunction with signal phases, since optimally the itugrianes
are emptied out during each green phase. That is, turnirgs lah
the correct length ensure that the green phases of an ictiersare
used optimally.

file: book.tex, p.18-6 October 15, 2007

18.4. Limitations of the queue model

000000 ﬁ
Red cars cannot move

because green car is
in the way.

Figure 18.5: Problem of FIFO-based models

e \Weaving,in particular if large numbers of vehicles enter a street on
the right lane(s) but want to exit it on the left lane(s).

For such effects, the simple queue simulation is no longéicsnt.
Sometimes, parameterizations of certain effects areadlail but in gen-
eral it will be necessary to resort to a more realistic typeno€ro-
simulation. In such a more realistic micro-simulation, evi# not only
have individual cars with different individual characgtigs, but also re-
alistic street layouts, signals, bicycles, pedestriaigét Irail and buses,
etc.

file: book.tex, p.18-7 October 15, 2007

Chapter 19

Routing

19.1 Time aggregation
19.2 Generalized cost functions

19.3 Alternative routes

In our approach, each new route was generated as what worddoean
the fastest route on the previous iteratiolihis improbable that real people
solve this problem exactly, and for that reason alternaitiuée generation
algorithms are desirable. Somewhat interestingly, itswmut that finding
alternative routes is considerably more difficult than fingdthe fastest
path alone.

One option is to systematically compute the second-fastast-fastest,
..., k-fastest path. This is however much more compute-interisiga
computing the shortest path alone (Yen, 1971; Perko, 19B8k€et al.,
1963; Chabini, 1998). In addition, most of these paths ateplamusible
for the real world. Often, they are just small variations loéady existing
paths, with for example leaving the freeway and returningaothe same
entry/exit point. Only very few of the paths generated iis thay are true
innovations.

As an alternative, one could attempt to generate routesstieatly, in-
stead of systematically. This is also not a simple probl&mn {Typical
heuristic approaches start searching in the geographéctdin of the
destination, and in consequence often miss freeway caonecivhich
demand some backtracking in order to reach them. More Stqated
approaches will be necessary here.

One may think that heuristic approaches might also be d#sifar com-
putational speed reasons in very large road networks. ktipea we have
never found this to be a problem. In a typical transportaptanning
network, with a size of about 10000 nodes and 20 000 linkstaagsit-

To be entirely precise, one would have to say that the roubest based on the
time-averaged information that the router uses.

19-1

19.4. Logit for routes

forward implementation of the time-dependent Dijkstraoaiipm allows
the computation of 10 000 new routes per second on a typicdyMiHz
CPU (Jacob et al., 1999), which is fast enough for practiasés. In much
larger networks, this may no longer be sufficient. In suclesasome hi-
erarchical pre-processing can help. This is a topic of amgoesearch.

19.4 Logit for routes

Another major problem of our approach is that all travelieith the same
situation will be put on the same route, that is, there is méad” of
solutions.

A typical way to obtain some spread of solutions is to use @ &gproach.
Remember, a logit means that the probability of picking aitsoh i is set

to

pi:W>

whereU; is the utility of solution;. When the utility of a solution is high,
then it will be selected with a high probability.

(19.1)

For routes, utility is negative, and it becomes more negadtie longer
the driving time. For example, one could $6t= —7, whereT; is the
driving time for route choicg.

A major problem with this is that it is not easy to generatdirgualterna-
tives. Two approaches, and their drawbacks, are:

e Itis possible to computg-shortest paths.

Then, it is problematic to use logit on routes (e.g. (Caacattd
Papola, 1998)). This is actually easy to see: In Fig. 19dretlare
three paths from A to B. Assume they have all the same trawel.ti
The plausible solution then is that path 1 is used with proipab
0.5, and paths 2 and 3 are used with probabili§s each.

The logit solution will however be that all three paths aredisith
equal probabilitieg /3.

The example can be made arbitrarily pathologic by addingemor
“short” alternatives.

It is however possible to use more sophisticated models ti@n
logit models (Cascetta and Papola, 1998).

e Another method is to only generate routes which are “reaérah-
tives (?). This is however not an easy problem in itself.

And the problem with the logit still applies, although to aaker
extent.

19.5 Planning for given arrival time

file: book.tex, p.19-2 October 15, 2007

19.6. Mental maps

Figure 19.1: Correlations between paths

19.6 Mental maps

file: book.tex, p.19-3 October 15, 2007

Chapter 20

Non-car modes of
transportation

20.1 Routing

Another problem is how to include public transportation.islipossible
to do this in the router, that is, the router should figure §wgay, public
transportation or car is a better route for a certain trig(&aet al., 2000).

An alternative is to include the mode choice into the adgagigeneration,
i.e. where we have adjusted the trip starting time in the.past

20.2 Simulation

Realistic micro-simulations also need to simulate othedesoof trans-
portation besides the car, such as buses, light rail, wgJldrtycle. This
makes micro-simulation codes considerably more comp@dttd program
and to run, the latter in particular since all the additianfdrmation needs
to be coded into file, which need to be interpreted correatlthle simula-
tion.

There is however a trick which considerably simplifies theation in
many cases: As long as there is no congestion and no intemdmtiween
modes, modes can be treated as “following there scheduledt i$, with-
out congestion a subway or a bus will just depart and arriveoasd in
the schedule, and a pedestrian will walk exactly with theeekgd speed.
Since this means predictable behavior, such trips or legbeg@replanned
by the router, and the microsimulation just follows the plafore tech-
nically, if a car-only microsimulation encounters a leg @his not car-
based, it would process the leg according to departure anglanfor-
mation from the plan. In this way, the problem of multi-modtfalffic is
delegated to the router.

The situation changes when the other modes suffer from stioge or
when there is interaction between modes. Examples of thaefioare
pedestrian congestion in subway stations, or overcrowdsdd) An ex-
ample of the latter is the interaction between pedestrind€ars on cross-

20-1

20.2. Simulation

walks. In those cases, a direct implementation of other maake the
micro-simulation will be necessary. Some elements, sutiusss or light
rail stuck in traffic, can be modeled within the queue modedr éther
aspects, more realistic micro-simulations will be necgssa

In such a more realistic micro-simulation, some aspectsicdact be
modeled without too much effort. For example, buses ardedesimi-
larly to cars (i.e. they follow a route), with the distinatithat every time
they approach a bus stop, they move into the right lane amdtkere. A
light rail (“Tram”) is modelled essentially a bus but withryestrong lane
restrictions, that is, it has to stay on its tracks. If thelsaare embedded
in regular traffic, then the tram will just do standard catdeiing; if the
tracks are separate, then the tram will run at free speegefaestops.

Other interactions are more difficult to model and need auitad or sep-
arate models. For example, pedestrian congestion folldffeseht rules
than traffic congestion; there are computer codes whichlatathis. One
could connect such a pedestrian code with a traffic simula@ioale. Major
implementation problems occur when such simulations nedzktcou-
pled, for example, when pedestrians crossing a streetttaith the car
traffic on the street. Little technology seems to be knownotapte these
simulations without having to rewrite at least one of thenmtegrate it
into the code of the other. Our own expectation is that forftiheseeable
future enough progress can be made by working on other aspette
problem, until some better technology becomes availablearty, other
areas of simulation have similar problems.

file: book.tex, p.20-2 October 15, 2007

Chapter 21

Demand

Once the synthetic population is generated, all other nesdaitt directly
on the agents. What is necessary here is a procedure thaessligen-
erates travel demand, i.e. the wish of people to move fromlaretion
to another. As already said in 2.2, two important methode lzee:
(i) origin-destination matrices, and (ii) activity-basgeimand modeling.

21.1 Origin-destination matrices

As also already said in Sec. 2.2, 2.2, origin-destinatioBD)@atrices
contain the number of trips from starting points to: destinations; it

Is therefore am x n matrix. As also said, these matrices can refer to
arbitrary time periods; these days, one typically uses fimg peak” and
“afternoon peak” periods.

There are many ways to obtain origin-destination matritefransporta-
tion planning, the typical methods is to anchor them to thd lase, and to
use behavioral “rates” to determine trip frequencies (d.ghse, 1997)).
Residential areas “produce” so and so many trips per cagptamercial

areas “attract” so and so many trips per capita. The matafinggins to

destinations is done via gravity methods, i.e. the proligaf a trip to go

to a certain destination is some function of the attractidhig destination
and the generalized cost of getting there.

Another method is to derive OD matrices from traffic count&ré{ one
collects counts on as many links of the transportation netas possible,
and then uses statistical estimators to derive OD matrices this (e.g.
(Cascetta et al., 1993)). Statistical estimators are sacgdecause the
problem is under-determined. Sometimes, the two apprcaateecom-
bined, i.e. the historical OD-matrices are used as stapoigts, but they
are corrected via traffic counts (DYNAMIT www page, acces2eds).

21-1

21.2. Activities-based demand modeling

AGENT’S ACTIVITIES

Figure 21.1: Example of a sequence of activities for a persdnort-
land/Oregon. From R.J. Beckman.

21.2 Activities-based demand modeling

The problem with OD matrices is that they fix the travel demande
they have been derived. Thus, they fail to generate thetaffémduced”
travel, which usually happens when one expands capacityexample,
a new freeway may induce people to make more trips, thusasuorg
overall travel. This means that one needs a demand generagthod
that is elastic with changing supply.

Activity-based methods attempt to achieve this by genegadirectly
what people do during a day and where; transportation densatidis
derived by connecting activities at different locationgg(R21.1). There
are at least two different methods to generate activitiesnemetric, and
heuristic.

In principle, one can derive OD-matrices from activitiesj anany groups

do this because it connects activity-based demand geoetatiexisting
models. This has, however, to be done with care since ong iogmrtant
information. An important example of lost information argtchains
where a person may go to work, may go shopping, and then hofne. |
the person gets stuck on the way to shopping, the trip fronping to
home will take place later than anticipated; such effectaataet picked

up in the OD matrix. Also, a universal reaction to changesadnges-
tion seems to be to add or suppress intermediate stops at, h@nto
replace home-work-home-shop-home by home-work-shopehonvice

file: book.tex, p.21-2 October 15, 2007

21.2. Activities-based demand modeling

versa. One would have to be careful to not suppress theséiitiss
when translating the trip chains into OD-matrices.

Econometric Econometric methods (Ben-Akiva and Lerman, 1985;
Domencich and McFadden, 1975) are based on random utikgryh
which will be explained in more detail in Chap. 29. An oftesed choice
model is the so-called logit model. If there are severalasi = 1.V,
then the logit model predicts that the probability to setgationi is

63 Vayi

Pai = W) (21.1)
jefve

whereV/, ; is the utility (“score”) of option: for a particular individual

a, and 3 is a parameter characterizing randomness. This equatisn wa
already used in Sec. 14.3, and the consequence of varyias discussed
there.

For demand generation, one needs to nakedependent on the attributes
of the options, and on the properties of the individual urtdersideration.
A typical assumption is to make this dependence linear:

Vi=PB12a1 + . + Be Tag + Brt1 Tig1 + ... (21.2)

where ther, ;, j < k are person attributes, and thg;, j > k are option
attributes. For example, one could have

Utility theory assumes that the utility a persosees in a certain action
is composed of a measurable and a non-measurable part:
U(i,a) =V (i,a) +n(i,a) . (21.3)

Under a variety of assumptions, e.g. thas a random variable and fol-
lows a certain distribution, this leads to an equation ferphobability to
choose action.

An often-used discrete choice model is the so-called logideh Its main
assumptions are:

e Individuals and actions are characterized by certainbaiies, that
is, two individuals with the same attributes will be modelsdthe
same equation. This also means thatda are replaced by a vector
of attributes; .

e The measurable part of the utilitieg,, is a linear function of the
attributes, i.el = 3 - x.

e The random variableg do not depend on the attributes ,, and
they are Gumbel distributed, i.e. the generating functson i

F(n) = exp[—e #77)] | (21.4)
which results in the distribution

f(n) = pe =) exp[—e=(177)] (21.5)

file: book.tex, p.21-3 October 15, 2007

21.2. Activities-based demand modeling

~ is a location parameter, andis a positive scale parameter. This
distribution is somewhat similar to an asymmetric versidrine
normal distribution; its main advantage is that it leads wased
form solution of the choice model.

With a logit model, the probability to choose the bus in a sieci between
bus and car could look as follows:

exp[—ﬁb tb]
exp[—[tp] + exp[—L(ete]
t, andt. are the respective travel times the trip would take by busyor b
car. 3, and . are factors which weigh time in the bus vs. time in the car,
i.e. they are “values of time”. For example, one could say timae in
the bus is more productive than in the car because one canresadting
in 5, > (.. However, usually the car is faster, compensating for this
effect. — Note that Eqg. 21.6 has the same functional form asl&@Bann
distribution.

P(bus) = (21.6)

The 3, andj, are estimated from surveys, for example via maximum like-
lihood methods. A sample of the population with different aad bus
travel times is asked about their choices, and/ithare determined such
that the probability according to Eq. 21.6 to re-generagestirvey is max-
imized.

For applications inside a transportation simulation, thegomes a lot
more complicated. An implementation for Portland/OregBovwman,
1998) determines activity patterns (for example home-wakne or
home-work-shop-home), activity timing, activity locat® mode choice,
etc. As long as one wants to treat all alternatives simuttasky, this has
the problem that the number of coefficients grows exponkntigor ex-
ample, if one has five activities patterns, and three modeamgportation,
this means 15 different choices and thus 15 parameters.wéver one
does not treat the alternatives simultaneously, one cae métakes: For
example, a person could have a strong preference for apatiare-work-
home-shop-home when averaged alépossible circumstances, but may
prefer home-work-shop-home when really good bus serviewagdable.
When choosing first the pattern and then the transportatmoherrthis in-
formation gets misrepresented.

Heuristic methods The econometric method has a solid theoretical
foundation, and it is currently the only method that is fumical for trans-
portation simulations. However, sometimes it seems likeés not really
represent how people behave. The discrete choice methtehpeethat
people calculate utilities for all possible alternativesl ahen choose the
alternative with the highest utility. (Remember that thed@amization just
comes in because of “unobserved attributes”.) Howevepleeto not do
this. For example, they may discard an activity pattern hsihrap-work-
home right away without calculating the utilities of all gdse constella-
tions.

Heuristic methods attempt to better represent such hunamiplg pro-
cesses. For example, research shows that humans make ltreimg

file: book.tex, p.21-4 October 15, 2007

21.2. Activities-based demand modeling

decisions on many time scales simultaneously (Doherty axttaésen,
1998). The time for work is usually alloted way in advancepling
may be planned a day in advance, and then the whole schedyléena
changed short-term because the child gets sick. Protofgpesch mod-
els exist, but they seem currently far away from being op&mat in any
meaningful way.

It should be noted that heuristic and econometric methodsbeacom-
bined. For example, one could use a heuristic method tordaterwhich

decisions are made how far in advance, and use an economethod to
make the actual decision. Or the econometric method colddlede the
probability for each activities pattern, the heuristic huet could decide
to retain the two most important patterns, the econometgthod than
could calculate the utilities for these two patterns forratide and time
combinations, etc.

Summary of activities-based methods Activities-based demand gen-
eration models are a promising method for transportatiomukition.
Some implementations of these methods have reached tlevdtate
they can be used for actual applications (Bradley, 1997)weév¥er, so
far there are only very few results about coupling these outhogether
with transportation micro-simulations, as intended wité transportation
planning simulation packages described in this articlee dhly func-
tional system that we are aware of uses a very simple methddro&nd
generation; it is described in the appendix. But we are dptimthat
research in the next couple of years will expand the bouadan these
areas enormously.

file: book.tex, p.21-5 October 15, 2007

Chapter 22

Feedback

22.1 Introduction

A major shortcoming of the departure time choice of Chap. slthat
the trip time is treated as being independent from the stattme. This
is obviously not realistic. There are many ways to improvs.thfwo
possibilities are described in the following. In additighe difference
between day-to-day and within-day replanning is shortbcdssed.

22.2 Global trip times table

Recall that the missing information is the expected tripetifor a given
starting time. One option is to generate a global trip tinadse, i.e. for
each time slice and each origin-destination pair the infdrom about the
trip time for a departure time within that time slice. Thidl&would be
generated from actual performance of simulated travelehstles, that is,
all travelers/vehicles departing during the time slicerfiithe same starting
location to the same destination would be included, for gdarhy aver-
aging. The table would then be used by the activities geioaratodule
to provide estimated trip time information.

The main disadvantages of this approach are:

¢ In a large network, there are easily several hundred thaollsaks,
corresponding to several hundred thousand potentialnsidesti-
nations. That is, for a single time slice, our table wouldehenore
than10® x 10° = 10'° entries, corresponding to 40 GByte per time
slice, which is clearly too much for most current computimgie
ronments.

e Going along with the last is that in such a network, with aistial
number ofL07 travelers, most entries of the trip time table would be
left empty, implying some other method to fill the missingsel

22-1

22.3. Agent data base

Implementation

For our simulations, this could be implemented as follows:

From the events file, generate a table of 5min-by-5min origin-destination
trip times. That is, for each origin-destination pair and for each 5min bin,
you average the travel times of vehicles during that 5min bin.

For example, if there were, between 8:00 and 8:05 (planned departure
times), two vehicles traveling from link 100 to link 1900, and the trip took
them 30 and 32minutes, respectively, then the expected trip time for a
departure between 8:00 and 8:05 is 31 minutes.

Generating this table would concern the system integration specialists.

That table now is read into the activities generation module, and the de-
parture time choice is based on that information.

This would concern the route/acts gen specialists.

If there is information missing between time bins, then interpolate. If there
is information missing for early or late times, think about some intelligent
solution.

22.3 Agent data base

An approach which seems in general much more robust is thefuse

agent database. Here, we mean that each traveler/agest keepmory
of options that he/she tried out, and some measure of therpghce of

each option. This approach is similar to classifier systayasgetic algo-
rithms, or reinforcement learning, with the differencetttiee number of
agents, typically several millions, is much higher in lasgale transporta-
tion simulations than in typical applications of the mengd areas.

The simulation would start with each agent having one or noptéeons,
which all have preliminary scores. Each iteration would stsnhof the
following steps:

e Each agent would chose an option according to the scoresxfor
ample taking the option with the best score.

e The simulation would be carried out.

e Each agent would note the new score of the option that it prsiex
out.

In addition, it is necessary to inject new options into thetegn. For
example, in each iteration one could give new options to @ibva of the
agents, and then “force” those agents to immediately tmntbet. If these
options lead to bad scores, the agents will rarely or neygham again.

Although such an approach is easy to state in principle, diffecult to
implement in practice because of performance limitatidosing a rela-
tional database such as MySQL is possible but slow with séwailions
of agents. Also, although a relational database providpp@tisuch as

file: book.tex, p.22-2 October 15, 2007

22.4. Day-to-day vs. within-day re-planning

indexing and sorting, it's emphasis is on consistent andreegperation,
not on computational speed. This is a subject of active rekea

Implementation

With respect to our practical examples, the easiest solution is to not worry
about the routing choice, but remember starting times and performance
only. That is, after a simulation run one would parse the events file, and for
each agent note the starting time and the corresponding trip time. That
information would be merged together with pre-existing information into
some agent data base.

(One could for example do a flat file of agent performance for each itera-
tion; the departure time choice module would then read all these files.)

For each agent that does departure time choice, the experienced trip
times would be used as a base. For departure times outside the expe-
rienced interval, free speed travel times could be used. For departure
times in between experienced travel times, some kind of interpolation (e.g.
linear) could be used.

Note that agent memory needs to age, otherwise agents may remember
information that is no longer relevant. One possibility would be to only
read the agent experience from the last 10 iterations.

This would again be a cooperation between the systems integration spe-
cialists and the route/acts gen specialists.

22.4 Day-to-day vs. within-day re-planning

Day-to-day replanning assumes, in a sense, “dumb” pasticRarticles
follow routes, but the routes are pre-computed, and oncaithalation

is started, they cannot be changed, for example to adaptexpected

congestion and/or a traffic accident. In other words, thetegiic part of

the intelligence of the agents is external to the micro-¢atnon. In that

sense, such micro-simulations can still be seen as, alh&ihmmore so-
phisticated, version of the link cost functiofz,) from static assignment,
now extended by influences from other links and made dynamaozigh-

out time. And indeed, many dynamic traffic assignment (DTygtems

work exactly in that way (e.g. (Bottom, 2000)). In terms ofrgathe-

ory, this means that we only allow unconditional strategies strategies
which cannot branch during the game depending on the cirzunoss.

Another way to look at this is to say that one assumes thatrttergent
properties of the interaction have a “slowly varying dyneshj meaning
that one can, for example, consider congestion as relgtfisedd from

one day to the next. This is maybe realistic under some donditsuch
as commuter traffic, but clearly not for many other condgicsuch as ac-
cidents, adaptive traffic management, impulsive behasgiochastic dy-
namics in general, etc. It is therefore necessary that agertadaptive
(intelligent) also on short time scales not only with reggedane chang-
ing, but also with respect to routes and activities. It isacldat this can

file: book.tex, p.22-3 October 15, 2007

22.4. Day-to-day vs. within-day re-planning

be done in principle, and the importance of it for fast reteota(Esser,
1998; Rickert, 1998) and for the realistic modeling of ceri@spects of
human behavior (Axhausen, 1990; Doherty and Axhausen,)1@&3een
pointed out.

file: book.tex, p.22-4 October 15, 2007

Chapter 23

Other Modules

freight
emissions
housing
land use

23-1

Chapter 24

Better file formats

24.1 Introduction

In the longer run, the file formats used in the “do-it-youfsphrt are not
very robust. The main problem is that with each change of thédimat,

several pieces of the simulation package need to be adaptsistently.
Two ways to improve the situation are (a) use the header lmgust for

consistency checking, but to obtain the information of tbetent of each
column; (b) use XML (extended markup language). This wiltlescribed
in the following.

24.2 Use header line

In the “do-it-yourself” part, the header line was only useddonsistency
checking, for example for the nodes file

/'l process header |ine:
for (int ii=l; iik=NTOKENS; ++ii) {
inFile >> aString ;

switch(ii) {

case 1: assert(aString== "ID") ; break ;

case 2: assert(aString== "EASTING') ; break ;
case 3: assert(aString== "NORTHI NG') ; break ;

}
}

A more robust alternative would be to use the header line dadica-
tion of what each column contains. Processing of the heademlould
essentially become

/'l process header |ine:
for (int ii=l; iik=NTOKENS; ++ii) {
inFile >> aString ;

if (aString== "ID") {
column_id=ii ;

} else if (aString== "EASTING') {
column_east=ii ;

}

24-1

24.3. XML

These columns would later be used during the file readingexample
via

/1 main |oop:
whi | e(linFile.eof()) {

for (int ii=1; iic=NTOKENS ; ii++) {
i f (ii==column_id) {
inFile >> nodeld ;
} else (ii==column_east) {
inFile >> xCoord ;

}

This is in fact not much more work to program, and considgratbre
robust. The main reason why it was not introduced ealieras ithrdoes
not solve one of the main inconveniences, which is the pareinthe
route-plans file. The problem with route-plans is that theyreot column-
oriented, and they cannot be, since the number of nodes urt@isochang-
ing from one route to the next. The next section discussebuastavay
out of this dilemma.

