
Multi-agent transportation simulation

Kai Nagel

January 31, 2005

Contents

I Introduction 1

1 Introduction 1-1

2 A quick tour 2-1
2.1 Introduction . 2-1
2.2 Demand generation . 2-1
2.3 Traffic simulation . 2-2
2.4 Feedback . 2-3
2.5 Analysis . 2-3

II A do-it-yourself simulation package 2-5

3 Motivational start: Roundabout 3-1

4 Some basics of object-oriented programming 4-1
4.1 Introduction . 4-1
4.2 Compilation of programs under Unix 4-1
4.3 Pointers . 4-2
4.4 Structs . 4-2
4.5 Classes and minimal memory management 4-2
4.6 Encapsulation . 4-3
4.7 Constructors . 4-3
4.8 Arrays of classes . 4-3
4.9 The Standard Template Library (STL) 4-4
4.10 Associative arrays/maps . 4-4
4.11 Methods; Inlining . 4-5
4.12 References (“&”) in subroutine calls 4-5
4.13 “.” vs. “->” . 4-6
4.14 General code structure . 4-6
4.15 Review . 4-7

5 Some programming recommendations 5-1
5.1 General . 5-1
5.2 Programming language . 5-1
5.3 Compiler error messages for STL code 5-2

1

Contents

5.4 Iterators . 5-2
5.5 Tokenizer . 5-3

6 Street network data and data structures 6-1
6.1 Introduction . 6-1
6.2 Network file formats . 6-2
6.3 Node class . 6-3
6.4 SimWorld class . 6-4
6.5 Nodes input . 6-4
6.6 Link class . 6-5
6.7 Links input . 6-5
6.8 Incoming/outgoing links . 6-6

7 Cellular automata micro-simulation 7-1
7.1 Introduction . 7-1
7.2 Vehicles . 7-1
7.3 Vehicles on links . 7-1
7.4 Random moves through intersections 7-3
7.5 Fairer intersections . 7-4
7.6 Initializing vehicles for testing purposes 7-4
7.7 Main program . 7-4

8 Visualizer 8-1
8.1 Introduction . 8-1
8.2 Vehicle output . 8-1
8.3 Visualization via gnuplot . 8-4
8.4 Testing the current status of the simulation 8-4

9 Plans following in the micro-simulation 9-1
9.1 Plans . 9-1
9.2 Vehicle class . 9-2
9.3 Plans format . 9-2
9.4 ReadPlans . 9-4
9.5 Class Plan . 9-5
9.6 Park queue . 9-6
9.7 Wait queue . 9-7
9.8 Vehicle insertion . 9-7
9.9 Plans following and vehicle arrival . 9-8
9.10 Computational Speed . 9-9
9.11 Events output . 9-10

10 Modularization, inheritance, templates, and code re-use 10-1
10.1 Introduction . 10-1
10.2 Links, Simlinks, and Inheritance . 10-1
10.3 Templates . 10-2
10.4 What belongs into the base class? . 10-4

11 Route planner 11-1
11.1 Introduction . 11-1

file: book.tex, p.2 January 31, 2005

Contents

11.2 Fastest Path . 11-1
11.3 Link travel times . 11-2
11.4 Library support for graph algorithms 11-2
11.5 General structure . 11-2
11.6 Input file: Trips . 11-3
11.7 FindPath and Dijkstra . 11-4
11.8 Plans output . 11-6

12 Congestion-dependent router 12-1
12.1 Link travel times and congestion . 12-1
12.2 Congestion dependency: Link travel times 12-2

13 Feedback/System integration 13-1
13.1 Introduction . 13-1
13.2 Subset of trips file . 13-1
13.3 Calling the router . 13-2
13.4 Merging of the routes . 13-3
13.5 Traffic simulation . 13-3
13.6 Iterations . 13-3

14 Activities planner: Adjust trip starting times 14-1
14.1 Introduction . 14-1
14.2 Utilities . 14-1
14.3 Departure time selection . 14-3
14.4 Operationalization . 14-3
14.5 Input data: Activities file . 14-4
14.6 Origin-destination travel times . 14-4
14.7 Departure time choice . 14-5
14.8 Feedback . 14-6

15 Do-it-yourself transportation planning simulation: Summary 15-1

16 File formats summary 16-1
16.1 Nodes file . 16-1
16.2 Links file . 16-1
16.3 Snapshot file (visualizer output) . 16-2
16.4 Plans file . 16-3
16.5 Events file . 16-3
16.6 Trips file . 16-4
16.7 Activities file . 16-4

III Improvements 16-5

17 More realistic CA traffic simulation logic 17-1
17.1 Introduction . 17-1
17.2 The stochastic traffic cellular automaton (STCA) 17-1
17.3 Some validation of the STCA . 17-3
17.4 Lane changing . 17-4

file: book.tex, p.3 January 31, 2005

Contents

17.5 Validation of lane changing rules . 17-6
17.6 Traffic signals . 17-6
17.7 Validation of traffic signal rules . 17-7
17.8 Unprotected turns . 17-7
17.9 Validation of rules for unprotected turns 17-8
17.10Discussion . 17-9

18 The queue model for traffic dynamics 18-1
18.1 Introduction . 18-1
18.2 General . 18-1
18.3 Fair intersections . 18-3
18.4 Limitations of the queue model . 18-4

19 Routing 19-1
19.1 Time aggregation . 19-1
19.2 Generalized cost functions . 19-1
19.3 Alternative routes . 19-1
19.4 Logit for routes . 19-2
19.5 Planning for given arrival time . 19-2
19.6 Mental maps . 19-3

20 Non-car modes of transportation 20-1
20.1 Routing . 20-1
20.2 Simulation . 20-1

21 Demand 21-1
21.1 Origin-destination matrices . 21-1
21.2 Activities-based demand modeling . 21-1

22 Feedback 22-1
22.1 Introduction . 22-1
22.2 Global trip times table . 22-1
22.3 Agent data base . 22-2
22.4 Day-to-day vs. within-day re-planning 22-3

23 Other Modules 23-1

24 Better file formats 24-1
24.1 Introduction . 24-1
24.2 Use header line . 24-1
24.3 XML . 24-2
24.4 Some discussion . 24-3

25 Parallel computing 25-1
25.1 Introduction . 25-1
25.2 Micro-simulation parallelization: Domain decomposition 25-1
25.3 Graph partitioning . 25-2
25.4 Adaptive Load Balancing . 25-5
25.5 Performance prediction for the Transims micro-simulation 25-8
25.6 Speed-up and efficiency . 25-12

file: book.tex, p.4 January 31, 2005

Contents

25.7 Other modules . 25-16
25.8 Summary . 25-16

26 Distributed computing and truly distributed intelligence 26-1

IV Some background 26-3

27 Traffic flow theory 27-1
27.1 Introduction . 27-1
27.2 Traffic flow measurements . 27-1
27.3 Fundamental diagrams . 27-3
27.4 Car following . 27-4
27.5 Kinematic waves and fluid-dynamics 27-12
27.6 Capacities, especially at bottlenecks 27-17
27.7 Cost-flow curves for static assignment 27-18

28 Static assignment 28-1
28.1 Introduction . 28-1
28.2 Equilibrium principle . 28-1
28.3 Beckmann’s mathematical programming formulation 28-3
28.4 Constrained optimization . 28-3
28.5 Uniqueness . 28-4
28.6 A solution method . 28-5
28.7 Summary . 28-6

29 Discrete choice theory 29-1
29.1 Introduction . 29-1
29.2 Binary choice . 29-2
29.3 Multinomial choice . 29-8
29.4 Discussion of modeling assumptions 29-9
29.5 Maximum likelihood estimation . 29-10
29.6 Discussion . 29-13
29.7 Summary . 29-14

30 Axhausen lecture 30-1

31 Learning and feedback 31-1
31.1 Introduction . 31-1
31.2 Additional aspects of day-to-day learning 31-1
31.3 Individualization of knowledge . 31-2
31.4 Interpretation as dynamical system . 31-4
31.5 Relation to game theory . 31-8
31.6 Relation to machine learning . 31-9
31.7 Smart agents and non-predictability 31-9
31.8 Conclusion . 31-10

file: book.tex, p.5 January 31, 2005

Contents

V Calibration and validation 31-12

32 Traffic flow characteristics 32-1
32.1 Introduction . 32-1
32.2 Validation, Calibration, etc. 32-1
32.3 The Transims microsimulation approach 32-3
32.4 Rules of the model . 32-4
32.5 Towards a standardized flow test suite for simulation models 32-12
32.6 Yield sign behavior . 32-15
32.7 Comparison to Case Study Logic . 32-16
32.8 Short discussion . 32-16
32.9 Summary and conclusion . 32-17

33 Intersection test suite 33-1

34 Routing 34-1

35 A Dallas case – do I want this?? 35-1

36 A Portland/Oregon case 36-1
36.1 Introduction . 36-1
36.2 Problem statement . 36-2
36.3 Our approach . 36-3
36.4 Related work . 36-5
36.5 Experimental setup and simulation results 36-6
36.6 Comparison to field data and to emme/2 study results 36-8
36.7 Discusssion . 36-9
36.8 Summary . 36-12
36.9 Acknowledgments . 36-13

37 A Switzerland case 37-1

file: book.tex, p.0 January 31, 2005

Part I

Introduction

1

Chapter 1

Introduction

Urban planning is not easy: People simultaneously want to have access to transportation
and not be bothered by it. This is a contradiction which is not easily resolved, in particular
not in densely populated areas. Urban and transportation planning are the disciplines
which deal with this contradiction.

Any software package designed to help with these questions needs to address the fact
that humans are “intelligent”, that is, they are able to adapt and to learn. The maybe most
prominent example in the realm of transportation planning is called induced traffic – the
fact that better streets or better train connections leads to more traffic. In consequence,
transportation planning is not an exercise of how to best deal with a given and fixed
demand, but it has to balance the interests of people using the transportation system with
the interests of people suffering from it.

A good approach to such complex problems are multi-agent simulations. Multi-agent
means that all entities of the simulation, in particular the travelers, are resolved indi-
vidually, and that they have internal rules according to which they make decisions and
move inside the synthetic, simulated environment. Such an approach became possible
with the advent of modern computers, which process rule-based logic as fast as numeri-
cal operations. A big advantage of this agent-based, microscopic approach is that it can
be, at least in principle, arbitrarily improved if it turns out to be not realistic enough in
certain aspects. This is in stark contrast to aggregated methods, which eventually reach a
level where small-scale effects cannot be represented. As an example, 200 cars with 200
different destinations on a road can only be represented by having these 200 different
destinations listed somewhere in the system; there is no useful way to average over them.
Clearly, a natural place to store this information is inside the agents.

We do however believe that, once one has accepted the microscopic or agent-based
paradigm, one can start with rather simple models. The primary purpose of this book
is to show that full transportation simulation packages can be coded by somewhat ex-
perienced programmers in relatively short time. Such a package does not only contain
the traffic micro-simulation, which moves vehicles and travelers through the system, but
also modules for route planning, for activity generation, and, most importantly, for hu-
man learning. It is not claimed that the resulting transportation simulation package is
calibrated and validated and thus useful for policy questions, but it is certainly complete
enough to do computational research with respect to methodological and computational
questions, and it could be a starting point for a more realistic package. In particular, it
is possible to replace the modules one by one by more realistic ones and still keep the
structure of the whole system intact. This makes it possible to pull together the efforts of
many different research or commercial groups towards a large scale realistic multi-agent
transportation simulation.

1-1

This book is based on a one-semester class with 3 hours per week, which are approxi-
mately evenly distributed between lectures and guided lab work. In addition, depending
on their programming skills, students put in a significant homework effort (what many
of them enthusiastically to). The class covers most of this book; homework comes in
particular from Part II. The book is written in a way that Part II should be self-contained,
that is, a reader mostly interested in basic code development should find all relevent in-
formation in that part of the book. The other chapters provide additional material, in
particular with respect to improvements, and with respect to theoretical background. The
perspective throughout the book is computational, that is, theoretical developments with-
out relevance to a computational implementation are kept to a minimum.

file: book.tex, p.1-2 January 31, 2005

Chapter 2

A quick tour

2.1 Introduction

Transportation simulation packages consist of several modules. The most important
modules for the purposes of this book are: demand generation, route generation, and
the traffic simulation (Fig. 2.1). In addition, a feedback module provides the coupling
between these. The following sections will give short introductions into each of these
modules.

2.2 Demand generation

2.2.1 Trip generation

The demand generation module generates the demand for the transportation simulation
system. Two important methods are: (i) origin-destination matrices, and (ii) activity-
based demand modeling.

Origin-destination (OD) matrices are the more traditional method. OD matrices contain
the number of trips from n starting points to n destinations; it is therefore an n × n
matrix. These matrices can refer to arbitrary time periods. Until a couple of years ago,
one typically used 24-hour time periods; these days, people often concentrate on “morn-
ing peak” and “afternoon peak” periods since the main direction of travel is obviously
different between these periods.

In many situations, it is desirable to have information about demand generation that goes
beyond OD matrices. In such situations, the more far-reaching method of activities-
based demand modeling is an alternative. Here, the simulation includes models of human
behavior with respect to the planning of a day. This includes where and when to eat,
sleep, work, shop, etc. For example, a person may start the day at home, be at work at
8am, work for eight hours, go shopping which takes an hour, then be at home for the rest
of the day. Assuming that all the transportation pieces take half an hour, this would fix
the transportation schedule to: leave home at 7:30am, be at work at 8am, leave work at
4pm, arrive at shopping at 4:30pm, leave shopping at 5:30pm, arrive home at 6pm.

Once the simulation “knows” where and when people do their activities, transportation
is generated via connecting activities that take place at different locations. Note that it is
not necessary (and probably not possible) to forecast such activities for specific persons;
however, there is hope that we will be able to get useful ensemble averages similarly to
Statistical Physics.

2-1

2.3. Traffic simulation

microsimulation
demand

generation generation

route

Figure 2.1: Modules

HOME

WORK
LUNCH

WORK

DOCTOR

SHOP

HOME

HUSBAND’S ACTIVITIES

Figure 2.2: Illustration of a daily activity plan.

2.2.2 Route generation

Once trips (e.g. starting times, starting locations, and destination locations) are known,
the exact transportation for these needs to be generated. This includes mode choice
(walking, bicycle, train, car, etc.) and the precise routing. The output of this module are
complete plans for each individual in the simulation.

2.3 Traffic simulation

Now these plans need to be executed. These simulations come at many different levels of
resolution and fidelity, reaching from the traditional steady-state flow-based cost function
to very detailed micro-simulations.

If one is interested in time-dependent results, as for example the queue built-up during
the onset of rush periods, the simulation needs to be sufficiently realistic to contain such
dynamics. Traditional flow-based cost functions are not able to realistically deal with
such dynamical effects, at least not in a straightforward way. Thus, the right simulation
has to be chosen according to what aspects of the dynamics one wants to have represented
for a given question.

file: book.tex, p.2-2 January 31, 2005

2.4. Feedback

HOME

WORK
LUNCH

WORK

DOCTOR

SHOP

HOME

HUSBAND’S ROUTES

Figure 2.3: Illustration of a daily plan including routes.

2.4 Feedback

The traffic simulation needs input from the demand generation, since it executes the
plans from the demand generation. However, the demand generation depends on the
traffic simulation because for example congestion only shows up in the traffic simulation,
and demand adjusts to such shortages. In order to deal with this situation, one iterates
between demand generation and traffic simulation. For example, demand generation
is run assuming no congestion, the resulting traffic simulation is run, then the demand
generation is run again now including the congestion from the last traffic simulation run,
etc., until a steady state is reached. That is, the system is systematically relaxed towards
a consistent state.

Fig. 2.4 shows an example of replanning. The traveler first changes his/her route, pre-
sumably in adaptation to congestion. Eventually, he/she decides that the destination is
too far away and switches to a nearer location. Fig. 2.5 shows a systemwide consequence
of replanning. The scenario is one where 50 000 travelers starting at random locations
all over Switzerland travel to Lugano, which is south of the Alps. The scenario is for
testing purposes, but it has some resemblance with vacation traffic in Switzerland. In
the initial run (left), all travelers have planned their routes assuming a completely empty
network; in consequence, they all use the freeways as much as possible. After many
iterations (right), travelers have learnt that because of the congestion other paths may be
advantagous; as a result, traffic is much more spread out.

It should be noted at this point that there is no a priori reason why a real system should
be relaxed. For example, during unique events such as trade shows or soccer games, the
transportation system is probably not relaxed. The research here just follows the usual
path in such situations: First understand the steady state solution, and then move on to
the transients. Note that the steady state here refers to the comparison from one iteration
to the next, not to a steady state across time-of-day.

2.5 Analysis

Once a representative run or collection of runs of the traffic simulation has been obtained,
it can be analyzed. For example, one can see where congestion will show up, and which
people get stuck in it. Analysis is the other aspect of the system that influences the
decision about the level of realism in the modules. For example, if one is interested in

file: book.tex, p.2-3 January 31, 2005

2.5. Analysis

home

route 1

route 2

workplace A

workplace B

route 3

Figure 2.4: Result of day-to-day learning in a test example. LEFT: Situation at 9:00am in
the initial run. RIGHT: Situation at 9:00am in the 49th iteration. Each pixel on the road
is a car (by overlapping in the graphics they form the traffic streams); the circle denotes
where they are going. Clearly, the system has found a better solution after 49 iterations.

Figure 2.5: Feedback

emissions, one needs a micro-simulation of the driving behavior with enough information
on, e.g., acceleration in order to derive the necessary quantities. Or if one is interested in
the possible rescheduling of activities as a consequence of transportation infrastructure
changes, one needs to model the effect of “trip chaining”, i.e. the fact that people can for
example go shopping on the way back from work, but they could also put in a stop at
home before they go shopping.

file: book.tex, p.2-4 January 31, 2005

Part II

A do-it-yourself simulation
package

2-5

Chapter 3

Motivational start: Roundabout

In this chapter, we will consider the question if for an intersection it is better to have
traffic lights or a roundabout. Our model is the simplest version that makes some sense.

The purpose of this chapter is to familiarize the reader with the general thinking that
is used throughout this book: Models are started from simple first principles. In the
following model, as in all models introduced in this book, the reader will easily detect
imperfections. It is left to the curious reader (and programmer) to implement and test
improvements.

We consider an intersection with four incoming/outgoing streets (Fig. 3). Streets are
numbered 0, 1, 2, 3 as shown in the picture. We only model the incoming streets; as soon
as vehicles leave the roundabout or the intersection, they have left our simulation world.

At each incoming streets, vehicles enter the simulation randomly but with a fixed rate.
Each incoming vehicle selects any of the outgoing links as destination, excluding its own
link.

Vehicles are moved forward along the link using the so-called cellular automata (CA)
technique. This technique partitions space into cells which are updated via simple rules.
In our situation, the street will consist of cells which are either empty, or occupied by
exactly one vehicle. The system uses a parallel update (Fig. 3): All vehicles that have
an empty cell in front of them at time t can move one cell; the result is the configuration
for time t + 1. Vehicles at the end of the link can only continue when the traffic light is
green, or when there is space on the roundabout.

[]
???

0

1

2

3

[]

...

t = 10 sec
a b c d e

t = 11 sec
a b c d e

...

[]

Figure 3.1: (a) Schematic drawing. (b) Cellular automata driving logic. (c) The four
traffic light phases.

3-1

The traffic light The traffic light has four phases as indicated in Fig. 3. There are no
“yellow” times between the phases (although they can be introduced easily). Vehicles can
enter the intersection if the traffic light allows them to go into the direction desired by
the vehicle. Otherwise, the vehicle will stop, blocking all other vehicles behind. Vehicles
that are allowed to enter the intersection are removed from the simulation, that is, there
is no interaction of vehicles inside or beyond the intersection.

The roundabout [[need fig]]

The roundabout is modeled as a circular street, that is, it is a CA array of its own. Vehicles
that leave the last array cell enter the first array cell. There are four entry cells into that
circular array, corresponding to the four streets. A vehicle can enter when the entry cell
and its upstream neighbor are empty. Vehicles leave one cell before the corresponding
entry cell.

Implementation
Many possibilities exist to implement this, and experienced programmers will find there
own system. The following paragraphs will provide some guidance, but they will not re-
place a programming class.

The programming style selected in this chapter is the most basic one we could think of.
Later chapters will progressively introduce somewhat more advanced concepts.