24.3 XML

XML (extendsible markup language) is a system to descrils¢ructured
data for computers. The main idea is that each item of the idade-
scribedright where it shows upnstead of somewhere else in the file or
even outside it. An XML nodes file would look like

<nodes>
<node id= "15" x="123.45" y="678.9" />

</nodes>

That is, the information of where the id or the x/y coordisatge is
repeated for each entry. This makes for larger files and slpaesing
speeds, but the disadvantages are not that big:

e Since this is a standardized method, fast parsers are laleaila
e The overhead is not more than a factor of two.

o If keywords are repeated often (as they are for our files),pres:
sion tools will find that out so that compressed XML files aré no
much larger than compressed files without XML tags.

In general, parsers of XML files will not break when the inportrmhat is
extended. For example, when additional keyword-valuespaie added,
they will just be ignored.

The main advantage of XML files is for the description of tlave plans,
where one now does not need all those awkward conventionsiarg. A
route-plans file will for example look like

file: book.tex, p.24-2 October 15, 2007

24.3. XML

<person id= "34">

<trip starttime= "8h03" dplink= "123" arlink="456" eta= "8h33">
<nodes> 23 34 63 62 24 </nodes>

<[trip>

</person>

This describes a trip from link 123 to link 456, with a stagtiime at
8h03, and an estimated arrival time at 8h33.

Further information, such as deomgraphic data or actsjitan now just
be added to the same file structure, e.g.

;ioerson id= "34" income= "10000">
<act type= "h" link= "123" etime= "8h03" />

<trip mode= "car" starttime= "8h03" dplink= "123" arlink= "456" eta= "8h33" >
<nodes> 23 34 63 62 24 </nodes>

</trip>

<act type= "wW' link= "456" duration= "8h" />

<trip mode= "car" starttime= "16h33" dplink= "123" arlink="456" eta="17h00">
<nodes> 24 62 63 34 23 </nodes>

<[trip>

<act type= "h" link= "123" />

</person>

This would describe a person with id 34 and an income of 1080@&;h, at

the beginning of the simulation, is doing at “at-home” ai¢yivat link 123.

At 8h03, the person starts driving to work, where she expedis at 8h33.
The person works for 8 hours, and then drives back home.

This is in principle a very flexible concept. In particulanete are no
longer different files for activities, trip requests, (reyplans, etc; every-
thing is just one file format. For example, the router reqEsmerly
“trips file”) would just be

<person id= "34" income= "10000">

<act type= "h" link= "123" etime= "8h03" />
<trip mode= "car" dplink= "123" arlink= "456"/>
<act type= "w' link= "456" duration= "8h" />
<trip mode= "car" dplink= "123" arlink= "456"/>
<act type= "h" link= "123" />

</person>

and the router would calculate all trip starting times, rastied arrival
times, and sequences of routes.

As an alternative, there could be separate scheduling armithgomodules.

The main issue here is that there is absolutely no standdializavailable
yet. It is neither clear which concepts are simple in termmodeling and
simulation, nor which concepts are faithful in terms of hunteehavior.
We will return to some of the latter in Chap?.

file: book.tex, p.24-3 October 15, 2007

24.4. Some discussion

24.4 Some discussion

Why has the do-it-yourself package of this text not used XMbh@ main
problem is that the parsers are not yet standardized. Fan@gafor unix
the C++ computer by itself is no longer sufficient; one needsdd some
additional software. We expect the situation to be similader other
operating systems. In addition, the situation with parsélss in a state
of flux. That is, a parser that works today may not work any &rig a
couple of months from now. For all other pieces of our packageexpect
that it will work on standard systems for many years into titere.

For all those reason#his text does not use XML files, but standard text
files. However, there is a public domain version of our wortkyrently at

, Which uses XML and which can be used as a starting point fidhéu
development.

file: book.tex, p.24-4 October 15, 2007

Chapter 25

Parallel computing

25.1 Introduction

As we have seen, the computational requirements for a lage simu-
lation can be rather large, and eventually waiting for altesan take too
much time. Using parallel computers is a way to improve thgasion.

When done right, using 100 parallel computers can reducevtitng

time by a factor of 100, for example from 100 days to one. Atpetthis
are described in the following.

Note: The following still refers to cellular automata simation methods.
The spirit of the results is however also valid for the queuensilation
used in the class.

25.2 Micro-simulation parallelization: Do-
main decomposition

An important advantage of the CA is that it helps with the gesf a
parallel and local simulation update, that is, the statenad stept + 1
depends only on information from time ste@nd only from neighboring
cells. (To be completely correct, one would have to consaersub-
time-steps.) This means that domain decomposition forllpéization is
straightforward, since one can communicate the boundémdsane step
t, then locally on each CPU perform the update frota ¢ + 1, and then
exchange boundary information again.

Domain decomposition means that the geographical regaecsmposed
into several domains of similar size (Fig. 25.1), and eacbl GRhe paral-

lel computer computes the simulation dynamics for one cfefdomains.
Traffic simulations fulfill two conditions which make this poach effi-

cient:

e Domains of similar size: The street network can be partgtimto

domains of similar size. A realistic measure for size is theuanu-
lated length of all streets associated with a domain.

25-1

25.2. Micro-simulation parallelization: Domain decomipos

e Short-range interactions: For driving decisions, theagtisé of in-
teractions between drivers is limited. In our CA implemd¢iota
on links all of the Transims1999 rule sets have an interagamge
of 37.5 meters € 5 cells) which is small with respect to the av-
erage link length. Therefore, the network easily decompast®
independent components.

We decided to cut the street network in the middle of linkeeathan at
intersections (Fig. 25.2); THOREAU does the same (Niedraus et al.,
1994). This separates the traffic complexity at the inteises from the
complexity caused by the parallelization and makes op#tion of com-
putational speed easier.

In the implementation, each divided link is fully represshin both CPUs.
Each CPU is responsible for one half of the link. In order tantean
consistency between CPUs, the CPUs send information ahefitst five
cells of “their” half of the link to the other CPU. Five celksthe interaction
range of all CA driving rules on a link. By doing this, the otHePU
knows enough about what is happening on the other half ofitikeirh
order to compute consistent traffic.

The resulting simplified update sequence on the split liskasi follows
(Fig. 25.3)!

e Change lanes.
e Exchange boundary information.
e Calculate speed and move vehicles forward.

e Exchange boundary information.

The Transims1999 microsimulation also includes vehidhes énter the
simulation from parking and exit the simulation to parkiagd logic for
public transit such as buses. These additions are impledénta way
that no further exchange of boundary information is neagssa

The implementation uses the so-called master-slave agiproslaster-
slave approach means that the simulation is started up byseemwhich
spawns slaves, distributes the workload to them, and kespisot of the

general scheduling. Master-slave approaches often dacata well with

increasing numbers of CPUs since the workload of the masteains the
same or even increases with increasing numbers of CPUsh&eiason,
in Transims1999 the master has nearly no tasks exceptliratian and
synchronization. Even the output to file is done in a decénéi@dfashion.
With the numbers of CPUs that we have tested in practice, we hever
observed the master being the bottleneck of the paralteliza

The actual implementation was done by defining descendentclasses
of the C++ base classes provided in a Parallel Toolbox. Ty
ing communication library has interfaces for both PVM (Hata/irtual

lnstead of “split links”, the terms “boundary links”, “shet links”, or “distributed
links” are sometimes used. As is well known, some people adgé” instead of “link”.

file: book.tex, p.25-2 October 15, 2007

25.3. Graph partitioning

Machine (PVM www page, accessed 2005)) and MPI (Messagengass
Interface (MPI www page, accessed 2005)). The toolbox implgtation

is not specific to transportation simulations and thus bdybe scope of
this paper. More information can be found in (Rickert, 1998)

Master Slave

o e intersection edge O cPu CPUlink
""" tile boundary ===== boundary edge

Figure 25.1: Domain decomposition of transportation nekwoleft:
Global view.Right: View of a slave CPU. The slave CPU is only aware of
the part of the network which is attached to its local noddss includes
links which are shared with neighbor domains.

active Range [0.0, 0.5]
@l - @
A

local % ‘ remote
B S e
remote + * local
O - O
: active Range [0.5, 1.0]
6.0 6.5 lg.O

Figure 25.2: Distributed link.

25.3 Graph partitioning

Once we are able to handle split links, we need to partitienwihole

transportation network graph in an efficient way. Efficiergans several
competing things: Minimize the number of split links; minza the num-
ber of other domains each CPU shares links with; equilitfaecompu-
tational load as much as possible.

One approach to domain decomposition is orthogonal re®ibsisection.
Although less efficient than METIS (explained below), odgbaoal bi-
section is useful for explaining the general approach. Incase, since

file: book.tex, p.25-3 October 15, 2007

25.3. Graph partitioning

At beginning of time step:

® O
CPU1
® O
CPU 2
After lane changes:
@)
CPU1)
® O
CPU 2
After boundary exchanges (parallel implementation):
@)
CPU1) /T\
B ¢ L
() CPU 2
After movements:
o
CPU 1 o
O
o CPU 2
After 2nd exchange of boundaries:
O
CPU1 e /T\
| ¢ L
) CPU 2

Figure 25.3: Example of parallel logic of a split link withewanes. The
figure shows the general logic of one time step. Remembenititata

split link, one CPU is responsible for one half of the link ambther CPU
is responsible for the other half. These two halves are srsmparately
but correctly lined up. The dotted part is the “boundary eegj which is

where the link stores information from the other CPU. Thews denote
when information is transferred from one CPU to the otherbdgandary
exchange.

we cut in the middle of links, the first step is to accumulatepatational
loads at the nodes: each node gets a weight correspondihg tminpu-
tational load of all of its attached half-links. Nodes aredted at their

file: book.tex, p.25-4 October 15, 2007

25.3. Graph partitioning

geographical coordinates. Then, a vertical straight breeearched so that,
as much as possible, half of the computational load is onglg and the
other half on its left. Then the larger of the two pieces ikpttand cut
again, this time by a horizontal line. This is recursivelydantil as many
domains are obtained as there are CPUs available, see Hg.I1R25 im-
mediately clear that under normal circumstances this wiliost efficient
for a number of CPUs that is a power of two. With orthogonasédtion,
we obtain compact and localized domains, and the numberighiber
domains is limited.

Another option is to use the METIS library for graph partitiog (see
(METIS www page, accessed 2005) and references therein].I&&ses
multilevel partitioning. What that means is that first then is coars-
ened, then the coarsened graph is partitioned, and themiicisarsened
again, while using an exchange heuristic at every uncosrgeatep. The
coarsening can for example be done via random matching hwheans
that first edges are randomly selected so that no two seléntedshare
the same vertex, and then the two nodes at the end of each exigela
lapsed into one. Once the graph is sufficiently collapsed,aasy to find
a good or optimal partitioning for the collapsed graph. Bgrincoarsen-
ing, it is systematically tried if exchanges of nodes at thertularies lead
to improvements. “Standard” METIS uses multilevel recugddisection:
The initial graph is partitioned into two pieces, each of tiwe pieces is
partitioned into two pieces each again, etc., until theesesmough pieces.
Each such split uses its own coarsening/uncoarsening segueMETIS
means that alk partitions are found during a single coarsening/uncoars-
ening sequence, which is considerably faster. It also preslmore con-
sistent and better results for large

METIS considerably reduces the number of split links,;, as shown in
Fig. 25.5. The figure shows the number of split links as a fonabdf the

number of domains for (i) orthogonal bi-section for a Pardlanetwork
with 200 000 links, (ii)) METIS decomposition for the samewetk, and

(iif) METIS decomposition for a Portland network with 20 Oi4ks. The

network with 200 000 links is derived from the TIGER censutadmse,
and will be used for the Portland case study for Tran3inesnetwork
with 20 024 links is derived from the EMME/2 network that Pand is

currently using. An example of the domains generated by NEGdn

be seen in Fig. 25.6; for example, the algorithm now pickshefact

that cutting along the rivers in Portland should be of adzgetsince this
results in a small number of split links.

We also show data fits to the METIS curves,,, = 250 p°* for the
200000 links network and/,,; = 140 p%°? — 140 for the 20 024 links net-
work, wherep is the number of domains. We are not aware of any theoret-
ical argument for the shapes of these curves for METIS. lbigdver easy

to see that, for orthogonal bisection, the scaling\gf; has to be~ p®%.
Also, the limiting case where each node is on a different Cleeds to
have the samé/;,, both for bisection and for METIS. In consequence, it
is plausible to use a scaling form pf with « > 0.5. This is confirmed

by the straight line for large in the log-log-plot of Fig. 25.5. Since for

file: book.tex, p.25-5 October 15, 2007

25.4. Adaptive Load Balancing

Figure 25.4: Orthogonal bi-section for Portland 20 024 dinketwork.

= 1, the number of split linksV,,; should be zero, for the 20 024 links
network we use the equatiohp® — A, resulting inNy,; = 140 p°* — 140
. For the 200 000 links network, the resulting fit is so bad tiratdid not
add the negative term. This leads to a kink for the corresipgncurves
in Fig. 25.12.

Such an investigation also allows to compute the theolegffeiency
based on the graph partitioning. Efficiency is optimal ifle&PU gets
exactly the same computational load. However, becauseafrdmularity
of the entities (nodes plus attached half-links) that werithiste, load im-
balances are unavoidable, and they become larger with musCWe
define the resulting theoretical efficiency due to the gragtitoning as

load on optimal partition
load on largest partition

Cdmmn = (25.1)
where the load on the optimal partition is just the total Idadded by the
number of CPUs. We then calculated this number for actuaitjpaings
of both of our 20024 links and of our 200000 links Portlandweeks,
see Fig. 25.7. The result means that, according to this meadane,
our 20 024 links network would still run efficiently on 128 C&lnd our
200000 links network would run efficiently on up to 1024 CPUs.

25.4 Adaptive Load Balancing

In the last section, we explained how the street networkiistigaed into
domains that can be loaded onto different CPUs. In order teffi@ent,
the loads on different CPUs should be as similar as possillese loads
do however depend on the actual vehicle traffic in the respedbmains.
Since we are doing iterations, we are running similar traifienarios over
and over again. We use this feature for an adaptive load GalgnDuring
run time we collect the execution time of each link and eatérgection

file: book.tex, p.25-6 October 15, 2007

25.4. Adaptive Load Balancing

100000

orth. bisec. (200k links) +
METIS (200k links)
250*x**0.59
METIS (20k links) ~ *
140*x**0.59 - 140

10000 F

1000

number of split edges

100

1 4 16 64 256 1024

number of CPUs
Figure 25.5: Number of split links as a function of the numioér
CPUs. The top curve shows the result of orthogonal bisedtiorihe
200000 links network. The middle curve shows the result ofilN&Efor
the same network — clearly, the use of METIS results in caraioly fewer
split links. The bottom curve shows the result for the Padida0 024 links
network when again using METIS. The theoretical scalingoitihogonal
bisection isN,,; ~ /p, wherep is the number of CPUs. Note that for
» — Ninks, Nsp NE€ds to be the same for both graph partitioning meth-
ods.

Figure 25.6: Partitioning by METIS. Compare to Fig. 25.4.

(node). The statistics are output to file. For the next runhefmicro-

simulation, the file is fed back to the partitioning algonithin that itera-
tion, instead of using the link lengths as load estimateatteal execution
times are used as distribution criterion. Fig. 25.8 showesigw domains
after such a feedback (compare to Fig. 25.4).

file: book.tex, p.25-7 October 15, 2007

25.5. Performance prediction for the Transims micro-satiah

sy AR
a 09 +Y¢fﬁ/}\
§ osy ®
£ 07f ,
o e2 network (20k links)
s 06}
IS oB
05 METIS
METIS (k-wa! *
0.4 (Y) Il Il Il Il
1 4 16 64 256 1024
number of CPUs
1 PRI
09
>
(8]
§ 08f
£ 07f _
o allstr network (200k links)
s 06}
IS oB
05 METIS
METIS (k-wa! *
0.4 (Y) Il Il Il
1 4 16 64 256 1024

number of CPUs

Figure 25.7: Top: Theoretical efficiency for Portland network with
20024 links. Bottom: Theoretical efficiency for Portland network with
200000 links. “OB” refers to orthogonal bisection. “METI&\ay)”
refers to an option in the METIS library.

To verify the impact of this approach we monitored the execitimes per
time-step throughout the simulation period. Figure 258 ds the results
of one of the iteration series. For iteration 1, the load heda uses the link
lengths as criterion. The execution times are low until @stign appears
around 7:30 am. Then, the execution times increase fivefoid 0.04 sec
to 0.2 sec. In iteration 2 the execution times are almostgaddent of the
simulation time. Note that due to the equilibration, theaesmn times for
early simulation hours increase from 0.04 sec to 0.06 sec¢hlsueffect is
more than compensated later on.

The figure also contains plots for later iterations (11, 18, &xd 40).
The improvement of execution times is mainly due to the radi@ptation
process: congestion is reduced and the average vehicléydsn®wer.
On the machine sizes where we have tried it (up to 16 CPUsptiada
load balancing led to performance improvements up to a fauftd.8.
It should become more important for larger numbers of CPUsesioad
imbalances have a stronger effect there.

25.5 Performance prediction for the Transims
micro-simulation

It is possible to systematically predict the performanceartllel micro-
simulations (e.g. (Jakobs and Gerling, 1993; Nagel and e8iidr,
1994)). For this, several assumptions about the computhitacture
need to be made. In the following, we demonstrate the désivatf such

file: book.tex, p.25-8 October 15, 2007

25.5. Performance prediction for the Transims micro-satiah

LR

Figure 25.8: Partitioning after adaptive load balancingompare to
Fig. 25.4.

Figure 25.9: Execution times with external load feedbackesE results
were obtained during the Dallas case study (Beckman et @¥,; Fickert,
1998).

predictive equations for coupled workstations and for ieraupercom-
puters.

The method for this is to systematically calculate the witk time for

one time step of the micro-simulation. We start by assuntiagthe time

for one time step has contributions from computati®p,,, and from
communicationy.,,,.. If these do not overlap, as is reasonable to assume
for coupled workstations, we have

T(p) = Temp(p) + T (p) , (25.2)

wherep is the number of CPUS.
Time for computation is assumed to follow

Tonnlp) = =4 (14 fon0) + i) - (253)

Here, T} is the time of the same code on one CPU (assuming a problem
size that fits on available computer memory)is the number of CPUs;
four Includes overhead effects (for example, split links needg@dmin-
istered bybothCPUS); f4,., = 1/eamn — 1 includes the effect of unequal
domain sizes discussed in Sec. 25.3.

2For simplicity, we do not differentiate between CPUs and patational nodes.
Computational nodes can have more than one CPU — an exangleeisvork of cou-
pled PCs where each PC has Dual CPUs.

file: book.tex, p.25-9 October 15, 2007

25.5. Performance prediction for the Transims micro-satiah

Time for communication typically has two contributions: teacy and
bandwidth. Latency is the time necessary to initiate theroamcation,
and in consequence it is independent of the message sizdwigih de-
scribes the number of bytes that can be communicated pengego the
time for one message is

Smsg
b)
whereT}, is the latencyyS,,,, is the message size, abes the bandwidth.

However, for many of today’s computer architectures, badtws given
by at least two contributions: node bandwidth, and netwakdovidth.
Node bandwidth is the bandwidth of the connection from thé& @the
network. If two computers communicate with each other, ihtee max-
imum bandwidth they can reach. For that reason, this is Sorastalso
called the “point-to-point” bandwidth.

Tmsg - T‘lt + (254)

The network bandwidth is given by the technology and topplofythe
network. Typical technologies are 10 Mbit Ethernet, 100 tMidhernet,
FDDI, etc. Typical topologies are bus topologies, switchagblogies,
two-dimensional topologies (e.g. grid/torus), hyperctdpologies, etc. A
traditional Local Area Network (LAN) uses 10 Mbit Ethernand it has
a shared bus topology. In a shared bus topology, all comratioicgoes
over the same medium; that is, if several pairs of computarseunicate
with each other, they have to share the bandwidth.

For example, in our 100 Mbit FDDI network (i.e. a network besdth

of b,.; = 100 Mbit) at Los Alamos National Laboratory, we found node
bandwidths of about,; = 40 Mbit. That means that two pairs of com-
puters could communicate at full node bandwidth, i.e. usifgof the
100 Mbit/sec, while three or more pairs were limited by théwoek
bandwidth. For example, five pairs of computers could makyrget
100/5 = 20 Mbit/sec each.

A switched topology is similar to a bus topology, except that network
bandwidth is given by the backplane of the switch. Often,lthekplane
bandwidth is high enough to have all nodes communicate vaith @ther
at full node bandwidth, and for practical purposes one cas tieglect the
network bandwidth effect for switched networks.

If computers become massively parallel, switches with ghdaackplane
bandwidth become too expensive. As a compromise, such cuper
puters usually use a communications topology where conmeation to
“nearby” nodes can be done at full node bandwidth, whereasagcom-
munication suffers some performance degradation. Singeant&ion our
traffic simulations in a way that communication is local, ves @ssume
that we do communication with full node bandwidth on a superguter.
That is, on a parallel supercomputer, we can neglect theibation com-
ing from theb,,.;-term. This assumes, however, that the allocation of street
network partitions to computational nodes is done in sortedligent way
which maintains locality.

file: book.tex, p.25-10 October 15, 2007

25.5. Performance prediction for the Transims micro-satiah

As a result of this discussion, we assume that the commumiciine per
time step is

Nspl (p) Sbnd
bnd

S, bnd

bnet

Tcmm(p> - Nsub : (nnb(p) Et + + Nspl(p>)) (255)
which will be explained in the following paragraphs,.,; is the number of
sub-time-steps. As discussed in Sec. 25.2, we do two boyiedahanges
per time step, thusv,,, = 2 for the 1999 Transims micro-simulation

implementation.

n. IS the number of neighbor domains each CPU talks to. All imfar

tion which goes to the same CPU is collected and sent as &simggsage,
thus incurring the latency only once per neighbor domaim.pFe 1, n,,,

is zero since there is no other domain to communicate withpFe 2, it

is one. Fop — oo and assuming that domains are always connected, Eu-
ler's theorem for planar graphs says that the average nuofibeighbors
cannot become more than six. Based on a simple geometrimarguwe

use

nn(p) =2Bvp—1) (VP =1)/p, (25.6)

which correctly has:,;,(1) = 0 andn,, — 6 for p — oo. Note that
the METIS library for graph partitioning (Sec. 25.3) doe$ necessarily
generate connected partitions, making this potentiallyencomplicated.

T}, is the latency (or start-up time) of each messaggebetween 0.5 and
2 milliseconds are typical values for PVM on a LAN (Ricker®9B; Don-
garra et al., 1998).

Next are the terms that describe our two bandwidth effe€ts.(p) is the
number of split links in the whole simulation; this was attgaliscussed
in Sec. 25.3 (see Fig. 25.5). Accordingly,,;(p)/p is the number of split
links per computational nodé,,,, is the size of the message per split link.
b,q andb,,., are the node and network bandwidths, as discussed above.

In consequence, the combined time for one time step is

T(0) = 2 (14 fonr) + Famn(9)) + (25.7)
p
Nsub : (nnb(p) Et + Msbb—? + Nspl(p> ibnj) . (258)

According to what we have discussed above, ffor~ oo the number
of neighbors scales as,, ~ const and the number of split links in the
simulation scales a&,,, ~ ,/p. In consequence fof,,, and f,,, small
enough, we have:

e for a shared or bus topology,.; is relatively small and constant,
and thus

1 1
T(p)~5+1+%+\/ﬁﬁ\/i)7 (25.9)

file: book.tex, p.25-11 October 15, 2007

25.5. Performance prediction for the Transims micro-satiah

e for a switched or a parallel supercomputer topology, we ragsu
bt = 0o and obtain
1

1
T(p)~=+14+— —1. 25.10
(p) ; v ()

Thus, in a shared topology, adding CPUs will eventuallyrease the si-
mulation time, thus making the simulatisfower. In a non-shared topol-
ogy, adding CPUs will eventually not make the simulation &aster, but
at least it will not be detrimental to computational speetie Tominant
term in a shared topology for— oo is the network bandwidth; the dom-
inant term in a non-shared topology is the latency.

The curves in Fig. 25.10 are results from this predictiond@witched
100 Mbit Ethernet LAN; dots and crosses show actual perfacaae-
sults. The top graph shows the time for one time step/i(@), and the
individual contributions to this value. The bottom graplowk the real
time ratio (RTR)

At 1sec
T(p) T(p)’
which says how much faster than reality the simulation is\nog. At is
the duration a simulation time step, whichlisec in Transims1999. The
values of the free parameters are:

rtr(p) == (25.11)

e Hardware-dependent parameters We assume that the switch has
enough bandwidth so that the effectigf; is negligeable. Other
hardware parameters dfg = 0.8 ms and,,; = 50 Mbit/s 2

e Implementation-dependent parameters The number of message
exchanges per time stepi§,,, = 2.

e Scenario-dependent parameters Except when noted, our per-

formance predictions and measurements refer to the Pdrtlan
20024 links network. We use, for the number of split links,
Ngui(p) = 140 - p — 140, as explained in Sec. 25.3.

e Other Parameters. The message size depends on the plans for-
mat (which depends on the software design and implemenjatio
on the typical number of links in a plan, and on the frequency
per link of vehicles migrating from one CPU to another. We use
Swma = 200 Bytes. This is an average number; it includes all the

information that needs to be sent when a vehicle migrates émoe
CPU to another. The new Transims multi-modal plans formsityea
has 200 entries per driver and trip, resulting in 800 bytesmfoir-
mation just for the plan. In addition, there is informatidyoat the
vehicle (ID, speed, maximum acceleration, etc.); howenet,in
every time step a vehicle is migrated across a boundary oty eve

30ur measurements have consistently shown that node baihdwade lower than
network bandwidths. Even CISCO itself specifies 148 000 pistkec, which translates
to about 75 Mbit/sec, for the 100 Mbit switch that we use.

file: book.tex, p.25-12 October 15, 2007

25.5. Performance prediction for the Transims micro-satiah

split link. In principle it is however possible to comprekg plans
information, so improvements are possible here in the éutaiso,
we have not explicitely modelled simulation output, whislrideed
a performance issue on Beowulf clusters.

These parameters were obtained in the following way: Ristpbtained
plausible values via systematic communication tests usi@gsages simi-
lar to the ones used in the actual simulation (Rickert, 199Bgn, we ran
the simulation without any vehicles (see below) and adaptedvalues
accordingly. Running the simulation without vehicles nmetrat we have

a much better control of,,,,. In practice, the main result of this step was
to sett;,; to 0.8 msec, which is plausible when compared to the hardware
value of 0.5 msec. Last, we ran the simulations with vehialesadjusted
Sina to fit the data. — In consequence, for the switched 100 MbieEth
net configurations, within the data range our curves are hfiadeo the
data. Outside the data range and for other configuratiors;uhves are
model-based predictions.

The plot (Fig. 25.10) shows that even something as relgtpedfane as
a combination of regular Pentium CPUs using a switched 100Eh-
ernet technology is quite capable in reaching good comiputtspeeds.
For example, with 16 CPUs the simulation runs 40 times fab&m real
time; the simulation of a 24 hour time period would thus talk& ltours.
These numbers refer, as said above, to the Portland 20 &&Anetwork.
Included in the plot (black dots) are measurements with apcaenclus-
ter that corresponds to this architecture. The triangléls leiver perfor-
mance for the same number of CPUs come from using dual instead
single CPUs on the computational nodes. Note that the cemadd out
at about forty times faster than real time, no matter whattinaber of
CPUs. As one can see in the top figure, the reason is the latermoy
which eventually consumes nearly all the time for a time .stéps is one
of the important elements where parallel supercomputerdiéerent: For
example the Cray T3D has a more than a factor of ten lowerdgtender
PVM (Dongarra et al., 1998).

As mentioned above, we also ran the same simulation withouveahi-
cles. In the Transims1999 implementation, the simulatends the con-
tents of each CA boundary region to the neighboring CPU evieanw
the boundary region is empty. Without compression, thisvis ifntegers
for five sites, times the number of lanes, resulting in abd@ubyites per
split edge, which is considerably less than the 800 bytew fibove. The
results are shown in Fig. 25.11. Shown are the computingstiwiéh
1 to 15 single-CPU slaves, and the corresponding real titie @learly,
we reach better speed-up without vehicles than with vehidempare to
Fig. 25.10). Interestingly, this does not matter for the immasm compu-
tational speed that can be reached with this architectuoth ®ith and
without vehicles, the maximum real time ratio is about 80sisimply
reached with a higher number of CPUs for the simulation wehigles.
The reason is that eventually the only limiting factor is tie¢éwork latency
term, which does not have anything to do with #reountof information
that is communicated.

file: book.tex, p.25-13 October 15, 2007

25.5. Performance prediction for the Transims micro-satiah

Fig. 25.12 (top) shows some predicted real time ratios foelocomput-
ing architectures. For simplicity, we assume that all ohthexcept for
one special case explained below use the same 500 MHz Peodiom
pute nodes. The difference is in the networks: We assume 1i0ndb-
switched, 10 Mbit switched, 1 Gbit non-switched, and 1 Ghiitshed.
The curves for 100 Mbit are in between and were left out fatitgiavalues
for switched 100 Mbit Ethernet were already in Fig. 25.10.eQ@fearly
sees that for this problem and with today’s computers, ie&rly impos-
sible to reachany speed-up on a 10 Mbit Ethernet, even when switched.
Gbit Ethernet is somewhat more efficient than 100 Mbit Etbefor small
numbers of CPUs, but for larger numbers of CPUs, switched Bibi-
ernet saturates at exactly the same computational spedw asvitched
100 Mbit Ethernet. This is due to the fact that we assume Htanty
remains the same — after all, there was no improvement indgtevhen
moving from 10 to 100 Mbit Ethernet. FDDI is supposedly eveorse
(Dongarra et al., 1998).

The thick line in Fig. 25.12 corresponds to the ASCI Blue Miaim par-
allel supercomputer at Los Alamos National Laboratory. QreaCPU
basis, this machine is slower than a 500 MHz Pentium. Theenighnd-
width and in particular the lower latency make it possiblaise higher
numbers of CPUs efficiently, and in fact one should be ableesth a
real time ratio of 128 according to this plot. By then, howetee gran-
ularity effect of the unequal domains (Eq. (25.1), Fig. 25véuld have
set in, limiting the computational speed probably to abd@@ times real
time with 128 CPUs. We actually have some speed measuremitat
machine for up to 96 CPUs, but with a considerably slower doolea

summer 1998. We omit those values from the plot in order tadason-

fusion.

Fig. 25.12 (bottom) shows predictions for the higher figekortland
200000 links network with the same computer architecturébe as-
sumption was that the time for one time step, g.of Eq. (25.3), in-
creases by a factor of eight due to the increased load. Thisibabeen
verified yet. However, the general message does not depethe @artic-
ular details: When problems become larger, then larger eusndf CPUs
become more efficient. Note that we again saturate, with Witetsed
Ethernet architecture, at 80 times faster than real timettis time we
need about 64 CPUs with switched Gbit Ethernet in order talQaimes
faster than real time — for the smaller Portland 20 024 lingiswork with
switched Gbit Ethernet we would need 8 of the same CPUs tdn réreec
same real time ratio. In short and somewhat simplified: Aglas we
have enough CPUs, we can micro-simulate road networkslofrarily
largesize with hundreds of thousands of links and more, 40 times ffaste
than real time, even without supercomputer hardware. — dBaseour
experience, we are confident that these predictions wilblet bounds
on performance: In the past, we have always found ways to thekeode
more efficient.

file: book.tex, p.25-14 October 15, 2007

25.6. Speed-up and efficiency

Portland EMME/2 network (20 000 links)

0.25 7
Temp(x) oo
Tlat(x)
Tnode(x)
g 02 Tnet(x)
7 T(x
] Jun 00; Pentium Cluster
é Jun 00; Pentium Cluster Dual CPUs 4
~ 015
[}
o
[}
£
< 0.1
Q
o
o
g o005
0
1 1024
number of CPUs
Portland EMME/2 network (20 000 links)
128 T
A
32 A
16 =
"% A
s 8
E
= 4
©
o
2
1
1/T(x)
051 Jun 00; Pentium Cluster @
025 Jun 00; ‘Pentium Clu§ter Dual CPUs A
] 4 16 64 256 1024

number of CPUs

Figure 25.10: 100 Mbit switched Ethernet LANop: Individual time
contributions.Bottom: Corresponding Real Time Ratios. The black dots
refer to actually measured performance when using one ClrUlpster
node; the crosses refer to actually measured performanee uwgding dual
CPUs per node (thg-axis still denotes the number of CPUs used). The
thick curve is the prediction according to the model. The thies show
the individual time contributions to the thick curve.

25.6 Speed-up and efficiency

We have cast our results in terms of the real time ratio, sihiseis the
most important quantity when one wants to get a practicalystione.
In this section, we will translate our results into numbefspeed-up,
efficiency, and scale-up, which allow easier comparisoncfomputing
people.

Let us define speed-up as

S(p) = 7= (25.12)

file: book.tex, p.25-15 October 15, 2007

25.6. Speed-up and efficiency

Portland EMME/2 network (20 000 links)

0.25 ‘
Temp(x) e
Tlat(x)
Tnode(x)
g 02 Tnet(x)
® T(x
GEJ Jun 00; Pentium Cluster; no cars °
T o015
[}
o
[}
£
< 0.1
Q
o
o
g o005
O ————] AL TPy PV
1 4 16 64 256 1024
number of CPUs
Portland EMME/2 network (20 000 links)
128
64 —
32
o 16
T
o 8
£ i
had 4
<
o
2
1
05 1 T(x)
0.25 ‘ Jun QO; Pentium Qluster; no cars °
] 4 16 64 256 1024

number of CPUs

Figure 25.11: 100 Mbit switched Ethernet LAN; simulatiorthvaut ve-
hicles. Top: Individual time contributionsBottom: Corresponding Real
Time Ratios. The same remarks as to Fig. 25.10 apply. Inqodati black
dots show measured performance, whereas curves showtpcegerfor-
mance.

wherep is again the number of CPUS)(1) is the time for one time-step
on one CPU, and'(p) is the time for one time step gnCPUs. Depending
on the viewpoint, fof/’(1) one uses either the running time of the parallel
algorithm on a single CPU, or the fastest existing sequiealgorithm.
Since Transims has been designed for parallel computingiacé there
is no sequential simulation with exactly the same properfig1) will
be the running time of the parallel algorithm on a single CPa. time-
stepped simulations such as used here, the difference ectxpto be
small?

4An event-driven simulation could be a counter-example: ébgling on the imple-
mentation, it could be extremely fast on a single CPU up toiomgroblem sizes, but
slow on a parallel machine.

file: book.tex, p.25-16 October 15, 2007

25.6. Speed-up and efficiency

Portland EMME/2 network (20 000 links)

128
64
32
o 16
T
° 8
E
= 4
]
<
2/ i
1L ASCI Blue Mountain parallel supefC‘omputer —
Gbit switched
Gbit non-switched =——
05 10 Mbit switched -]
10 Mbit non-switched -
0.25 L L L
1 4 16 64 256 1024
number of CPUs
Portland TIGER network (200 000 links)
128
64
32
o 16
©
° 8
£
= 4
]
I
2 o
1L e Mountain béirallel,supercomputer —
“Ghit switched
Gbit non-switched
0.5 10 Mbit switched. - 1
10 Mbit non-switched -2~
0.25 L L -

1 4 16 64 256 1024
number of CPUs

Figure 25.12: Predictions of real time ratio for other comepuwonfigu-
rations. Top: With Portland EMME/2 network (20024 links)Bottom:
With Portland TIGER network (200 000 links). Note that foe tswitched
configurations and for the supercomputer, the saturatialgirae ratio is
the same for both network sizes, but it is reached with difienumbers
of CPUs. This behavior is typical for parallel computerseylare partic-
ularly good at running larger and larger problems within shene com-
puting time. — All curves in both graphs are predictions froamn model.
We have some performance measurements for the ASCIl masdthine
since they were done with an older and slower version of thie cthey
are omitted in order to avoid confusion.

Now note again that the real time ratiorig (p) = 1 sec/T(p) . Thus, in
order to obtain the speed-up from the real time ratio, onédamultiply all
real time ratios by/'(1)/(1 sec). On a logarithmic scale, a multiplication
corresponds to a linear shift. In consequence, speed-ygswan be
obtained from our real time ratio curves by shifting the @srup or down
so that they start at one.

This also makes it easy to judge if our speed-up is linear trifar exam-
ple in Fig. 25.12 bottom, the curve which starts at 0.5 for LGRould
have an RTR of 2 at 4 CPU, an RTR of 8 at 16 CPUs, etc. Downwatid dev

file: book.tex, p.25-17 October 15, 2007

25.7. Other modules

ations from this mean sub-linear speed-up. Such deviadmnsommonly
described by another number, called efficiency, and defised a

_T)/p
E(p) :) (25.13)
Fig. 25.13 contains an example. Note that this number contad new
information; it is just a re-interpretation. Also note tabur logarithmic
plots, £(p) will just be the difference to the diagonall'(1). Efficiency
can point out where improvements would be useful.

Portland TIGER network (200 000 links)

1 e &\\\
P I D - B NG
>
Q
g
3 0.01
2
()
0.001 | ASCI Blue Mountain parallel supercomputer — E
Gbit switched -
Gbit non-switched
10 Mbit switched ««weeeee
10 Mbit‘ non-switchqd —————————

0.0001 :
1 4 16 64 256 1024

number of CPUs

Figure 25.13: Efficiency for the same configurations as in Egl2 bot-
tom. Note that the curves contain exactly the same infoonati

25.7 Other modules

As explained in the introduction, a micro-simulation in dta@re suite
for transportation planning would have to be run many tinfeeefiback
iterations”) in order to achieve consistency between meglufFor the mi-
crosimulation alone, and assuming our 16 CPU-machine wiitcked

100 Mbit Ethernet, we would need about 30 hours of compuimeg in

order to simulate 24 hours of traffic fifty times in a row. In &duh, we

have the contributions from the other modules (routingydies genera-
tion). In the past, these have never been a larger problemttieamicro-
simulation, for several reasons:

e The algorithms of the other modules by themselves did siamfly
less computation than the micro-simulation.

e Even when these algorithms start using considerable amaifnt
computer time, they are “trivially” parallelizable by sitgpdis-
tributing the households across CPUs.

SThis is possible because of the specific purpose Transinesigrkd for. In real time
applications, where absolute speed between request gmohsesmatters, the situation
is different (Chabini, 1998).

file: book.tex, p.25-18 October 15, 2007

25.8. Summary

¢ In addition, during the iterations we never replan more tabout
10% of the population, saving additional computer time.

In summary, the Transims modules besides the traffic micnodation
currently do not contribute significantly to the computatb burden;
in consequence, the computational performance of the draficro-
simulation is a good indicator of the overall performancehefsimulation
system.

25.8 Summary

This paper explains the parallel implementation of the $mas micro-
simulation. Since other modules are computationally lessahding
and also simpler to parallelize, the parallel implementabf the micro-
simulation is the most important and most complicated pietc@ar-

allelization work. The parallelization method for the Tsans micro-
simulation is domain decomposition, that is, the netwodpdris cut into
as many domains as there are CPUs, and each CPU simulatesfib@nh

its domain. We cut the network graph in the middle of the lird¢aer than
at nodes (intersections), in order to separate the traffiahycs complex-
ity at intersections from the complexity of the parallel ieypentation.
We explain how the cellular automata (CA) or any techniqu aisimi-

lar time depencency scheduling helps to design such spli$ liand how
the message exchange in Transims works.

The network graph needs to be partitioned into domains in ya tat

the time for message exchange is minimized. Transims useSIHTIS

library for this goal. Based on partitionings of two diffatenetworks of
Portland (Oregon), we calculate the number of CPUs wheseaghproach
would become inefficient just due to this criterion. For awwk with

200000 links, we find that due to this criterion alone, up t@4CPUs
would be efficient. We also explain how the Transims micratgation

adapts the partitions from one run to the next during feeklltacations
(adaptive load balancing).

We finally demonstrate how computing time for the Transimsrodi

simulation (and therefore for all of Transims) can be systigrally pre-

dicted. An important result is that the Portland 20 024 linkswvork runs
about 40 times faster than real time on 16 dual 500 MHz Pentiom-

puters connected via switched 100 Mbit Ethernet. Thesecgndar desk-
top/LAN technologies. When using the next generation of momica-

tions technology, i.e. Gbit Ethernet, we predict the sanmeputing speed
for a much larger network of 200 000 links with 64 CPUs.

file: book.tex, p.25-19 October 15, 2007

Chapter 26

Distributed computing and truly
distributed intelligence

Once the traffic micro-simulation is parallelized, it be@swonsiderably
more difficult to add within-day replanning. As long as onegevery-
thing on a single CPU, it is in principle possible to write anenolithic
software package. In such a software, an agent who wantatmetplans
calls a subroutine to compute a new plan, and during thistimeompu-
tation of the traffic dynamics is suspended. On a parallelpdasr, if one
traveler on one CPU does thal] other CPUs have to suspend the traffic
simulation since it is not possible (or very difficult) to leesimulated time
continue asynchronously (Fig. 26.1 left).

A better approach is to have the re-planning module on ardiiteCPU.
The traveler then sends out the re-planning request to tRak, @nd the
traffic simulation keeps going (Fig8? and 26.1 right). Eventually, the
re-planning will be finished, and its result will be sent t@ timulated
traveler, who picks it up and starts acting on it. An expentakimple-
mentation of this using UDP (User Datagram Protocol) for samica-
tion shows that it is possible to transmit up to 100 000 retyyssr second
per CPU (Gloor, 2001), which is far above any number thatles/eat for
practical applications. This demonstrates that such gdésfeasible and
efficient.

Race conditions

Some readers may have noticed that success of the re-plampé@nation
is not guaranteed. For example, the new plan may say to maka at
a specific intersection, and by the time the new plan readteeraveler,
she/he may have driven past that point. Such situationsave\er not
unusual in real life — how often does one recognize that amfft decision
some time ago would have been beneficial. Thus, in our vievkeélyeo
success for large scale applications it to not fight asynmuuse effects
but to use them to advantage. For example, once it is accéméduch
messages can arrive late, it is also not a problem to not lmere arrive
at all, which greatly simplifies message passing.

No memory problems etc.

26-1

An additional advantage of such a distributed design isttietmplemen-
tation of a separate “mental map” (Sec. 31.3) for each iddii traveler
does not run into memory or CPU-time problems. Specific rguiiel-
ance services can be simulated in a similar way. Also, noatlimterac-
tion between travelers becomes a matter of direct intenattetween the
corresponding “strategic” CPUs, without involving thetre$ the com-
putational engine. This occurs for example for ride sharimgwhen
family members re-organize the kindergarten pick-up whiemgp have
changed during the day, and will necessitate complicatgdtraions be-
tween agents. However, neither the models nor the compuotdtnethods
for this are developed.

Similarity to robot design and humans

This design is similar to many robot designs, where the lbo¢ au-
tonomous on short time scales (tactical level) while they @nnected
via wireless communication to a more powerful computer farendif-

ficult and more long-term time scales (strategic level);, s=g., Ref.
(Kim, 1997) for robot soccer. Also, the human body is orgadialong
these lines — for example, in ball catching, it seems thattiagn does
an approximate pre-“computation” of the movements of thedsawhile
the hands themselves (and autonomously) perform the firiegwf the
movements as soon as the ball touches them and haptic irtffonma

available (Sternad). This approach is necessitated byeth@vely slow
message passing time between brain and hands, which is ofdkee of

1/10 sec, which is much too slow to directly react to haptforimation

(Rothwell, 1994).

That is, in summary we have a design where there is some kifreaif
world dynamics” (the traffic simulation), which keeps goiafyits own
pace. Agents can make strategic decisions, which may tades but the
world around them will keep going, meaning that they will &ae con-
tinue driving, or deliberately park the car. As pointed @utch an archi-
tecture is very well supported by current distributed cotepg) although
the actual implementation still needs to be done.

file: book.tex, p.26-2 October 15, 2007

CPU1 CPU 2 CPU3

timestep n timestep n timestep n
n+1 n+l n+1
n+2 n+2 n+2
[}
£
idle replanning idle
n+3 n+3 n+3
CPU1 CPU2 CPU3
timestep n timestep n timestep n
n+l n+l n+l
n+2 n+2 n+2
o n+3 n+3 n+3 I
£
- n+4 n+4 n+4
n+5 n+5 n+5
| —
n+6 N6 | e
n+7 n+7 n+7

Figure 26.1: Parallel implementation of within-day replang. LEFT:
Implementation as subroutine of parallel traffic simulati®RIGHT: Im-
plementation via separate plans server.

file: book.tex, p.26-3 October 15, 2007

Part IV

Some background

26-4

Chapter 27

Traffic flow theory

27.1 Introduction

This text has started with a minimal representation of taffi a link, the
single-lane deterministic CA with maximum speed one. Weelhen ex-
plored ways to make that model more realistic, for exampté vaspect
to fundamental diagrams, or with respect to multi-landitafThe focus
of this chapter will be to provide some basic underlying tyedJnder-
standing some theory is necessary in particular if one wanise simple
models, because then one needs to understand their desiemd the
consequences of this.

27.2 Traffic flow measurements

It was already pointed out in Sec. 17.3 that important realdgquantities
for traffic are flow and density. A third quantity is speed. &ctf there
are two different ways to measure traffic: space-averagexsanements,
and point & spot) measurements. The space-averaged measurements are
done at specific points in time, and they correspond to whai®uosed to
from, say, fluid-dynamics. The point measurements are ctosehat is
measured in reality: A sensor, e.g. an induction loop, Ugealers only
a small amount of space. Itis common use to average pointuregasnts
over sometimd’, for examplel’ = 60 sec or 7' = 5 min.! These dif-
ferences are not particularly intereresting, but they asessary to avoid
some caveats.