CA links The four CA links can be implemented as

const double RATE=0.2 ;
const int LL=10 ;
const int NN=4 ;
int cells[LL][NN] ;
int tmpcells[LL][NN] ;
const int EMPTY=-1 ;
...
// go through time:
for (int tt=0; tt<TT; tt++) {

// go through all streets:
for (int nn=0; nn<NN; nn++) {

// enter a vehicle if this is possible:
if (cells[0][nn] == EMPTY && drand48() < RATE) {

// select a number between 0 and NN-2:
int destination = int((double)(NN-1) * drand48()) ;
// if self is selected, use NN-1:
if (destination==nn) { destination = NN-1 ; }
tmpcells[0][nn] = destination ;

}
// go through all cells except cell closest to intersection:
// (this loop contained an error until 31jan05)
for (int ii=0; ii<LL-1; ii++) {

if (cells[ii][nn] != EMPTY) { // there is a vehicle
if (cells[ii+1][nn] == EMPTY) { // there is no vehicle ahead

tmpcells[ii+1][nn] = cells[ii][nn] ; // move
} else { // i.e. there is a vehicle ahead

tmpcells[ii][nn] = cells[ii][nn] ; // stay
}

}
}
// special treatment for last cell:
if (intersection_can_be_entered) {

move_vehicle_to_intersection ;
}

}
// copy tmp array back to main array and clear tmp array:
for (int nn=0; nn<NN; nn++) {

for (int ii=0; ii<LL; ii++) {
cells[ii][nn] = tmpcells[ii][nn] ;
tmpcells[ii][nn] = EMPTY ;

}

file: book.tex, p.3-2 January 31, 2005

}
}

[[the above code is not tested in practice and in consequence probably contains
errors]]

Traffic signal Again, there are many ways to implement this. Let us, for simplicity,
assume that each of the NPHASES phases takes PP seconds; the phase is then given by

for (int tt=0; ...) {
int phase = (tt/PP) % NPHASES ;

}

where % is the C++ modulo operation. Let us then define a function

bool allowed (int from, int to, int phase)

which returns true when movement from link from to link to is allowed in phase phase,
and false otherwise. Intersection movement can then be modeled as

// special treatment for last cell:
if (cells[LL-1][nn]!=EMPTY) {

int destination = cells[LL-1][nn] ;
// if movement NOT allowed, keep vehicle:
if (!allowed(nn, destination, phase)) {

tmpcells[LL-1][nn] = cells[LL-1][nn] ;
}

}

Roundabout Implementation of the roundabout is left to the creativity of the reader.
Note that there are some subtle timing issues involved: A reasonably clean implementa-
tion should not allow a vehicle to move two cells in a given time step; this would mean that
a vehicle that just entered the roundabout is not allowed to make another move inside the
roundabout. This can be achieved by first computing the tmpcells for all links, and only
then copying them back to cells. In that way, a vehicle entering a roundabout would be
copied into the tmpcells of the roundabout, where it would not be moved any further
during the time step. Obviously, one has to be careful that no other vehicle overwrites this
vehicle in tmpcells.

Output Experienced programmers will have their preferred visualization toolkit. Here
we just want to point out that, to a certain extent, it is possible to derive graphics from
simple terminal operations. For example, links can be plotted by

#include <iostream>
...
for (int ii=0; ii<LL; ii++) {

if (cells[ii][nn] != EMPTY) {
// if there is a vehicle, output its destination:
cout << cells[ii][nn] ;

} else {
// else output an empty space:
cout << " " ;

}
}
// Don’t forget the newline once the link is plotted:
cout << endl ;

Most platforms have a so-called vt100 terminal; under unix this can often be obtained by
typing setenv TERM vt100 in an xterm. For example, the command

cout << "\033[H\033[2J" ;

erases the screen, allowing the program to overwrite what was there before. This makes
it possible to display the complete intersection dynamics as a movie inside a text terminal.

file: book.tex, p.3-3 January 31, 2005

Variations As said before, this is a very simplistic model, and many modifications of this
are possible. Some examples:

• The link lengths, the entry rates, the signal phases, or the size of the roundabout
could be changed. Signal phases could be made adaptive.

• The entry conditions into the roundabout can be changed.

• There could be separate lanes for left turns. How long should they be?

• There could be inhomogeneous demand.

• Etc.

file: book.tex, p.3-4 January 31, 2005

Chapter 4

Some basics of object-oriented
programming

4.1 Introduction

We attempt to use relatively “lightweight” object-oriented programming. However, un-
fortunately this depends on the perspective and experience. I hope that even someone
without experience will be able to get the most important things done. However, some
solid programming experience is most probably helpful. If you have never seen pointers
or structs/classes, it is going to be hard.

Before you get desperate, maybe have a look at Sec. 4.15 to see how (relatively) easy it
will be at the end.

Implementation

4.2 Compilation of programs under Unix

If you are an unexperienced programmer, I recommend to write everything into one file,
say work.cpp. This is then compiled with

g++ work.cpp

and executed with

./a.out

You need at least g++ version 2.96; the version number can be found out by the command
g++ -v.

You should put the following lines at the beginning of work.cpp:

#include <assert.h> // assert macro; see ‘‘man assert’’
#include <iostream> // cin/cout
#include <math.h>
#include <stdlib.h>

If you are using a Microsoft compiler, the following may help:

#if _MSC_VER > 1020 // if VC++ version is > 4.2
using namespace std; // std c++ libs implemented in std

#endif

The following should print “hello world” once:

4-1

4.3. Pointers

// put above headers here
int main() {

cout << "hello world" << endl ;

return 0 ;
}

4.3 Pointers

At first, one typically does things such as

int id = 1 ;
double xCoord = 2.34 ;
cout << id << endl ;
cout << xCoord << endl ;

Pointers allow to put the real stuff somewhere else and to reference it by an address:

int* id ; *id = 1 ;
double* xCoord ; *xCoord = 2.34 ;
cout << *id << endl ;
cout << *xCoord << endl;

What this means is that id itself contains just a memory address, and the real content is
where this memory address points to. *(...) can thus be read as “contents of (...)”.

This does not have any advantage at this level; but it has enormous advantages as soon
as the content that the memory address points to is more than a simple number.

4.4 Structs

Plain C allows things like

struct Node {
int id ;
double xCoord ;
double yCoord ;

};

This means that our node has properties, such as an ID number and coordinates. These
are used as follows:
struct Node node ;
...
node.id = 213 ; //assingment of ID number 213
xx = node.xCoord ; // retrieval of xCoord

Typically, this is however used in pointer syntax; the example then is

// this does not work yet, see text
struct Node* node ;
...
node->id = 213 ;
xx = node->xCoord ;

Note that the arrow -> comes from converting Node node into Node* node. That is,
arrows mean that the thing to the left of them is a pointer.

There is not yet a big advantage of using it this way. If one looks at the memory man-
agement, then struct Node* node only reserves space for the memory address itself;
we would however also need memory space for id, xCoord, yCoord, which we don’t
have at this level. This will be solved in the next paragraph.

4.5 Classes and minimal memory management

In C++, we can replace struct by class:

file: book.tex, p.4-2 January 31, 2005

4.6. Encapsulation

class Node {
int id ;
double xCoord ;
double yCoord ;

};
...
Node* node ; // reserve space for memory address
...
node = new Node() ; // reserve memory space for contents
...
node->id = 213 ;
xx = node->xCoord ;

the use of new also solves the memory problem.1

4.6 Encapsulation

In C++, one typically encapsulates variables. This does not have a major advantage at
the level of this text, but we do it to conform with the standard. It goes as follows:

class Node {
private:

int id_ ; // Convention: I add underscores to private variables.
double xCoord_ ;
double yCoord_ ;

public:
void set_id(int tmp) { id_ = tmp ; }
int id() { return id_ ; }
void set_x(double tmp) { xCoord_ = tmp ; }
double x() { return xCoord_ ; }
...

} ;
...
Node* node ;
...
node = new Node() ;
...
node->set_id(213) ;
xx = node->x() ;

private: means that everything in that block can only be accessed by methods which
are defined inside the class definition, i.e. inside the class Node block.

4.7 Constructors

“new ...” is also called “calling a constructor”. In the above example, we have not
defined what the constructor does; for this case, C++ provides a so-called default con-
structor. One can re-define the constructor, and one can even call it with arguments.
Although that feature can lead to more robust code, we will not use it here.2

4.8 Arrays of classes

Typically, we have more than one node. The straightforward way to do this would be
...
Node* nodes[20] ; // allocate 20 memory addresses
...
nodes[0] = new Node () ; // allocate space for ONE (!) node

1In C, this would be done via malloc.
2For experts: The main reason why we do not use it is because constructors are not inherited. For tem-

platized classes, as will be useful for the network construction (Sec. 10), this means that each change of the
constructor arguments in the template methods necessitates corresponding changes in all derived classes. We
found that rather inconvenient.

file: book.tex, p.4-3 January 31, 2005

4.9. The Standard Template Library (STL)

...
nodes[0]->set_id(213) ;
xx = nodes[0]->x() ;

4.9 The Standard Template Library (STL)

The above array usage is awkward because we need to know in advance how many
nodes we will have. It is better to use vectors, as follows:

#include <vector>
...
vector<Node*> nodes ;
...
// memory management missing
...
nodes[0]->set_id(213) ;
xx = nodes[0]->x() ;

So the usage of this looks the same as before, but the memory management is still miss-
ing. An easy way to enter elements without having to worry about memory is to use one
of the insertion operators:
...
Node* node = new Node(...);
nodes.push_back(node) ; // add array element at end
...

It helps to use typedefs:
...
typedef vector<Node*> Nodes ;
Nodes nodes ;
...

(instead of vector<Node*> nodes;).

Note that now

Nodes nodes ;

essentially looks like and is used like

Node* nodes[20] ;

except that the memory management is different.

vector<Node*> is template syntax; it means that we have a vector of type Node*.
Instead of vector, you could think “array”.

Besides vector, there are other pre-defined template classes, such as list and deque.
They all have certain insertion and removal operations which do the memory management
for us. In C++, this is known as the Standard Template Library (STL). It is included in all
new enough C++ compilers.

We will always hide templates via typedefs so in general they will not really show up. They
do however (unfortunately) make a big difference in compiler error messages (see 5.3).

4.10 Associative arrays/maps

In C-arrays, one needs that indices start at zero and are consecutive. In transportation
and many other areas, items such as nodes and streets have names or numbers. In our
context, the nodes/links have numbers, and they are unique, but not consecutive. What
we want is a data structure that deals with this in a straightforward way, i.e. where we can
retrieve a node with ID “231” by node[231]. Associative arrays do this. They are used
as follows:

file: book.tex, p.4-4 January 31, 2005

4.11. Methods; Inlining

#include <map>
...
typedef map<int,Node*> Nodes ;
...
Nodes nodes ;
...
// allocate space for new node and fill with information:
Node* node = new Node(id,xCoord,yCoord);

// register this node with the global nodes array:
nodes[id] = node;
...

Use of this now is:

cout << "ID:" << nodes[213]->id() << endl ;
cout << "X :" << nodes[213]->x() << endl ;

4.11 Methods; Inlining

We had already constructs like

class Node {
...
double x() { return xCoord_ ;}

};

One can put arbitrary functions here, e.g.

class Node {
...
intersectionLogic() {

// lots of stuff
}

};

This is called a method of the class. This version is the “inlined” version of the method.

Often, this gets so long that one wants to have this outside the class definition. In this
case one would write:

class Node {
...
intersectionLogic() ;

};

and somewhere else

Node::intersectionLogic() {
// lots of stuff

}

Conventionally, one would put the first part into a *.h file, and the second part into a
*.cpp file. It is however also possible to leave everything in work.cpp.

Inlined functions/methods are faster during the execution but need more memory and
more compilation time.

4.12 References (“&”) in subroutine calls

C and C++ by default call subroutine arguments “by value”, which means that they copy
the complete object. For example,

void doSomething(Nodes nodes) {
...
}
...

doSomething(theNodes) ;
...

file: book.tex, p.4-5 January 31, 2005

4.13. “.” vs. “->”

would copy the whole Nodes data structure and then operate on that copy. That has two
often undesired or unexpected side-effects:

• The Nodes object can be rather large: For large road networks, it contains all
pointers to all nodes.

• Changes in Nodes are not moved up to the main program.

This behavior can be avoided when references are used, as follows:

void doSomething(Nodes& nodes) {
...
}
...

doSomething(theNodes) ;
...

Note the “&” in the argument list. The result of this is that doSomething will directly use
the already existing nodes data structure.

In general, we will always use references in subroutine calls. Only when we pass int or
double will we, wenn we do not want to pass back a result, omit the “&”.

References can also be used in other contexts, in particular to avoid pointers to objects
(see below). We will not use them for that since we find the pointer version easier to
understand for non-experts.

4.13 “.” vs. “->”

In the above, methods inside classes are addressed via the -> operator. Sometimes, one
has to use the . operator instead. Unfortunately, we are unable to write efficient code
which uses consistently one or the other, so you need to understand the difference. That
difference is that x->y() means that x is a pointer, while x.y() means that x is the
object itself or a reference to it. As a rule of thumb, we will use “->” when we use objects,
and “.” when we use containers. For example:

typedef map<Id,Node*> Nodes ; // Nodes contains *pointers* to Node!
Nodes nodes ; // nodes is *not* a pointer
...
for (Nodes::iterator nn=nodes.begin() ; // since ‘‘nodes’’ is not a

nn!=nodes.end() // pointer, ‘‘.’’ is used.
++nn) {

Node* node = nn->second ; // ‘‘node’’ is now a pointer
...
cout << node->id() << endl ; // ‘‘->’’ is used
...

4.14 General code structure

Even if you write everything into one file, which simplifies life for non-experts, there is
some structure that should be obeyed and that helps later to pull the code apart into
several files. It is as follows:

// Global declarations/definitions.
// This would become something like ‘‘globals.h’’.
typedef double Time ;
Time time = -1 ;
...

// global utilities
// This would become something like ‘‘utils.h’’.
#include <stdlib.h>
extern "C" double drand48() ;
double myRand() {

return drand48() ;
}

file: book.tex, p.4-6 January 31, 2005

4.15. Review

// Class declarations including definitions for ‘‘short’’ methods.
// Each class would go into a separate *.h file.
class Link ; // forward declaration
class Node {
private:

Id id_ ;
public:

void set_id(Id val) { id_ = val ; } // ‘‘short’’ method
...
Link* findOutgoingLink(Id linkId) ; // ‘‘long’’ method

};
...

// Definitions of ‘‘long’’ class methods.
// Methods for each class would go into a separate *.cpp file.
Link* Node::findOutgoingLink(Id linkId) {

...
}
...

// global functions (should be avoided; can normally go into ‘‘class
// SimWorld’’ or similar)

// main:
void main() {

...
}

4.15 Review

The most important information that you hopefully take from the above is that when you
copy something like

#include <map>
...
typedef map<int,Node*> Nodes ;
...
Nodes nodes ;
...
Node* node = new Node(...); // allocate space for new node
...

from this text, then afterwards the use of this is relatively straightforward:

cout << "ID:" << nodes[213]->id() << endl ;
cout << "X :" << nodes[213]->x() << endl ;

file: book.tex, p.4-7 January 31, 2005

Chapter 5

Some programming
recommendations

Implementation

5.1 General

We recommend to use variable names which are easy to remember. We also recommend
to write “robust” code, because this piece of code will be used over and over again, and it
will be improved bit by bit. Robust means the following for me:

• Things which can go wrong need to be tested during execution and should lead to
a program abort if the test fails. In my experience, warnings are not useful here
since in the end there will be so many warnings that one will ignore them all. For
example, one should test for memory boundaries. assert() is a useful C/C++
command, see man assert.

• As a minimum rule for the use of subroutines: Functionality which is used more
than once inside a program has to go into a subroutine.

Personally, I think that for simulation problems the strict observation of these two rules are
by far the most important aspects of structured programming. This is independent from
the particular programming language; it is also independent from the object-orientedness
of the programming language although it may help.

5.2 Programming language

Many programming languages are suitable to write traffic simulations. Here are some
comments about the most common ones:

• C – “small” language; fast; objects are available via struct but no further object
support; in general very little support for things that one needs for agent-based
simulation

• C++ – “big” language that few people know completely (i.e. significant risk that one
writes code that nobody can read); object-oriented language with decent support for
agent-based simulation; good support for high performance computing in particular
for object-oriented numerics; no standardized support for graphical user interfaces.

• java – similar to C++; includes support for graphical user interfaces. Well-written
code in java is not necessarily slower than code in C++, but there is in general less

5-1

5.3. Compiler error messages for STL code

support for high performance computing (parallel compilers; debugging of parallel
code; object-oriented numerics; ...).

• fortran – comes from the tradition of numerical analysis; newer versions of fortran
have some support for agent-based simulation but no comparison to C++ or java

Recommendation: C++ or java, depending on own experience.

In the following, we will often give examples in C++ style. The goal is not to push C++ to
its limits (as said above, in our experience very few people can read and maintain the re-
sulting code) but to end up with design patterns that hopefully help average programmers.
We will use the Standard Template Library (STL) where we feel that this is helpful.

5.3 Compiler error messages for STL code

Compiler error messages for STL code are awkward. Here is an example:

In file included from sim.cpp:5:
global.h: In function ‘void Simulate (int, map<id, Node *, less<Id>,
allocator<Node *> >, map<Id, Link *, less<Id>, allocator<Link *> >,
map<Id, Veh *, less<Id>, allocator<Veh *> >)’:
global.h:358: conversion from ‘Link *’ to non-scalar type ‘Link’
requested

It is often helpful to first read the messages item by item and sometimes to re-arrange the
messages:

• First comes where the corresponding file was included:

In file included from sim.cpp:5:

• This is followed by the function where the error happens:

global.h: In function ‘void simulate (int, map<Id, Node *, less<Id>,
allocator<Node *> >, map<Id, Link *, less<Id>, allocator<Link *> >,
map<id, Veh *, less<Id>, allocator<Veh *> >)’:

As long as there is only one function void simulate(...), one can ignore the
rest of this part of the error message. If one does not know about function over-
loading, this should be generically the case.

• Finally comes the real error message. Rearranging yields:

global.h:358: conversion from
‘Link *’

to non-scalar type
‘Link’

requested

That is, somehow the item on the right is a pointer to link, while the item on the left
is a link.

In this case, the offending line was

Link link = l->second;

The correct line would be

Link* link = l->second;

5.4 Iterators

Simulations often need to iterate over all objects in a certain class, for example over all
agents or all streets.

In C++, iterators are explicitely provided for many data structures of the STL. Code typi-
cally looks like the following:

file: book.tex, p.5-2 January 31, 2005

5.5. Tokenizer

for (Links::iterator ll = links.begin(); ll != links.end(); ll++) {
Link* link = ll->second ;

}

The ->second is necessary if Links is, as discussed in Sec. 4.10, a map<int,Link>.
Then ll returns the “pair” (int,Link*), while ->second just returns the second item.
– This will be filled with more meaning in later examples.

5.5 Tokenizer

In order to read line-oriented input files, it is useful to first read the complete line (get-
line), and then to parse it. This can look as follows:

assert(inFile.is_open()) ;
typedef vector<string> Tokens; Tokens tokens ;
while (!inFile.eof()) {

string aString ; getline(inFile, aString) ;
if (!aString.empty()) { // (skip empty lines)

tokenize(aString, tokens) ;
for (Tokens::iterator tt=tokens.begin() ; ii!=tokens.end() ; ii++) {

cout << *tt << "\n" ;
}

}
}

As of 2003, there is unfortunately no standard tokenizer for C++. A simple tokenizer,
which separates on white spaces (such as blanks and tabs), is the following (from the
linux C++-programming-howto):

#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
#include <vector>
...
inline void tokenize (const string& str, vector<string>& tokens) {

tokens.erase(tokens.begin(), tokens.end()) ;
tokens.push_back("TRASH") ; // do not use tokens[0] ;
string buf ;
stringstream ss(str) ;
while(ss >> buf) {

tokens.push_back(buf) ;
}

}

This is slightly modified when compared to the original version in so far as it puts “TRASH”
into the zeroth element so that the counting of tokens starts with one. This has the advan-
tage that a token from the nth column will be in token[n].

file: book.tex, p.5-3 January 31, 2005

Chapter 6

Street network data and data
structures

6.1 Introduction

Transportation simulations need to deal with real world scenarios to be useful. In order
to achieve this, it makes sense to write them so that they can read arbitrary real world
configurations, even when the initial intention of the project is to use artificial data. For
the example case of this text, the minimum content of the data base is some information
about the road network, and some information about where people live and where people
work.

In this section, the information about the road network is considered. The basis for this is
a simple coding that is usually used for graphs, with one file/list for nodes (vertices) and
one file/list for links (edges, arcs). The traffic network then is built by identifying links
with roads, and intersections with nodes. Our intersections will be extremely simplistic.

The node file typically contains:

• a unique ID number for each node, and

• geographical coordinates.

Additional information can be added for each node, but is not needed for this example.

The link file for this example needs the following information:

• a unique ID number for each link,

• the ID number of the node where the link starts,

• the ID number of the node where the link ends,

• length of the link (length is necessary because a curvy road between two nodes
will be longer than the Euclidean distance),

Implementation

6-1

6.2. Network file formats

6.2 Network file formats

The first implementation question to resolve is how to store the data. We will assume that
the data is in a file, and that is uses the same format that the transportation simulation
software package Transims (?) uses. Transims file formats are used several times in this
text. The advantage is some degree of portability; the disadvantage is that the formats
often contain many more entries than we truly need. Also, a more modern format might
use some kind of XML syntax; there is however no corresponding standard for trans-
portation simulations. We think that the advantage of using Transims files outweighs the
disadvantages. XML formats will be discussed in Sec. 24.3.

Each Transims network file has a header line, and then zero or more lines of entries. The
header line needs to be there; it contains the keys of the entries. Fields are separated by
tabs.

The nodes file has the following entries:

Column Header type explanation

1 ID integer Unique number of node
2 EASTING integer Coordinate in x direction
3 NORTHING integer Coordinate in y direction
4 ELEVATION integer Coordinate in z direction. Ignore
5 NOTES string Optional notes. Ignore

In consequence, a nodes file looks as follows:

ID<tab>EASTING<tab>NORTHING<tab>ELEVATION<tab>NOTES<ret>
1<tab>651700<tab>137200<tab>0<tab><ret>
2<tab>652220<tab>137600<tab>0<tab><ret>
...

The entries which are important for our do-it-yourself implementation are printed in bold-
face. Any information in the other columns will be ignored. That information may, how-
ever, be important to make other Transims modules work, most importantly the visualizer
(Sec. 8). In particular, note the additional <tab> that separates a possibly empty NOTES
field from the <ret>.

The link file has the following columns. Once more, the relevant ones are printed in bold;
the other ones are just given for complete information.

Column Header Type Explanation

1 ID integer Unique ID number
2 NAME string Name of the link, e.g. the street name.

Ignore
3 NODEA integer Node ID at one end of link
4 NODEB integer Node ID at other end of link
5 PERMLANESA integer Number of lanes towards A. Ignore
6 PERMLANESB integer Number of lanes towards B. Ignore
7 LEFTPCKTSA integer Number of left pocket lanes towards A.

Ignore
8 LEFTPCKTSB integer Number of left pocket lanes towards B.

Ignore
9 RGHTPCKTSA integer Number of right pocket lanes towards A.

Ignore
10 RGHTPCKTSB integer Number of right pocket lanes towards B.

Ignore
11 TWOWAYTURN boolean Whether there is a two-way link for left

turns in the middle of the road (an Amer-
ican specialty). Ignore

12 LENGTH positive float Length of link in meters
13 GRADE float Grade (= slope) of link. Ignore

file: book.tex, p.6-2 January 31, 2005

6.3. Node class

14 SETBACKA positive float Setback distance (in meters) from the
center of the intersection at node A. Ig-
nore

15 SETBACKB positive float Setback distance (in meters) from the
center of the intersection at node B. Ig-
nore

16 CAPACITYA positive float Capacity of link towards A in vehicles
per hour. Ignore (but see Sec. 18)

17 CAPACITYB positive float Capacity of link towards B in vehicles
per hour. Ignore (but see Sec. 18)

18 SPEEDLMTA positive float Speed limit, in meters per second, to-
wards A. Ignore (but see Secs. 17 and
18)

19 SPEEDLMTB positive float Speed limit, in meters per second, to-
wards B. Ignore (but see Secs. 17 and
18)

20 FREESPDA positive float Free speed, in meters per second, to-
wards A. Ignore (but see Secs. 17 and
18)

21 FREESPDB positive float Free speed, in meters per second, to-
wards B. Ignore (but see Secs. 17 and
18)

22 FUNCTCLASS keyword Functional class of link. Ignore
23 THRUA integer ID of outgoing link across A which de-

notes “through” direction. Can be used
for data compression. Ignore

24 THRUB integer ID of outgoing link across B which de-
notes “through” direction. Can be used
for data compression. Ignore

25 COLOR integer Obsolete. Ignore
26 VEHICLE keywords Allowed modes on link. Ignore
27 NOTES string Arbitrary notes. Ignore

Task 6.1 Generate a node file and a link file which together describe a square with a
diagonal (i.e. four nodes and five links). You can use the files in

http://www.matsim.org/files/studies/test-net/network

as a starting point.

6.3 Node class

typedef long Id;
typedef double Coord ;
...
class Node {
private:

Id id_;
public:

void set_id(Id val) { id_ = val ; }
Id id() { return id_ ; }

private:
Coord xx_;

public:
void set_xx(Coord val) { xx_ = val ; }
xx() { return xx_ ; }

private:
Coord yy_ ;

public:

file: book.tex, p.6-3 January 31, 2005

6.4. SimWorld class

void set_yy(Coord val) { yy_ = val ; }
yy() { return yy_ ; }

};

6.4 SimWorld class

It is useful to have a SimWorld class that defines our simulation world:
class SimWorld {
public:

typedef map<Id,Node*> Nodes ;
Nodes nodes ;
...
readNodes() ;
...

}

In this case, we will not make Nodes private, i.e. we will not encapsulate it. The result
of this is that we can directly use the access functions of the STL. It is possible to use
the STL functions even when Nodes is private, but we find the above solution easier for
non-experts.

6.5 Nodes input

Reading the nodes file would go as follows:

#include <fstream>
#include <string>
...
const char* NODES_FILE_NAME = "T.nodes";
...
class Node {

...
};
...
class SimWorld {

...
};
...
void SimWorld::readNodes () {

cout << "\n### entering readNodes ...\n" ;
ifstream inFile ; inFile.open(NODES_FILE_NAME) ;
assert(inFile.is_open()) ;
string aString ;
vector<string> tokens ;
// process header line:
getline(inFile, aString) ;
tokenize(aString, tokens) ;
assert(tokens[1]=="ID") ;
assert(tokens[2]=="EASTING") ;
assert(tokens[3]=="NORTHING") ;
// main loop:
while (!inFile.eof()) {

getline(inFile, aString) ;
if (!aString.empty() && isdigit(aString[0]))

// [[skip lines with junk (e.g. last line)]]
{

tokenize(aString, tokens) ;
Id nodeId ; convert(tokens[1], nodeId) ;
Coord xCoord ; convert(tokens[2], xCoord) ;
Coord yCoord ; convert(tokens[3], yCoord) ;
// initialize node:
Node* node = new Node ;
// enter node into node map:
nodes[nodeId] = node ;
node->set_id(nodeId) ;
node->set_xx(xCoord);
node->set_yy(yCoord) ;

}
}
cout << " nNodes: " << nodes.size() << endl ;

file: book.tex, p.6-4 January 31, 2005

6.6. Link class

cout << "### leaving readNodes ...\n\n" ;
}

The convert methods are as follows:

inline void convert (const string& str, int& ii) {
ii= atoi(str.c_str()) ;

}
inline void convert (const string& str, long& ii) {

ii= atol(str.c_str()) ;
}
inline void convert (const string& str, double& dd) {

dd = atof(str.c_str()) ;
}

This would be called from the main program via

int main()
{

SimWorld simWorld ;
simWorld.readNodes() ;
...

}

Task 6.2 Write a program which reads the node data.

6.6 Link class

The link class is analogous to the node class:

typedef double Len ;
typedef double Spd ;
...
class Link {
private:

Id id_;
public:

void set_id(Id val) { id_ = val ; }
Id id() { return id_ ; }

private:
Node* fromNode_;

public:
void set_fromNode(Node* node) { fromNode_ = node ; }
Node* fromNode() { return fromNode_ ; }

private:
Node* toNode_ ;

public:
void set_toNode(Node* node) { toNode_ = node ; }
Node* toNode() { return toNode_ ; }

private:
Len len_ ;

public:
void set_length(Len val) { len_ = val ; }
Len length() { return len_ ; }

};

6.7 Links input

Again, this is analogous to the nodes.
...
const char* LINKS_FILE_NAME = "T.links";
...
void SimWorld::readLinks () {

cout << "\n### entering readLinks ...\n" ;
ifstream inFile ; inFile.open(LINKS_FILE_NAME) ;
string aString ;
vector<string> tokens ;
// process header line:

file: book.tex, p.6-5 January 31, 2005

6.8. Incoming/outgoing links

getline(inFile, aString) ;
tokenize(aString, tokens) ;
assert(tokens[1]=="ID") ;
assert(tokens[3]=="NODEA") ;
assert(tokens[4]=="NODEB") ;
assert(tokens[12]=="LENGTH") ;
// main loop:
while (!inFile.eof()) {

getline(inFile, aString) ;
if (!aString.empty() && isdigit(aString[0])) {

// (skip lines w/ junk (e.g. last line))
tokenize(aString, tokens) ;
Id linkId ; convert(tokens[1], linkId) ;
Id fromNodeId ; convert(tokens[3], fromNodeId) ;
Id toNodeId ; convert(tokens[4], toNodeId) ;
Len length ; convert(tokens[12], length) ;
Link* link = new Link ;
links[linkId] = link ;
link->set_id (linkId) ;
Node* fromNode = nodes[fromNodeId] ;
assert(fromNode != NULL) ;
link->set_fromNode (fromNode) ;
Node* toNode = nodes[toNodeId] ;
assert(toNode != NULL) ;
link->set_toNode (toNode) ;
link->set_length (length) ;
fromNode->addOutLink(link) ;
toNode->addInLink(link) ;

}
}
cout << " nLinks: " << links.size() << endl ;
cout << "### leaving readLinks ...\n\n" ;

}

Regarding addOutLink and addInLink see next section.

Task 6.3 Write code that does the links input.

Remember that you need to include Links into the SimWorld class similarly to Nodes.

6.8 Incoming/outgoing links

In order to traverse the graph, for each node we need the incoming and the outgoing links.
Recall that for links we already have the corresponding information, i.e. the fromNodes
and toNodes. The construction of the inLinks and outLinks is as follows:

First, add the corresponding entries to the node class:

class Node {
private:

...
typedef vector<Link*> VLinks;
Vlinks outLinks_;
Vlinks inLinks_;

public:
...
void addOutLink(Link* Link) { outLinks_.push_back(link); }
Link* outLink(int i) { return outLinks_[i]; }
int nOutLinks() { return outLinks_.size(); }

void addInLink(Link* link) { inLinks_.push_back(link); }
Link* inLink(int i) { return inLinks_[i]; }
int nInLinks() { return inLinks_.size() ; }

} ;

Note that we do not need the associative array property here for outLinks_ or inLinks_,
and so we use the vector class instead of map.

Next, we generate the information of which links are incoming and outgoing. The easiest
way is to add this in the readLinks routine at the end, as was already done in the
previous section.

file: book.tex, p.6-6 January 31, 2005

6.8. Incoming/outgoing links

Task 6.4 Add the information about incoming/outgoing links to your code.

Task 6.5 Test if you can read the network in

http://www.matsim.org/files/studies/corridor/network

without errors.

file: book.tex, p.6-7 January 31, 2005

Chapter 7

Cellular automata
micro-simulation

7.1 Introduction

The micro-simulation executes the route plans and returns congestion levels. Since we
do not have plans yet, we will at this stage see the traffic micro-simulation as something
that moves vehicles along links and across intersections.

We use the same dynamics as we had used for the roundabout in Chap. 3. That is:

• The road is divided into cells of length 7.5 meters.

We will only model links with single lanes.

• Each cell is either empty or occupied by exactly one vehicle.

• Vehicles move deterministically by one cell between time t and time t + 1 if the
cell ahead is empty at time t.

• Across intersections, we will check that the first cell of the receiving link is empty.

Implementation

7.2 Vehicles

Now, we need vehicles. We will start very simplistic:
class Veh {
private:

Id id_ ;
public:

set_id(Id val) { id_ = val ; }
Id id() { return id_ ; }

}

7.3 Vehicles on links

Now we need to extend the links so that they contain the vehicles. For our cellular au-
tomata (CA) approach, we represent the road by a 1-lane sequence of cells. In conse-
quence,

7-1

7.3. Vehicles on links

class Link {
...

private:
typedef vector<Veh*> Cells ;
Cells cells_ ;

public:
build() ;

}

As one sees, the road is a vector of pointers to Veh. If this pointer is NULL, then the
corresponding cell is empty.

For modular programming, one would in fact introduce a new class, say simlink, and
make it inherit from the link class. Unfortunately, this eventually means to templatize
the link and node classes, which we do not want to do at this point. Further details are
discussed in Chap. 10.

The build() command builds the road, i.e. reserves memory etc.:1

void Link::build () {
int nCells ;
nCells = int(length() / LCELL) ;
for(int ii=0; ii<nCells; ii++) {

cells_.push_back(NULL);
}

}

LCELL is a global constant containing the length of a cell which we set to 7.5 meters.
According to the code, the number of cells is

Ncells = L/`, (7.1)

where L is the length of the link and ` the length of a cell. push_back is the command to
add elements to a vector.2

We also need functions to add vehicles at the upstream end and remove them at the
downstream end of the link. Similarly, one needs to be able to test for the availability of
space, and get access to the most downstream of the vehicles. The code segment looks
as follows:
class Link {

...
void addToLink(Veh* veh) {

assert(cells_[0]==NULL);
cells_[0] = veh ;

}
veh* firstOnLink() {

return cells_.back() ;
}
void rmFirstOnLink() {

assert(cells_.back()!=NULL) ;
cells_.back() = NULL ;

}
bool hasSpace() {

return cells_.front()==NULL ;
}

}

cells_.front() and cells_.back() are STL functions and provide access to the
first and the last element of the vector.

Finally, we need a method to move vehicles forward. This can look as follows:

class Link {
...
void moveOnLink(int& nVehs) ;
void move(int& nVehs) {

moveOnLink(int& nVehs) ;
// more here to be added later ...

}
} ;

1Again, there are specific commands in the STL to achieve the same thing. We leave that to the experts.
2One could use allocate, but the use of push back preserves at least somewhat the look and feel of a

traditional array.

file: book.tex, p.7-2 January 31, 2005

7.4. Random moves through intersections

and:

void Link::moveOnLink (int& nVehs) {
int last = cells_.size() - 1 ;
for(int ii=0; ii<last ; ii++) {

Veh* veh = cells_[ii] ;
if (veh != NULL) {

nVehs ++ ;
if (cells_[ii+1] == NULL) {

cells_[ii+1] = veh ;
cells_[ii] = NULL ;
ii++ ;
veh->set_speed(LCELL) ;

} else {
veh->set_speed(0.) ;

}
}

}
}

Note that this uses traditional array syntax, so alternative models can be easily imple-
mented even by programmers not fluent in C++.

7.4 Random moves through intersections

We also need a method to move through intersections. If there is more than one outgoing
link, then the vehicle needs to select one of those. In Sec. 9.1 we will introduce route plans
for this purpose. In order to test the code without that functionality, here we introduce a
method with random selection of the outgoing link:

class Node {
...

public:
void rndmove() ;
void move() {

rndmove() ;
}

}

and

void Node::rndmove () {
for (VLinks::iterator ll=inLinks().begin(); ll!=inLinks().end(); ++ll) {

Link* inLink = (Link*) *ll ;
Veh* veh = inLink->firstOnLink() ; // NULL if none
if (veh != NULL) {

int nOutLinks = outLinks().size() ;
int outLinkIdx = int(myRand() * nOutLinks) ;
Link* theOutLink = outLink(outLinkIdx) ;
if (theOutLink->hasSpace()) {

inLink->rmFirstOnLink() ;
theOutLink->addToLink(veh) ;

}
}

}
}

Note that in contrast to earlier no “->second” is used with the iterator, since the VLinks
is a standard vector (array) structure, and not a map.

myRand() is a random number generator that returns values between zero (included)
and one (excluded), for example

double myRand() {
return rand()/(RAND_MAX+1) ;

}

file: book.tex, p.7-3 January 31, 2005

7.5. Fairer intersections

7.5 Fairer intersections

In this text, an attempt is made to present a simple (the simplest?) version here, and
to wait with improvements until Part III. In this section, there will be an exception: The
modification presented here is not strictly necessary. Not including it does, however, result
in strong artifacts and asymmetries in the traffic dynamics.

A disadvantage of the above code for intersection movement is that certain incoming links
always get served earlier than others. A useful way to improve the situation is to go
through the incoming links in random sequence. This can be achieved by

typedef multimap<double,Link*> RndLinks ;
RndLinks rnd_links ;
// go through all inLinks, give them a random number, and insert
// them according to it:
for (VLinks::iterator ll=inLinks_.begin(); ll!=inLinks_.end();

++ll) {
Link* link = *ll ;
rnd_links.insert(make_pair(myRand(), link)) ;

}
// retrieve the inLinks in the order of their random numbers:
for (RndLinks::iterator ll = rnd_links.begin();

ll != rnd_links.end(); ll++) {
Link* inLink = ll->second ;

and then continue as above.

The above algorithm goes through all incoming links and gives them a random number
and then inserts them into the multimap using the random number as key. A multimap
is similar to the map we used for links and nodes with the only difference that keys do not
have to be unique; this is necessary since it could happen that two random numbers are
identical. The links are then taken out of the multimap in increasing order of the random
number.

7.6 Initializing vehicles for testing purposes

We need to be able to put vehicles on the network. A useful method for this will be
discussed in Chap. 9 in conjunction with the introduction of plans. Here we just point out
that for testing purposes one can put vehicles on links for example as follows:

Id cnt = 0 ;
for (Links::iterator ll=links.begin(); ll!=links.end(); ++ll) {

Link* link = ll->second ;
Veh* veh = new Veh ;
veh->set_id(cnt) ;
cnt++ ;
link->addVeh(Veh) ;

}

7.7 Main program

Finally all the above functionality needs to be put together. This can be done as follows:

typedef double Time ;
...
Time globalTime = -1 ; // global definition of a time; see text
...
class Link ; // forward declaration
class Node {

...
};
class Link {

...
} ;
class Veh {

file: book.tex, p.7-4 January 31, 2005

7.7. Main program

...
} ;
class SimWorld {

...
void simulate() { // see later

...
}

} ;
...
int main () {

// network construction as discussed earlier
...

// build the links:
for (SimWorld::Links::iterator ll =simWorld.links.begin();

ll!=simWorld.links.end();
++ll) {

Link* link = ll->second ;
link->build() ;

}

// insert some vehicles as explained above
...

// time iteration:
for (globalTime=simStartTime; globalTime<99999; globalTime++) {

bool done = false ;
simWorld.simulate(done) ;
if (done) break ;

}
return 0;

}

and finally

void SimWorld::simulate (bool& done) {
int nVehs=0 ;
// links movement:
for (Links::iterator ll=links.begin(); ll!=links.end(); ++ll) {

Link* theLink = ll->second ;
theLink->move(nVehs) ;

}
// intersection movement:
for (Nodes::iterator nn=nodes.begin(); nn!=nodes.end(); ++nn) {

Node* theNode = nn->second ;
theNode->move() ;

}
// output
int skip=60 ;
if (long(globalTime)%skip==0) {

for (Links::iterator ll=links.begin(); ll!=links.end(); ++ll) {
Link* theLink = ll->second ;
theLink->writeVehFile() ;

}
}
if (long(globalTime)%1000==0) {

cout << "Step: " << globalTime
<< " NVehs: " << nVehs
<< endl ;

}
done = false ;
if (nVehs==0) {

done = true ;
}

}

The above code fragment also contains a provision for visualizer output, to be used in the
next chapter.

Note the time is defined globally as globalTime. There are better ways to do this; this
is, as always in this text, left to the experts.

file: book.tex, p.7-5 January 31, 2005

Chapter 8

Visualizer

8.1 Introduction

For larger simulations, visualization is nearly always an absolute necessity. Writing a
visualizer, however, goes beyond the purposes of this text. One option is the Transims
visualizer, on which the output formats in the following are based; since the whole Tran-
sims package is available to academic institutions for an affordable license fee, this may
be an option. In some cases, visualizers of other transportation simulation software may
be available. In this section it will be described how a graphics program that plots data
points based on Cartesian coordinates can be used to generate some basic visualization.
The public doman software “gnuplot” will be used. Other plotting packages with similar
functionality should also work.

Implementation

8.2 Vehicle output

The file format for vehicle output is as follows:

Column Header type explanation

1 VEHICLE integer Vehicle ID
2 TIME integer Current time (in seconds past midnight)
3 LINK integer Link ID
4 NODE integer FromNode ID (i.e. ID of node where the ve-

hicle is coming from)
5 LANE integer Lane the vehicle is on
6 DISTANCE float Distance (in meters) the vehicle is away

from the node
7 VELOCITY float Vehicle speed (in meters per second)
8 VEHTYPE integer Vehicle type. “1” = car.
9 ACCELER float Vehicle acceleration (in m/s per second)
10 DRIVER integer Driver ID
11 PASSENGERS integer Number of passengers in vehicle
12 EASTING float Position of vehicle in x direction
13 NORTHING float Position of vehicle in y direction
14 ELEVATION float Position of vehicle in z direction
15 AZIMUTH float Vehicle’s orientation (degrees from east in

counterclockwise direction)

8-1

8.2. Vehicle output

16 USER integer User-defined data field

The most important fields for our purposes here are time and the two spatial coordinates.
When these fields are filled out correctly, the Transims visualizer will work even when all
other fields are filled with dummy variables.

Some linear algebra is necessary to calculate the position and the orientation of the vehi-
cles. It goes as follows:

1. The vector from the fromNode s to the toNode t is

rst =

�
xst

yst � =

�
xt

yt � −

�
xs

ys � (8.1)

2. When θ is the angle between the x axis and r, then one has

tan θ =
y

x
or θ = ����

���
arctan � y

x � if x > 0
arctan � y

x
+ π � if x < 0

1

2
π if x = 0 and y > 0

3

2
π if x = 0 and y < 0

(8.2)

3. A vehicle’s distance on the link from the fromNode is given by the position of it’s
cell; if the cell number is i, then the position is (i + 1) `, where ` is the length of a
cell (typically 7.5 meters).

4. The coordinates of the vehicle now essentially are�
x
y � =

�
xs

ys � +

�
d cos θ
d sin θ � (8.3)

5. After this calculation, vehicles are on the direct line between two nodes. What is
missing is the offset depending on the lane the vehicle is in. This is just�

+w sin θ
−w cos θ � , (8.4)

which is added to Eq. (8.3). w is the width of a lane, for example 3.75 meters.
Large values of w are often useful to “pull” road directions apart, which is useful
when zooming out.