27.2.1 Speed

The two measurements are:

From a theoretical perspective, it is questionable if thisraging is a good idea. It
is however necessary to compare with field data.

27-1

27.2. Traffic flow measurements

e Space-mean speedlso calledravel velocity:

v, = L > i (27.1)

Thus, one averages over a stretch of road of leAgth

e Point velocity, also calledspot speedor instantaneous velocity
We observe at a fixed position, and we average over the vielocit
of all vehicles that pass by. Whéw; is the number of vehicles that
passed by, then spot speed is

N 1
Up = . Zvi . (27.2)

One can immediately see that there is a difference betwesrespean
speed and spot speed by noting that space-mean speed sckldeles
of speed zero into the average while spot speed does nobwg\rer, all
vehicles always have the same velocity, then both measutsrtead to
the same result. The formal relationship is a bit more corapid?

Travel velocityv is the more relevant quantity sinde/v is the time an
average traveller needs for a distaricelt is also the quantity which is
relevant for fluid-dynamical relations, for example- p v.

27.2.2 Flow

(alsothroughput). This is traditionally the most important quantity, since
it is easy to measure (one just has to count the number ofrgagshi-
cles at a fixed location), and it is important for the perfonce of the
transportation system as a whole. In order to allow comearit is often
useful to divide flow by the number of lanes. Say that duringeti” we
have measured’; vehicles.(Point) flow then is

Np

= 27.4
TNlanes ()

qr

A typical unit of flow is “(number of) vehicles per hour and &n

Transportation science also uses the teolme. According to Gerlough
and Huber (1975), this should be reserved to hourly flows rfie@asured

2Assume thatv;); is a sequence of speed measurements of different vehicltssfo
space-mean speed. The probability of a vehicle of velagtip cross a sensor within a
given time period is proportional to,. Thus, in order to obtain spot speed frdm);,
eachw; has to be weighted by; = v;:

Swv;g SvE (02 -3+ Y92 No?+ Nv? —_—
v = = = = =1
opot Z wW; Z Vi Z V; Nv
where o is the variance of the velocity measurement. This confirnas $pot speed

is larger than space-mean speed, and the difference iesr@ath increasing velocity
fluctuations. — An alternative derivation is, for exampte(Gerlough and Huber, 1975).

ST

, (27.3)

file: book.tex, p.27-2 October 15, 2007

27.2. Traffic flow measurements

over one hour and expressed in “vehicles per hour”). Maxinflom is
also calledcapacity.

There is no direct way to measwpace-mean flowHowever, sometimes
it is useful to use the relatiopn= pv. We then have

1 N’Uch

L Nlanes ;

qr = pPLvrL = Vi (27.5)

wherep,, is taken from the next section.

27.2.3 Density

Space-averaged density is the number of vehicles on a certain stretch of
road, divided by the length of that stretch. In order to allow comparison,
it is useful to also divide by the number of lanes:

o Nveh
B LNlanes -

PL (27.6)
The resulting density is for example given in “(number ofhiates per
km and lane”.

Point density has no natural measurement. One capuseq /vy.

An alternative method for point density is the “fraction whe that a sen-
sor is covered by a vehicle”, also calledcupancy Unfortunately, this
quantity is difficult to obtain from a time-discrete simudat. Since the
duration a sensor is covered by a vehiclé js;, the correct measurement
in a simulation would be

1
pr=r Zﬂi/vi) (27.7)

In the CA context,/; = const = 1. In field measurements, it is usu-
ally impossible to obtairf; for each vehicle, which means that an exact
translation of occupancy into density is impossible.

27.2.4 Fundamental diagrams

As already stated in Sec. 17.3, often speed, flow, and desrgtgot sim-
ply plotted as time series, but the relations between thenphntted as
so-called fundamental diagrams. Typical fundamentalrdiag are speed
or flow as the function of density or occupancy. Fig. 27.2 shive fun-
damental diagram of flow vs. density obtained from the daigf27.1.
Plausibly, flow is low at low densities (because no vehiclenshe road),
and it is low at high densities (because all vehicles are3tdte behav-
ior in between is however more complex than one maybe woypeetx
and no complete theoretical explanation is available (Keamd Rehborn,
1996b; Daganzo et al., 1999; Jost and Nagel, 2003).

file: book.tex, p.27-3 October 15, 2007

27.3. Car following

120 0.55
velocity —+—

flow —*—

05
100 -

I 0.45

®
o

- 0.4

60
I 0.35

flow [cars/s]

40

velocity [km/h], density [cars/km]

03

20 1
F 0.25

0 T T T T T 0.2
565000 570000 575000 580000 585000 590000 595000
time [s]

Figure 27.1: Time series of speed, flow, and density.

3000 T T T T T T
free ¢
synchronized—+—

2000

0 10 20 30 40 50 60 70

Figure 27.2: Fundamental diagram of flow vs. density fromrtieasure-
ments of Fig. 27.1.

27.3 Car following

27.3.1 Reaction time argument for car following

Any more realistic car micro-simulation first needs to hawveethod for
simple car following. Such methods can be developed on esilagle
loops, similar to a single-lane race track. A good way totssathe rule
of thumb of “two seconds time headway”, that many of us leadriging

school. We are supposed to have two seconds between the hierethe
car ahead passes a certain location, and the time when wetpddse

reason for this is related to our reaction time. If the caraah&tarts brak-
ing really hard right when its back bumper is at that locatermd if, after
a reaction time, we start braking when our front bumper idhat same
position, we will barely avoid a crash (see Fig. 27.3). Thime head-
way needs to be larger than reaction time, which translatiesa space

file: book.tex, p.27-4 October 15, 2007

27.3. Car following

space space

1 1

t1 +t_rct t1 +t_rct

time
time

t2 t2

t2+t_rct (¥ - t2+t_rct

overlap

Figure 27.3: Reaction time argument. The left figure showdrhjecto-
ries of the front bumpers of two vehicles. At the leader starts breaking;
att,, she has come to a standstill. The follower starts breaking-at,.;
and since his breaking follows exactly the same charatitsjsie comes
to a standstill at, + ¢,.,. The right figure shows the same, with vehicle
outlines superimposed. If at + ¢,., the follower’s front bumper is be-
yond where the back bumper of the leader was when she staeakiig,
and accident cannot be avoided (but happens slightly later)

headway proportional to speed. As a consequence, most ltawifay
models have as their most important term one that makes tbeityea
roughly linear function of the space headway or gap, althaugpally a
reaction delay of one instead of two seconds is Wisédl.car following
models based on this principle have a similar dynamical \aeha For
example, the transition from laminar to start-stop traffisimilar for all
these models (Krauf3 et al., 1998). Car following models wiaie used
in micro-simulations are usually designed to be free ofcemis.

27.3.2 Discrete space and discrete time: Cellular au-
tomata rules

Incarnations of car following can use continuous or digtiebe, and con-
tinuous or discrete space. While continuous space andntomis time
iIs more realistic, discrete space and time are more natora figital

computer. And recent research has shown that, in the spiitatistical

Physics, extremely simple and even unrealistic rules omtioeoscopic
level can still lead to reasonable behavior on the macrasteyel (Krauf3,
1997; Nagel, 1996, 1999; Nagel et al., 1998; Brilon and Wi88)9 In

consequence, cellular automata (CA) techniques, whichdeaete in
space and time, plus have a parallel local update, can Bcgialulate
traffic quite well. They also have a didactic advantage,estading many

3“Gap” denotes the space from my front bumper to the rear buwiptbe car ahead,
sometimes minus some safety space one would like to havee$gadway is used less
uniformly; for example, it sometimes denotes the front-pemto-front-bumper space,
thus including the length of the car ahead.

file: book.tex, p.27-5 October 15, 2007

27.3. Car following

Figure 27.4: Definition of a more general CA for traffic

aspects of traffic flow such as car following, lane changimgap accep-
tance, is straightforward with a CA approach.

Deterministic traffic CA

As already discussed in Secs. 7 and 17, typical CA for traffpresent
the single-lane road as an array of cells of lengtBach cell either empty
or occupied by a single vehicle. Vehicles have integer veé&scbetween
zero andy,,... A possible update rule is (Nagel and Herrmann, 1993)

(1) v = minlg, vy + 1, Vpag]
(2) 441 = 2 + v

g is the number of empty cells between the vehicle under cersiigdn
and the vehicle ahead, ands measured in “cells per time step”.

As will be discussed below, this model has some importartufea of
traffic, such as start-stop waves, but it is unrealisticahyff” in its dy-
namics.

As also already discussed in Sec. 4i4 the length a vehicle occupiesin a
jam, it is often taken aé = 7.5 m. In order to get realistic results, a time
step of one second is a good choice (remember the reactie tamd then
Umae = D cOrresponding to 135 km/h is a good choice. In applications,
Umae Can be set according to a speed limit on the link. Note thahén t
traffic CA community distances and speeds are often givemowrttunits,
which means that they refer to “cells” or “cells per time Stepspectively.

This rule is similar to the CA rule 184 according to the sdezaWolfram
classification (Wolfram, 1986); indeed, fof,,, = 1 itis identical.

It turns out that, after transients have died out, there ae regimes
(Figs. 27.5 and 27.6):

e Laminar traffic. All vehicles have gaps af,,.... or larger, and speed
Umaz- FIOW IN CcONSEQUENCE 8= p V)00 -

e Congested traffic. All vehicles have gaps of,,., or smaller. It
turns out that they allways have a speed equivalent to their ghis
means thap " v; = > g; = N, X (g). Since density = 1/({g) +
1), this leads to

g=pv=1—p. (27.8)

file: book.tex, p.27-6 October 15, 2007

27.3. Car following

Figure 27.5: Space-time plot of deterministic CA. Each Bneonfigura-
tion of the simulated road; traffic goes from left to rightnhé is going
downward. Numbers denote the velocity for the next movertiardells

per time step). TOP: Laminar traffic. BOTTOM: CongestedfitaSome
trajectories are added to guide the eye. Note thattiuetureamove back-
wards while the vehicles themselves move forwards. Thegetstes are
what the deterministic CA model generates in terms of trgfics.

flow g

B

density P

Figure 27.6: Fundamental diagram for the deterministic CA.

The two regimesmeet where) v,,,,, = 1 — p, i.e. at

1

= 27.9
p Uma:z' + 1 ()
This is also the point of maximum flow, with

Qmaz = M (2710)

Upmax + 1

Stochastic traffic CA (STCA)
One can add noise to the CA model by adding a randomizatiom ter

(1b) With probabilityp,,,;s. do: v,y = max[v,.; — 1,0] ; the “max” is
needed to prevent negative speeds.

file: book.tex, p.27-7 October 15, 2007

27.3. Car following

1

.0
.00..
.01..
0.
0..
0..

o8sro:
S0

385

=]

Figure 27.7: Space-time plot of stochastic CA. Each line ¢emrfigura-
tion of the simulated road; traffic goes from left to rightné is going
downward. TOP: Laminar traffic. BOTTOM: Jam out of nowheradieg
to congested traffic.

This makes the dynamics of the model significantly more séali
(Fig. 27.7). p..ise = 0.5 is a standard choice for theoretical work; as
already discussed in Sec. 1743,,;c = 0.2 is more realistic with re-
spect to the resulting value for maximum flow (capacity). Bhgized
fundamental diagram for the STCA looks the same way as thidafuen-
tal diagram for the deterministic CA, i.e. as Fig. 27.5. D&sthe same
shape, the value of maximum flow will however be much lowentWéh
the deterministic CA: about000 veh/hr for the STCA withv,,,, = 5
andp,.ise = 0.2 (Fig. 17.2) in contrast té veh/6 sec = 3000 veh/hr
(Eq. 27.10) for the deterministic CA with,,.,, = 5.

STCA with slow-to-start rules (s2s-STCA)

Real traffic may have a strong hysteresis effect near maxiftavmthere
is however no agreement among researchers if or under whicinc
stances this effect truly exists. If it exists, it looks afidas: When
coming from low densities, traffic stays laminar and at frpeesl up to
a certain density (see Fig. 27.8). Above that, traffic “breaks down” into

file: book.tex, p.27-8 October 15, 2007

27.3. Car following

oe]

flow q
>
bi-stable
unstable

stable

D

=)
=

=
N

density P

Figure 27.8: Stylized fundamental diagram for slow-tats& CA.

start-stop traffic. When lowering the density again, howealoes not
become laminar again unfil < p;, which is significantly smaller tham,,
up to 30% (Kerner and Rehborn, 1996a,b). This effect can tleded
into the above rules by making acceleration out of stoppefticrweaker
than acceleration at all other speeds, for example by:

o if (bf — 0andg, < 1) theno,.; — 0
e elsevy; = min|gy, vy + 1, Vpaz)-

This means that the vehicle needs a largeghan before to start mov-
ing. Such rules are called “slow-to-start” rules in the pog£ommunity
(Barlovic et al., 1998; Chowdhury et al., 1999).

Time-oriented CA (TOCA)

A modification to make the STCA more realistic is the so-chliene-
oriented CA (TOCA) (Brilon and Wu, 1998). The motivation sihtro-
duce a higher amount of elasticity in the car following, tigtvehicles
should accelerate and decelerate at larger distances tethee ahead
than in the STCA, and resort to emergency braking only if theytoo
close. For the TOCA velocity update, the following operatimeed to be
done in sequence for each car:

1. if (g > v -7y) then, with probabilityp,..,

vi=min{v + 1, Vpae } ; (27.11)
2. v :=min{v, g}

3. if (g < v -7y)then, with probabilityp,.,
v = max{v — 1,0} . (27.12)

file: book.tex, p.27-9 October 15, 2007

27.3. Car following

Typical values for the free parameters ape., pi., 7) = (0.9,0.9,1.1).
The TOCA generates more realistic fundamental diagranrstti@orig-
inal STCA, in particular when used in conjunction with lactfeanging
rules on multi-lane streets.

Dependence on the velocity of the car ahead

It makes sense to assume that velocity difference betwdgolgs should
be included. The idea is that if the car ahead is faster, thisnadds to
one’s effective gap and one may drive faster than withowt thi the CA

context, the challenge is to retain a collision-free patalipdate. Wolf
(1999) achieves this by going through the velocity updategywhere
in the second round any major velocity changes of the velictad are
included. Barrett et al. (1996) instead additionally lookhee gap of the
vehicle ahead. The idea here is that, if we know the gap of éhecle

ahead, and we make assumptions about the driver behavioe g&thicle
ahead, then we can compute bounds on the behavior of thdevehiead
in the next time step.

Theory

CA rules can also be analyzed analytically, by means ofssizai tech-
niques which look at sequences of configurations of the dycaravolu-
tion of the system (e.g. Schadschneider and Schreckerl#38; Schad-
schneider, 1998; Chowdhury et al., 2000). Note that thiossible be-
cause the cellular approach makes the dynamical statesatxenThere
is only a finite number of possible states for a given numbeets.

27.3.3 Continuous space and continuous time

Making both space and time continuous results in couplei@reiftial

equations. Such models for car following were establishgtecgome
time ago (e.g. Gerlough and Huber, 1975, and referencesithemMost of

them also use in one way or other the reaction time argume&eaf27.3.1
(as they should). For example, one could use

v(t+71) = aAx(t), (27.13)

where Az is the distance to the car ah€adlhis just means that, after
some time delay, our velocity is proportional for, as it should be ac-
cording to the reaction time argument.

4car-following models have a tendency to not distinguishelg betweerny (which is
space between cars) and: (which is usually front-bumper-to-front-bumper distapce
As long as vehicles do not pass each other, these differaned@sdeed irrelevant.

file: book.tex, p.27-10 October 15, 2007

27.3. Car following

One can expand(t + 7) = v(t) + T v(t) + ..., drop second order terms,
and rearrange, resulting in

1
0(t) = — (a Ax(t) — U(t)) (27.14)
T
That is, we adjust our velocity change so that we are adgistiwards the
“correct” velocityv = aAxz. EQs. (27.13) and (27.14) do not in general
generate the same dynamics, in spite of having the same dyoaigin.

A generalization of Eqg. (27.14) is to replaceAxr; with a function
V(Ax(t)):

v(t) =

S

(V(Am(t)) . U(t)) (27.15)

We will need this again later.

The “classic” car-following model family (Gerlough and Huber, 1975)
comes from taking a time-derivative of the reaction-timdatien
Eq. (27.13), leading to

O(t+7) = alu(t) . (27.16)

After adding some more or less plausible prefactors, tlaiddeo

v T :ai[v(t—i_ﬂy v
(t+7) =« DG Av(t) . (27.17)

These models are however unstable (e.g. Nagel et al., 200@)reason
behind that is that they allow vehicles to follow each otheexremely
close distances with very high speeds as long as there idoatyaliffer-
ence between them: Frotw = 0 follows v = 0. Once a small velocity
difference shows up, they react with violent fluctuationsté\that neither
Eq. (27.13) nor (27.14) allow such a solution.

For computer implementations, models with continuous tnesinconve-
nient, since time needs to be discretized in one way or oBetause of
the reaction delay, many of these car-following equatiordalay equa-
tions, where considerable effort needs to be spent forfédittumerical
results. Given this observation, it seems to be simpler tld Ionodels that
use discretized time to their advantage (see next sectim} is not to
say that continuous car-following models are useless;eddtehey con-
tinue to contribute to our understanding of the matter (Bando et al.,
1994, 1995). We would expect, however (see below), that artigféil
discretization of these equations will run a lot more sloatya computer
than the model presented in the next section, which exiglicstes discrete
time.

Another possible implementation of continuous space and would be
event-driven. This works best when particles move with tamtsselocity
for periods of time, interrupted by events where they chandéolecular
dynamics with hard core interactions is an example. Sineceamudriv-
ing behavior can probably indeed be characterized like(iNedemann,

file: book.tex, p.27-11 October 15, 2007

27.3. Car following

1994), this should be a promising approach. However, pratiple-
mentations of event-driven simulations are hard and tbezdarge scale
simulations currently not done with this method.

27.3.4 Discrete time and continuous space car follow-
ing

A disadvantage of the CA approach to traffic is that the cegeseed
description makes fine tuning of many properties difficutir E&xample, it
is difficult to represent fine-grained differences in spe®it$, or different
acceleration profiles.

On the other hand, the use of coupled ordinary differentjabgions turns
out to be inconvenient for traffic simulations, in partiquteecause of the
explizit handling of the reaction time, which means that momerical
integration one needs to maintain the entire dynamicabhjidtetweent
andt — 7 in increments of the time discretizatiaxy. There are however
also models that are continuous in space but coarse-grdiserkete in
time which work extremely well for traffic (Gipps, 1981; Kiaul1997;
Kraul3 etal., 1997; Yukawa and Kikuchi, 1995; Sauermann ardribnn,
1998). The reason for this is that drivers have a reacticaydelabout one
second, and it is advantageous to use this reaction deldedsrte step
for the micro-simulation. From a practical point of viewaffic models
which use discrete time but continuous space are numariasléfficient
as the CA models but are much easier to calibrate. Obvicaishyltitude
of models is possible here — as is with CAs. We want to conaentin
a single model, a model described by Kraul3 (Krauf3, 1997; Kedwal.,
1997). This model is particularly well understood.

The approach starts again from the reaction time argumeat (.3.1),
this time taking into account the possibility that the twoscean have dif-
ferent velocities. This results in the condition that or@'aking distance
plus the distance that one drives until one reacts shouldriadier than

the braking distance of the car ahead plus the space in betieewo

vehicles. Formally, this yields

dv)+ovr <d(®)+g, (27.18)

whered(v) is the braking distance of a car moving with speed is the
reaction timey is the distance to the car ahead, and the speed of the
car ahead (“leader®.

This can be used to derive (see Fig. 27.9) a simple updatenecfor the
dynamical state of a car:

~ gt — U T
Vaie = Bt S (27.19)
Vaes = min{v; + ah, Vsage, Umax (27.20)
Vppn, = max{0,vqes — €an} (27.21)
Tean = Tp+ hvgp . (27.22)

SNote that this formulation includes the effect of differemiocities, but it assumes
that acceleration of the follower is zer®)(

file: book.tex, p.27-12 October 15, 2007

27.3. Car following

Derivation of the safe velocity
Let us first Taylor-expand the functieliv) describing the braking dis-
tance around the operating poimt= (v + ©)/2, wherev andv arg
again the velocity of the follower and leader, respectively

d(w) = d@) + (v —) ' (7) + L=

d"(®) +O((v—71)%) .
Inserting this into Eq. 27.18, one obtains first
(v=0)d'®)+v7 < (0-0)d'(®)D+g

and then
vd (@) +vr <od@o+g. (%)

Note that this is correct up to and including second ordeGesithe
second order terms cancel out.
Next, we note the kinematic relation
d v
d(0) = —d@) = —

@)= 3,40 = 3
whereb(v) is the deceleration of the car. This relation can be dasily
derived when one assumes a constamitil the car is stopped, but is
also true for an arbitrary braking profi¢v).
Inserting this into Eq.«) and rearranging terms yields

g—uT

T4+7/b(v)

<9+

Showing the collision freeness
In continuous time and after the assumptions made, the ababe
condition for collision-free driving. This is true also ftine discrete
analogue of this formula, provided the step-sizés smaller thanr:
First, in general one obtains for the gap

Ji+h =gt + h (17L+h - UL+h) .

After using Eq. (27.19) of the main text, rearranging terarg] using
the notatiort, := g, — h ¥, one gets

h T—nh
> 1— hv
§t+h*§t(T+§/b)+ UT+1_)/b7

amaps, — £(t+h). Thus,h < 7is a sufficient condition to ensure that
if & > 0, thenét + h > 0, meaning that, > 0 for all ¢ if £&—¢ > 0.
Because of the definition @f, this ensures that. > 0 for all ¢t > 0.

Figure 27.9: Derivation of the model by Krauss.

v = (v + 0)/2 is the average velocity of the two cars involveds the
maximum acceleration of the vehiclégheir maximum deceleration,is
the noise amplitude, angis a random number following a flat distribution
in [0, 1].

The terms can be interpreted as follows:
e The first rule (i.e. EQ. 27.19) can be rewritten as

Veage = a L+ (1 - a) (27.23)
T

file: book.tex, p.27-13 October 15, 2007

27.4. Kinematic waves and fluid-dynamics

with
1

o/ +1°
That is, v, is a weighted average @f/7 ando. Fora < 1, the
velocity of the car ahead is added to the calculation in tHeviang
way: If the car ahead is faster, then one can be a little fabger

allowed by the gap alone; if the car ahead is slower, then erd$
to be slower than allowed by the gap alone.

(27.24)

(07

Note that fora = 1 and7 = 1 we recover the STCA rule.

e The second rule (i.e. EqQ. (27.20)) just states that the uglas
limited by the desired acceleration by the safe velocity,,. as
calculated above, and by the maximum velocity,, .

Note that this is the same as the CA rule.