Corresponding code is
void Link::writeVehFile () {

static int first=1 ;
static ofstream snapshotFile ;
if (first==1) {

first = 0 ;
snapshotFile.open(SNAP_FILE_NAME) ;
assert(snapshotFile.is_open()) ;
snapshotFile << "VEHICLE"

<< ’\t’ << "TIME"
<< ’\t’ << "LINK"
<< ’\t’ << "NODE"
<< ’\t’ << "LANE"
<< ’\t’ << "DISTANCE"
<< ’\t’ << "VELOCITY"
<< ’\t’ << "VEHTYPE"
<< ’\t’ << "ACCELER"
<< ’\t’ << "DRIVER"
<< ’\t’ << "PASSENGERS"
<< ’\t’ << "EASTING"
<< ’\t’ << "NORTHING"
<< ’\t’ << "ELEVATION"
<< ’\t’ << "AZIMUTH"
<< ’\t’ << "USER"
<< endl;

file: book.tex, p.8-2 January 31, 2005

8.2. Vehicle output

}
assert(snapshotFile.is_open()) ;
// write TWO empty lines between time steps:
static Time lastTimeStep = -1 ;
if (lastTimeStep != globalTime) {

snapshotFile << "\n\n" << endl ;
lastTimeStep = globalTime ;

}
// go through all cells of the link:
for (int ii=0; ii<cells_.size(); ii++) {

// check if cells have a vehicle on them:
if (cells_[ii] != NULL) {

// get the veh and its position on the link:
Veh* theVeh = cells_[ii] ;
double pos = 7.5*(ii+1) ;
int lane = 1 ;
// calculate geographical coordinates and azimuth:
Coord DX = - fromNode()->xx() + toNode()->xx() ;
Coord DY = - fromNode()->yy() + toNode()->yy() ;
typedef double Angle ;
Angle theta = 0. ;
if (DX > 0) {

theta = atan(DY/DX) ;
} else if (DX < 0) {

theta = PI + atan(DY/DX) ;
} else {

if (DY > 0) { theta = PI/2. ; }
else { theta = - PI/2. ; }

}
if (theta < 0.) theta += 2.*PI ;
double azimuth = theta/(2.*PI)*360 ;
Coord easting = fromNode()->xx() + cos(theta) * pos

+ sin(theta) * LANE_WIDTH * lane ;
Coord northing = fromNode()->yy() + sin(theta) * pos

- cos(theta) * LANE_WIDTH * lane ;
Coord elevation = 0. ;
// write the information to the file:
snapshotFile << theVeh->id()

<< ’\t’ << globalTime
<< ’\t’ << id() // link id
<< ’\t’ << fromNode()->id()
<< ’\t’ << lane
<< ’\t’ << pos
<< ’\t’ << theVeh->speed()
<< ’\t’ << 1 // vehtype
<< ’\t’ << 0. // acceleration
<< ’\t’ << theVeh->id() // driver id
<< ’\t’ << 0 // number of passengers
<< ’\t’ << easting
<< ’\t’ << northing
<< ’\t’ << elevation
<< ’\t’ << azimuth
<< ’\t’ << 0 // user definable field
<< "\n" ;

}
}

}

For Transims, the header line is significant. For other systems, it may be omitted.

Note the two empty lines between time steps. The empty lines are important for the
gnuplot visualization explained below; they are not important for the Transims visualizer
and probably not for many other visualizers.

The above is called via

void simulate (...) {
...
for (Links::iterator ll = links.begin(); ll != links.end(); ll++) {

Link* link = ll->second;
link->writeVehFile(simTime) ;

}
...

}

file: book.tex, p.8-3 January 31, 2005

8.3. Visualization via gnuplot

Figure 8.1: Vehicle snapshot using gnuplot.

8.3 Visualization via gnuplot

Gnuplot (www.gnuplot.info) is a plotting package that is available on most linux in-
stallations. In the following we will use it for a simple visualization of our traffic simulation
results.

First, generate, in the same directory as where you have the vehicle snapshot file, a file
named gpl with the following contents:

a=a+1
set grid
set xrange[-50:6050]
set yrange[-50:2050]
print a
plot "T.veh" index a u 12:13 t ""
if (a < 200) reread
a = 0

This assumes that your vehicle snapshot file is called T.veh.

Start gnuplot by typing gnuplot. Inside gnuplot, type

gnuplot> a=1
gnuplot> load ’gpl

The result should be a window similar to Fig. 8.1 displaying the status of the simulation
time step by time step.

8.4 Testing the current status of the simulation

Task 8.1 Before one continues, one should make some tests if the simulation really
works. Build a square with a diagonal. As suggested before: Just start from

http://www.matsim.org/files/test-net/network .

Try the following things, and check them with the visualizer:

1. For initialization, completely fill one of the links with vehicles. Do they move the way
you would expect? What would you expect? Are all links used? Remember that
the link decision on intersections is random at the moment.

file: book.tex, p.8-4 January 31, 2005

8.4. Testing the current status of the simulation

2. For initialization, completely fill the two links which go into the same node with
vehicles. What happens at the merge? Who has the priority in your code? Why?

file: book.tex, p.8-5 January 31, 2005

Chapter 9

Plans following in the
micro-simulation

9.1 Plans

In our micro-simulation, travelers follow plans. In our do-it-yourself traffic simulation,
we only look at cars. Cars have complete routes in their plans.

Route plans always include variants of the following information:

StartTime, StartLoc, Node1, Node2, ..., EndLoc.

• StartTime: Time-of-day when the traveler wants to start. We always use seconds
past midnight.

• StartLoc: Starting location. For us, this is the link ID where the trip starts.

• Node1: First node of route plan.

• Node2, etc.: The following nodes of the route plan.

• EndLoc: The final destination of the trip. For us, this is the link ID where the trip
ends.

In terms of programming, this means:

1. We need a mechanism to read plans.

2. We need a data structure (“parking queue”) where to keep vehicles/plans until their
starting time.

3. We need a data structure (”waiting queue”) where to keep vehicles/plans which are
beyond their starting time, but have not been able to move into the traffic because
of congestion.

4. We need a mechanism to move vehicles from the parking queue to the waiting
queue.

5. We need a mechanism to move vehicles from the waiting queue on to the start link.

6. We need a mechanism to move vehicles across an intersection so that they follow
plans.

9-1

9.2. Vehicle class

In principle, the plans file can contain the whole daily plan for each individual traveler in
the simulation. For the time being, we will however identify car trips and vehicles, and
skip the remaining information in the plans file, if any.

Implementation

9.2 Vehicle class

First we need to extend the vehicle class. An implementation is

#include <deque>
...
class Veh {
private:

Id id_;
public:

void set_id(Id val) { id_ = val ; }
Id id() { return id_ ; }

private:
Spd speed_ ;

public:
void set_speed(Spd tmp) { speed_ = tmp ; }
Spd speed() { return speed_ ; }

private:
Time startTime_;

public:
void set_startTime (Time val) { startTime_ = val ; }
Time startTime() { return startTime_; }

private:
Id arrivalLinkId_ ;

public:
void set_arrivalLinkId(Id val) { arrivalLinkId_ = val ; }
Id arrivalLinkId() { return arrivalLinkId_ ; }

private:
typedef deque<Id> Route;
Route route_ ;

public:
void addNodeId2Route(Id nodeId) { route_.push_back(nodeId); }
Id nextNodeID() {

if (route_.size() >= 1) {
return route_.front() ;

} else {
return -1 ;

}
}
void incPlan() { route_.pop_front(); }
void writeEvent(Id linkId, Id fNodeId, int flag) ;
void dump() {

cout << " vehid: " << id()
<< " speed: " << speed()
<< endl ;

}
};

The writeEvent method will be explained later.

Note how the route plan is implemented as a deque, which is a data structure which
makes it easy to add and remove elements at both ends.

9.3 Plans format

We use the Transims route format in order to have a well-defined standard.

For people who insist on their own format, it is in theory possible to write converters. In
practice, this is nearly always a headache, since, for example: the converters are not
maintained; third parties do not know where the executables are located or how they are

file: book.tex, p.9-2 January 31, 2005

9.3. Plans format

used; plans files are huge (typically several GB) and for that reason one does not want
different representations of the same information on the hard disk.

Clearly, a better choice for what we do would be XML (eXtended Markup Language). This
is discussed in Sec. 24.3. The only disadvantage of XML is that one needs libraries (such
as expat) for parsing, which means that our code would no longer be standalone. For that
reason, for the time being we use the Transims format.

Transims organizes trips into legs, for example: walk to car, drive to office parking, walk to
office. More precisely, a “trip” goes from one activity to the next, and legs are characterized
by different modes of transportation. For our project here, we only look at car legs.

A typical example looks as this:

1 0 1 1 0 0
27825 100 2 1900 2
0 86400 0
1 0 1
8
1 0 40 70 100 130 160 190

Since the number of nodes varies from plan to plan, plans need to have a variable length
part. In Transims this is achieved via a fixed length and a variable length part. The last
token of the fixed length part says how many more tokens are to follow. The meaning of
the individual numbers is as follows:

Fixed length part:

Number explanation

1 Traveler (Person) ID
2 User field. Irrelevant for us
3 Trip ID. Irrelevant for us
4 Leg ID. Irrelevant for us
5 FirstLegFlag. Irrelevant for us
6 LastLegFlag. Irrelevant for us
7 StartTime
8 StartLocation. = StartLink for us
9 Type of StartLocation. Irrelevant for us

10 EndLocation. Irrelevant for us
11 Type of EndLocation. Irrelevant for us
12 Duration. Irrelevant for us
13 Stop Time. Irrelevant for us
14 MaxTimeFlag. Irrelevant for us
15 Driver Flag. Irrelevant for us
16 Mode. Should always be 0
17 Vehicle Type. Irrelevant for us
18 Number of additional tokens (variable length part)

The 7th token is the StartTime; the 8th token the StartLocation (which is, for us, the link
on which the vehicle starts).

An important information is the 16th token of a block/leg, which codes the mode of trans-
portation: “0” means “car”. If, for a given block, one finds a different number here, we will
ignore the whole block/leg and continue with the following one.

The 18th token of a block gives the number of the tokens following from there on.

Variable length part:

number explanation

1 Vehicle ID. Ignore
2 Number of Passengers. Needs to be zero (because the meaning of the

following data depends on this).
3 Node 1

file: book.tex, p.9-3 January 31, 2005

9.4. ReadPlans

4 Node 2
5 etc.

The 20th token (= 2nd token of variable length part) should be zero; if not, the plan should
be skipped.1

All following tokens are NodeIDs. The first NodeID after the start link is included; as long
as one uses uni-directional links (as we do), this information is redundant.

The full Transims route plans specification is in the Transims documentation:

http://www.matsim.org/files/doc/transims-1.0/files.pdf

Important: There are differences between the transims-1.0 plans format and the
transims-1.1 plans format. We use the transims-1.0 plans format.

Important: Line breaks in the route plans are not significant. However, empty lines
between blocks are significant. Each block corresponds to a leg.

Task 9.1 Write a route plans file with exactly one route for “test-net”.

9.4 ReadPlans

Here is an example of how to read plans into the simulation:

void SimWorld::readPlans (Time& simStartTime) {
cout << "\n### entering readPlans ...\n" ;
int cnt=0 ;
Plan plan ;
simStartTime=99999 ;
while (plan.readNextPlan()==0) {

if (plan.mode()!=0) {
cout << " Wrong mode, skipping plan.\n" ;

} else if (plan.nPassengers()!= 0) {
cout << " Wrong number of passngers; skipping plan.\n" ;

} else {
cnt++ ; if (cnt%1000==0) { cout << " Cnt: " << cnt << endl ; }
if (plan.startTime() < simStartTime) simStartTime = plan.startTime() ;
Veh* veh = new Veh ;
veh->set_id(plan.travId()) ;
veh->set_startTime(plan.startTime()) ;

veh->set_arrivalLinkId(plan.endLinkId()) ;
assert(links[plan.startLinkId()]!=NULL) ;
links[plan.startLinkId()]->addToPark(veh) ;
for (int ii=plan.firstNodeIndex(); ii<=plan.lastNodeIndex(); ii++) {

veh->addNodeId2Route(plan.nodeTokens(ii)) ;
}

}
}
cout << " nPlans: " << cnt

<< " simStartTime: " << simStartTime
<< endl ;

cout << "### leaving readPlans ...\n\n" ;
}

Notes:

• This also calls the vehicle initialization, and puts the vehicle into the waiting queue
of the starting link. Remove the temporary way in which we had initialized
vehicles earlier.

• It also checks which is the earliest vehicle start time.

Since parsing the plans is a bit messy, parsing is delegated to a subroutinereadNextPlan.

1If this token is not zero, then the following numbers are not only NodeIDs, but also passenger IDs. We do
not want to treat this case.

file: book.tex, p.9-4 January 31, 2005

9.5. Class Plan

int Plan::readNextPlan () {
static ifstream inFile;
// open file if necessary:
static int first=1 ; if (first) {

first = 0 ;
inFile.open(PLANS_FILE_NAME);

}
// always check if file is really open:
assert(inFile.is_open()) ;
// main loop:
while (!inFile.eof()) {

// deal with junk:
string line ; char ch = inFile.peek() ;
if (!isdigit(ch)) {

getline(inFile, line) ;
}
// here is the real reading:
else {

// read fixed length part:
for (int ii=1; ii<=18; ii++) {

inFile >> fixTokens_[ii] ;
}
// read variable length part:
for (int ii=1; ii<=fixTokens_[18]; ii++) {

assert(ii <= MAXTOK_) ;
inFile >> varTokens_[ii] ;

}
return 0 ;

}
}
return 1 ;

}

9.5 Class Plan

A class plan is used to transmit the variables, which avoids an overly long argument
list in the call to ReadNextPlan. This class specification also does the translation from
numbered tokens to meaningful variables. The following also contains functions to set
variables, which is not necessary for the purposes of this chapter. It will however become
necessary in Chap. 11.

class Plan {
private:

int fixTokens_[19] ;
static const int MAXTOK_=2000 ;
int varTokens_[MAXTOK_+1] ;
static const int firstNodeIndex_ = 1 ;
// (‘‘const’’ makes sure this cannot be changed; ‘‘static’’ is
// necessary here because of the ‘‘const’’.)

public:
Id travId() { return fixTokens_[1] ; }
void set_travId(Id tmp) { fixTokens_[1] = tmp ; }
// --
Time startTime() { return fixTokens_[7] ; }
void set_startTime (Time tmp) { fixTokens_[7] = int(tmp) ; }
// --
Id startLinkId() { return fixTokens_[8] ; }
void set_startLinkId(Id tmp) { fixTokens_[8] = tmp ; }
// --
Id endLinkId() { return fixTokens_[10] ; }
void set_endLinkId(Id tmp) { fixTokens_[10] = tmp ; }
// --
int mode() { return fixTokens_[16] ; }
int nPassengers() { return varTokens_[2] ; }
// --
// vtok1 vtok2 vtok3 vtok4 vtok5 vtok6 ... vtok(L-2) vtok(L-1) vtok(L)
// node1 node2 node3 node4 ... node(N-2) node(N-1) node(N)
// L = fixTokens_[18]
// N = lastNodeIndex ;
void set_nNodes(int tmp) { fixTokens_[18] = tmp+2 ; }
int nNodes() { return fixTokens_[18] - 2 ; }

file: book.tex, p.9-5 January 31, 2005

9.6. Park queue

// --
int firstNodeIndex() { return firstNodeIndex_ ; }
int lastNodeIndex() { return firstNodeIndex_+nNodes()-1 ; }
// --

protected:
int tokIdx(int ii) {

return ii+3-firstNodeIndex_ ;
// (1 + 3 - 1 = 3, where we find the first node)
// (N + 3 - 1 = N+2, where we find the last node)

}
// --

public:
Id nodeTokens(int ii) {

int index = tokIdx(ii) ;
assert(index <= MAXTOK_) ;
return varTokens_[index] ;

}
void set_nodeTokens(int ii, Id tmp) {

assert(ii >= firstNodeIndex()) ;
assert(ii <= lastNodeIndex()) ;
int index = tokIdx(ii) ;
assert(index <= MAXTOK_) ;
varTokens_[index] = tmp ;

}
int readNextTrip() ;
int readNextPlan() ;
int writePlan() ;
void dump() ;

// constructor
Plan() {

for (int ii=0; ii<=18; ii++) fixTokens_[ii]=0 ;
fixTokens_[9] = 2 ; // StartLoc type = parking
fixTokens_[11] = 2 ; // EndLoc type = parking
fixTokens_[15] = 1 ; // traveler is driving
fixTokens_[17] = 1 ; // vehicle type = auto

}
} ;

9.6 Park queue

The park queue, as explained above, contains vehicles whose starting time is in the future.
Here is a mechanism for the park queue.

class Link {
...

private:
typedef multimap<Time,Veh*> ParkQueue ;
ParkQueue parkQueue_ ;

public:
void addToPark(Veh* veh) {

parkQueue_.insert(make_pair(veh->startTime(), veh)) ; // see txt
}
Veh* firstInPark() {

if (parkQueue_.size()>=1) {
return parkQueue_.begin()->second ;

} else {
return NULL ;

}
}
void rmFirstInPark() {

assert(parkQueue_.size() >= 1) ;
parkQueue_.erase(parkQueue_.begin()) ;

}
...

};

Note that the implementation for ParkQueue is

typedef multimap<Time,Veh*> ParkQueue ;

We have in fact already used a multimap for the implementation of “fair” intersections
(Sec. 7.5). An additional function now is erase().

file: book.tex, p.9-6 January 31, 2005

9.7. Wait queue

40 70 130 160 190 220

20 50 80 110 140 170 200 230

30 60 90 120 150 180 210 240

10 100
100 400 700 1000 1300 1600 1900

200 500 800 1100 1400 1700 2000

300 600 900 1200 1500 1800 2100

40
1

50
2

501
601

Figure 9.1: Sketch of the “corridor” network. The numbers give the corresponding node
and link IDs.

Overall, this implements a priority queue, where the element with the lowest key is always
available via begin(). “Lowest key” here means the earliest starting time.

9.7 Wait queue

The wait queue, as also explained above, contains vehicles whose starting time has
passed but they have not made it into the traffic because of congestion. The separa-
tion between park and wait queue seems somewhat arbitrary at this point. It is necessary
to provide an efficient way to write “events” when vehicles intend to start, even if they do
not make it into the traffic in the same time step (Sec. 9.11).

Here is a mechanism for the wait queue:

class Link {
...

private:
typedef deque<Veh*> WaitQueue ;
WaitQueue waitQueue_ ;

public:
void addToWait(Veh* veh) {

waitQueue_.push_back(veh) ;
}
Veh* firstInWait() {

if (waitQueue_.size()>=1) {
return waitQueue_.front() ;

} else {
return NULL ;

}
}
void rmFirstInWait() {

assert(waitQueue_.size() >= 1) ;
waitQueue_.pop_front() ;

}
...

};

Task 9.2 Read your plans into your simulation.

Task 9.3 Read the network and the plans from

http://www.matsim.org/files/studies/corridor/teach

into your simulation.

A sketch of the “corridor” network is given in Fig. 9.1.

9.8 Vehicle insertion

Vehicles need to be moved from the waiting queue into the traffic. We do this by

file: book.tex, p.9-7 January 31, 2005

9.9. Plans following and vehicle arrival

• moving the SimLink::move(..) function to SimLink::moveOnLink(..), and
then

• defining a new SimLink::move(..) function as follows:

class SimLink : public Link {
...
void move (int& nVehs) {

parkToWait() ;
waitToLink() ;
moveOnLink(nVehs) ;

}
} ;

The corresponding code is

void Link::parkToWait () {
Veh* veh = firstInPark() ;
while (veh != NULL && veh->startTime() <= globalTime) {

rmFirstInPark() ;
addToWait(veh) ;
Id linkId = id() ;
Id fromNodeId = fromNode()->id() ;
veh->writeEvent(linkId, fromNodeId, DEPARTURE_FLAG) ;
veh = firstInPark() ;

}
}

and

void Link::waitToLink () {
Veh* veh = firstInWait() ;
while (hasSpace() && veh != NULL) {

rmFirstInWait() ;
addToLink(veh) ;
veh->incPlan() ; // easy to forget!!
Id linkId = id() ;
Id fromNodeId = fromNode()->id() ;
veh->writeEvent(linkId, fromNodeId, WAIT_TO_LINK_FLAG) ;
veh = firstInWait() ;

}
}

Overall, what we actually do is the following:

• During the initialization of the simulation, we read all the plans into computer mem-
ory. During this reading process, we also sort them by starting time into the parking
queue.

• During the simulation itself, in each time step and for each link we check if the first
vehicle in the parking queue is “due” for its entry into the traffic. If the answer is
yes, then the vehicle is moved to the waiting queue. This is repeated until no more
vehicles want to depart on this link in this time step.

• For all vehicles in the park queue, it is attempted to insert them into the traffic.

The meaning of writeEvent will be explained later.

9.9 Plans following and vehicle arrival

During the traffic simulation, the turning direction corresponding to the route plan needs
to be found. That is, the random turning dynamics of Sec. 7.4 needs to be replaced by
something like

void Node::move () {
// generate random sequence of inlinks as discussed earlier:
typedef multimap<double,Link*> RndLinks ;
RndLinks rndLinks ;
for (VLinks::iterator ll=inLinks().begin(); ll!=inLinks().end(); ++ll) {

Link* theLink = *ll ;
double rnd = myRand() ;

file: book.tex, p.9-8 January 31, 2005

9.10. Computational Speed

rndLinks.insert(make_pair(rnd, theLink)) ;
}
// go through that rnd sequence of inlinks and move vehicles
// across intersection if possible:
for (RndLinks::iterator ll=rndLinks.begin(); ll!=rndLinks.end(); ll++) {

Link* inLink = ll->second ;
Veh* veh = inLink->firstOnLink() ; // NULL if none
if (veh != NULL) {

Id nextNodeId = veh->nextNodeID() ;
if (nextNodeId>0) {

Link* theOutLink = findOutLink(nextNodeId) ;
if (theOutLink->hasSpace()) {

inLink->rmFirstOnLink() ;
theOutLink->addToLink(veh) ;
veh->incPlan() ;

}
} else { // end of plan

inLink->rmFirstOnLink() ;
Id arrivalLinkId = veh->arrivalLinkId() ;
// WARNING: one should check if the arrivalLink is
// connected to the current node!!
veh->writeEvent(arrivalLinkId, inLink->toNode()->id(), ARRIVAL_FLAG) ;
delete veh ;

}
}

}
}

Note that the event uses the id of the arrival link, not the current link id.

Task 9.4 Run your simulation with the network from

http://www.matsim.org/files/studies/corridor/network

and plans from

http://www.matsim.org/files/studies/corridor/teach/0.plans

Results should be submitted as T.veh and T.bin files taken every 60 seconds.
When does the last vehicle leave your simulation? (Answering this question is important
since it allows us to compare results.)