¢ In the third term, noise is added by randomly making the vehicle
slower than so far calculated.denotes a random variable between
zero and one; is a noise scaling factor.

Again, this is the same as the CA rule.

e The fourth term denotes the forward movement.

For i, < 7 one can show that this model is free of collisions (Fig. 27.9)
normally, one uses = 7. Typical values fofa, b,) are(0.2,0.6, 1).

27.4 Kinematic waves and fluid-dynamics

27.4.1 The Lighthill-Whitham-Richards equation

The intuition for kinematic waves is easy to understand.rtStith five
vehicles of velocity zero in five adjoining cells. In the fitshe step, only
the first vehicle can move. In the second time step, the segeindle can
start, etc. However, in the meantime it can happen that anotthicle
joins the queue at the talil.

Given the right conditions (more vehicles joining at the tiaan leaving

at the head), this results in a cluster of vehicles of vejoo#ro and that
cluster will move against the traffic direction. Note that trehicle com-
position of this cluster is constantly changing — from thespective of a
driver, you join the jam from the end, the jam “moves through'y and

then you can start again (look at the two trajectories in tiweel part of
Fig. 27.5 for an illustration). This is a standard wave pheanon.

A detailed introduction into such waves can for example hentbby
Haberman (1977). Here, we will just give an overview for geopho
have some prior knowledge about partial differential wayeations.

file: book.tex, p.27-14 October 15, 2007

27.4. Kinematic waves and fluid-dynamics

q(x-1/2) q(x+1/2)

N N\

N(x=1)

N(x+1)
N(x)

x-1/2 X x+1/2

Figure 27.10: lllustration of Eq. (27.26).

One way to see all the connections is to start from the stanetguiation
of continuity, which needs to be fulfilled as long as our taffbeys mass
conservation (no vehicles leaving or joining). This equais

Oip + 0,q =0 (27.25)

(equation of continuity).

This equation can be easily understood when it is discietfméth dis-
cretization constantat = 1 andAx = 1):

Nea@) = Ni(@) = (sl +3) - ale - 3)) (27.26)
whereN, (z) is the number of vehicles in a spatial interval of sixe = 1.
The notation mirrors the computational implementationererthe spatial
index would be represented by an array index, while the teatpadex
would typically not show up at all. The equation states thatrnumber
of vehicles at timé + 1 is equal to the number of vehicles at timelus
what flows in from the left, and minus what flows out to the right

We now need a relation betweerandp. Let us assume thatis a func-
tion of p only, i.e. the total differential igq = % dp. The meaning of this
(instantaneous velocity adaptation) will be discussedwelThe result-
ing theory is also called theghthill-Whitham-Richards (LWR) theory
(Lighthill and Whitham, 1955). The equation of continuigrcimmedi-
ately re-written as

d
dip+ L(p)dup=0 (27.27)
dp

(LWR equation), whereq(p) is some externally given function.

That function needs not to be specified here, but it is usefiuinagine
something plausible. Useful examples are:

L (J(/()) = Ufree P (1 - p//)jam)

® q(p) = min[pvfree, Qu(L = p/pjam)]
Because of) = pv andp = 1/Axz, this is equivalent ta(p) =
Min{vgee, Qu(Ax — (AZ) 4)] = min|vy,.e., Q. gap] , meaning it is
just another incarnation of o< gap.
Diese letzte Form ist traditionell un”ublich, wird abertseinigen
Jahren verst”arkt in der Praxis verwendet (Newell's zeeothe-
ory, Daganzo’s cell transmission model)

file: book.tex, p.27-15 October 15, 2007

27.4. Kinematic waves and fluid-dynamics

27.4.2 Linearization

Since we now have a fully defined partial differential eqoiatiwe can
try to understand some of it. A typical first step is “lineatibn”. For
this, p is replaced byp + o/, with 0,p = 0 (stationary) and,p = 0

(homogeneous); this is always possible. One assumethat,’ is small.
Functions inp are Taylor-expanded:

dF ,_

F(p) = F(p) +p’7p(ﬂ) + s (27.28)

in our case, we neetl = dq/dp. This results in

dq ,_ d*q,_
o, (— - ...)az’:o. 27.29
i+ dp(p) + 0 (p) + p ()
Finally, higher-order terms (i.e. which contain produdtg’pare dropped,
resulting in

d

8 + LB 0. =0. (27.30)

dp
This is now a linear equation ip/, since in each term’ occurs at most
once. In such cases, one knows that one can make the ansatz

pl= Ak (27.31)

If one has never seen this before, it is probably impossihexplain this
in two minutes® Inserting Eq. (27.31) into Eq. (27.30) leads to

w— @(ﬁ) k=0 (27.33)
dp
and therefore to
_w_dg
ci=0 = dp(p) . (27.34)

This is thephase velocityof the travelling wave. That is, this wave will
travel in traffic direction wheny(p) is increasing g%(ﬁ) positive), and
against the traffic direction wherp) is decreasing (Fig. 27.11).

5There are several elements:

e The notation using the complex numbezssentially means an equation of type
p' = A cos(wt — kx) . (%) (27.32)

What is missing in this simplification is the so-called phasermation.

e Eq. () is a wave equation. As one can easily verify, it has wavetlefg/k,
that is, the function is periodic under addition=2af/ k to . k is called the wave
number. Similarly, the function is periodic under addi8oof 27 /w to ¢; w is
called the frequency.

e One can also verify that, say, a wave crest travels with vglac:= w/k. In
Eq. (%), at timet = 0 there is a wave crest at positien= 0. At time ¢, the wave
crest is wherevt — kx = 0, which means a velocity/t = w/k.

file: book.tex, p.27-16 October 15, 2007

27.4. Kinematic waves and fluid-dynamics

tangent slope positive:

wave travelling forward tangent sloping down:
waves travelling backward
2 2
o o
density density

Figure 27.11: Phase speeds of kinematic waves

27.4.3 Macroscopic shocks

Linearization is not very useful for traffic, since it asswesenally’, which

is often not fulfilled in traffic. Let us thus look at a macropamfront with
speed-. Let us go to the same reference system as the front. Let wseden
variables in the reference system of the front with a tilaethiat reference
system, the flow to the left of the front needs to be the samleeafidw to
the right of the front, because otherwise there would eibieean excess
or a lack of “material” at the front. In equations, the staggtrmeans

G = d . (27.35)

Now ¢ = pv, where the density does not need a tilde because it is
independent from the speed of the reference system. Tlatedias

Pl /ﬁl = Pr 777’ . (2736)

For the translation into a non-moving coordinate systera f@as) = v+-c,
and therefore

pr (v +¢) = pr (v, + ¢) (27.37)
Rearranging yields
— 0,0, A
pon” prtr _ 29 _ (27.38)
pr— pPr Ap

One can see geometrically that this is just the slope of tteedonnecting
the corresponding points on the fundamental diagram (Hid.2).

Secant sloping down:
wave travelling backw.

flow

density
rho 1 rho 2

Figure 27.12: Speed of discontinuous fronts

file: book.tex, p.27-17 October 15, 2007

27.4. Kinematic waves and fluid-dynamics

27.4.4 Deterministic CA in terms of kinematic waves
(important!)

We can now analyse our deterministic CA (Sec. 27.3.2) in sesfikine-
matic waves (see also Fig. 27.6):

e In the laminar regime, we hawé;/dp = v,,,,. This means that
our waves have the same speed as the traffic — that is, thelgare t
“clusters” or “platoons” of cars.

¢ In the congested regimey/dp = —1. This can be seen in the
space-time diagram via the fact that the “patterns” mové&wacods
one cell in each time step (Fig. 27.5 bottom).

e With respect to our introductory problem with the five carbeTam
has density = 1 and speed = 0, thus also; = 0. Outflow from
the jam is eventually at = v,,,,, andp = 1/(v,,.. + 1) (this can be
seen by following the dynamics). In consquence,

ﬁ _ Umaw/(“maw + 1) -0 - 1. (2739)
Ap 1/(“771” + 1) —1
Thus, the downstream front of the jam moves backwards witedp
¢ = —1. — One could also have seen that by noticing that the
outflow is equal to the maximum flow in this model, and then dbo th
geometric solution similar to Fig. 27.12.

The inflow is somewhere on the “laminar” branch of the fundame
tal diagram. That means that the slope of the line connedting
(p = 0,qg = 0) is either—1 or less steep. The inflow front thus
moves backwards with speedr less — that is, the jam will even-
tually vanish except when inflow is exactly equal to maximumafl

One can treat queues at traffic lights similarly. While tladfic light is red,

7.t = 0 and thus the outflow front does not move (which we know since
the first car is waiting at the red light). The inflow front meusackwards
with ¢;,, = (Jm/(/)m - 1)'

Once the traffic light turns green, the outflow front now molvaskwards
with —1, while the inflow front keeps moving backwards with. The
situation remains like that until the outflow front catchesaith the inflow
front. And if the traffic light turns red before that, one nedd include
that effect (Fig. 27.13).

27.4.5 More advanced fluid-dynamical models

The kinematic theory is entirely sufficient to understanel tinost impor-
tant theoretical aspects of traffic flow. This section goettla bit beyond
that, by providing an outlook what else could be done.

The STCA and in particular the slow-to-start model are ndairely de-
scribed by the kinematic theory. This is in part due to thelsagtic ele-
ments, which are not captured in the equation. It is also dubd hys-
teresis which is displayed by the slow-to-start model (Eig8) but not by

file: book.tex, p.27-18 October 15, 2007

27.4. Kinematic waves and fluid-dynamics

space

)
)
D\ﬂ o 0 0

constant inflow ° ;v/<‘\.‘\
g.in ° °
\

Q“"W

Figure 27.13: Traffic light in terms of kinematic waves

time

© 0 0 0 ¢
«

kinematic theory. This motivates to look for fluid-dynamieguations for
traffic that capture effects beyond the kinematic theoryo &xtensions of
the kinematic theory will be discussed.

Addition of diffusive terms

Diffusive terms can be justified for many reasons. The résal equation
like
Oip + 0,q = DO2p . (27.40)

The wave solution after linearization now is
[)/ _ Aefk‘th ei(wtfkw) (2741)

which means that it has the same phase velacitydq/dp as before but
in addition a decreasing amplitude — waves slowly die out.

Addition of inertia

Above, we have assumed that flaws a function of the density only.
This is in general not true — if a driver suddenly comes intos#e traffic,
she/he will need some time to adjust; the same is true if dessddenly
decreases. That means that velocity will be delayed in igptadion to
density.

file: book.tex, p.27-19 October 15, 2007

27.4. Kinematic waves and fluid-dynamics

A way to capture this is to add an equation for the velocitye @an for
example use the car following equation (27.15)

Dv 1
a=5 = ;(V(AT) - U) . (27.42)

The translation of the particle-orientédv/ Dt into the fluid-dynamical
Ov + v 0,v yields

O + v 0v = ! (V(Aﬂ?) - U> . (27.43)

T

We need however'(p) instead ofl/(Ax), and we also need measured
at the location of the vehicle and not in the middle betweem\tehicles,
whereAz is measured.This is the mathematical reason for what is usu-
ally called theanticipation term

c?

—20,p . (27.46)

P
If density goes up in the driving direction, thénp is positive, thus the
term causes negative acceleration, which is plausible.

In addition, we will again add a diffusion termp?v. Overall, one obtains
themomentum equation

2

1 g
Oy + v 0pv = — (V(,{)) — o) % Oup +v 0% . (27.47)
T P

Note that we still need to specify (p), which is the same information
asq(p) introduced after Eq. (27.25). The only difference is thatneey
allow that it can take some time until velocities have adjdstccordingly.
Indeed, the relaxation time is If we let 7 go to zero, then the momentum
equations becomes= V' (p), which means instantaneous adaptation.

There is quite a lot of theory about this equation and its nmegior traffic
(e.g. Helbing, 1997; Kerner, 1998). Much of the behaviorha micro-
simulation models can be explained using these equatinriagt, much
of it was first observed in the fluid-dynamical equations. sT hiowever,
would be a full class in traffic flow theory and would thus go ey the
scope of this text.

’Linearization yields

Az dV

V(p(A2/2) = V(p(0) + 5 - 0apt . (27.44)

The second term (“anticipation term”) is usually approxietsby

Oup (27.45)

in analogy to the sound wave solution of the Navier-Stokemgqgns.

file: book.tex, p.27-20 October 15, 2007

27.5. Capacities, especially at bottlenecks

Fundamental dia—

/ gram on unob-
structed link
. .
B S
density
©
[}
[.
Q. .
) -

density

Figure 27.14: Fundamental diagrams when node capacityaiesnthan
link capacity.

27.5 Capacities, especially at bottlenecks

An important concept isapacity. The capacity of a link is its maximum
flow. As we see from our fundamental diagrams, this looks &iKdairly
well-defined quantity. For field measurements, a questiavhish time
averages one wants to use. Another question comes up wtitn ¢ean
“break down”, something that we have not discussed in thissm

However, in city traffic, the main obstruction to flow is noetbynamics
along the link, but the dynamics at intersections. As an@jprate num-
ber, an unobstructed link has a capacity of 2000 vehs/lam@/IIf at the
end of the link we have a traffic light which is green half of thee, then
the result will be a link capacity of approximately 1000 vistosir/lane.
This is a time-averaged number; we have already learned t(noedcribe
queue dynamics at traffic lights more realistically via kiregic waves.
Here, we will however use the time-averaged description.

If, via the link, there are more cars flowing towards the nd@mtthe node
can process, then a queue will form. The density inside thetig can be
found via the fundamental diagram by going to the high dgrsianch

for the given node capacity (point “A” in Fig. 27.14). In caugience, in a
situation where the node capacity is smaller than the liplacay, certain

density ranges of the fundamental diagram do not occur stdady state
conditions.

27.6 Cost-flow curves for static assignment

Traditional models for transportation planning, calletate assignment”,
do not use any representation of link dynamics at all. Theqse of this

file: book.tex, p.27-21 October 15, 2007

27.6. Cost-flow curves for static assignment

Figure 27.15: lllustration of steady-state network flow.

section is to explain the traffic dynamics representatiostafic assign-
ment, and how that relates to the traffic dynamics we have seéar.

Quite in general, any assignment method needs to be abl&tdata link
travel times from demand for traffic on a link. Intuitivelyavel times
increase with demand. The problem seems to be to find a goadiequ
for that — it will however turn out that there is no simple gau.

Static assignment generates steady state solutions. Boardynamic
point of view, steady state assignmenwould be a better name. This
means that continuoustreamsof traffic are fed into the system at the
origins, and they move via their routes to their destinajomhere they
are removed. In consequence, demand for a link comes as aStoVar

a simple demand-cost relation we need to find link delay asetion of
link flow.

This is actually similar to electricity, where steady-stetirrents follow an
equilibrium pattern through a network according to Kircfitkdaws. The
cost functionis Ohm’s law,/ = RI. With constant?, cost is proportional
to flow, but R can also depend oh, making this non-linear. The main
difference to steady state assignment is that in traffic #néigles have
fixed destinations which cannot be interchanged.

Now let us construct link travel time as a function of steatdyesflow for

link dynamics. We start from simplified link fundamental giamsu(p)
andq(p), see Fig. 27.16 left and top, where dashed lines are usein th
congested regimes. One can construct or calculatefrom that (center
right in Fig. 27.16). Link travel time i§'(¢) = L/v(q); a sketch of this is
shown at the bottom of Fig. 27.16.

A problem with this is that there is in general either morentio@e or
no velocity/time value for every given flow value. Lookingtae case
where the node capacity is the restricting quantity (Figl2), we see
that the problem remains similar for that case. The nornmapkfication
for static assignment has been to only use the upper brangh pfwhich
corresponds to the lower branch®f,,..(¢). This results in function%'(q)
which in general start at the free speed travel time for zews, find which
increase with increasing flow, which is plausible.

However, what happens if the assignment model assigns noovetdl a
link than capacity:ap? We know that this is dynamically impossible under

file: book.tex, p.27-22 October 15, 2007

27.6. Cost-flow curves for static assignment

flow

density
\

b A - 3 Phe
2 ~ N - 2 . -’
-
~o .
S~ -
density flow

link ttime ~
propto 1/v -~

flow

Figure 27.16: Construction of ¢) and thusl'(¢) for link dynamics. Start-
ing points are the(p) diagram at the left and thg p) diagram at the top.

flow

density

speed
vy
vy

speed

S -

density flow

link ttime -~
propto 1/v

flow

Figure 27.17: Construction of speed and link travel timewaxfion of
flow, now for a link with a bottleneck at the end. Inputs are $peed-
density relation on the left and the flow-density relatiortlo® bottom.

steady state conditions. So the only consistent choicéhfsrsituation is
to set the link travel time to infinity foy > cap. This is in fact what static
assignment models essentially do, except that they use atkrfumction
(i.e. no jump aty = cap). The main difference between different cost-
flow-curves is which cost they give to assigned flows abovaciap

file: book.tex, p.27-23 October 15, 2007

27.7. Summary

At onset of rush period:

Some time later:

Even more time later:

Figure 27.18: A freeway ending in a bottleneck.

In that sense, it is more reasonable to think about capagitgthtic as-
signment as just a free parameter of a cost-flow curve. Thieradbn of
a cost-flow curve is quite difficult, and given the fact thatrénis no dy-
namical basis for such a curve, it is clear that it has to besraarart than
a science. Nevertheless, the resulting models work quille avel in spite
of knowing better from a theoretical perspective, it is difft to come up
with models that work better in practice.

So far, we have described steady state traffic dynamics andhey are

mapped on cost-flow curves for steady state assignment. W dex

scribed that one aspect that such models do not pick up argeegug-

stream of bottlenecks. Note that such queues can well exgstruisteady
state conditions; they violate however the condition thate should only
be one velocity/travel time value for each flow value.

There are dynamic aspects of traffic that steady state modatsot pick
up at all. A typical scenario is that we have a wide freewaynavaly
ending in a bottleneck. During rush-hour build-up, the Wwag may be
used at capacity, resulting in a growing queue at the batlenwhich
will not vanish until the end of the rush period (Fig. 27.18he steady-
state solution would not allow that amount of traffic for tmedway. So
here lies one of the reasons why assigment models that ateuseactice
allow flows above capacity.

There have been attempts to make static assignment modesity by
solving separate models for several time slices. It is diearfrom a dy-
namical perspective this is not a realistic solution — éhg above example
with the freeway being used above the bottleneck capaciidcstill not
be picked up.

27.7 Summary

e Komponenten von “Netzwerk-Lade-Modellen”: Einspurvérke
Mehrspurverkehr; Kreuzungen mit Ampeln; Kreuzungen ohne

file: book.tex, p.27-24 October 15, 2007

27.7. Summary

Ampeln; Abbiegebeziehungen “uber die Kreuzungen (einschl
entsprechend angepasster Spurwechselregeln)

¢ Vieles geht bereits mit einfachen Modellen (z.B. Zelluiatamat,
andere tun’s aber auch); makroskopische Auswirkungen egeR
m”ussen allerdings gestestet werden (z.B. Fundamenggiédiame;
bedenke Bsp. migap > 3v VS gap > 3v)

Schwierig sind in meiner Erfahrung die modifizierten Spuriasel-
regeln, wenn man sich in Richtungsfahrspuren einordnersmus

e Basis von Einspurverkehr ist “Abstand halber Tacho”.
Mathematisch ist dagup o« v.
Herleiten I"asst sich dies aus einem Argument bzgl. Reaktieit.

Merke: Man bekommt eben nichtp « v, wie ein Argument bzgl.
geschwindigkeitsabh”angigem Bremsweg nahe legen w”urde.

Viele (wenn nicht alle) Fahrmodelle enthalten “Abstandbleal
Tacho” in irgendeiner Form.

e Makroskopische=t fluiddynamische) Theorie startet mit der Kon-
tinuit’atsgleichung, welche sich gut erkl’aren I"asst Bianzgle-
ichung zwischen Stra”’sensegmenten.

“Kinematische” Theorie{£ LWR-Theorie) bedeutet die Annahme,
dassg nur vonp abh”angt. Dies f"uhrt zur Theorie der kinematis-
chen Wellen, welche man f’ur praktische Belange am besten au
einer Bilanzgleichung an der Schockfront erh”alt.

Bzgl. ¢(p) gibt es verschiedene Versionen, eine davon ist (wieder)
“Abstand halber Tacho”.

Der deterministische Zellularautomat I"asst sich mit kiratischen
Wellen erkl’aren. Hier ist das “Ampelbeispiel” wichtig,sheson-
dere die Geschwindigkeit der Fronten. Wenn man das verstand
hat, dann hat man bereits einiges "uber Verkehrsfluss vetsta

e Es gibt aufw”andigere fluid-dynamische Modelle; die habean w
nicht mehr behandelt. F"wgro”sr’aumige Planung oder Steuerung
spielen sie m.E. derzeit keine wichtige Rolle.

file: book.tex, p.27-25 October 15, 2007

Chapter 28

Static assignment

28.1 Introduction

The traditionally (and currently) most important methodtfansportation
planning is Static Assignment. As said in Sec. 27.6, frompaimt of view
a better word might be Steady State Assignment, since thergeon is
that one has constant traffic streams. In fact, the modelrissimilar to
steady state current calculations for electricity or watdrere electrons
or water molecules enter the system at certain points anceareved at
certain other points. The main difference is that for trafffie particles
have destinations which they need to reach, which meansnttraffic we
cannot exchange patrticles.

This is an extremely basic introduction into static assigntn An in-
troduction at the same level, but with much more materialartipular
with respect to the history of static assignment, can bedanr{Ortluzar
and Willumsen, 1995). A comprehensive but still didacteatment is in
(Sheffi, 1985).

28.2 Equilibrium principle

The steady state assignment of electric or water currergseawork fol-
lows an equilibrium principle: Along any path through thewerk, the
sum of the voltages is the same. This means that the amoumiecd\e
(cost) necessary to go from one point in the network to amathe does
not depend on the path.

For traffic, the situation is similar, except that our pdetschave destina-
tions. We thus characterize particles/streams by theigi(gdestination)

(OD). Only particles which have the same origin and the sagsémhtion

are treated as interchangeable.

The equilibrium principle is stated as
Under equilibrium conditions traffic arranges itself in B

way that no individual trip maker can reduce his/her pathiscos
by switching routes.

28-1

28.2. Equilibrium principle

Figure 28.1: Three different path flows connecting A and B.

This isWardrop’s (first) principle .

If all trip makers perceive the same cost functions, thenaamemove the
point of view from individual travelers to OD flows:

Under equilibrium conditions traffic arranges itself subhtt
all used routes between an OD pair have equal costs while all
unused routes have a cost equal to that or greater.

The idea behind this is: If, for a given OD pair, there is adagath, then
people will start using it, thus making it slower. This presewill stop
once the new path is as slow as the other paths which are usiasf®@D

pair.

For a mathematical formulation, one needs notation:

file:

¢.: Flow on link a.! q = (q1,q2, ...) is the vector of all link flows.

to = t.(q,): Link travel time, as a function of the link flovlRemem-
ber that we have discussed (Sec. 27.6) that such a functies it
exist if one looks at the full dynamics. This is the main “peob”
with static assignment.

Q" OD flow fromr to s (OD matrix).

There are usually multiple pathdrom r to s. f7*” is the path flow
of pathp (see Fig. 28.1). In consequence:

Soer=qr (28.1)
p
We also reasonably assume that path flows cannot be negative:

Fror >0 (28.2)

or=P indicates if paths, p uses linka or not:

§ToP — {1 if used

0 ifnotused - (28.3)

The link flow is the sum of all path flows which use that link
(Fig. 28.2):
o= [rPoT. (28.4)

7S,

book.tex, p.28-2 October 15, 2007

28.3. Beckmann’s mathematical programming formulation

Figure 28.2: A link flow consisting of three path flows.

e ("*7 s the cost of paths, p. It is the sum of all link cost contribu-
tions:

=Nt 5 (28.5)

The translation of Wardrop’s equilibrium principle intorauew notation
means that we we are searching for an assignment of the O
the network so that we have

o { =™ if pathp used forrs (28.6)

> ¢ if pathp not used fors

28.3 Beckmann’'s mathematical programming
formulation

Define a function

2(q) = Z /Oqu to(w) dw . (28.7)

The sum is over all links; for each link, we integrate over the travel time
as flow increases, up to the flay actually used on that link.

This is a function which maps high-dimensional space intoadas num-
ber. The number of dimensions is the number of links in thevaek.

| am not aware of an intuitive motivation for this functiomjust turns out
that it works: Minimization of this function subject to

Z f?”S,p — QT‘S , f’f‘S,p Z 0 (288)

p

and together with the definitions from above gives the ddsrpiilibrium
solution. This is actually not too hard to show. However, dieeivation
does not give any intuitive insight why(q) is the correct function.

1Conventionally, one uses here; | will useq because that's what we have used in
traffic flow theory.

file: book.tex, p.28-3 October 15, 2007

28.4. Constrained optimization

constraint

global
optimum
within
c;)nstraint

g2

height contours of z(q

Figure 28.3: Constrained optimization

With this transformation, the equilibrium problem is tréorsned into a
constrained optimization problem. Optimization probleans in general
much better understood than equilibrium problems.

28.4 Constrained optimization

Can one provide some intuition of how to solve the problemneefiby
Egs. (28.7) and (28.8)? First, ignore the right hand sidegpf(E8.7) and
recall that:(q) is just a scalar function in high dimensional spacey tiad
only two dimensions, then(q) could be interpreted as a height function.

The task is to find the global minimum of this function. Thisdsexample
similar to finding a global maximum of a fitness function in kexmnary
computing.

Since z(q) is analytically given, one can use mathematics to find can-
didates for global minima. As is known from calculus, gll where

V2 (q*) = 0 are such candidates. If the problem is constrained, additio
candidates are along the boundaries of the allowed regieesrig. 28.3.

A formal description of this leads to notions such as khdan-Tucker-
conditions andLagrangian multipliers.

28.5 Unigueness

One of the major advantages of static assignment is thagrurettain
conditions, it has one unique solution. This means that nttemevhat
the solution method, all solutions are the sanidis is vastly different
from our simulation approach, and certainly one of the bigwlbacks of
simulation that we have to consider in our work.

Sufficient conditions for uniqueness of Static Assignmeet a

file: book.tex, p.28-4 October 15, 2007

28.5. Uniqueness

e strict convexity ofz(q)
together with
e convexity of the feasible region.

These conditions are not minimal, but they are normally usgufactice.
They will be described in more detail in the following.

28.5.1 Convexity of z(q)

Strict convexity ofz(q) means, intuitively, that it is “bent” (curved) up-
wards everywhere. In one dimension, this would be ensurduhbing a
second derivative that is 0 everywhere. In higher dimensions, it is en-
sured by having a Hessian:-(matrix of second derivatives) that positive
definite. A matrix is positive definite ifv - Hv > O forall v # 0

— this is just the higher dimensional version of “second\dgie > 0
everywhere”.

For an unconstrained problem, the intuitive interpretaias follows:
Assume there is one locatiafi whereV:z (q*) = 0, which is therefore

a candidate for an optimum. Now if q) is curved upwards everywhere,
then candidate is a locahinimum and there cannot be a second place
whereVz(q) = 0.

For constrained optimization, one has in addition to make $oat the
boundaries cooperate. This is indeed achieved by the capwaxthe
feasible region, see Sec. 28.5.2.

For Static Assignment, it is possible to simplify the coraitof a positive
definite Hessian. The calculus for this is a bit tricky, butrkable. The
result is that the statement

H positive definite= z(q) strictly convex (28.9)

can be replaced by

Ota(a)

Ya:
a aqa

> 0 = z(q) strictly convex. (28.10)

So what we need is that link travel time increases strictiyhatonically
with link flow. Given the assumptions that we have alreadyepted, this
one is easy to accept.

One has to note that the above will prove convexity @f) with respect
to the link flowsg,, not with respect to the path flow&*”. And indeed,
the solution is unique with respect to the link flows, but nahwespect
to the path flows.

28.5.2 Convexity of the feasible region

The feasible region is the set of all solutions which fulfietconstraints.
That is, all path flows which fulfill the OD matrix.

file: book.tex, p.28-5 October 15, 2007

28.6. A solution method

Convexity of the feasible region means that any convex coatluin of
feasible solutions is again feasible. A convex combinasanormalized
linear combination: IfX; and.X, are both feasible, then

Xz=aX;+ (1 —a)X (28.11)

should also be feasible:(< 1).

freP > 0 together Witth frer = @ will always result in a convex
feasible region.

28.6 A solution method

Constrained optimization is a large area of mathematidb, veiry sophis-
ticated techniques. Some of these techniques can be us#uefstatic
assignment problem (Patriksson, 1994).

Here we want to outline one well-known technique. It is kn@grFrank-
Wolfe algorithm, or convex combinations method. It can belaxed in
a general way, and then be applied to static assignment, tarn ialso be
applied directly to static assignment, which allows to takiwantage of
some simplifications right from the beginning. Here we wdlttie latter.

The idea is to iteratively apply three steps:

1. Linearizez(q) around some operating point’, wheren denotes
the iteration. That is, approximatéq) = z(q" + y) by

29" +y -V (q") . (28.12)

The result of this is that the fitness landscapg) is replaced by
a hyperplane which goes throughq™) and which has the correct
slope atg".

2. Search, on that hyperplane, for the best solution. On @eplde
best solution is necessarily at the border, so it is suffidiesearch
the border. Denote this solution by = q" + y".

3. Use a convex combination gft andx" for a new solution:

q71,+1 _ agn 4 (1 _ CY) X’”' . (2813)

Ad ltem 1: Let us calculateVz when applied toz(q) as defined in
Eq. (28.7). Let us do that by component, i(&.2), = 0, = % This
is the partial derivative with respect to thih link flow. Only one contri-
bution of the sum depends ap at all, and for this one the derivative is
trivial:

da b
O Z / to(w) dw = 0;,/ ty(w) dw =1y . (28.14)
— Jo 0

file: book.tex, p.28-6 October 15, 2007

28.7. Summary

Therefore, Eq. (28.12) becomes

Z:=2(q") + Z Yo la(qy) - (28.15)

Ad Item 2: Eq. (28.15) is maybe a little difficult to interpret at firsgst,
but it is actually rather straightforward. The task is to imize = such
that the constraints are fulfilled. The constraints aredhat y fulfills the
OD flow conditions. Note that there is no difference if one imizes? or

2= (g7 +va) ta(d") - (28.16)

Z just means that one has to find feasible flowss: g™ + y such that the
sum of all link travel times is minimizedpgether with the property that
link travel times do not depend on the flo@@sceq” is fixed; onlyy, is
varied). This is achieved when every flow takes the fastett fmough
the network. In other words, is minimized when OD flows are assigned
according tdfastest paths based on the last iteration

Interpret that in terms of our agent-based approach: onse that, given
an iteration, progress is made be rerouting some of the OB #meording
to what would have been fastest in the last iteration. Thexactly the
same in both approaches.

Ad Item 3: The remaining task is to combine the previous solution
and the solution, let us call #", which minimizes:z. As said above, this
is done via a convex combination, i.e.

q"t = aq”+ (1 —a)x". (28.17)

In the agent-based approachwas just set to 10%, corresponding to a
replanning rate of 10%. Because of the analytic formulaitioBtatic As-
signment, one can actually search systematically for ammaptv. Al-
ternatively, it is possible to make dependent on the iteration number
via o™ = 1/n (method of successive averages, MSA). For MSA one can
prove that the method converges towards the correct solugibhough
convergence may be slow.

28.7 Summary

The two most important ingredients to static assignmenttegessump-
tion of equilibrium and the assumption of steady state,steady state
OD flows. Equilibrium is plausible; and variants of it are mmntly also

used in simulation approaches. The assumption of steatyisteontrast
leads to the unrealistic distortions of the traffic flow dynesrthat we have
discussed earlier.

“The intuitive reason both for convergence and for slowretisity >~ 1/n always
diverges, no matter what is. This means that any initial contributionsdacan always
be fully corrected by later iterations. However, it is al$ear that such late corrections

take very many iteration steps.

file: book.tex, p.28-7 October 15, 2007

28.7. Summary

Once these assumptions are made, it turns out that one canol&de the
resulting problem as a constrained minimization problermd&f weak
additional assumptions (strict monotonicity of the costrelation), the
problem has a unique solution in the link flows. This is a veegithble
property, since the solution will not depend on the particldomputa-
tional method that is used. This is very different from siatidn, and
certainly an important reason why static assignment isllg@well.

file: book.tex, p.28-8 October 15, 2007

Chapter 29

Discrete choice theory

29.1 Introduction

We have seen: Proba to select an alternative
Py oxe¥ | (29.1)

whereV/, utility of option A.
Today: Some formal background.

e Get intuition where functional form"* comes from and how other
plausible forms can be obtained.

e Learn to interpret coefficient tables«(Axhausen).

o Understand how the coefficients are obtained.

Note: Marketing (“toothpaste A or toothpaste B”) uses eyatte same
technology.

Contents

Binary choice (two alternatives):

Explain random component.

Explain choice based on “systematic plus random”.

Understand examples.

Binary probit or binary logit, depending on distriubtionraihdom-
ness.

Multinomial choice (many alternatives). Recover funcibform from
exercise.

Estimation of the3; from a survey.

29-1

29.2. Binary choice

29.2 Binary choice

= choice between two options.

29.2.1 Systematic vs random component of utility

Option A, for example “go swimming”.
Has systematic utility (that we computé);.
Assume that (for whatever reason) there is also a random @oemp:

Uy=Vi+ea. (292)

Choice is made according {0,.
Possible interpretations:
e Person making the choice is not determinstic.

e Person making the choice is deterministic, but there aréiaddl
criteria (for example “was swimming yesterday”) which ac# im-
cluded.

If they were included, then there would be noin this interpreta-
tion.

29.2.2 Choice based on random utilities

Now let us assume there are two optioAg;go swimming”) andB (“stay
home”).

We assume that the option with the larger utility is sele¢tédrig. 29.1):
Pr(A)=Pr(Us>Up) = Pr(Va+es > Vg +ep) (29.3)
= PT‘(EB —€a < Vy — VB) (294)

29.2.3 Linear decomposition of systematic part of util-

Ity
Assume that/,, V5 are linear in contributions:
Va=pP1xa1+ Poxas+...=0 Xy (29.5)
and similarly
Vp=..=08x5. (29.6)

In principle, thex x ; can be arbitrary functions. In practice, they are usu-
ally simple transformations of basic variables, e.g. timedistance, or
distance squared.

file: book.tex, p.29-2 October 15, 2007

29.2. Binary choice

@ 035]:—é ,,,,,,,,,,,

> 03 -

@™ 025

<02

< 015

2 o1

< 005

0 _— ,
-5 0 5 10 15

UAUB

Figure 29.1: Two random distributions, centered arouiid) = 3 and
(Ug) = 9. Normally, solution B will win because it has higher utilityut
there is a finite probability thdf; will come out really low and/, comes
out really high, in which case A will win.

29.2.4 Simple example

A result from discrete choice modeling often looks like this

Car Bus Coeff

1 0 -1.4

time with car[min] | time with bus[min]| -0.1
cost with car[cent] cost with bus[cent] -0.012

(29.7)

Interpretation: Systematic utility with car is

0.1 . 2
Veer = —1.4 — —— x time w/ car— x costw/ car. (29.8)
min cents

systematic utility with bus is

0.1 . 0.012
Vius = 0 — —— x time w/ bus—
man cents

x cost w/ bus (29.9)

(Compare: departure time ex.; but this here has only twamapt)
For example: Time with car 10min; with bus 20min. Cost withr ca

200cents; with bus 100cents. Then
Vigr = —14—1—-24=—48; (29.10)

Vis =0—2—1.2=-32. (29.11)

The probas to select car/bus (see later) will be somethieg li

evcar

Paar = - (29.12)
eVbus

P, - (29.13)

char + eVbus ’

file: book.tex, p.29-3 October 15, 2007

29.2. Binary choice

29.2.5 2nd example

Car Bus Coeff
1 0 -1.4
time with car[min] time with bus[min]| -0.1
cost with car[cent] cost with bus[cent] -0.012
1 if female 0 0.6
1 if (unmarried OR spouse cannot drive OR 0 -0.2
travels to work w/ spouse)

1 if (married AND spouse is working ANLC 0 1.2
spouse drives to work indep’y)

Meanings:
If person is female, utility of car is increased.

If person is unmarried OR if spouse cannot drive OR if persavels to
work with spouse, then utility of car is decreased.

Etc.

29.2.6 Probability distributions, generating functions,
etc.

From this point on, progress is made by making assumptioastahe
statistical distributions of the noise parametetsDifferent assumptions
will lead to different models.

Before looking into some specific forms, it makes sense toldyirecall
probability distributions and generating functions.

A probability density function essentially gives the probability that a
certain option is selected. For example, the Gaussian piidgalensity

function . . r
T 2
flx) = NP exp <§ (;)) . (29.14)

gives the probability that option is selected. More precisely, one would
have to say that

z+Ax
/ f(2) (29.15)

is the probability that anything betweerandx + Az is selected.

The generating function F'(x) is the integral of the probability density
function. That is
f(z)=F'(x). (29.16)

In some cases, the generating function is simpler than thigghility den-
sity function.

The generating function can be used to compute the probathikt the
selected value is smaller than some given valueRather obviously, one
has

Pr(z < X) = / flz)=F(X)— F(—00) . (29.17)

file: book.tex, p.29-4 October 15, 2007

29.2. Binary choice

1
09 r (1./2) * exp
0.8
0.7
0.6
0.5 r
0.4
0.3
0.2
0.1

0 o 2
-10 -5 0 5 10

exi)"(—x**2/2.) —
- **2 /2 | 2%%2) 4
e (_f—()é__—2)**2/2 Y e |

Figure 29.2: Gaussian distribution.

29.2.7 Binary Probit (Randomness is Gaussian)
Recall: We have

P7(A) :P7'(UA>UB) :PY'(EB—€A<VA—VB) . (2918)

We are now looking for mathematical forms Bf-(A).
Assume that 4, andc ; are Gaussian distributed.

Gaussian distributions have the property that sums/eéifiegs of Gaussian
distributed variables are still Gaussian distributed. dngequence; :=
ep — €4 IS Gaussian distributed, for example (with mean zero andthwi

o).
1 1 seN2
fle) = Ty O (5 (;> > . (29.19)
See Fig. 29.2.

Now we needPr(e < ('), whereC' := V, — Vj, and we know that is
normally distributed. As equation:

le_m /:O exp <% (92) . (29.20)

The solution of this needs the so-called error function,estimmes denoted
by erf, ordouble erf(double x) under linux. Before the age of
electronic computers, the error function was inconveriense, which is
why the main theoretical development followed a differeatty described
in the following.

Pr(e< () =

An important piece of knowledge is what happens when randamabies
are combined. For example, the sum of two Gaussian-distglnandom
variables are again Gaussian-distributed.

29.2.8 Gumbel distribution

As preparation, learn about the so-called Gumbel disiobut

file: book.tex, p.29-5 October 15, 2007

29.2. Binary choice

e Generating function

F(€) = exp[—e *(M] (29.21)

e Probability denstity function

fle) = F'(e) = pe # exp[—e #M)] (29.22)

Location of maximumzy (location parameter).
Variance:% ~ % (1 = width parameter).

29.2.9 Combination of Gumbel-distributed variables

(Remember: Sum of two Gaussian rnd variablesnew Gaussian rnd
variable with properties ...)

For Gumbel:

e If ¢, ande, indep Gumbel with same:, then max(e;,e;) also
Gumbel-distributed with the sameand a new of

pt Infer™ 4 et (29.23)

e If ¢; ande, indep Gumbel with samg, thene = ¢; — ¢, is logisti-
cally distributed (see below) with generating function

1

F(e) = pce— (29.24)
29.2.10 Logistic distribution
e Generating function:

Fle) = — (29.25)

7 + eHe '

Note that
1 1 1

F(—o0) = [T o 25:0, F(+00) = = =1,

(29.26)

as it should be for a generating function.

file: book.tex, p.29-6 October 15, 2007

29.2. Binary choice

0.2500

gauss(x)

0.2000 ¢ logistic(x) - |

0.1500
0.1000 r

0.0500

. __gAUSS(X)
istic(x)]

10 —;5 6 ‘5 10
Figure 29.3: Logistic distribution vs. Gaussian distribat TOP: linear

y-axis, BOTTOM: logarithmic y-axis. The logistic distriban is more
pointed at its maximum, but has fatter tails (i.e. towardsl§targex).

¢ Probability density function:

ILL e—ﬂf

=k (29.27)

fle) =

The logistic probability density function looks somewhiatigar to
the Gaussian probability density function (Fig. 29,3)s the width
parameter.

29.2.11 Binary logit (randomness is Gumbel dis-
tributed)

Coming back to binary choice, one now assumesdhainde; are Gum-
bel distributed, meaning that= ¢z — ¢4 is logistically distributed.

Again, find Pr(e < C'). This s

C
1
If we re-translate this into our original variables, we abta
1 erVa
PT(A) - 1+ B_ﬂVA""ﬂVB - G}L‘/A + QUVB) (29'29)

This is similar to what we have seen in the departure timeceh@xcept
that here are only two options; for departure time choice agkrhany).

file: book.tex, p.29-7 October 15, 2007

29.3. Multinomial choice

0.4
0.35 t
03}
0.25 r
0.2t
0.15 t
0.1+t
oos|)

f X(U_X)

10 15

Figure 29.4: Multiple probability density functions forfidirent options.
If one picksU, andU g, then the probability that C is selected is given by
the probability that/. is larger than thenaximunof U, andUp.

Note that the noise parametercomes from the width parameter of the
logistic distribution. Large noise small;: (= small inverse temperature)
= choice more random.

29.3 Multinomial choice

Now more than two choices, e.qg.:

e Go swimming, go shopping, stay home, go to movies, ...

e Many possible times-to-depart (discretized into 5-mirsfpin

See Fig. 29.4.
Concentrate on option “1”.

= Pr(Vi+e > Vj+€;,Vj # 1) = Pr(e; < AVyj+€,Vj # 1) . (29.31)

Alternatively:
P, = Pr e > H,l;glx[AVlj + €] - (29.32)
J
This is similar to binary choice, i.e. Eq. (29.3). In binahoice, progress

was made by assuming that thewere either Gaussian or Gumbel dis-
tributed. The same will happen here.

As in binary choice, a Gaussian distribution will lead to a$¢he error
function. This will not be discussed any further here.

A Gumbel distribution will lead to the use of the logistic wibution.

29.3.1 Multinomial logit (MNL)

= multinomial choice with Gumbel-distributed randomness.

file: book.tex, p.29-8 October 15, 2007

29.4. Discussion of modeling assumptions

We had:
Py = Pr|e > mifi[AV}j +¢]| - (29.33)
J

Two steps:

1. ¢; (j # 1) Gumbel-distributed
= €, = max;|AV}; + ¢;] also Gumbel-distributed.
2. ¢, ande, Gumbel-distributed
= ¢, — ¢, logistically distributed.
Only problem is to keep track of the transformations of the parameters
n andy.
Result of second step is (remember: similar to binary logit)

1 erVi

1+ er(Vi=V1) - ehVi foenVe (29.34)

Either via normalization or via really computirig as the new, of the
Gumbel distribution one obtains

o 29.35
- (29.35)

29.4 Discussion of modeling assumptions

29.4.1 Independence from irrelevant alternatives (IID)

The multinomial logit model (MNL) predicts that thatio between two
options does not depend on other options:

. nVi
L—— (29.36)

pj eM Vj

There are many cases where this assumption is too strong.makbe
most famous case is the “red bus, blue bus” example. Assuahea tiav-
eler has the choice between taking the car, taking a blueamastaking

a red bus. Assume that the two buses have exactly the sameesenar-
acteristics; for example, assume that the traveler is thye messsenger.
Further assume that the probabilities to select the carbline bus, and
the red bus aré0%, 25%, and25%, respectively, corresponding to the
ratios2 : 1 : 1. In consequence, the model predicts that the traveler will
take her/his car with probability/2.

file: book.tex, p.29-9 October 15, 2007

29.5. Maximum likelihood estimation

Now assume that the blue bus is taken out of service. The nrobel
predicts that the ratio between car and red bus wilk beé, meaning that
the traveler will now take her/his car with probability3. This is rather
implausible since one would assume that the availabilityevieral colors
for the bus will not affect the mode choice behavior signifita

The reason for this behavior can be traced back to the asmamtpat

thee; are all statistically independent from each other; thisiagsion is

used when the statistical propertieswofx; [AV;; + <] and ofe, — ¢, are

derived. If they are not statistically independent, thdreo{usually more
complicated) formulations result.

29.5 Maximum likelihood estimation

Situation:

e Have survey of. = 1..N persons, and options, B.

e Also have attributes,, 41,7, 42, ... = X, 4 @s wellase, 51, T, 5.2,
aee — KIL,B'

[This means for example that we know the “time by bus” evehef t
person never tried that option.]

Note that we now have a person indexeverywhere.

e Also have model specification

Va=proag+Potag+...=0-X,. (29.37)

How to find 3, ..., 5,.?

29.5.1 ... for binary choice in general

Assume set of persons= 1..N that were asked.
yn.4 = 1 means person chose optiom. (Implies thaty,, 5 = 0.)

Assuming that we have our model, what is the proba that psrson
(1,2,3,4,...) make choicesA, B, A, A, ...)? Itis (as usual, assuming that
the choices are indep)

Pipaa. =PiaPopPsaPya.... (29.38)

Using they,, 5:
Parvey = | [Pori* P (29.39)

n

We want, via varying thés,, ..., 3;.), to maximize this function.

file: book.tex, p.29-10 October 15, 2007

29.5. Maximum likelihood estimation

In words, again: Want high probability that survey answeosild come
out of our model.

Maximizing in 1d means: Set first derivative to zero, and &hbat sec-
ond derivative negative.