9.10 Computational Speed

Since in the application, many of the problems are fairly large, one needs to keep an
eye on computing speed. A useful measure for this are “vehicle updates per second”.
Let’s say that for a simulation with 104 vehicles and 103 time steps we need 10 seconds
of computing time. Then we have 104

× 103 = 107 vehicle updates per 10 seconds, or
106 vehicle updates per second. This number is typical for a simple implementation on a
300 MHz CPU.

Under unix one obtains the computing speed for example via time (see man-page). My
personal result looks like

92.88user 0.00system 1:34.50elapsed 98%CPU (0avg...

We are most interested in “92.88user” (coresponding to 92.88 sec).

Transportation science sometimes does the “real time limit” (for our purposes = the num-
ber of vehicles with which the simulation runs as fast as reality).

All of these values depend on the vehicle density, which therefore always needs to be
given when giving computing speeds.

Task 9.5 How long does your simulation for the “corridor” network with 0.plans take to
run? Please also tell us your implementation (C++ or Java or ??). Do this once with
output and once with output switched off. What does this roughly correspond to in “vehicle
updates per second”. How did you obtain that number?

file: book.tex, p.9-9 January 31, 2005

9.11. Events output

9.11 Events output

Besides visualizer output, we need some output that is geared more towards the internal
functionality of the system. We call this “events output”. The name means that events
output is triggered by some event. Typical events are vehicle departure, vehicle arrival, or
link traversal.

Specifically, our events file consists of the following fields. From now on, we deviate from
Transims formats and use our own formats. The main reason is that the remaining files
are not very large and thus converting them when necessary seems justified. As argued
elsewhere, in the longer run these files should all be in XML format.

Column Header type explanation

1 TIMESTEP int time step
2 VEHICLEID int vehicle id
3 LINK int Link ID
4 FROMNODE int FromNode ID for link. Irrelevant for us since we

use uni-directional links
5 FLAG int 0: vehicle arrives at final destination

2: vehicle leaves a link to go across an inter-
section
4: vehicle moves from wait queue into traffic
5: vehicle enters a link coming from an inter-
section
6: vehicle is supposed to start

6 NOTES string notes (leave empty, but separate by tab)

These events will be needed later when we introduce feedback and learning.

Task 9.6 Write code which writes all of the above events to file when they are encoun-
tered.

file: book.tex, p.9-10 January 31, 2005

Chapter 10

Modularization, inheritance,
templates, and code re-use

10.1 Introduction

As discussed in Chap. 2, transportation simulation packages consist of many modules.
So far, we have seen the traffic simulation and the visualizer. The next module will be
the router.

In contrast to the visualizer, our router will operate on a graph similar to the traffic si-
mulation. This means that it makes sense to re-use some of the traffic simulation code.
There are several options:

• If your are working as part of a team and your task is the router, then you can just
delete the pieces of code that are specific to the traffic simulation (example: the
cell structure of the links) and go from there.

• If you want one consistent piece of code but not many hassles in terms of software
design, then one option is to have the functionality for the simulation and for the
router combined in the same software. A link for example would keep the cell
structure, even when used by the router.

This is quite inefficient both in terms of performance and in terms of memory
usage, but our experience is that for the examples discussed in this text this is a
workable solution. In this case, you do not need to read this chapter.

• It is possible to separate the general purpose pieces of the network reading and
network construction from the simulation specific pieces.

It is the last point that will be discussed in this chapter.

10.2 Links, Simlinks, and Inheritance

It makes sense to separate the graph functionality that will be used by several modules
from the graph functionality that is used by a single module only. The mechanism to do
this is inheritance. For example

class Link {
private:

Id id_ ;
public:

10-1

10.3. Templates

void set_id(Id val) { id_ = val ; }
Id id() { return id_ ; }

private:
Len len_ ;

public:
void set_length(Len val) { len_ = val ; }
Len length() { return len_ ;}
...

} ;

class SimLink : public Link {
private:

Cells cells_ ;
public:

void build() ;
void addVehToLink(Veh* veh) ;
....

}

This means that SimLink can do everything that Link can do, plus additional things. For
example:
...
Link* link ;
SimLink* simLink ;
...
cout << link->id() ; // o.k.
cout << simLink->id() ; // o.k., simlink is a link
link->build() ; // not o.k., link is not a simlink
simLink->build() ; // o.k.

The word public in class SimLink : public Link means that everything
that was public in Link will be available for SimLink. For the purposes of these
things, SimLink will behave exactly as Link.

This is the only type of inheritance that we will consider.

10.3 Templates

Inheritance, without additional measures, does not work for graph reading and graph
construction. It is not possible to do something like

class Node ; // forward declaration
class Link {

...
Node* toNode() { return toNode_ ; }
...

} ;
...
class SimLink : Link {

...
} ;
...
int main () {

...
SimLink* aSimLink = new SimLink(...) ;
...
SimNode* aSimNode = aSimLink->toNode() ; // does not work

}

because toNode() is of type Node* instead of of type SimNode*.

For C programmers and many other people, it will be clear that it is possible to work
around this problem: this is just about pointers, and it should be possible to cast pointers
to whatever one wants. In general, it is however an advantage that C++ enforces consis-
tency between pointer objects, and so one should not deliberately circumvent this type
checking.

A possibility to work around this is the use of templates.

file: book.tex, p.10-2 January 31, 2005

10.3. Templates

template <class Node> // <======
class Link {

...
Node* toNode() { return toNode_ ; }
...

} ;
...
class SimNode ; // forward declaration
class SimLink : Link<SimNode> { // <======

...
} ;
...
int main () {

...
SimLink* aSimLink = new SimLink(...) ;
...
SimNode* aSimNode = aSimLink->toNode() ; // works

}

In fact, not much seems to have changed. What is the difference?

Template classes are often described as “parameterized classes”. In fact, one could have
written
template <class XXnode> // <======
class Link {

...
XXNode* toNode() { return toNode_ ; }
...

} ;

where now the notation XXnode makes clear that the type of the node is left open.

Then, when later saying

class SimNode ;
class SimLink : Link<SimNode> {

...
} ;

then this means that SimLink inherits from Link while using SimNode everywhere
where XXnode is in the definition. In consequence,

aSimLink->toNode() ;

now returns a pointer to SimNode.

Thus, a method to translate everything we have done so far into a more general network
construction is to write things like

// --
template <class Node>
class Link {

...
} ;
template <class Link>
class Node {

...
} ;
template <class Node,class Link>
class Net {
public:

typedef map<Id,Node*> Nodes ;
Nodes nodes ;
...
void readNodes() {...} ;
...

} ;
// --
class SimNode ; // forward declaration
class SimLink : public Link<SimNode> {

...
} ;
class SimNode : public Node< SimLink> {

...
} ;

file: book.tex, p.10-3 January 31, 2005

10.4. What belongs into the base class?

class SimWorld : public Net<SimNode,SimLink> {
...

} ;
// --
int main () {

...
SimWorld simWorld ;
...
simWorld.readNodes() ;
simWorld.readLinks() ;
...

}
// --

In spite of the above explanation, for an inexperienced programmer the above is probably
too much of a change to be done in one step and it will be necessary to achieve some
familiarity with templates based on simpler programs before achieving this task. We
hope that the above notes can guide the necessary reading and experimentation when
templatization of the transportation simulation is the goal.

10.4 What belongs into the base class?

It is never simple to decide what belongs at what level of the hierarchy in inheritance. A
possibility is to have only the basic things for graph construction in the base class and
everything else in the derived class. This would mean to have ID, toNode, fromNode,
and possibly inLinks and outLinks in the base class and everything else in the derived
classes.

We do however think that it makes more sense to have everything that is in the nodes and
links data files in the base class. In that way, the programs for reading the network data
can be used by all modules without any changes, and the memory overhead is still not
too bad.

file: book.tex, p.10-4 January 31, 2005

Chapter 11

Route planner

11.1 Introduction

In Chap. 9 we have modified the traffic simulation in a way that each individual vehicle
follows precomputed plans. In this Chapter, we will discuss a simple method to generate
these route plans. For the sake of simplicity, we continue to only look at the car mode,
which describes 80 percent or more of all travel in most western cities. Routing for other
modes will be discussed in Sec. 20.

For each traveler, the input to the router consists of the following information:

• Trip Start Time.

• Trip Start Location. LinkID where the trip starts.

• Trip End Location. LinkID where the trip ends.

The output is a plans file, as specified in the previous section.

11.2 Fastest Path

The typical method to obtain routes is to calculate fastest paths. This is achieved via a
standard shortest path algorithm by using link travel time as link cost. These algorithms
typically go from node to node, which means that we have to translate our starting and
ending locations to the corresponding nodes. Such an algorithm (Dijkstra algorithm, see
e.g. ?) then can proceed as follows:

• Set arrTime at all nodes to infinity. Set isDone of all nodes to false.

• Take the starting node from the trip. Make it the current node. Set its arrTime
to the trip starting time.

• “Node expansion:” Set isDone of the current node to true. Go through all
outgoing links from the current node. For each such link, calculate arrival time at
toNode as

tmpArrivalTime= now+ outLinkTravelTime , (11.1)

where now is the arrTime at the current node.

If tmpArrivalTime is smaller than toNode’s current arrTime, then a faster
path to that node just has been found. In that case,

11-1

11.3. Link travel times

– Set toNode’s arrTime time to tmpArrivalTime.

– Set a pointer at toNode pointing back to the current node.

• Out of all nodes where isDone is false, take the one with the minimum ar-
rTime. Do “node expansion” with this node.

• Etc.

One can stop when the destination node is about to be expanded. Note that one cannot
stop when the end node is touched for the first time (i.e. when its time is set from infinity
to some finite value) since some better time can be found later. The full path can now
be found by taking the end node, and following the pointers back to the start node.

11.3 Link travel times

What is missing is the value of outLinkTravelTime. When no other information is
available, then we use

linkTravelTime = linkLength/linkFreeSpeed . (11.2)

For the CA traffic simulation, the free speed is one cell per time step, or 7.5 m/s.

Congestion will reduce the speeds on the links. This effect is included into the router in
Chap. 12.

Implementation

11.4 Library support for graph algorithms

There are libraries for graph algorithms, such as LEDA. In the past, they were never flexi-
ble enough to cover everything we want to do (e.g. time dependence). This will eventually
change, and there will be options to pass calls to arbitrary cost functions to a graph algo-
rithm. Once that works, writing router code will become considerably simpler.

11.5 General structure

The general structure of the router is as follows (not assuming the use of templates as
discussed in Chap. 10):

class Link ;
class Node {

...
};
class Link {

...
};
class Plan {

...
} ;
class RouteWorld {
private:

typedef map<Id,Node*> Nodes ;
Nodes nodes ;
typedef map<Id,Link*> Links ;
Links links ;

public:
void findPath(Plan&) ;

} ;

file: book.tex, p.11-2 January 31, 2005

11.6. Input file: Trips

...
int main() {

// instantiate routeWorld:
RouteWorld routeWorld ;

// read the network:
routeWorld.readNodes() ;
routeWorld.readLinks() ;

// main loop:
Plan plan ;
while (plan.readNextTrip()==0) {

routeWorld.findPath(plan) ;
plan.writePlan() ;

}
}

As discussed in Chap. 10, the node, link, and plan classes and methods can be taken
from previous chapters. Depending on the intention, one can just copy them into the route
code and comment out unneeded portions. Alternatively, one can put them into a separate
file and include them both into the simulation and into the router code. As discussed in
Chap. 10, the best solution would be to use inheritance, which however implies the use of
templates.

11.6 Input file: Trips

Transims does not have a trips file; indeed, the same information can be derived from
Transims activity files (see Sec. ??). Transims activity files contain much more information
than we need here, and they have been a continuous source of error and misunderstand-
ing. And as a final argument, we believe that the activities file should be an XML subset
of the plans file, as we will discuss in Sec. 24.3. For all those reasons, at this point we
deviate once more from Transims file formats and introduce our own file format for trips.

The format is as follows:

Column Header type explanation

1 ID integer ID number of traveller/vehicle
2 DEPTLINK integer departure location (link ID)
3 ARRLINK integer arrival location (link ID)
4 TIME integer departure time of traveller/vehicle in “seconds

past midnight”
5 NOTES string notes (leave empty, but separate by tab)

This can be read in a similar way as a links or nodes file; and we will use the already
existing plan class for storing the information. In consequence, reading the trips looks
as follows:
int Plan::readNextTrip () {

static ifstream inFile ;
string aString ;
vector<string> tokens ;
static bool first=true ; if (first) {

first = false ;
// open file:
inFile.open(TRIPS_FILE_NAME) ;
assert(inFile.is_open()) ;
// deal with header line:
getline(inFile, aString) ;
tokenize(aString, tokens) ;
assert(tokens[1]=="ID") ;
assert(tokens[2]=="DEPTLINK") ;
assert(tokens[3]=="ARRLINK") ;
assert(tokens[4]=="TIME") ;

}
// always check if file is still open:
assert(inFile.is_open()) ;

file: book.tex, p.11-3 January 31, 2005

11.7. FindPath and Dijkstra

// main part:
while (!inFile.eof()) {

getline(inFile, aString) ;
if (!aString.empty() && isdigit(aString[0]))

// [[skip lines with junk]]
{

tokenize(aString, tokens) ;
Id travId ; convert(tokens[1], travId) ;
Id startLinkId ; convert(tokens[2], startLinkId) ;
Id endLinkId ; convert(tokens[3], endLinkId) ;
Time startTime ; convert(tokens[4], startTime) ;
set_travId(travId) ;
set_startLinkId(startLinkId) ;
set_endLinkId(endLinkId) ;
set_startTime(startTime) ;
set_nNodes(0) ; // set number of node tokens to zero
return 0 ;

}
}
return 1 ; // return 1 when eof is encountered

}

Note that the methods to set the plans variables were already defined in Sec. 9.5.

Task 11.1 Write a program that constructs the network, reads trips, and outputs them to
the screen. Trips are at

http://www.matsim.org/files/studies/corridor/teach/0.trips .

11.7 FindPath and Dijkstra

Remember that before calling the Dijkstra algorithm, the starting/ending locations which
are on links need to be pushed forward/backward to the corresponding nodes. For us,
links are always uni-directional, so that the answer to this is unique. This can look as
follows:

int RouteWorld::FindPath (Plan& plan) {
Link* startLink = links[plan.startLinkId()] ;
assert(startLink != NULL) ;
assert(startLink->id()==plan.startLinkId()) ;
Link* endLink = links[plan.endLinkId()] ;
assert(endLink!= NULL) ;
assert(endLink->id()==plan.endLinkId()) ;
Node* startNode = startLink->toNode() ;
Node* endNode = endLink->fromNode() ;
Dijkstra(startNode, endNode, plan.startTime()) ;
Node* tmpNode = endNode ;
int cnt=0 ;
while (tmpNode != NULL) {

cnt++ ;
tmpNode = tmpNode->prev() ;

}
plan.set_nNodes(cnt) ;
tmpNode = endNode ;
for (int ii=plan.lastNodeIndex(); ii>=plan.firstNodeIndex() ; ii--) {

plan.set_nodeTokens(ii, tmpNode->id()) ;
tmpNode = tmpNode->prev() ;

}
return 0 ;

}

Note that this calls Dijkstra. The code after the Dijkstra call takes the Dijkstra
algorithm result and copies it into Plan. Plan.SetNNodes sets the number of nodes
the route traverses from the start link to the destination link. Plan.SetNodeTokens sets
the corresponding tokens to the node IDs. An implementation for this was already given
earlier (Sec. 9.5).

Dijkstra itself can look as follows. The precise meaning of nodeList will be described
afterwards; essentially, it is a container that contains all “pending” nodes. In Sec. 11.2

file: book.tex, p.11-4 January 31, 2005

11.7. FindPath and Dijkstra

this corresponds to the set of all nodes where isDone is false but arrTime is no longer
infinity.

int RouteWorld::Dijkstra (Node* startNode, Node* endNode, Time startTime) {
NodeList pending ;
// general initialization:
for (Nodes::iterator nn=nodes.begin(); nn!=nodes.end(); nn++) {

Node* theNode=nn->second ;
theNode->unset_isDone() ;
theNode->set_arrTime(INFTY) ;
theNode->set_prev(NULL) ;

}
// initialize start node:
startNode->set_arrTime(startTime) ;
pending.insert(make_pair(startTime, startNode)) ;
// Dijkstra loop proper:
while(pending.size() > 0) {

Node* theNode = pending.begin()->second ;
pending.erase(pending.begin()) ;
if (!(theNode->isDone())) {

// (check this because we may have nodes more than once in list)
theNode->set_isDone() ;
if (theNode!=endNode) {

theNode->expand(pending) ;
} else {

return 0 ;
}

}
}
// should never get here:
assert(0==1) ;

}

The implementation for NodeList is again a multimap; the functioning of this was already
explained in the context of generating a random sequence of links, and in the context of
the vehicle wait queue. For the wait queue, the functionality is exactly the same has here:
We need to maintain a set of (key,pointer)-pairs such that it is possible to retrieve the
pointer which belongs to (one of) the smallest key(s).

One issue here is that, if a better ArrTime for a node is found, it should be moved within
the priority queue. This would necessitate to find that element within the queue. Another
option is to leave both entries in the queue, but add the IsDone flag to nodes. If a node
with IsDone is encountered, it is removed from the queue but ignored otherwise.

The expand() method is still missing. Here is a suggestion:

void Node::expand (RouteWorld::NodeList& pending) {
Time now = arrTime_ ;
for (VLinks::iterator ll=outLinks().begin(); ll!=outLinks().end(); ll++) {

Link* link = *ll ;
Node* nextNode = link->toNode() ;
Time linkTTime = link->tTime(now) ;
Time nextTime = now + linkTTime ;
if (nextTime < nextNode->arrTime()) {

nextNode->set_arrTime(nextTime) ;
assert(!(nextNode->isDone())) ;
nextNode->set_prev(this) ;
pending.insert(make_pair(nextTime, nextNode)) ;

}
}

}

tTime(.) is a method of the Link class which returns the link travel time on that link
as a function of the entering time, in the code given by now. As discussed in Sec. 11.3, at
this point this should return the length of the link (in meters) divided by 7.5.

Task 11.2 Run FindPath on the first activity in

http://www.matsim.org/files/studies/corridor/teach/0.trips

Which route is returned? Why?

file: book.tex, p.11-5 January 31, 2005

11.8. Plans output

11.8 Plans output

Now the plan needs to be written to file. Since we have it already in a suitable internal
representation, that is easy now:
int Plan::writePlan () {

static ofstream outFile;
// open file if this is the first call:
static int first=1 ; if (first) {

first = 0 ;
outFile.open(PLANS_FILE_NAME);

}
// always check if file is really open:
assert(outFile.is_open()) ;
// fixed length part
for (int ii=1; ii<=18; ii++) {

outFile << fixTokens_[ii] ;
if (ii==6 || ii==11 || ii==14 || ii==17 || ii==18) {

outFile << endl ;
} else {

outFile << ’ ’ ;
}

}
// variable length part
for (int ii=1; ii<=fixTokens_[18]; ii++) {

outFile << varTokens_[ii] << ’ ’ ;
}
// Add an empty line:
outFile << endl << endl ;
return 0 ;

}

Task 11.3 Apply your router to

http://www.matsim.org/files/studies/corridor/teach/0.trips

and generate the corresponding plans file in Transims format. Note that the result is not
similar to

http://www.matsim.org/files/studies/corridor/teach/0.plans .

file: book.tex, p.11-6 January 31, 2005

Chapter 12

Congestion-dependent router

12.1 Link travel times and congestion

So far, the router is not sensitive to congestion. In order to make the routes sensitive to
congestion, delays caused by congestion need to show up in the link travel times. This
can be achieved via getting the link travel times from a separate file. Links which are
congested will have link travel times which are longer than the free speed travel times.

In practice, we will achieve this via the events file. The events file, as discussed in
Sec. 9.11, contains for each vehicle the time when it enters and the time when it leaves
each link. We will aggregate this information as a function of the link entry times. The
procedure consists of the following steps:

• Conversion of events to link travel times. For each enter-link-event, the corre-
sponding leave-link-event is searched. As a result, one obtains for each link entry
time a corresponding link travel time.

• Aggregation. Link travel times are aggregated into time slices, of e.g. 15 min. For
this, the link travel times of all vehicles entering a link during a certain time slice
are averaged. For example, if there are vehicles entering at 9:03:22, 9:05:56, and
9:07:23, and their link travel times are 1 min, 2 min, and 3 min, then the average
link travel time for all vehicles entering between 9 and 9:14:59 will be 2 min.

This type of data aggregation is the simplest method possible and it has certain
drawbacks. This will be discussed in more detail in Sec. 19.1. [[check if done]]

Let us consider why this method works. The Dijkstra algorithm, as explained in Sec. 11.2,
proceeds by “expanding” a node when no faster path to that node can be found. For that
reason, the “current time” at that node, denoted by now, is the time-of-day when the
node is reached via the fastest path. It is therefore also the time-of-day then the outgoing
links from that node are entered.

Note: With time-dependence as explained above, it could happen that “waiting at a node”
yields a faster path. This can happen when the link travel time in the following time bin
is shorter than the link travel time in the current time bin plus the remaining time in
the current time bin. In such a situation, the above algorithm would not return the path
that is technically the fastest. In real traffic, however, this is rarely an issue: Links are
approximately FIFO (first-in first-out), which means that entering at a later time also
means leaving at a later time. In other words: If the time-dependent algorithm “thinks”
that waiting at a node would pay off, then this is normally an artifact of the routing
algorithm – more specifically, of the time aggregation – and not a feature of the traffic

12-1

12.2. Congestion dependency: Link travel times

system. For those reasons, using the algorithm as described above will normally describe
plausible routes, even if they may not be the technically fastest.