Maximizing in multi-d means: Set all first partial derivati® zero; check
that matrix of mixed second derivaties is negative semindefi

Instead of maximizing the above function, we can maximizeldg
(monotonous transformation). Usual trick with probas siitcconverts
products to sums.

L= 10% Psm‘vey - Z[yn,A 10% Pn.A + Yn,B 10g RL,B] . (2940)

n

So far this is general; next it will be applied to Logit.

29.5.2 ... for binary logit model

(Remember: “Logit” means “Gumbel distributed randomngss”

Strategy: ReplaceP, x in Eq. (29.39) or in Eq. (29.40) by specific from
of logit model, i.e.
eBxx

Pox = (29.41)

GE'XA —+ BE'XB
and then find values; such that’,,,., or L are maximized.

Computer science solution

From a computer science perspective, the maybe easiesbwagérstand
this is to just define a multidimensional function in the ahtess,, 7, ...
and then to use a search algorithm to optimize it.

This function would essentially look like

doubl e psurvey (Array beta) {
doubl e prod = 1. ;
for (all surveyed persons n) {

/1 calculate utl of option A
doubl e utlA = 0. ;
for (all betas i) {
/1 utl contrib of attribute i:
utlA += betali] * XA[n,] ;

}
doubl e expUtIA = exp(utlA) ;

/1 calculate utl of option B:
doubl e utlB = 0. ;
for (all betas i) {
[/ utl contrib of attribute i:
utiB += betali] * XB[n,i] ;
}
doubl e expUtlIB = exp(utlB) ;

file: book.tex, p.29-11 October 15, 2007

29.5. Maximum likelihood estimation

[l contribution to prod:
i f (person n had selected
prod
} else {
prod
}

return prod ;

}

A)A

*= expUtIA/(expUtlIA+expUtIB) ;

*= expUtIB/(expUtlA+expUtIB) ;

Search algorithms could for example come from evolutiomamputing.

The “computer science” way is almost certainly more computeen-
sive and less robust than the conventional strategy, linkdext. It does

however have the advantage of bei
conventional strategy fails.

Conventional strategy

ng applicable also to edsere the

The conventional strategy, mathematically more sound lsot@nceptu-
ally somewhat more difficult, is to first invest everythingtltone knows

analytically and only then use comp

uters.

The analytical knowledge mostly involves that one can $eéoc max-
ima in high-dimensional differentiable functions by firaking the first

derivative and then setting it to zero.

Preparations

This is lined out ia tbllowing.

e Define
£n =Xy A Xn,B (2942)
In consequence
1
PrL,A - 14 e,g £n (2943)
and
-B¢
e s 1
P,p= = : 29.44
,B 1+ (j_éé'n 1+ e{_gé” ()
(Left version is sometimes useful.)
o First derivative oflog P, 4:
0 1()g Pn A _ 1 _
— = — log(l+e)= —————-—e " (=&ni
83k 83k Og(e) (1 + 67) ¢ (f "k)
(29.45)
or
Odlog P,
=&k P - (29.46)

file: book.tex, p.29-12

October 15, 2007

29.5. Maximum likelihood estimation

Similarly
Olog P,
———— =&k Paa. 29.47
95 Enk Pna (29.47)
o We will also need
Opn A 1 o
5 - _1 1, _ \o © - 7 — Pn Pn . 29.48
o5~ TV W = Papfuate. (29.48)
Core calculation
Now we can do
oL
a—ﬁkz - %: (yn,A Pn,B gn,k — Yn,B Pn,A £7L,k'> (2949)
=2 (yn,A (1=Poa) = (1=yn.a) Pn,,A) Ene = - (29.50)
- Z (yn,A - Pn,A) gn,k . (2951)
When replacing’,, 4:
- Z (ynA - ¥> fn k - (2952)
n o 1 + eié.én o

Very good. Now remember that we need to set thisultaneously for all
k, equal to zero in order to obtain the values fowhich maximizeL.

(E.g. Newton in higher dimensions.)
Uniqueness (no contribution to understanding)

Need to check that this is a max (and not a min), and that itagytbbal
max and not a local one.

Reminder: 1d function has max if 1st derivative is zero and Qeriv is
negative. If 2nd deriv is globally negative, then this is #t&o the global
max.

Translation to higher dimensions: Matrix of 2nd derivasive globally
negative semidefinite.

M negativ semidefiniter” Cz > 0 except forz = 0.

Note: Assume&’ = M7 M. Thenz” M7 Mx = (Mz)" (Mz) > 0 except
for + = 0 as long as all entries af/x are real (i.e. not complex).

Now

(V2L = "L Z()——ZP P i€ (29.53)
kl—aﬂkaﬁl e] — - n,AdLn,BSnkSn,l - .

n

file: book.tex, p.29-13 October 15, 2007

29.6. Discussion

Def s
]\/jn,k’ - (RL,A Pn.B) fnk . (2954)

Then
V2L =-M"M. (29.55)

Since all entries ofl/ are real, A/ M is positive definite, and therefore
— M7 M negativ definite.

29.6 Discussion

29.6.1 The beta parameter from earlier

Sec. 14.3 had used a factotin front of the utilities, and it was said that
smaller(leads to a more random choice, while largdeads to a stronger
preference for the best options. What happened tatimghe theoretical
treatment of this chapter?

In fact, thes from Sec. 14.3 is related to the width parameteshowing
up in some equations of this chapter. It is however not syatieadly
treated by this text. The reason for this is that in the maxmtikelihood
estimation, it does not show up as a separate variable an@uayvhat is
the reason for this now?

What happens here is that the maximum likelihood estimaigtomati-
cally includes the meaning of the prefactoor 1. into the others;. So if
the theoretical form says

px o< elVx (29.56)

and

Vy = Zﬂk TXk (29.57)
k

then the maximum likelihood estimation in practice estesdhe products

B = 1B - (29.58)

The consequence of this is that, if a set of attributes is seful to predict
the choice, then all estimatet] will be small, leading to quasi-random
choice.

29.7 Summary

Foundation: Add random component to systematic utility. We only know
systematic component. Assume that max of the sums alwayss whrich
because of random component means that the lower systeutditic
sometimes “wins” anyway.

file: book.tex, p.29-14 October 15, 2007

29.7. Summary

Specific model depends on the distribution function of thedoam com-
poment.

Binary choice:

e Gaussian randomness Binary Probit. No closed form solution.

e Gumbel randomness: Binary Logit . Closed form solution’, o
eva,

Multinomial choice:

e Gaussian randomness Multinomial Probit . Not treated; no
closed form solution. Feasible with computers, and has ntzexy-
retical advantages.

e Gumbel randomness: Multinomial Logit (MNL) . Result again

Py ox eVa,

Max likelihood estimation of3: Adjust the so that the probability for
the model to generate the survey is maximized.

file: book.tex, p.29-15 October 15, 2007

Chapter 30

Axhausen lecture

30-1

Chapter 31

Learning and feedback

31.1 Introduction

In Chap. 22, some pragmatic ways to improve the feedbackmipsavere

described. This chapter will discuss some background.llitwvh out that

there are many relations to fixed point relaxation techrsgteMarkovian

processes, to game theory, and to machine learning. Foraspeets, it is
possible to provide computational evidence about parsipéets. In gen-
eral, it however turns out that significant parts of “leagin transporta-
tion systems” is a challenging topic where many open questiemain.

31.2 Replanning fraction

With the exception of Sec. 22.4, we have concentrated ontalalgy
learning. Our typical approach is:

1. Generate some initial option for each traveler.
2. Execute that option in the micro-simulation.

3. Allow a certain fraction of the travelers to replace thagtion with
another one, generated by an external module.

4. Goto 2.

In all our implementations, we have suggested to use a raklydsaiected
10% sample of the population for replanning. Fig. 31.1 shie®ffect of
different replanning schedules with respect to the sumldfalel times.
This figure suggests that all relaxation series relax todneesfinal result;
looking at traffic patterns provides additional supportthus statement.
There are however important differences in terms of relaragpeed. In
particular, runs 4 and 5 were done with a replanning fraoctibone per-
cent. Note that in this case, the probability of a travelerenéhaving
undergone replanning after 100 iteration$)i$9'"° ~ 0.366, more than
one third of the population. This is an unacceptably high bemand it

31-1

31.3. Individualization of knowledge

4.5e+08

4e+08 [
3.5e+08 fi. S un 7 e B
e k% run 8

3e+08 " e run 1l -

b i run 12 S
2.5e+08 | e
2e+08

o .
| 2 wa

1e+08 |

VTT until 10:00 AM [sec]

5e+07

0

L L L L L
0 20 40 60 80 100 120
iteration

Figure 31.1: Different relaxation paths in day-to-day aswling. The plot
shows the sum of all travel times VTT (Vehicle Time Travelad)a func-
tion of the iteration for different relaxation methods. Alethods relax to
the same value of VTT. From (Rickert, 1998).

explains why even after so many iterations the sum of thestri@wmes is
not at the same level as for the others.

All other runs represent higher replanning fractions. Rwsés a sched-
ule: 20% replanning in iterations 1-3, 10% replanning inatens 4-6,
5% in iterations 7-9, and 2% afterwards. Runs 7, 8, and 11 4see5
planning throughout the iterations, but with a bias towagdesnts which
have not been replanned for a long time. Run 7 in additionddhd net-
work successively, i.e. in the zeroth iteration only 20%h&f traffic is put
on the network, another 20% is added in the first iteration, &un 10
uses a deterministic instead of a random selection of telees for re-
planning. The advantage is that, with 5% replanning, afteit@ations
one is certain that each traveler was picked exactly onceefdanning.
In comparison, run 12 uses a simple 5% arbitrary random sawofthe
population.

The overall result seems to be that, when done right, aboite&ftions
are enough to reach relaxation. Also, more complicatedseteof agents
has no significant advantages over just plain and simpleorarsglection.
All simulations refer to the replanning of routes only.

31.3 Individualization of knowledge

31.3.1 Classifier System and Agent Database

Knowledge of agents should be private, i.e. each agent dinave a dif-
ferent set of knowledge items. For example, people typicatly know
a relatively small subset of the street network (“mental Hiagnd they
have different knowledge and perception of congestions $hggests the
use of Complex Adaptive Systems methods (e.g. (Holland2))9%iere,

file: book.tex, p.31-2 October 15, 2007

31.3. Individualization of knowledge

each agent has a set of strategies from which to choose, divators of
past performance for these strategies. The agent nornfadlses a well-
performing strategy. From time to time, the agent chosesbtiee other
strategies, to check if its performance is still bad, oraepk a bad strategy
by a new one.

This approach divides the problem into three parts (see(Blsn-Akiva,
2001)):

e Generation of new options. Here new options are generated.

e Evaluation. Here, plans (or strategies) are evaluatedulrcontext
this means that travelers try out all their different styégs, and the
strategies obtain scores.

e Exploitation. Eventually, the agents settle down on theebet
performing strategies.

As usual, the challenge is to balance exploration (inclgdjeneration)
and exploitation. This is particularly problematic heredese of the co-
evolution aspect: If too many agents do exploration, thersistem per-
formance is not representative of a “normal” performanoe,tae explor-
ing agents do not learn anything at all. If, however, theyl@ptoo little,
the system will relax too slowly (cf. “run 4” and “run 5” in Fig1.1). We
have good experiences with the following scheme:

e A randomly selected 10% of the population obtains new ogtion
and tries them out immediately in the following simulatiamr

e All other travelers choose between their existing optioviggre the
probability of selecting optionis taken as

p; oc e T (31.1)

whereT; is the remembered travel time for that optiohwas taken
as1/360 sec, which lead (in the scenario that was used) to another
10% of travelersot selecting the optimal option.

A major advantage of this approach is that it becomes mongst@gainst
artifacts of the router: if an implausible route is genedatihe simula-
tion as a whole will fall back on a more plausible route geteztaarlier.
Fig. 31.2 shows an example. The scenario is the same as iR Bigf
Chap. 2; the location is slightly north of the final destinatof all trips.
We see snapshots of two relaxed scenarios. The left plot wasrgted
with a standard relaxation method as described in the pusvection,
i.e. where individual travelers have no memory of previoogtes and
their performance. The right plot in contrast was obtairrednhfa relax-
ation method which usesxactly the same routdaut which uses an agent
data base, i.e. it retains memory of old options. In the l&dft,pve see
that many vehicles are jammed up on the side roads while ¢esvay is
nearly empty, which is clearly implausible; in the right pleve see that at

file: book.tex, p.31-3 October 15, 2007

31.3. Individualization of knowledge

the same point in time, the side roads are empty while theviges just
emptying out — as it should be.

The reason for this behavior is that the router miscalcslatevhich time
it expects travelers to be at certain locations — specificiakéxpects trav-
elers to be much earlier at the location shown in the plotolmsequence,
the router “thinks” that the freeway is heavily congested tius suggests
the side road as an alternative. Without an agent data Hdasené¢thod
forces the travelers to use this route; with an agent date, la@ents dis-
cover that it is faster to use the freeway.

This means that now the true challenge is not to generatelgtiae cor-

rect routes, but to generate a set of routes which is a supéitbe correct
ones (Ben-Akiva, 2001). Bad routes will be weeded out viapgbeor-

mance evaluation method. For more details s8e Qther implementa-
tions of partial aspects are (Unger, 1998, 2002; Gloor, 20@inmann,
in preparation).

31.3.2 Individual plans storage

The way we have explained it, each individual needs comioumt@tmem-

ory to store his/her plan or plans. The memory requirementthis are

of the order ofD (N,copie X Nivips X Niinks X Noptions), WhereN, .. is the
number of people in the simulationy,,,; is the number of trips a person
takes per dayyV,;,... is the average number of links between starting point
and destination, andV,,.;...s IS the number of options remembered per
agent. For example, for a 24-hour simulation of all traffiSiwitzerland,

we haveN, e ~ 7.5 Mio, Nyips ~ 3, Nijngs ~ 50, @and Noprions ~ 5,
which results in

7.5-10° personsx 3 trips per personx 50 links per trip (31.2)

x b optionsx 4 bytes per link= 22.5 GByte (31.3)

of storage if we use 4-byte words for storage of integer nusibleet us
call thisagent-oriented plans storage

Since this is a large storage requirement, many approachestdstore
plans in this way. They store instead the shortest path foln eaigin-
destination combination. This becomes affordable sinesoam organize
this information in trees anchored at each possible degimaEach in-
tersections has a “signpost” which gives, for each destinathe right
direction; a plan is thus given by knowing the destinatiod &ilowing

the “signs” at each intersection. The memory requiremeontthis are of
the order 0f0(NV,o4es X Naestinations X Noptions), WhereN,, 4. is the num-
ber of nodes of our network, antl,..;i..:ions 1S the number of possible
destinations.V,,.;.s IS again the number of options, but note that these
are optionger destinationso different agents traveling to the same des-
tination cannot have more than,,.;,,; different options between them.

file: book.tex, p.31-4 October 15, 2007

31.4. Interpretation as dynamical system

Traditionally, transportation simulations use of the orae1000 destina-
tion zones, and networks with of the order of 10 000 nodes¢hviasults
in a memory requirement of

1 000 destinations< 10 000 nodesx 5 options per destinatior 4 bytes per node
(31.4)

= 200 MByte, considerable less than above. Let us call tlesvork-

oriented plans storage

The problem with this second approach is that it explodek wibre re-
alistic representations. For example, for our simulatimesusually re-
place the traditional destinations zones by the links giaeh of typically
30000 links is a possible destination. In addition, we ndwdimforma-
tion time-dependent. If we assume that we have 15-min tincesslthis
results in a little less than 100 time slices for a full day. eTithemory
requirements for the second method now become

30000 links x 10000 nodes x 100 time slices (31.5)

x 5 options x 4 bytes per entrys 600 GByte, (31.6)

already more than for the agent-oriented approach. In ashtior agent-
oriented plans storage, time resolution has no effect. Ttnat®on be-
comes worse with high resolution networks (orders of magigtmore
links and nodes), which leaves the agent-oriented approaaHy unaf-
fected while the network-oriented approach becomes iniiplessAs a
side remark, we note that in both cases it is possible to cessygrlans by
a factor of at least 30 (Bush, 1998).

31.4 Interpretation as dynamical system

We like to interpret our agents and in consequence the whyskers as
“learning”. Itis however difficult to exactly define the tefhearning”; for

example, what is the difference between learning and atiep®a Simi-
larly, it is difficult to formally state the goal of our agenti the tradi-
tional interpretation of economics, reflected in Wardrdp& principle in

Chap. 28, agents try to reach a Nash equilibrium, meaningthies are
not able to improve by unilaterally changing their strategiiis is how-
ever well-defined only within relatively confined formal fin@works and
difficult to apply both in complex simulations such as ourd anthe real
world.

As afirst step, it is useful to treat our learning dynamics ta-discrete
dynamical system, and ignore all interpretation. The le@system iter-
ates from one day (period) to the next; a state is all infoilonathe system
possesses or generates during that day, including agenbmemd the
trajectory of the simulation through one day; an iteratisrthe update
from one day to the next (Fig. 31.3, although that figure edetuagent
memory).

file: book.tex, p.31-5 October 15, 2007

31.4. Interpretation as dynamical system

//
L) \
/

-

\f" -}.Z\.

Figure 31.2: Individualization of plans and interactiorttwrouter arti-
facts. LEFT: All vehicles are re-planned according to theesanforma-
tion; vehicles do not use the freeway (arrrows) althoughfteeway is
empty. As explained in the text, this happens because therrmwekes
erroneous predictions about where a vehicle will be at whet.tRIGHT:

Vehicles treat routing results as additional options, ihahey can revert
to other (previously used) options. As a result, the sidel r@av empty
out before the freeway. — The time is 7pm.

Let us, in order to have some formal symbols at our disposaioté the
state of the system on dayas X,,, and let us denote the operator which
maps the system from dayto dayn + 1 as®:

X1 = (X,,) . (31.7)

This operator subsumes everything that our simulatioresystoes: gen-
eration of new options, selection of options, running oftrla@sportation
simulation, extraction of scores etc.

In such a dynamical system, one can search for propertefixiéd points,
steady state probabilities, multiple basins of attracteirange attractors,
etc. The assumption behind all these concepts is that thensysarts out
with some arbitrary state, given by the experimentatorsfrom there on
goes to some other state where it will remain.

We will assume that our simulations akéarkovian, meaning that the
state at period: + 1 depends on information from the periadonly. If
some knowledge about earlier history is involved, then veeiaee that this
iIs made part of the state at period An example for this are the scores
of the agents, which contain knowledge from earlier periodée also
assume that the knowledge space of the agents does notilyfinitrease,
i.e. there is a limit on how many options they remember, andchd bn
how much information about the past they remember. For el@mben
trying the same option several times, the information cinddubsumed
into a moving average.

Next, we differentiate between deterministic and stodbasystems.
Clearly, our transportation simulations are stochastievéxtheless, the

file: book.tex, p.31-6 October 15, 2007

31.4. Interpretation as dynamical system

(5] (0]
Q Q
: N 3 -y
n %]
Q ()
0 2]
@ «
< <
o o
time-of-day \/ time-of-day

n->n+l

Figure 31.3: Schematic representation of the mapping gé&tkhby the
feedback iterations. Traffic evolution as a function of tiofeday can be
represented as a trajectory in a high dimensional phase sj@cations
can be seen as mappings of this trajectory into a new one. tNaté¢his
figure excludes the additional update of agent memory.

theory of deterministic dynamic systems provides usefsigints and of-
ten a language to describe what we observe in our systems.

31.4.1 Deterministic systems

It is often of interest to describe the behavior of a systenmdng times.
The following are examples of what can happen. The phenomiemat
exclude each other:

¢ Fixed point: A state which repeats itself:
X, =d(X,). (31.8)
See, for example, Newton iteration in numerical analysis.
e Periodic behavior. A cycle which repeats itself:
KXotk = Xn (31.9)

for some giveri.

e Chaotic behavior Complicated movement, seemingly without
rules or structure. Slightly different initial conditioreventually
lead to total divergence of the trajectories.

e Attractor : A sub-region in state space where the system goes to.
Attractors can for example be fixed points, periodic or cltaot
A basin of attraction is the region of state space which leads to a
specific attractor.

e Ergodic behavior: The long time trajectory comes arbitrarily close
to every point in state space.

file: book.tex, p.31-7 October 15, 2007

31.4. Interpretation as dynamical system

Note, for example, that static assignment (Chap. 28) haderucertain
conditions, only one optimum. That means that plausiblelieg dynam-
ics for the static assignment problem have exactly one lmdsittraction,

and they all lead to the same fixed point solution. This letspeculate
that the result of Sec. 31.2, i.e. that many learning algor#t seem to
lead to the same steady state behavior, is caused by stauagjrects of
the problem, which carry over from static assignment to theukation

variant.

31.4.2 Stochastic systems

In stochastic systems, a state at periodan typically go to more than
one state at period + 1. This means that in general the notion of a fixed
point does not make sense, and needs to be replacedirbg-anvariant
probability distribution . That is, one looks at the probability X') for
each stateX, and how it behaves under our update. Such a probability
distribution is time-invariant if

pe = ®(p.) . (31.10)

Note that this identifies the update operatorX') for a state with the up-
date operatot(p) for a whole distribution. In stochastic simulation prac-
tice, already the computation &f X) is difficult since it involves running
one time iteration over and over again, each time with a ifferandom
seed. The computation of®&(p) is normally impossibe and thus useful
mostly as a theoretical construct.

Often the words th equilibrium ”, “ steady-staté, or “stationary” are
used instead of time-invariant probability distribution.

Again, very little can be said in general about when a syseanhes equi-
librium. Two conditions which when simultaneously fulfdléead to con-
vergence to equilibrium are “ergodic” and “mixing”:

e Ergodic: A system is ergodic if the system can get arbitrarily close
to each state from every other state, possibly via a chaintefme-
diate states.

e Mixing: Any initial distribution in state space will spread out and
eventually cover the whole state space.

What this means intuitively is: Let us start with infinitelyamy
replicas of the same stafe, but with different random seeds. Be-
ing in the same state means thak') = 6(X — X,). If the system
is mixing, then after infinite time the probability to find andomly
picked system in stat& is p.(X), i.e. the steady state density.

In simulation practice, these characterizations are dioseseless. Even
when a system is both ergodic and mixing, it can disfleyken ergod-
icity, meaning that it can remain in a part of the state space fairaarity
long time (Palmer, 1989). For those who happen to know thigite
size Ising model below the critical temperature is an exampinother
example is a stochastic search algorithm being stuck ina @atimum.

file: book.tex, p.31-8 October 15, 2007

31.5. Relation to game theory

31.4.3 Transients

To make matters worse, we are not necessarily interestdueilsteady
state learning solution, but possibly in the transients. éample, when
an important bridge is closed for construction, predictbthe first days
after the closure may be as important as prediction of thg term be-
havior. Worse, aspects such as land use or the housing niauketctice
probably never reach the steady state.