Yet, there is at least one situation where indeed waiting at a node could pay off: This is if
links are opened at a certain time-of-day. We will not assume such complications here.

Implementation

12.2 Congestion dependency: Link travel times

We need to get the congestion information into the router. More specifically, we need that
the correct link travel time information is returned by link->tTime(now) in Sec. 11.7.

As said above, the way we do this is by reading the events file, calculating each vehicle’s
link travel times, and then aggregating those times into the desired time bins. Here is a
suggestion of a method to do this; comments are added below.

class EnterEvent {
private:

Time time_ ;
public:

void set_time(Time val) { time_ = val ; }
Time time() { return time_ ; }

private:
Id linkId_ ;

public:
void set_linkId(Id val) { linkId_ = val ; }
Id linkId() { return linkId_ ; }

private:
Id vehId_ ;

public:
void set_vehId(Id val) { vehId_ = val ; }
Id vehId() { return vehId_ ; }

} ;

void RouteWorld::readEvents () {
cout << "\n### entering readEvents ..." << endl ;
int cnt=0 ;
// preprocessing (initialize Sum and Cnt):
for (Links::iterator ll=links.begin(); ll!=links.end() ; ++ll) {

Link* link=ll->second ;
link->tTimeIni() ;

}
// open file:
ifstream inFile ; inFile.open(EVENTS_FILE_NAME) ;
assert(inFile.is_open()) ;
string aString ;
vector<string> tokens ;
// process header line:
getline(inFile, aString) ; tokenize(aString, tokens) ;
const int t_idx=1 ; assert(tokens[t_idx]=="TIMESTEP") ;
const int v_idx=2 ; assert(tokens[v_idx]=="VEHICLEID") ;
const int l_idx=3 ; assert(tokens[l_idx]=="LINK") ;
const int n_idx=4 ; assert(tokens[n_idx]=="FROMNODE") ;
const int f_idx=5 ; assert(tokens[f_idx]=="FLAG") ;
typedef map<Id,EnterEvent*> EnterEvents ; EnterEvents enterEvents ;
// main loop:
while (!inFile.eof()) {

getline(inFile, aString) ;
if (!aString.empty() && isdigit(aString[0])) {

// (skip lines w/ junk (e.g. last line))
tokenize(aString, tokens) ;
Time time ; convert(tokens[t_idx], time) ;
Id vehId ; convert(tokens[v_idx], vehId) ;
Id linkId ; convert(tokens[l_idx], linkId) ;
Id fromNodeId ; convert(tokens[n_idx], fromNodeId) ;
int flag ; convert(tokens[f_idx], flag) ;
if (flag==ENTER_LINK_FLAG) {

EnterEvent* enterEvent = new EnterEvent ;
enterEvent->set_time(time) ;
enterEvent->set_linkId(linkId) ;

file: book.tex, p.12-2 January 31, 2005

12.2. Congestion dependency: Link travel times

enterEvent->set_vehId(vehId) ;
assert(enterEvents.count(vehId) == 0) ;
enterEvents[vehId] = enterEvent ;

} else if (flag==LEAVE_LINK_FLAG) {
EnterEvent* enterEvent = enterEvents[vehId] ;
assert(enterEvent != NULL) ;
assert(enterEvent->linkId() == linkId) ;
Link* link = links[linkId] ;
Time ttime = time - enterEvent->time() ;
link->addToSum(enterEvent->time(), ttime) ;
cnt++ ;
enterEvents.erase(vehId) ;
delete enterEvent ;

}
}

}
if (enterEvents.size() != 0) {

cout << " severe warning: events map not empty " << endl ;
}
cout << " nEvents: " << cnt << endl ;
cout << "### leaving readEvents ..." << endl << endl ;

}

Comments:

• In the initialization, all sums and count variables are set to zero via

void Link::tTimeIni () {
sum_.assign(maxBin_ + 1, 0);
cnt_.assign(maxBin_ + 1, 0);

}

sum and cnt are vectors (e.g. vector<int> sum etc.). The assign(N,X)
command sets elements 0 to N-1 of the vector to value X.
After that, the file is opened and the header line is read.

• In the main loop, the method goes through each line of the file, puts it into aString,
checks for garbage, reads the corresponding values for time, vehicle id, link id, from-
node id, and the event flag. If the event flag denotes an enter-link-event, then this
information is added to a map with the vehicle id as key. Note that for this the
vehicle id needs to be unique. If the event flag denots a leave-link-event, then the
corresponding enter-link-event is retreived, the link travel time is computed, and it
is added to the relevant time bin. The latter is achieved by

void Link::addToSum (Time now, double sum) {
unsigned bin = timeToBin(now) ;
assert(bin < sum_.size()) ;
sum_[bin] += sum ; cnt_[bin] ++ ;

}

This uses

int timeToBin (Time theTime) {
return int(theTime/900) ;

}

The correct link travel time is now returned by

Time Link::tTime (Time now) {
unsigned bin = timeToBin(now) ;
assert(bin < sum_.size()) ;
if (cnt_[bin] > 0) {

return Time(sum_[bin]/cnt_[bin]) ;
} else {

return Time(length()/GBL_FREE_SPEED) ;
}

}

Note that this uses the free speed travel time if no events information is available. Here, we
use the global variable GBL FREE SPEED; this could be replaced by link-dependent free
speeds in more sophisticated implementations. However, when doing this, one needs
to make sure that also the traffic simulation generates link-dependent free speeds. Our
simulation of Chap. 7 does not do this; improving this will be discussed in Chap. 17.

file: book.tex, p.12-3 January 31, 2005

12.2. Congestion dependency: Link travel times

It is useful to note that all conversions from time-of-day to time-bins is done via the function
timeToBin. The inverse conversion (from time bins to time-of-day) is never needed. This
makes sure that if the router requests information for a certain time-of-day, it will always
receive the same time bin that a link entry event at the same time would have obtained.1

Clearly, the overall integration into the router has to look as follows:

int main() {
// instantiate routeWorld:
RouteWorld routeWorld ;

// read the network:
routeWorld.readNodes() ;
routeWorld.readLinks() ;

// read the events:
routeWorld.readEvents() ;

// main loop:
...

}

Task 12.1 Write routines which read the events. Check if the processing of

http://www.matsim.org/files/studies/corridor/teach/test.events

leads the link travel times would expect. (Which values would you expect?)

Task 12.2 Run FindPath together with

http://www.matsim.org/files/studies/corridor/teach/test.events

on the first trip in

http://www.matsim.org/files/studies/corridor/teach/0.trips

Which route is returned? Is this different from the route returned in Task 11.2? Why?

Task 12.3 Get the events file that was produced by running the traffic micro-simulation
on

http://www.matsim.org/files/studies/corridor/teach/0.plans

Read those events, and then apply your router to

http://www.matsim.org/files/studies/corridor/teach/0.trips

Give the resulting routes file to the micro-simulation and have it executed. Does the result
make sense? Why or why not?

1Earlier versions, by Transims and also by ourselves, aggregated the event information into the time bins
either directly in the traffic simulation, or by some external module, and wrote the result into a file. The
typical information given in that file was a time, say “900 sec”, and a corresponding link travel time. In
implementations, there was then always confusion if this referred to a time bin going from 1 to 900, or to a time
bin going from 900 to 1799. The intention was the first, but unfortunately time%900 (where % is the modulo
function) puts 0 to 899 into one time bin and 900 to 1799 into another one, resulting in many errors. Clearly,
this is a trivial problem, but one that continuously caused problems.

file: book.tex, p.12-4 January 31, 2005

Chapter 13

Feedback/System integration

13.1 Introduction

As explained in Chap. 2, “learning” or “adaptation” is an extremely important part of
transportation simulations packages. The idea is that if the execution of a plan differs
from what people had expected, then they will change their plans to adapt to what they
found. For example, if congestion lets them arrive late to work, they will leave home
earlier.

We will implement this in a very straightforward way: The traffic simulation will collect
link travel times, and the router will use them to generate better routes. This reflects
day-to-day learning, that is, travelers revise their decisions from one day to the next.
This is in contrast to within-day learning, which will be treated later.

We will also allow only 10% of the travelers to replan between any given two days, in
order to avoid over-reactions of the system. Such over-reactions could otherwise for
example happen if alternative A was slightly faster than another one in one iteration and
as a result all travelers would switch to link A, making it extremely congested. There are
other ways to deal with this problem, which will also be treated later in the class.

Fig. 13.1 gives information about the data flow through the different elements.

Implementation

13.2 Subset of trips file

You want the router to compute new routes only for 10% of the travelers. For this, you
need to generate a random sample of the trips file. Do the following:

• Write the trips file header.

• For each traveler in the trips file, decide if that traveler should be re-planned. If yes,
write the trip line into the new file.

Awk is a good language for parsing line-oriented files, which is why we introduce it here.

BEGIN {
print header line of trips file
print "ID" , "DEPTLINK" , "ARRLINK" , "TIME", "NOTES" ;

}
{

Skip header line and comments:
if ($1 == "#" || $1 == "ID") { next; }

13-1

13.3. Calling the router

events
100%
plans

10%
plans

traffic
simulation

router

100%
new

plans

10% of 100% of
trips trips

Figure 13.1: Data flow through the simple feedback mechanism of this chapter. Reading
the network files is not drawn. The thick lines are the ones which need to be done in this
Chapter.

w/ proba 10%, write out the line again:
if (rand() < 0.1) {

print $0 ;
}

}

If the above is called SelectTrips.awk, then is is called via

gawk -f SelectTrips.awk < 0.trips > 1.trips

The code consists of three parts:

1. An optional “BEGIN” block. This is executed before anything is read.

2. A block without special identifier. For every line out of test.events, this block is
executed.

3. An optional “END” block. This is executed just before the program is exited.

See “man awk” for more information.

IMPORTANT: Make sure you use different random seeds every time you call this
module, otherwise the same 10% travelers get replanned over and over again.

In awk, “rand()” returns a random number. See “man awk”.

Task 13.1 Generate a set of 10% randomly selected trips. Use

http://www.matsim.org/files/corridor/teach/0.trips

as input.

13.3 Calling the router

You should now be able to call the router. Make sure that the router really reads the files
(events, trips) that you provide. For this, it is recommended to re-do task 11.2 and check
if the router truly responds to the files you give to it.

Task 13.2 Generate a set of routes which have responded to congestion.

file: book.tex, p.13-2 January 31, 2005

13.4. Merging of the routes

13.4 Merging of the routes

Now you have two files with routes, one with the old routes for all travelers, and one with
the new routes for 10% of the travelers. We need to merge them.1 For the merging, we
can assume that the plans are in order, since they are generated from the same trips file.
So you have to write code which does the following:

• Open both files, old.plans and new.plans.

• Read the first plan from each file.

• If they have the same traveler id, then

– discard the old plan and write the new plan into merged.plans.

– Read the next plan from each file, and continue.

• If they do not have the same traveler id, then

– write the old plan into merged.plans.

– Read the next plan from old.plans, and continue.

Note that you could use ReadPlans and WritePlans from Secs 9.4 and 11.8. Awk does
not work so well here since the format is not line oriented.

13.5 Traffic simulation

Task 13.3 Now you should run the traffic simulation on the new plans set. Make sure
(e.g. in Vis) that some travelers really use new routes (0.plans has all traffic on the middle
road). This is called the 1st iteration. When does the last vehicle leave your simulation?

13.6 Iterations

Now we want to do systematic iterations. You should write a script which manages those
iterations. One option is perl; shell scripts work well, too. Also, some clever Makefile
writing is an option. The script does the following:

• Run the usim on a given plans file.

• Generate a random 10% trips file.

• Run the router on the 10% trips file using the events from the last simulation.

• Merge the plans.

• Run the usim again.

• Etc.

Task 13.4 Do 50 iterations. Keep all information (routes, events, snapshot files) for every
10th iteration.

Keep events files for all iterations.

Compress (e.g. gzip) all output files.

Task 13.5 Plot the sum of all vehicle travel times as a function of the iteration number.

Note that you can derive this information from the events files.

1This is truly awkward. In our research, we put the new plans into a data base, which keeps track of all
plans. Then we dump out the plans we want. That solution is much cleaner, but besides being more difficult to
implement, it is also slow, so it is not the final answer.

file: book.tex, p.13-3 January 31, 2005

Chapter 14

Activities planner: Adjust trip
starting times

14.1 Introduction

So far, we have a traffic micro-simulation module, and a routing module. The input to
all this, apart from the network information, are the trips. However, these trips need to
be generated somehow. As a first step towards this, we will consider the question of
departure time choice. Let us assume that people want to arrive at work at a particular
time. There is a penalty associated with being early (which consists of wasted time), and
a penalty associated with being late (which may consist of an angry employer). Also, the
travel time may vary depending on when one travels. The idea is that there is a trade-off
between these elements. For example, if the travel time is much shorter when traveling
early, people may accept being early in spite of the waste of time. This is in particular
true if one has a time window to start work, and the only argument against starting early
is that one has to get up early.

14.2 Utilities

14.2.1 Basic idea

These trade-offs are operationalized via giving utitilies to the different aspects of the
situation. The utilities in this chapter will be negative, which is why they are sometimes
called disutilities. Let us assume that we have the following utilities:

• The (dis)utility of the trip time, Utrip(Ttrip). It depends on the trip time, Ttrip.

• The (dis)utility of being early, Uearly(Tearly). It depends on how early the traveler
is. If the traveler is late, this contribution is zero.

• The (dis)utility of being late, Ulate(Tlate). It depends on how late the traveler is.
If the traveler is early, this contribution is zero.

Let us further assume that these utilities are additive (see Fig. 14.1):

Udep = Utrip(Ttrip) + Uearly(Tearly) + Ulate(Tlate) . (14.1)

An example is:

Udep = − 0.4

60 sec
Ttrip −

0.25

60 sec
Tearly − 1.5

60 sec
Tlate . (14.2)

14-1

14.2. Utilities

U_early
+U_late

U_dep

U_trip

arrival time

Figure 14.1: Utility contributions

The results of this come out in arbitrary utility units, sometimes called “utils”.

14.2.2 Dependence on departure time

Fig. 14.1 gives the function of the different utilities as a function of the arrival time. For
the calculation that we will do later, we need them as a function of departure time. For
example, if tdes is the desired arrival time, then

Tearly(tdep) = max
(

0, tdes − tearly

)

= max
(

0, tdes − (tdep + Ttrip)
)

. (14.3)

Here, Ttrip again depends on tdep, and therefore

Tearly(tdep) = max
(

0, tdes − (tdep + Ttrip(tdep))
)

. (14.4)

As we will see later, we will essentially need a table of the values of Tearly as a function
of tdep where tdep increases in 5-min time steps. Because of this simplification, the prob-
lem can be solved as a sequence of look-ups, resulting in a table similar to the following
(where tdes = 8 : 00)

tdep Ttrip(tdep) Tearly(tdep)

6:00 0:15 1:45
...

7:00 0:15 0:45
7:05 0:19 0:36
7:10 0:30 0:20

...

file: book.tex, p.14-2 January 31, 2005

14.3. Departure time selection

14.3 Departure time selection

In general, one would assume that travelers select the departure time with the largest
utility. Let us however assume that the above utility calculation is somewhat fuzzy, for
example because travelers do not know the different contributions exactly. Then, we want
that the probability to select a certain departure time grows with the respective utility.

A typical mathematical form to achieve this if one has to select between several different
options i is

pi ∝ eβUi . (14.5)

Since pi is a probability, this needs to be normalized, i.e. one wants
∑

i pi = 1, where
the sum goes over all possible options. This results in

pi =
eβUi

∑

j eβUj
, (14.6)

where the sum in the denominator goes over all possible options including i.

Note that this mathematical form does exactly what we want: if Ui is large, then option
i has a high probability of being selected. The parameter β changes the randomness of
this choice.

• If β → 0, then the choice does not depend on the Uj ; in consequence, it is totally
random with equal weight on each option.

• If in contrast β → ∞, then the option with the highest utility will be selected with
probability one, and all others will never be selected.

One way to see this is the following. Assume that Umax is the largest utility, and
let us assume that there is only one optimal choice (to simplify the argument). First
let us look at a non-optimal choice i, i.e. Ui < Umax. Then

pi =
eβUi

eβUmax
∑

j eβ(Uj−Umax)
<

eβUi

eβUmax
, (14.7)

since the sum is larger than one. (One of the contributions comes from Uj = Umax,
and all other contributions are positive.) This can be rewritten as

eβ(Ui−Umax) β→∞−→ 0 (14.8)

(because Ui − Umax < 0).

Now let us look at the optimal choice k, i.e. Uk = Umax. Then

pk =
1

∑

j

eβ(Uj−Umax)
=

1

eβ·0 +
∑

j 6=k

eβ(Uj−Umax)

β→∞−→ 1

1 + 0
, (14.9)

because Uj − Umax < 0 for j 6= k.

14.4 Operationalization

Departure time choice will be operationalized in the following way. We will take Eq. (14.2)
as an example, and set β = 1. Let us in addition decide that we look at 5min time bins,
and that we consider times only between 5am and 10am. Let us consider a traveler who
wants to arrive at tdes.

file: book.tex, p.14-3 January 31, 2005

14.6. Origin-destination travel times

events
100%
plans

10%
plans

100% of
acts

10% of
acts

traffic
simulation

router

100%
new
plans

(10%)

acts
replanner
(dept time

choice)

newtrips

Figure 14.2: Data flow for simple activities replanning.

This traveler would calculate, for all times between 5am and 10am in 5min time steps,
and for her/his desired arrival time tdes, the value f(tdep) = eU(tdep). She/he would then
calculate the sum of all these values, Σ. The probabilities would then come out as

p(tdep) =
f(tdep)

Σ
. (14.10)

The traveler would then randomly select one of these departure time options according
to the weights given by Eq. (14.10).

The data flow for activities replanning is given in Fig. 14.2. Note that travelers with new
departure times also get new routes. At this point we do not perform separate re-routing
for travelers whose activities have not changed. [[This will be changed in Chap. ??.]]

Implementation

14.5 Input data: Activities file

Demand for travel (= trips) is driven by activities taking place at different locations. We
encapsulate this fact into a simple activities file, as follows:

Column Header type explanation

1 TRAV ID integer ID number of traveller/vehicle
2 ACT TYPE string type of the activity (“h” = home, “w” =

work)
3 LINK integer activity location (link ID)
4 DES ARR TIME integer desired arrival time at activity
5 NOTES string notes (optional)

An example is in

http://www.matsim.org/files/studies/corridor/teach/0.acts .

For our work here, we will assume that activities always come in pairs, i.e. that each
individual in the simulation starts at one location (“at home”) and goes to another location
(“work”). We also assume that there is a desired arrival time for the work activity.

Task 14.1 Write a utility (e.g. using awk) that generates a new activity file which consists
of a randomly selected 10% of the input activity file. This will be needed later.

14.6 Origin-destination travel times

For the computation of departure time choice, one needs information about the trip times
as a function of different departure times. [[Different possibilities are discussed in
Sec. ??.]] The implementation that we present here is the arguably simplest method, but
it has some caveats for large scale scenarios. [[This will also be discussed in Sec. ??.
]]

The idea is that one parses the events file, and for each origin, each destination, and each
time bin one averages the trip times. This is similar to how the router treats link travel time
information. That is, if an individual departs (events flag 6), then this information is stored
away somewhere. If the same individual arrives (events flag 0), then the departure time
and departure location are retrieved, and the travel time is added by the time bin for the
departure time for the corresponding OD pair. Once the complete events file is parsed,
the sums are divided to the number of entries as was done for the link travel times. If

file: book.tex, p.14-4 January 31, 2005

14.7. Departure time choice

you assume that you have T time bins, R origins, and S destinations, then this results in
T × R × S entries.

Task 14.2 Write a script that averages OD travel times into 15-min time bins. Language
possibilities are awk or c++/java. As an end result, you should have, for all OD pairs, trip
time info for all 15-min time bins. Generate this information for the events file which was
obtained by running the traffic microsimulation on

http://www.matsim.org/files/studies/corridor/teach/0.plans .

Why does the result make sense (or not)?

Note that you have to invent some method to generate OD travel times for time bins for
which you have no information.

14.7 Departure time choice

Now the departure time needs to be chosen for each individual traveler. For this, it is
easiest to continue with the code written in Sec. 14.6 (Task 14.2). After retrieving the
travel time information from the events file, the code will start reading the 10% activities file
produced in Sec. 14.5. For each agent it will retreive a pair of activities. The desired arrival
time tdes comes from there as discussed above. For each activity pair in the activities file
do:

1. Retrieve or calculate, for each departure time tdep between 5am and 10am in 5min
steps, the following quantities:

• the trip time Ttrip;

• the arrival time tarr;

• the early time Tearly = max[0, tdes − tarr];

• the late time Tlate = max[0, tarr − tdes];

• the resulting utility

Udep = −
0.4

60 sec
Ttrip −

0.25

60 sec
Tearly −

1.5

60 sec
Tlate (14.11)

(this is the same as Eq. (14.2));

• and the resulting non-normalized probability

πi = eUdep . (14.12)

2. Once you have done this for all time bins, sum up all the non-normalized probabili-
ties:

Π := �
i

πi . (14.13)

Divide all non-normalized probabilities by this value:

pi := πi/Π . (14.14)

3. Make a random draw between these probabilities (see below) and note the resulting
departure time.

4. Fuzzify the departure time by ±150sec (2.5min) by something like

TDepInSec = TDepInSec - 150 + int(300*MyRand()) ;

5. Write out the corresponding trip.

file: book.tex, p.14-5 January 31, 2005

14.8. Feedback

All trips then need to be routed; this is done by applying the time-dependent router to the
trips file as before.

We need to make a random draw according to the probability weights. This is for example
done as follows. Assume that we have p[i], i=1..N given, with the sum of these p[i]
being one. Then do something like the following:

double rnd = myRand() ;
double sum = 0. ;
int ii ;
for (ii=1; ii<=N; ii++) {

sum += p[ii] ;
if (sum > rnd) break ;

}
// ii is the desired index.

Task 14.3 Take the events file from the 50th iteration of the corridor problem. Generate,
for travelers 1–250 in

http://www.matsim.org/files/studies/corridor/teach/0.acts ,

the departure times (= new trips). Plot the resulting new departure time distribution (see
below). Does this correspond to your expectations? Why (or why not)?

Note: Departure time distribution means that on the x-axis you have the departure time,
and on the y-axis you have how many vehicles/travelers depart at that time. For this, you
again need to introduce time bins, for example 5 minutes wide.

14.8 Feedback

Task 14.4 Do 100 iterations. Make the following plots:

• Sum of all trip times as function of iteration number.

• Computing time

• veh.bin files for days 1, 10, 20, 100.

• Departure time distribution for days 1, 10, 20, 100.1

Is the final departure time distribution plausible? Why (or why not)?

Task 14.5 Question: Is is possible that everybody finds a departure time so that she/he
arrives exactly at her/his desired arrival time?

1We are looking for the departure time distribution of the whole population, not just of the replanned popu-
lation. This is best retrieved from the events file.

file: book.tex, p.14-6 January 31, 2005

Chapter 15

Do-it-yourself transportation
planning simulation: Summary

The previous chapters have led you through a do-it-yourself version of a transportation
planning simulation. Irrespective of the fact if you have really implemented all of it, or
just pieces, or none at all, several things should have become clear:

• Transportation simulations do not only consist of the traffic modules, where cars
and people move through the system, but also of strategic/tactical modules which
simulate the human decision-making that generate the traffic in the first place.

• Although a whole transportation simulation package is a complex software system,
programming a “lite” version that concentrates on the most important aspects is a
manageable task.

• Modern computer science tools, in particular object-oriented programming lan-
guages, are very helpful for programming these types of simulations. The chal-
lenge is to find a good balance between where these additional language features
really help and where they make things uncomprehensible to the uninitiated.

These past chapters have attempted to concentrate on the bare-boned essentials. Clearly,
what is essential and what not depends on one’s preferences and taste. The focus of
this text is on the multi-agent view, i.e. the fact that a transportation simulation can be
seen as a simulation of many intelligent, interacting agents. In consequence, we have
stressed that all individual travelers make their individual plans, and that these plans can
be revised in iterated simulations – in other words, the agents learn. The underlying
traffic simulation, a 1-lane cellular automata simulation, was designed such that it could
execute individual plans in a meaningful way, but it was not attempted to make that
simulation realistic.

The following chapters of this text will show how that simulation can be improved. Im-
provements are primarily into two directions: (i) more realism; (ii) truly agent-based
view. These aspects will be discussed in more detail in the introduction to Sec. ??.

[[following goes where??]]

• More realism. In particular the traffic simulation can be made much more realistic.
We will first show one version (the queue simulation) which is both more realistic
and computationally much faster; it however models traffic on a higher level of
abstraction which is sometimes more difficult to grasp. Higher levels of realism
are also introduced for the router (time dependence, other modes of transportation),

15-1

and, to some extent, for activity generation. All these are researched intensely,
since multi-agent simulation has opened the way to new exciting possibilities.

• Truly agent-based view. The simulation described in the last chapters depends
on file-based interfaces, and these interfaces imply that the sequencing of the si-
mulation is organized around modules. In general, modules will run sequentially,
each module modifying some aspect of the system state that is displayed by the
collection of input and output files. One will however easily recognize that this or-
ganization of the simulation is not truly agent-based, that is, the agent is not truly
at the center. For example, programming an agent that uses mutation and crossover
to create new strategies from the ones it has already tried out is awkward with the
described framework.

file: book.tex, p.15-2 January 31, 2005

Chapter 16

File formats summary

16.1 Nodes file

Column Header type explanation

1 ID integer Unique number of node
2 EASTING integer Coordinate in x direction
3 NORTHING integer Coordinate in y direction
4 ELEVATION integer Coordinate in z direction. Ignore
5 NOTES string Optional notes. Ignore

16.2 Links file

Column Header Type Explanation

1 ID integer Unique ID number
2 NAME string Name of the link, e.g. the street name.

Ignore
3 NODEA integer Node ID at one end of link
4 NODEB integer Node ID at other end of link
5 PERMLANESA integer Number of lanes towards A. Ignore
6 PERMLANESB integer Number of lanes towards B. Ignore
7 LEFTPCKTSA integer Number of left pocket lanes towards A.

Ignore
8 LEFTPCKTSB integer Number of left pocket lanes towards B.

Ignore
9 RGHTPCKTSA integer Number of right pocket lanes towards

A. Ignore
10 RGHTPCKTSB integer Number of right pocket lanes towards

B. Ignore
11 TWOWAYTURN boolean Whether there is a two-way link for

left turns in the middle of the road (an
American specialty). Ignore

12 LENGTH positive float Length of link in meters
13 GRADE float Grade (= slope) of link. Ignore
14 SETBACKA positive float Setback distance (in meters) from the

center of the intersection at node A. Ig-
nore

16-1

16.3. Snapshot file (visualizer output)

15 SETBACKB positive float Setback distance (in meters) from the
center of the intersection at node B. Ig-
nore

16 CAPACITYA positive float Capacity of link towards A in vehicles
per hour. Ignore (but see Sec. 18)

17 CAPACITYB positive float Capacity of link towards B in vehicles
per hour. Ignore (but see Sec. 18)

18 SPEEDLMTA positive float Speed limit, in meters per second, to-
wards A. Ignore (but see Secs. 17 and
18)

19 SPEEDLMTB positive float Speed limit, in meters per second, to-
wards B. Ignore (but see Secs. 17 and
18)

20 FREESPDA positive float Free speed, in meters per second, to-
wards A. Ignore (but see Secs. 17 and
18)

21 FREESPDB positive float Free speed, in meters per second, to-
wards B. Ignore (but see Secs. 17 and
18)

22 FUNCTCLASS keyword Functional class of link. Ignore
23 THRUA integer ID of outgoing link across A which de-

notes “through” direction. Can be used
for data compression. Ignore

24 THRUB integer ID of outgoing link across B which de-
notes “through” direction. Can be used
for data compression. Ignore

25 COLOR integer Obsolete. Ignore
26 VEHICLE keywords Allowed modes on link. Ignore
27 NOTES string Arbitrary notes. Ignore

16.3 Snapshot file (visualizer output)

Column Header type explanation

1 VEHICLE integer Vehicle ID
2 TIME integer Current time (in seconds past midnight)
3 LINK integer Link ID
4 NODE integer FromNode ID (i.e. ID of node where the ve-

hicle is coming from)
5 LANE integer Lane the vehicle is on
6 DISTANCE float Distance (in meters) the vehicle is away

from the node
7 VELOCITY float Vehicle speed (in meters per second)
8 VEHTYPE integer Vehicle type. “1” = car.
9 ACCELER float Vehicle acceleration (in m/s per second)
10 DRIVER integer Driver ID
11 PASSENGERS integer Number of passengers in vehicle
12 EASTING float Position of vehicle in x direction
13 NORTHING float Position of vehicle in y direction
14 ELEVATION float Position of vehicle in z direction

file: book.tex, p.16-2 January 31, 2005

16.5. Events file

15 AZIMUTH float Vehicle’s orientation (degrees from east in
counterclockwise direction)

16 USER integer User-defined data field

16.4 Plans file

Fixed length part:

Number explanation

1 Traveler (Person) ID
2 User field. Irrelevant for us
3 Trip ID. Irrelevant for us
4 Leg ID. Irrelevant for us
5 FirstLegFlag. Irrelevant for us
6 LastLegFlag. Irrelevant for us
7 StartTime
8 StartLocation. = StartLink for us
9 Type of StartLocation. Irrelevant for us

10 EndLocation. Irrelevant for us
11 Type of EndLocation. Irrelevant for us
12 Duration. Irrelevant for us
13 Stop Time. Irrelevant for us
14 MaxTimeFlag. Irrelevant for us
15 Driver Flag. Irrelevant for us
16 Mode. Should always be 0
17 Vehicle Type. Irrelevant for us
18 Number of additional tokens (variable length part)

Variable length part:

number explanation

1 Vehicle ID. Ignore
2 Number of Passengers. Needs to be zero (because the meaning of the fol-

lowing data depends on this).
3 Node 1
4 Node 2
5 etc.

16.5 Events file

Column Header type explanation

1 TIMESTEP int time step
2 VEHICLEID int vehicle id
3 LINK int Link ID
4 FROMNODE int FromNode ID for link. Irrelevant for us since

we use uni-directional links
5 FLAG int 0: vehicle arrives at final destination

2: vehicle leaves a link to go across an inter-
section

file: book.tex, p.16-3 January 31, 2005

16.7. Activities file

4: vehicle moves from wait queue into traffic
5: vehicle enters a link coming from an inter-
section
6: vehicle is supposed to start

6 NOTES string notes (leave empty, but separate by tab)

16.6 Trips file

Column Header type explanation

1 ID integer ID number of traveller/vehicle
2 DEPTLINK integer departure location (link ID)
3 ARRLINK integer arrival location (link ID)
4 TIME integer departure time of traveller/vehicle in “sec-

onds past midnight”
5 NOTES string notes (leave empty, but separate by tab)

16.7 Activities file

Column Header type explanation

1 TRAV ID integer ID number of traveller/vehicle
2 ACT TYPE string type of the activity (“h” = home, “w” =

work)
3 LINK integer activity location (link ID)
4 DES ARR TIME integer desired arrival time at activity
5 NOTES string notes (optional)

file: book.tex, p.16-4 January 31, 2005

Part III

Improvements

16-5

Chapter 17

More realistic CA traffic
simulation logic

17.1 Introduction

The focus of this whole text is to emphasize the modular structure of transportation si-
mulation packages, and in particular that besides the movement of the cars through the
system considerable effort needs to be spent on modules which model human learning
and decision-making, and on mechanisms which couple those modules. In consequence,
we have started (in Chap. 7) with a simple micro-simulation which is able to support
our approach, which means that it has individual vehicles which follow individual plans.
However, the simple approach of Chap. 7 neither looks at correct vehicle speed not at
correct link flow capacities.

In this chapter, it will be discussed how the CA traffic simulation from Chap. 7 can be
made more realistic. In fact, this type of simulation is used in the Transims simulation
package for transportation planning. Ultimately, also the CA approach has its limits and
is better replaced by an approach where the spatial coordinates are continuous (Chap. ??).
The CA approach has however the advantage that its implementation is rather straight-
forward. This is due to the simple spatial structure, in which the existence of a vehicle
at a specific location can be checked via a simple direct lookup at the corresponding
cell. Techniques with continuous coordinates typcally store the position of the particle
together with the particle, i.e. not together with the spatial substrate, so that the existence
of vehicles at specific locations needs to me made computationally efficient via other
methods. These problems can be overcome, and the resulting models are as efficient as
CA models, but they represent some conceptual and programming overhead that needs
to be recognized.

17.2 The stochastic traffic cellular automaton (STCA)

The CA introduced in Chap. 7 can be made more general by allowing vehicles to travel
more than one cell per time step. Also, it makes the simulation more realistic and more
robust against artifacts if one introduces some randomness. Both are achieved with the
following update rules:

• Car-following rule:

vsafe = min{vt + 1, gt, vmax} . (17.1)

17-1

17.2. The stochastic traffic cellular automaton (STCA)

gt is the number of empty spaces to the car in front (“gap”); vmax is the maximum
velocity of the car under consideration.

• Randomization:

vt+1 =

{

max{vsafe − 1, 0} with probability pn

vsafe else
(17.2)

• Moving:
xt+1 = xt + vt+1 (17.3)

t and t + 1 here refer to the actual time-steps of the simulation. The first rule describes
deterministic car-following: try to accelerate by one velocity unit except when the gap is
too small or when the maximum velocity is reached.

The second rule describes random noise: with probability pn, a vehicle ends up being
slower than calculated deterministically. This parameter simultaneously models three
effects:

1. Speed fluctuations during free driving: Assume a vehicle with no other vehicles are
nearby. It will eventually have speed vmax − 1 or vmax. In both cases, vsafe will
be vmax. After the randomization, the speed will be at vmax − 1 with probability
pn, and at vmax else. That is, the speed of a single undisturbed vehicle fluctuates
between vmax and vmax − 1.

2. Over-reactions at braking and car-following: Assume a vehicle with vmax that
approaches a slower vehicle from behind. Eventually, it will reach a gap gt <
vmax − 1. vsafe will be equal to this gt, and vt+1 will either be equal to gt or
one smaller (without becoming negative). That is, with probability pn, the braking
vehicle will not be at speed gt but slower.

The argument for car following is similar: Assume a leading vehicle with speed
vlead < vmax. The follower will attempt to follow with gt = vlead but in fact will
fluctuate around that speed.

3. Randomness during acceleration: Assume a single vehicle with speed zero. Instead
of acceleration 0 → 1 → 2 → 3 → . . ., the acceleration will typically look like
0 → 0 → 1 → 2 → 2 → 3 → Note that the rules are such that the velocity
never decreases during acceleration.

Obviously, these effects overlap to a certain extent; for example, if gt = vmax one cannot
say if pn refers to car following or to driving at free speed.

A translation into real-world units can be obtained as follows: The length ` of a cell is
given by the average space a car occupies in a jam, since under jammed conditions each
cell is filled by one car. Thus, ` = 1/ρjam ≈ 7.5 m. A simulation time step typically
corresponds to one second in reality, and the order of magnitude of this can be justified
by reaction time arguments (Sec. 27.4.1). One of the side-effects of this convention is
that space can be measured in “cells” and time in “time steps”, and usually these units are
assumed implicitly and thus left out of the equations. A speed of, say, v = 5, means that
the vehicle travels five cells per time step, or 37.5 m/s, or 135 km/h, or approx. 85 mph.

pn is often set to 1/2 for theoretical work, while for realistic traffic modelling pn = 0.2
is a better choice.

[[would be possible to show this in validation (more fdiags, as function of params)]]

file: book.tex, p.17-2 January 31, 2005

17.3. Some validation of the STCA

17.3 Some validation of the STCA

Despite somewhat unrealistic features on the level of individual vehicles, these models
describe aspects of the macroscopic behavior correctly. If we assume the values given
above, i.e. a cell size of ` = 7.5 m and a time step of ∆t = 1 sec, then speeds are
given in multiples of 7.5 m/sec = 27 km/h = 16.875 mph. More correctly, average
free speed is given by (1 − pnoise) vmax. With pnoise = 0.2, one obtains the following
possible average link speeds:

vmax vmax − pnoise m/sec km/h mph

1 0.8 6.0 21.6 13.500
2 1.8 13.5 48.6 30.375
3 2.8 21.0 75.6 47.250
4 3.8 28.5 102.6 64.125
5 4.8 36.0 129.6 81.000
6 5.8 43.5 156.6 97.875
7 6.8 51.0 183.6 114.750

Since drivers typically do not observe speed limits exactly, it is uncritical that these
speeds do not correspond to any “round” numbers. Also, there is enough flexibility to
model differences between, e.g., residential streets, urban arterials, freeways with speed
limits, and freeways without speed limits. There is however not enough resolution to
model, say, the difference between a speed limit of 60 vs. 65 mph. If such differences are
of interest, a different model needs to be selected.

A typical measurement for real-world traffic is the flow-density fundamental diagram.
For this, one measures flow and density at a fixed location over fixed periods of time,
for example over 5 minutes. The resulting data is plotted with density on the x-axis and
flow on the y-axis (see Fig. 17.1). There are some subtleties involved with measuring
fundamental diagrams, which are discussed in Sec. 27.2. For the purposes of this section,
let us assume that the two quantities are measured in the CA as follows:

• Flow: Count the number of vehicles, Nq , that cross a given location during time
T . Flow qT is given as

qT =
Nq

T
. (17.4)

• Density: Assume a “measurement area” which spreads across vmax contiguous
cells. Sum up the number of vehicles on the measurement area over T time steps.
This includes that a vehicle that spends more than one time step on the measure-
ment area is counted several times. If this number is Nρ, then density is given
as

ρT =
Nρ

T vmax
. (17.5)

Note that using vmax cells makes sure that every vehicle is counted at least once.

The result is the density in “number of vehicles per cell”, corresponding to “num-
ber of vehicles per 7.5 meters”. Multiplying by 1000/7.5 converts this into “num-
ber of vehicles per kilometer”.

Flow-density fundamental diagrams, as in Fig. 17.1, start at zero flow when the density
is zero (no cars on the road), and eventually come back to zero flow when the jam density
is reached. In between, they show a roughly tri-angular shape as can be seen in Fig. 17.1.
Theoretical discussions will be postponed until Chap. ??[[cha:traffic-flow-theory]], but
it is important to note that there is some value of maximum flow, about 2000 veh/h in

file: book.tex, p.17-3 January 31, 2005

17.4. Lane changing

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

Density [v/km/lane]

F
lo

w
 [v

/h
r/

la
ne

]

Fundamental Diagram for 1−lane Circle simulation

Circle = 1000

P_Brake = 0.2

V_MAX = 5

Figure 17.1: One-lane fundamental diagram as obtained with the standard cellular au-
tomata model for traffic using pnoise = 0.2. From (Nagel et al., 1997).

Fig. 17.1. For the STCA, this value depends mostly on pnoise: Larger pnoise leads to
smaller maximum flows. These maximum flow values, also called capacities, need to
come out approximately correctly if one wants a model that is useful for reality. 2000 ve-
hicles per hour and lane is a plausible value. Regional differences could be accomodated
by different values of pnoise; this could even be made a function of the link. One however
has to note that changes in pnoise also change the average acceleration of vehicles, which
will, for example, change signal timing requirements or emissions. This is the reason
why the CA approach can only be seen as a first, relatively rough starting point for a
regional model. Once all other problems (such as demand generation) are sufficiently
solved, the CA driving logic should be replaced by a model with continuous coordinates
such as the ones discussed in Chap. ??[[maps]].

17.4 Lane changing

All lane changing rules, no matter if for CA or other models, follow a similar scheme
(e.g. Sparmann, 1978): In order to change lanes, drivers need an incentive, and the lane
change needs to be safe. An incentive can be that the other lane is faster, or that the
driver eventually needs to make a turn. Safety implies that one needs enough space on
the target lane. Thus, a simple lane changing condition can read as (Rickert et al., 1996a)
(Fig. 17.2):

(I) Incentive: min[v + 1, vmax, gapother] > min[v + 1, vmax, gap], i.e. the gap on
the other lane is larger than the gap on the current lane, allowing a higher speed on
the other lane.

Bounding the comparison at min[v + 1, vmax] makes sure that only gaps sizes
which are relevant for the car’s current speed are considered.

(S) Safety: gapother,back > vback, i.e. the backwards gap on the other lane is large
enough that a vehicle approaching with vback does not have to slow down imme-
diately.

Lane changing includes an additional sub-timestep, which is best exectued before the car
following step. The full sequence is:

1. Go through whole system and tag vehicles for lane change.

2. Go through whole system and execute lane changes for tagged vehicles (sideways
movement of vehicles).

file: book.tex, p.17-4 January 31, 2005

17.4. Lane changing

Figure 17.2: Lane changing. A smalle “gap” will give an incentive to change lanes. The
lane change is actually executed if both “forward gap” and “backward gap” are large
enough.

3. Go through whole system and compute new velocities.

4. Go through whole system and execute forward movement of vehicles.

The separation of the lane change into a tagging and a movement step is useful to main-
tain the parallel update: Because of reaction delays, driver decisions should be based on
“old” information.

The above lane changing rules may have vehicles from both sides compete for the same
cell in a middle lane. This can be overcome by making lane changes to the right only
in even and lane changes to the left only in odd time steps. Another possible artifact are
long rows of vehicles synchronously oscillating between left and right lane. This can be
suppressed by executing the above lane changes with a probability smaller than one, for
example 0.99.

All this together is essentially the lane changing criterion currently used in the Transims
micro-simulation, and it seems to work reasonably well for U.S. traffic (Nagel et al.,
1997).

The above lane changing criterion is symmetric, since changing to the left happens ac-
cording to the same criterion as changing to the right. One result of this is that people
stay in the left lane until some incentive pushes them out of it, again not totally unrealistic
for traffic in the United States. For European (and other) countries, one has the constraint
that passing on the right is not allowed, at least not when traffic is not congested. There
are many ways to implement this. A fairly straightforward version is to change to the left
when either on the same lane or on the left lane a slower vehicle is present:

(I’.a) Incentive to go to left: “v ≥ vr .OR. v ≥ vl” , where vr refers to the vehicle in
front on the same lane, and vl refers to the vehicle in front one lane to the left.

Since the lane changing is no longer symmetric, many plausible rules are possible to
trigger lane changes to the right. A good construction criterion for rules is to make lane
changes to the right based on the logical negation of lane changes to the left. This results
in

(I’.b) Incentive to go to right: “v < vr .AND. v < vl”. Note that now vl now refers to
the same lane, and vr refers to the lane to the right.

This leaves as a free parameter the distance d how far vehicles look forward for vehicles
in the same and in the other lane. Larger d results in a stronger incentive to go to the left.