To put this into context, consider a simple ordinary differal equation,

df :

- =—1. 31.11

= (31.11)
The steady state solution to this can be found by setting: = 0, that
is, itis f = 0 . The well-known complete solution is

f(t) = foe™", (31.12)

wheref, is the initial state. What this means is that we are used tesys
where we can describe not only the steady state solutiom$oithe tran-
sients. Itis not clear if we will ever reach a similar levelufderstanding
of learning dynamics.

31.5 Relation to game theory

A Nash Equilibrium (NE) is a state where no agent can improve its pay-
off by unilaterally changing its strategy. In terms of thext, this means
the system is at a NE if no agent can improve its score by @nddy
selecting a different (routing/activity/...) option. Agualibrium in game
theory is a static concept; it is in consequence not the samea aquilib-
rium in dynamical systems.

For static assignment (Chap. 28), we have seen this as Vs dist
principle, and the theory of static assignment started filoene. We have
also seen that in the case of static assignment, underrcedaditions the
solution was unique, meaning that there was only one NE.

The construct of a NE does not say anything about how a systameach
it. In standard game theory, it is assumed that each ageriletaty pre-
computes its moves and then submits a “strategy book” to eéferae,
who will then play the game for the agents. The Nash Equilibrdefi-

nition implies that the solution is (marginally) stable Xaetly one player
deviates from the NE. Nothing is said about stability if twayers simul-
taneously deviate from the NE.

Sometimes, a NE is a fixed point of a certain type of determialisarning
dynamics. A typical example isest reply, where each player plays what
would have been optimal in the last period. If an agent hasragbest
options, it choses the same as in the last period (if appégabinder
best reply, a NE, once reached, is repeated forever. Adamgdbes not
say anything about stability, since fixed points can be @titra (= stable),
neutral, or repulsive-{ unstable).

file: book.tex, p.31-9 October 15, 2007

31.6. Relation to machine learning

There are subtleties involved in a translation from gamerthto dynam-
ical systems. Most importantly, one has to assume that ilyhamical

system interpretation, the agents do not actively optirargegiven quan-
tity beyond the prescription of the dynamics. Rather, thehavior is
completely given by the dynamic description, and this dyicanrsome-
times happens to have the NE as a fixed point. For exampleittizisn

is different if an agent attempts to optimize the averageardvover all
iterations.

When moving from deterministic to stochastic simulatiotts®e usual
changes are necessary. In particular, the NE has to be lyuiealefined,

for example that each agent should not be able to improvestpected
reward. Although this sounds feasible in theory, it is diffian practice,
since we do not know how to compute the expected reward vialatman.

An approximation to the expected reward would be to simutadransi-
tion fromn to n + 1 with many different random seeds and average over
all occuring rewards; however, this is neither computatilyrefficient nor
plausible from the point of view of reality.

In conclusion, it seems that we are left with a system which $@me
relation to game theory, but they are not exactly the samis. dossible
to change our system so that it maps exactly on game thedrgnhuby
moving it farther away from what we would expect as plausthalenan
behavior.

31.6 Relation to machine learning

There is also a connection of our simulations to machinenlegr This

connection becomes clear if we consider each agent as @alganachine
— in consequence, all knowledge from machine learning (whypically

considers a single agent in an environment) could be apiedr agents.
In other word, each agent could be programmed as a learnichine
using the best of methods available from machine learnimgs [Bads to
several issues:

¢ In how far are machine learning methods applicable undecadhe
straints that we face? In particular, we need to have of tderor
of 107 learning agents, and we have a non-stationary environment
(since also the other agents leafn).

On the other hand, very little of what we have considered eors
states being dependent on each other, i.e. the situatied faade-
inforcement learning that the expected pay-off has bothedtiate
and long-term contributions. This is however a simplifioatin

transportation that does not truly apply. For example, fiatfing

could also be considered as a state-dependent operattweskly
activity lists where leisure, shopping, going to the dottas to be
distributed across several days leads to similar issues.

More precisely: The agent cannot assume that the probebiite constant since the
other agents also learn. However, in the long run all prdhigsi will become constant.

file: book.tex, p.31-10 October 15, 2007

31.7. Smart agents and non-predictability

e In how far does the result resemble human learning? In otbestsy
how far different is human learning and machine learningtifer
questions we are interested in?

e Does our system have anything to do wilkstributed machine
learning? That is, can the whole transportation system beido
ered as a large multi-agent learning system? In contrasfpioal
approaches in artificial intelligence, there is no obviooalghat the
transportation system attempts to optimize.

In other words: How large is the difference between distedu
learning systems for solving a given task, and distribuézaring
systems as models for human society?

The last aspect also becomes apparent when comparing theptmf a
Nash Equilibrium with the concept ofaystem Optimum (SO) Whereas
the first assumes that every agent opimizes its own utilig, latter as-
sumes that some system-wide quantity is optimized. For pi@none
could optimize the sum of all travel times rather than hawagh indi-
vidual agent optimizing its travel time. The results are @mgralnot the
same; the NE solutions lead to larger travel times.

31.7 Smart agents and non-predictability

A curious aspect of making the agents “smarter” is that, whgoes be-
yond a certain point, it may actualyegrade system performance. More
precisely, while average system performance may be uneffesystem
variance, and thus unpredictability, invariably goes um éxample is
Fig. 31.4, which shows average system performance in regeans as
a function of the fractionf of travelers with within-day replanning ca-
pability. While average system performance improves vithcreasing
from zero to 40%, beyond that both average system perforenamd pre-
dictability (variance) of the system performance degrad@ther words,
for high levels of within-day replanning capability, thessgm shows
strong variance between uncongested and congested. Fraer gper-
spective, this is often not any better than bad averagersysteformance
— for example, for a trip to the airport or to the opera, oneallgiplans
according to a worst case travel time. Also, if the systenobegs non-
predictable, route guidance systems are no longer ablelpowith effi-
cent system usage. The system “fights back” against efficidiiation
by reducing predictability.

Results of this type seem to be generic. For example, Ketlgnts a sce-
nario where many travelers attempt to simultaneously eatvdowntown
for work at 8am (Kelly, 1997). In this case, the mechanism atkws

easy to see: If, say, 2000 travelers want to go to downtowaeh adimoads
leading there together have a capacity of 2000 vehiclesqar, then the
arrival of the travelers at the downtown location necegsatiil be spread
out over one hour. Success or failure to be ahead of the cralivdegide

file: book.tex, p.31-11 October 15, 2007

31.8. Conclusion

780

760

4+

740

+oh

At
+

720 *

o
ottt
+

700

680

accumulative average traveltime until 11:07am [sec]

660 — : : : :
0 20 40 60 80
market saturation [%)]

Figure 31.4: Predictability as function of within-day ratimg capabili-
ties. The result was obtained in the context of a simulatiadysof route
guidance systems. The x-axis shows the fraction of equippédles;
the y-axis shows average travel time of all vehicles in theusation. For
each value of market saturation, five different simulatiamth different
random seeds were run. When market saturation increaseszgm to
40%, system performance improves. Beyond that, the avesegem per-
formance, and, more importantly, also the predictabiMgriance) of the
system performance degrade. From (Rickert, 1998).

if one is early or late, very small differences in the indivéd average de-
parture time will result in large differences in the indival average arrival
time, and because of stochasticity there will be strongdlatoons in the
arrival time from day to day even if the departure time reraaonstant.
Ref. (Nagel and Rasmussen, 1994) reports from a scenaricewbad
pricing is used to push traffic closer towards the systenmoti. Also in
this case, the improved system performance is accompanpigatieased
variability. Both results were obtained with day-to-daglesaning.

31.8 Conclusion

The approach of this class to agent learning was that theitepmethod
is first described as a computer algorithm, and the behavithreoalgo-
rithm is analyzed later. The first level of analysis is thelgsia of the
resulting dynamics, without any normative statements. -idagay dy-
namics is discrete in time, and can be analyzed as any tisoeede deter-
ministic or stochastic system. In all generality, this does help much,
since possible outcomes range from fixed points to chadtfiachbrs; it
does however provide a language to describe resulting ehand to
classify what to expect.

In terms of a normative theory, game theory comes in. Ouresysian
be interpreted as all agents attempting to find their besitisol, given

file: book.tex, p.31-12 October 15, 2007

31.8. Conclusion

the behavior of all other agents (Nash Equilibrium). Witlpegpriate
care, some versions of a learning dynamics will contain Neghilibria
as fixed points. The mapping of our learning dynamics intogé#meory
does however move the simulations away from what seems toehby
plausible.

Third, there are relations to machine learning. In paréiguéach agent
can be seen as a learning machine. The two most importaetetifes to
standard machine learning are: We have many more agentsheredis
no common goal.

Finally, the chapter has described some examples of whaaganagents
lead to larger instabilities. Such examples seem to be gemso outside
the area of transportation. Care needs therefore to be takeot make
simulations and reality more unstable by adding more inédrom.

file: book.tex, p.31-13 October 15, 2007

Part V

Calibration and validation

31-14

Acknowledgments

Los Alamos National Laboratory makes the Transims softvaaeglable
to academic institutions for a small charge.

The Swiss Federal Administration provides the input datdife Switzer-
land studies.

Res Voellmy, Nurhan Cetin, Bryan Raney, Nicolas Lefebvregét
Ruegg, Adrian Burri.

Kay Axhausen.

31-15

Bibliography

K.W. Axhausen. A simultaneous simulation of activity ctainin P.M.
Jones, editorNew Approaches in Dynamic and Activity-based Ap-
proaches to Travel Analysipages 206—225. Avebury, Aldershot, 1990.

M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiy&@trac-
ture stability of congestion in traffic dynamic¥apan Journal of Indus-
trial and Applied Mathematicsl1(2):203-223, 1994.

M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama
namical model of traffic congestion and numerical simutati®hys.
Rev. E51(2):1035-1042, 1995.

R. Barlovic, L. Santen, A. Schadschneider, and M. Schrdoken
Metastable states in CA models for traffic floEuropean Physical
Journal B 5(3):793-800, 1998.

C. L. Barrett, M. Wolinsky, and M. W. Olesen. Emergent locahe
trol properties in particle hopping traffic simulations. ME. Wolf,
M. Schreckenberg, and A. Bachem, editdrsaffic and granular flow
pages 169-173. World Scientific, Singapore, 1996.

C. L. Barrett, R. Jacob, and M. V. Marathe. Formal-languegestrained
path problemsSIAM J COMPUT 30(3):809-837, 2000.

R.J. Beckman et al. TRANSIMS—Release 1.0 — The Dallas-FanthV
case study. Los Alamos Unclassified Report (LA-UR) 97-4502,
Los Alamos National Laboratory, Los Alamos, NM, see tran-
sims.tsasa.lanl.gov, 1997.

M. Ben-Akiva. Route choice models. Presented at the Worksimo*Hu-
man Behaviour and Traffic Networks”, Bonn, December 2001.

M. Ben-Akiva and S. R. LermanDiscrete choice analysis The MIT
Press, Cambridge, MA, 1985.

J.A. Bottom. Consistent anticipatory route guidanc®hD thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, 2000.

J. L. Bowman.The day activity schedule approach to travel demand anal-
ysis PhD thesis, Massachusetts Institute of Technology, Cialgdar
MA, 1998.

31-16

Bibliography

M. Bradley. A system of activity-based models for Portla@dggon, Draft
final report, 1997.

W. Brilon and N. Wu. Evaluation of cellular automata for frafflow
simulation on freeway and urban streets. In W. Brilon, F. &b
M. Schreckenberg, and H. Wallentowitz, editofmsaffic and Mobil-
ity: Simulation — Economics — Environmeptages 163—-180. Springer,
Berlin, 1998.

B. W. Bush, 1998. Personal communication.

E. Cascetta and A. Papola. An implicit availability/pertep random
utility model for path choice. IProceedings of TRISTAN JNolume 2,
San Juan, Puerto Rico, 1998.

E. Cascetta, D. Inaudi, and G. Marquis. Dynamic estimatbiigin-
destination matrices using traffic count$ransportation Scien¢ce27
(4):363-373, 1993.

I. Chabini. Discrete dynamic shortest path problems ingpantation ap-
plications: Complexity and algorithms with optimal run #mTrans-
portation Research Recard645:170-175, 1998.

D. Chowdhury, L. Santen, A. Schadschneider, S. Sinha, afR&supathy.
Spatio-temporal organization of vehicles in a cellularoauéta model
of traffic with 'slow-to-start’ rule. J. Physics A: Math. GeneraB2:
3229, 1999.

D. Chowdhury, L. Santen, and A. Schadschneider. Statigitogsics of
vehicular traffic and some related systerRéiysics Reporis329(4-6):
199-329, May 2000.

S. Clarke, A. Krikorian, and J. Rausen. Computing thbest loopless
paths in a networkJ. Soc. Indust. Appl. Math11(4):1096-1102, De-
cember 1963.

Carlos F. Daganzo, M. J. Cassidy, and R. L. Bertini. Possikfganations
of phase transitions in highway traffi@ransportation Research, 83:
365-379, 1999.

S. T. Doherty and K. W. Axhausen. The developement of a unified-
elling framework for the household activity-travel schiag process.
In Verkehr und Mobili&t, volume 66 of*Stadt Region Land; pages
45-59. Institut fur Stadtbauwesen, Technical Univerg\gchen, Ger-
many, 1998.

Th. A. Domencich and D. McFadden. Urban travel demand. In.D.W
Jorgenson and J. Waelbroeck, edittighan travel demanghumber 93
in Contributions to Economic Analysis. North-Holland andhérican
Elsevier, 1975.

file: book.tex, p.31-17 October 15, 2007

Bibliography

J.J. Dongarra, I.S. Duff, D.C. Sorensen, and H.A. van destVdtumer-
ical linear algebra for high-performance computerSoftware, Envi-
ronments, and Tools. SIAM Society for Industrial and ApglMathe-
matics, Philadelphia, 1998.

DYNAMIT www page, accessed 2005. URnit.edu/its

J. EsserSimulation von Stadtverkehr auf der Basis zellularer Austtam
PhD thesis, University of Duisburg, Germany, 1998.

U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas autofoeNavier-
Stokes equatiorPhys. Rev. Lettey$6:1505, 1986.

C. Gawron. An iterative algorithm to determine the dynanseruequi-
librium in a traffic simulation modelinternational Journal of Modern
Physics C9(3):393-407, 1998a.

C. Gawron. An iterative algorithm to determine the dynanseruequi-
librium in a traffic simulation modelinternational Journal of Modern
Physics C9(3):393—-407, 1998b.

D. L. Gerlough and M. J. HuberTraffic Flow Theory Special Report
No. 165. Transportation Research Board, National Reseaocincil,
Washington, D.C., 1975.

P. G. Gipps. A behavioural car-following model for compgenulation.
Transportation Research,B5:105-111, 1981.

C. Gloor. Modelling of autonomous agents in a realistic roativork (in
German). Diplomarbeit, Swiss Federal Institute of TechgglETH,
Zurich, Switzerland, 2001.

R. HabermanMathematical models in mechanical vibrations, population
dynamics, and traffic flowPrentice-Hall, Englewood Cliffs, NJ, 1977.

D. Helbing. VerkehrsdynamikSpringer, Heidelberg, Germany, 1997.

J.D. Holland. Adaptation in Natural and Artificial SystemsBradford
Books, 1992. Reprint edition.

R. R. Jacob, M. V. Marathe, and K. Nagel. A computational gtafl
routing algorithms for realistic transportation networksCM Journal
of Experimental Algorithms1(1999es, Article No. 6), 1999.

A. Jakobs and R.W. Gerling. Scaling aspects for the perfoomaf par-
allel algorithms.Parallel Computing19(9):1063-1073, 1993.

D. Jost and K. Nagel. Probabilistic traffic flow breakdown iachastic
car following modelsTransportation Research RecottB52:152-158,
2003.

T. Kelly. Driver strategy and traffic system performanédéysica A 235:
407, 1997.

file: book.tex, p.31-18 October 15, 2007

Bibliography

B. S. Kerner. Traffic flow: Experiment and theory. In D.E. Walfd
M. Schreckenberg, editor3raffic and granular flow’97 pages 239—
267. Springer, Berlin, 1998.

B. S. Kerner and H. Rehborn. Experimental features and cteistics
of traffic jams.Phys. Rev. E53(2):R1297—-R1300, 1996a.

B. S. Kerner and H. Rehborn. Experimental properties of derity in
traffic flow. Phys. Rev. E53(5):R4275-R4278, 1996b.

J.H. Kim. Special issue about the first micro-robot world sopcer tour-
nament, MIROSOT. Robotics and Autonomous Syster@$(2):137—
205, 1997.

S. Krauf3.Microscopic modeling of traffic flow: Investigation of celtbn
free vehicle dynamicsPhD thesis, University of Cologne, Germany,
1997. See www.zaik.uni-koeln.dgdaper.

S. Krauf3, P. Wagner, and C. Gawron. Metastable states inraso@pic
model of traffic. Phys. Rev. E55(5):5597-5602, 1997.

S. Krauf3, K. Nagel, and P. Wagner. The mechanism of flow bi@akdn
traffic flow models. Technical report, 1998.

M. J. Lighthill and J. B. Whitham. On kinematic waves. |: Flomove-
ment in long rivers. 1l: A Theory of traffic flow on long crowdedads.
Proceedings of the Royal Society229:281-345, 1955.

D. Lohse. Verkehrsplanungvolume 2 of Grundlagen der Stral3en-
verkehrstechnik und der Verkehrsplanuwgrlag fur Bauwesen, Berlin,
1997.

METIS wWww page, accessed 2005. URL
www-users.cs.umn.edu/karypis/metis

MPI WWW page, accessed 2005. URL
www-unix.mcs.anl.gov/mpi/ . MPI: Message Passing In-
terface.

K. Nagel. Particle hopping models and traffic flow theoRhys. Rev. E
53(5):4655-4672, 1996.

K. Nagel. From particle hopping models to traffic flow theoffrans-
portation Research Records644:1-9, 1999.

K. Nagel and H. J. Herrmann. Deterministic models for trgéfiras.Phys-
ica A 199:254, 1993.

K. Nagel and S. Rasmussen. Traffic at the edge of chaos. In Brobks
and P. Maes, editorgytificial Life IV: Proceedings of the Fourth Inter-
national Workshop on the Synthesis and Simulation of Li@pstems
pages 222-235. MIT Press, Cambridge, MA, 1994.

K. Nagel and A. Schleicher. Microscopic traffic modeling @radlel high
performance computer®arallel Computing20:125-146, 1994.

file: book.tex, p.31-19 October 15, 2007

Bibliography

K. Nagel, P. Stretz, M. Pieck, S. Leckey, R. Donnelly, and CBérrett.
TRANSIMS traffic flow characteristics. Los Alamos UnclassifiRe-
port (LA-UR) 97-3530, Los Alamos National Laboratory, Lok#os,
NM, see transims.tsasa.lanl.gov, 1997.

K. Nagel, D.E. Wolf, P. Wagner, and P. M. Simon. Two-laneficatules
for cellular automata: A systematic approackRhys. Rev. E58(2):
1425-1437, 1998.

K. Nagel, P. Wagner, and R. Woesler. Still flowing: Approacteetraffic
flow and traffic jam modeling.Operations Resear¢tb1(5):681-710,
2003.

W. Niedringhaus, J. Opper, L. Rhodes, and B. Hughes. IVH8dmaod-
eling using parallel computing: Performance resultsPioceedings of
the International Conference on Parallel Processipgges 688—693.
IEEE, 1994.

J. de D. Ortlzar and L.G. WillumseModelling transport Wiley, Chich-
ester, 1995.

R. Palmer. Broken ergodicity. In D. L. Stein, editbgectures in the Sci-
ences of Complexitwolume | of Santa Fe Institute Studies in the Sci-
ences of Complexitypages 275-300. Addison-Wesley, Redwood City,
CA, 1989.

Michael PatrikssonThe Traffic Assignment Problem: Models and Meth-
ods Topics in Transportation. VSP, Zeist, The Netherland9419

A. Perko. Implementation of algorithms farshortest loopless paths.
Networks 16(2):149-160, 1986.

PVM www page. PVM: Parallel Virtual Machine, accessed 200RL
www.epm.ornl.gov/pvm

M. Rickert. Traffic simulation on distributed memory computers
PhD thesis, University of Cologne, Cologne, Germany, 19%ee
www.zaik.uni-koeln.dé/paper.

M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour. Twoddraffic
simulations using cellular automatahysica A231(4):534-550, 1996.

J.D. Rothwell. Control of Human Voluntary MovementChapman and
Hall, 1994.

G. Sauermann and H.J. Herrmann. A 1d traffic model with tholelspa-
rameters. In D.E. Wolf and M. Schreckenberg, editdraffic and gran-
ular flow'97, pages 481-486. Springer, Berlin, 1998.

A. Schadschneider. Analytical approaches to cellularraata for traf-
fic flow: Approximations and exact solutions. In D.E. Wolf and
M. Schreckenberg, editor3raffic and granular flow’97 pages 417—
432. Springer, Berlin, 1998.

file: book.tex, p.31-20 October 15, 2007

Bibliography

A. Schadschneider and M. Schreckenberg. Cellular autanmatalels and
traffic flow. J. Physics A: Math. Generg26:L679, 1993.

Y. Sheffi. Urban transportation networks: Equilibrium analysis with
mathematical programming method3rentice-Hall, Englewood Cliffs,
NJ, USA, 1985.

U. Sparmann. Spurwechselvodnge auf zweispurigen BAB-—
Richtungsfahrbahnen Number 263 in Forschung Stral3enbau und
StralRenverkehrstechnik. Bundesminister fur Verkehr, niB@®ad
Godesberg, Germany, 1978.

D. Sternad. personal communication.

Transportation Research Boar#lighway Capacity Manual In Special
Report No. 209 Transportation Research Board (1994b), 3rd edition,
1994a.

Transportation Research Boandighway Capacity ManualSpecial Re-
port No. 209. National Research Council, Washington, D@ g&lition,
1994b.

H. Unger. An approach using neural networks for the contfahe be-
haviour of autonomous individuals. In A. Tentner, editdigh Per-
formance Computing 199®%ages 98-103. The Society for Computer
Simulation International, 1998.

H. Unger.Modellierung des Verhaltens autonomer Verkehrsteilnetime
einer variablen staedtischen UmgebumhD thesis, TU Berlin, 2002.

S. Weinmann. Simulation of spatial learning mechanismBhD thesis,
Swiss Federal Institute of Technology ETH, Zirich, Switzed, in
preparation.

R. Wiedemann. Simulation des Stral3enverkehrsflusses.iftS8olgihe
Heft 8, Institute for Transportation Science, Universifykarlsruhe,
Germany, 1994.

D.E. Wolf. Cellular automata for traffic simulationPhysica A 263:
438-451, 1999.

S. Wolfram. Theory and Applications of Cellular Automat&vorld Sci-
entific, Singapore, 1986.

Yin Y. Yen. Finding thek shortest loopless paths in a netwoManage-
ment Sciencel7(11):712—-716, July 1971.

S. Yukawa and M. Kikuchi. Coupled-map modeling of one-disienal
traffic flow. Journal of the Physical Society of Japa®4(1):35-38,
1995.

file: book.tex, p.31-21 October 15, 2007