An important observation is that microscopic lane changing rules need not be realistic in
order to generate plausible macroscopic traffic. For example, all lane changes according
to the above rules happen in one simulation time step, which is usually one second,
whereas in reality this takes longer (3–5 seconds). Also, the above rules result in too
many lane changes when traffic on both lanes is similar – an effect that is annoying in
animations (see, for example, one of the Transims videos), but macroscopic relations

file: book.tex, p.17-5 January 31, 2005

17.5. Validation of lane changing rules

[]

0

1000

2000

3000

4000

0 40 80 120 160 200

flo
w

 [v
eh

 /
(h

 *
 2

 la
ne

s)
]

density [veh / (km * 2 lanes)]

(a)

[]

Figure 17.3: Multi-lane fundamental diagrams. (a) STCA with vmax = 5, pnoise = 0.25.
From Nagel et al. (1998). (b) Reality (Germany). From Wiedemann, published in Nagel
et al. (1998).

such as fundamental diagrams still come out correct (Rickert et al., 1996a; Nagel et al.,
1998).

As noted above, the incentive to change lanes could also come from an intended turn
movement at the end of the link, and one can partially over-ride the safety criterion with
increasing urgency of the incentive criterion.

17.5 Validation of lane changing rules

The most important issue for lane changing is that the fundamental diagram should re-
main plausible, i.e. with a maximum flow of about 2000 veh per hour and lane. This is
indeed the case both with the above symmetric and the above asymmetric lane changing
rules. A fundamental diagram for a simulation with asymmetric rules is in Fig. 17.5;
compare this to a fundamental diagram from (German) reality in Fig. 17.5.

Another quantity of interest is the fraction of vehicles in each lane. For the symmetric
rules and 2-lane traffic, this should always be at 50%. For the assymmetric lane changing
rule introduced above, lane usage is plotted in Fig. 17.5, which was obtained with a
look-ahead distance of d = 16 cells. Fig. 17.5 shows a plot of the same quantities from
(German) reality. Additional rules, which can bring the simulations even closer to reality,
are discussed by Nagel et al. (1998).

Another validation of lane changing rules concerns vehicles that change lanes in order to
be in the correct lane for a turn. Two important questions here are how many vehicles
do not reach their desired lane, and how much the lane changing disturbs the throughput.
The first question is more critical under congested conditions, and one needs a set-up
where the intersection capacity is smaller than the link capacity, caused for example by
traffic lights. The second question is most critical near maximum flow; for example, one
could test if at a traffic light just turned green, outflow is reduced when there is a lot of
last-second lane changing.

17.6 Traffic signals

We now turn to intersections, where links, with car following and lane changing dynam-
ics, are connected. The easiest case are fully signalized intersections since the signal
(assuming it is working correctly) is taking care of avoiding crashes. The dynamics re-

file: book.tex, p.17-6 January 31, 2005

17.7. Validation of traffic signal rules

[]

0

0.2

0.4

0.6

0.8

1

0 40 80 120 160 200

la
ne

 u
se

 p
er

ce
nt

ag
e

density [veh / (km * 2 lanes)]

(e)

[]

Figure 17.4: Asymmetric lane usage. (a) Simulation. (b) Reality (Germany). [[from
wiedemann, published in ...]]

0 5 10 15 20 25
800

850

900

950

1000

1050

1100

1150

1200

F
lo

w
 T

−
In

te
rs

ec
tio

n
[v

eh
/h

r/
la

ne
]

Time [min]

Time − Flow Diagram for traffic light controlled T−intersection

Figure 17.5: Number of vehicles going through the intersection per green phase, re-scaled to hourly flow
rates per lane.

sulting from a red light can be generated by placing a virtual car with speed zero into the
last spot on the link, and removing this car once lights turn green.

17.7 Validation of traffic signal rules

The most important quantity for traffic lights is the time headway between vehicles when
the traffic light turns green. As a rough estimate, one can take the above-mentioned value
of 2000 vehicles per hour and convert it into time headways, resulting in 3600/2000 =
1.8 seconds per vehicle. More exact values need to be taken from local field data.

There is discussion if maximal flow on a freeway can be larger than the outflow from a
queue, such as at a traffic light. For the STCA model that we are using so far, this issue
is not critical; for other car following models it may play a role. More discussion of this
is in Chap. 27.

17.8 Unprotected turns

Somewhat more difficult are unprotected turns, i.e. turns that are not regulated by traf-
fic signals and where vehicles need to merge on their own without accidents. Typical

file: book.tex, p.17-7 January 31, 2005

17.9. Validation of rules for unprotected turns

1

5

3

5

3

2

1

2

3

gap = 3 * velocity(oncoming vehicle)

Figure 17.6: Illustration of gap acceptance for a left turn against oncoming traffic.
From Nagel et al. (1997).

examples of this are yield, stop, “right on red”, left turns against oncoming traffic, and
on-ramps to freeways. The mechanism here is again a “gap acceptance” similar to the
safety criterion (S) for lane changes (Fig. 17.6). That is, the vehicle on the incoming road
moves into the major road if the gap there is big enough. This gap stretches upstream,
since the incoming driver does not want the car upstream on the major road to crash
into him/herself. The standard reference for highway engineers, the Highway Capacity
Manual (Transportation Research Board, 1994a) states that drivers accept gaps that cor-
respond to time headways of approximately 5 seconds or more, which means that the
spatial gap needs to be proportional to the speed of the oncoming car (Fig. 17.6). In our
standard CA implementation, this would mean that the accepted gap would have to be at
least five times the oncoming vehicle’s velocity. When implementing this rule, it turns
out that a factor of three instead of five gives much more realistic flow rates (Nagel et al.,
1997). It is not totally clear why this is the case.

[[say something about merges/weaving. integration refs?]]

17.9 Validation of rules for unprotected turns

The typical measurement for unprotected turns is the maximum incoming flow rate as a
function of the flow on the priority street. Such plots look like those in Fig. 32.6 with
flow on the minor road (y-axis) as function of flow on the major road (x-axis). For
interpretation, best start in the top left corner. Since there is no flow on the major road,
flow from the minor road can enter at a high rate. With increasing flow on the major
road, flow from the minor road is reduced. When the major road reaches capacity, the
flow from the minor road is nearly zero. When the density on the major road goes above
the maximum-flow density, then the flow on the major road is again reduced, but this time
by congestion. In Fig. 17.9, vehicles from the minor road still have a hard time entering.
In contrast, the gap acceptance rule from Fig. 17.9 allows vehicles from the minor road to
enter into the major road under congested conditions, effectively modelling a “zipping”
effect.

Two important messages are:

• Seemingly small changes, such as the change of gap acceptance from “>” to “≥”,
can have large consequences. Such small changes can also easily be caused by the
actual implementation of the rules. For example, in the Transims micro-simulation

file: book.tex, p.17-8 January 31, 2005

17.10. Discussion

[]

0

500

1000

1500

2000

0 500 1000 1500 2000

flo
w

 th
ro

ug
h

un
pr

ot
ec

te
d

tu
rn

s
[v

eh
/h

/la
ne

]

flow of opposing lane(s) [veh/h/lane]

(b) no reservation; gap > 3*v; vmax = 3

study simulation

[]

0

500

1000

1500

2000

0 500 1000 1500 2000

flo
w

 th
ro

ug
h

un
pr

ot
ec

te
d

tu
rn

s
[v

eh
/h

/la
ne

]

flow of opposing lane(s) [veh/h/lane]

(a) no reservation of first cell; gap >= 3*v; vmax = 3

study simulation

Figure 17.7: Two different rules for the case of a 1-lane minor road controlled by a
yield sign merging into a 1-lane major road. (a) Acceptance rule “accept if gap > 3 ·
voncoming”. vmax = 3. (b) Acceptance rule “accept if gap ≥ 3 · voncoming”. Note
that this seemingly small difference has a strong effect on throughput in the congested
situation. (a) models that vehicles from the minor road cannot enter the major road once
the major road is congested; (b) essentially models a “zipping” behavior, i.e. that vehicles
from the major and the minor road alternate once the major road is congested.

traffic on the major street reserves cells on the outgoing link, even if in the end the
vehicle does not claim it. This clearly reduces opportunities for vehicles from the
minor road.

• Further details need to be taken from local conditions. For example, the flow from
the minor into the major road when there is no traffic on the major road depends
on speed limits and intersection layout, such as the curvature of the turn. This
situation will rarely occur in reality, since if there is traffic on the minor road, there
is usually also traffic on the major road. Exceptions are situations such as the end
of soccer games or evacuation scenarios.

Similarly, there are differences between yield and stop, and if the traffic from the
minor street merges with the traffic from the major street, or crosses. Again, al-
though the tendency of these changes are clear, exact flow values need to be taken
from local conditions.

17.10 Discussion

In this chapter, we have further discussed improvements to the CA traffic simulation. It
turns out that, for car traffic, such models consist of only four aspects:

• Car following

• Lane changing

• Protected turns

• Unprotected turns

Once these four aspects are implemented in a reasonable way, one has a basic model.
From here on, considerable work is necessary to calibrate and validate individual details.
In particular, lane changing needs to include lane changing to reach a particular lane for
a turn, and lange changing on merge/acceleration lanes.

file: book.tex, p.17-9 January 31, 2005

17.10. Discussion

Figure 17.8: Lane connectivities across intersections. This information is needed for
realistic multi-lane simulations.

A problem with such a microsimulation approach is that the necessary input data is often
not available. For example, as a minimum one needs lane connectivities (which incoming
lanes are connected to which outgoing lanes, Fig. 17.8), and signal plans. Furthermore,
although it is an advantage that such simulations generate link capacity instead of taking
it as input data, considerable adjustments need to be done. For example, the Gotthard
tunnel, as a 1-lane road without traffic light, should have a capacity of 2000 vehs/hour.
According to the local police, however, the capacity not more than half of that. The
reason, presumably, is that the tunnel entrance has a strong uphill slope, and acceleration
of vehicles is less than normal.

file: book.tex, p.17-10 January 31, 2005

Chapter 18

The queue model for traffic
dynamics

18.1 Introduction

In Chap. 7 we have introduced a simple cellular automata micro-simulation. The reason
to chose that particular modelling technique was that it is conceptually simple, relatively
easy to implement, somewhat realistic, and it fulfilled the functionality that was needed
at that point in the project. In this chapter, an alternative will be presented, the so-called
queue model (Gawron, 1998a). For experts: The queue model is essentially a standard
queueing model, but with storage constraints added. Storage constraints mean that links
can be full, which causes spillback across intersections.

The queue model is in our view the simplest dynamic model that is somewhat useful
for real world predictions (see Chap. ??). Despite some obvious shortcomings in the
description of the dynamics (see Chap. ??) in particular with respect to traffic jam wave
backpropagation, we are not aware of any empirical evidence showing that more sophis-
ticated models are truly better with respect to their predictive power. However, the path
to more realistic simulations does not go via the queue model, but is a continuation of the
explicit spatial methods, such as the CA. Making those methods, possibly on continuous
rather than cellular space, useful for the real world (Chap. 17) is considerably more work
than making the queue model useful for the real world. In consequence, if one intends to
use the methods presented in this text for real world applications, one needs to carefully
weigh advantages and disadvantages: The queue model of this Chapter is the fastest path
to some usefulness, but is eventually limited; the CA model of Chaps. 7 and 17 (or non-
cell based variants of this) are considerably more work but ultimately more realistic and
more flexible.

18.2 General

From our general framework, we have the following requirements to a traffic simulation:

• Vehicles need to be able to follow plans. This implies that the simulation needs
to be dynamic (i.e. time-dependent), and that some notion of individual vehicles
needs to be present in the simulation.

• The simulation needs to be reasonably fast. A computational speed of at least
100 times faster than real time (i.e. simulating 24 hours of traffic in 0.24 hours of

18-1

18.2. General

computing time) is desirable in order to obtain bearable waiting times for the feed-
back/learning. This computing speed can be achieved by selecting small scenarios,
by using simple models, or by parallel computing. This text concentrates on the
last two aspects.

The important numbers characterizing a road from the perspective of transportation plan-
ning are:

• Free speed. This is the speed that vehicles drive on a link when no other con-
straints are present.

• Flow capacity. This is the maximum number of vehicles per time unit that can
move over a link when no other constraints are present. In city traffic, the flow
capacity is often determined by a traffic light at the end.

• Storage constraint. This is the maximum number of vehicles that can be on a link
under jammed conditions.

The first two numbers are also used in all traditional transportation planning software
(based on static assignment, see Chap. 28) and are therefore typically available with
standard data files for transportation planning. The third number is necessary when a link
is full and no more vehicles can enter, causing spillback. Without the storage constraint,
flow demand above the flow capacity would allow an unlimited number of vehicles on
the link, which is clearly not realistic.

The queue model bases its dynamics on free speed, flow capacity, and storage con-
straint only. Typical input data are, for each link a, the attributes free flow veloc-
ity v0,a, length La, capacity Ca and number of lanes nlanes,a. Free flow travel time
is calculated by T0,a = La/v0,a. The storage constraint of a link is calculated as
Nsites,a = La · nlanes,a/`, where ` is the space a single vehicle in the average occu-
pies in a jam, which is the inverse of the jam density. One can use ` = 7.5 m, as for the
CA technique.

The arguably simplest intersection logic (Gawron, 1998b) is that all links are processed
in arbitrary but fixed sequence, and a vehicle is moved to the next link if (1) it has arrived
at the end of the link, (2) it can be moved according to capacity, and (3) there is space
on the destination link (see Algorithm A in Fig. 18.1). More formally, the following
happens:

• Free speed: A vehicle that enters link a at time t0 cannot leave the link before
time t0 + T0,a, where T0,a is the free speed link travel time as explained above.

• Flow capacity: The condition “vehicle can be moved according to capacity” is
determined as

N < int(Ca) or
(

N = int(Ca) and rnd < fr(Ca)
)

(18.1)

where int(Ca) is the integer part of the capacity of the link (in vehicles per time
step), fr(Ca) is the fractional part of the capacity of the link, and N is the number
of the vehicles which already left the same link in the same time step. rnd is a
random number such that 0 ≤ rnd < 1. What it is meant by this formula is that
the vehicles can leave the link if leaving capacity of the link has not been exceeded
yet in this time step. If the capacity per time step is non-integer, then we move the
last vehicle with a probability which is equal to the non-integer part of the capacity
per time step.

• “Space on destination link”: If the destination link is full, the vehicle will not
move across the intersection.

file: book.tex, p.18-2 January 31, 2005

18.3. Fair intersections

18.3 Fair intersections

The queue model has the same problem as our simple CA model with respect to “fair”
intersections (cf. Sec. 7.5). That problem is that the queue model dynamics as described
so far goes through the links in a fixed order, meaning that some links always have the
priority, and these may not be the links that should have the priority.1

A somewhat better way is to process the links in random order. We have already seen in
Sec. 7.5 how to do this. Eventually however, one needs to introduce a proper intersection
dynamics. A clean way to do this is the following:

1. Move to a parallel update. In a parallel update, all links are processed simulta-
neously. This means that all rules in order to move a configuration from time t to
time t + 1 can only depend on information from time t.

For the queue model, this is achieved by remembering the number of empty cells
on a link from time t. That is, if a link is full at time t, then no vehicles can enter
during the update from t to t + 1, even if the link opens up during that time step.

A parallel update is also important in anticipation of parallel computing (Chap. 25).

2. Separate link dynamics from intersection dynamics.

For the link dynamics, we introduce an additional buffer at the end of the link, as
in Fig. 18.2. The size of the buffer is dCae, i.e. the smallest integer that is larger
or equal to the capacity in “vehicles per time step”. Vehicles are moved from the
link proper into the buffer if the travel time constraint and the capacity constraint
are fulfilled, and if the buffer has empty space. That is, this is exactly the same
dynamics as before, except that we move vehicles into the buffer instead of across
the intersection. – This update is done by iterating over all links.

For the intersection dynamics, an additional loop is introduced, which is over all
nodes. Here, vehicles are moved from the (incoming) buffers to the outgoing links.
Neither travel time nor capacity constraints need to be considered here because
they were already treated before.

This approach is borrowed from lattice gas automata, where particle movements
are also separated into a “propagate” and a “scatter” step (Frisch et al., 1986).

When looking to our framework from Sec. 7.7, one notices that we have already the
provisions for separating link dynamics from intersection dynamics: there are already
two loops, one going over all links and the other over all nodes/intersections.

Regarding the intersection dynamics for the queue model, many solutions are possible.
For example, it is possible to go through the incoming links in random order weighted
by capacity, thus giving a higher priority to links with high capacity. Again, there are
several ways to do this, for example to re-select the link for each vehicle to move until all
moves are exhausted, or to process one link until its moves are exhausted and only then
move to the next link. Although none of these are difficult to implement, there are subtle
differences between them when used for complicated intersections. A possible algorithm
is given as Algorithm B in Fig. 18.3.

1Note that the winning links are not the ones that come first, but the ones that come first after the outgoing
link was treated. For example, assume a configuration where links 1 and 3 are incoming into link 2, and assume
that they are processed in sequence 1, 2, 3. [[fig?]] Also assume that under congested conditions initially all
links are completely full. Then link 1 is processed first, but link 2 is full, so no vehicle can move. Then link 2
is processed, and some vehicles move out, opening up some space. Finally, link 3 is processed, and since there
is some space on link 2, some vehicles can move.

file: book.tex, p.18-3 January 31, 2005

18.4. Limitations of the queue model

for all links do
while vehicle has arrived at end of link
AND vehicle can be moved according to capacity
AND there is space on destination link do

move vehicle to next link
end while

end for

Figure 18.1: Algorithm A – Arguably simplest intersection algorithm

move according
to capacity

move according
to space availability

Figure 18.2: The separation of flow capacity from intersection dynamics.

18.4 Limitations of the queue model

In the introduction to this chapter, it was pointed out that the queue simulation is eventu-
ally limited in terms of its realism. In this section, these limitations will be discussed.

A first limitation concerns the dynamics of traffic jams. In the queue model, when a ve-
hicle leaves a link, that free spot becomes available for entering vehicles very quickly: In
Algorithm A, it becomes available immediately; in Algorithm B, it is somewhat delayed
by the buffer dynamics and the parallel update. In both cases, however, the time that it
takes until it becomes available for entering vehicles does not depend on the link length.
This is in stark contrast to reality, where such “holes” travel with a finite speed of approx-
imately 15 km/h. The reason for the real-world behavior becomes immediately obvious
if one looks at the corresponding dynamics in the CA, where a hole in a completely dense
jam is slowly passed on against the traffic direction by at most one vehicle movement in
each time step; this is discussed in more detail in Chap. 27.

This limited realism in terms of traffic jam dynamics shows up when solid jams in the
queue model, for example caused by an accident, are dissolved: Instead of being dis-
solved at the downstream end only, such jams in the queue model are dissolved quasi-
simultaneously along the whole length. [[fig portland]] It seems however that this prob-
lem can be resolved via additional rules, such as a limitation on the “speed of holes”
(?).

Other limitations are concerned with the limited vehicular and spatial resolution:

• Interaction between slow and fast vehicles. On multi-lane roads, fast cars can
pass slow cars as long as traffic is light. Only when traffic becomes denser, then fast
cars are caught between slow cars. In the queue simulation, all cars are assumed
to drive with the same speed.

• Interaction between different vehicle types. Examples for this are interactions
between pedestrians and cars, bicycles and cars, or between buses/light rail and
cars.

• Signal phases. Diligent signal phasing can make an enormous difference to an
intersection capacity. This cannot be captured by simple intersection capacities,
since it depends on how traffic streams and signal phases work together.

file: book.tex, p.18-4 January 31, 2005

18.4. Limitations of the queue model

// PROPAGATE VEHICLES ALONG LINKS:
for all links do

while vehicle has arrived at end of link
AND vehicle can be moved according to capacity
AND there is space in the buffer (see Fig below) do

move vehicle from link to buffer
end while

end for
// MOVE VEHICLES ACROSS INTERSECTIONS:
for all nodes do

Mark all links that are incoming to this node
while there are marked links do

Select a marked link randomly proportional to capacity
Un-mark link
while there are vehicles in the buffer of that link do

Check the first vehicle in the buffer of the link
if its destination link has space then

Move vehicle from buffer to destination link
end if

end while
end while

end for

Figure 18.3: Algorithm B – Links and Intersections separated

• Complicated street layouts. Merging, turning, and weaving lanes make a substan-
tial difference to traffic flow. Most importantly, turning lanes, i.e. the separation
of vehicle streams by turning direction, prevents situations such as in Fig. 18.4,
where a left turning vehicle blocks all the traffic behind it. This becomes particular
important in conjunction with signal phases, since optimally the turning lanes are
emptied out during each green phase. That is, turning lanes of the correct length
ensure that the green phases of an intersection are used optimally.

• Weaving, in particular if large numbers of vehicles enter a street on the right
lane(s) but want to exit it on the left lane(s).

For such effects, the simple queue simulation is no longer sufficient. Sometimes, param-
eterizations of certain effects are available, but in general it will be necessary to resort
to a more realistic type of micro-simulation. In such a more realistic micro-simulation,
one will not only have individual cars with different individual characteristics, but also
realistic street layouts, signals, bicycles, pedestrians, light rail and buses, etc.

file: book.tex, p.18-5 January 31, 2005

18.4. Limitations of the queue model

Red cars cannot move
because green car is
in the way.

Figure 18.4: Problem of FIFO-based models

file: book.tex, p.18-6 January 31, 2005

Chapter 19

Routing

[[get some papers]]

[[Cascetti??]]

19.1 Time aggregation

19.2 Generalized cost functions

19.3 Alternative routes

In our approach, each new route was generated as what would have been the fastest route
on the previous iteration.1 It is improbable that real people solve this problem exactly,
and for that reason alternative route generation algorithms are desirable. Somewhat in-
terestingly, it turns out that finding alternative routes is considerably more difficult than
finding the fastest path alone.

One option is to systematically compute the second-fastest, third-fastest, ..., k-fastest
path. This is however much more compute-intensive than computing the shortest path
alone (Yen, 1971; Perko, 1986; Clarke et al., 1963; Chabini, 1998a). In addition, most
of these paths are not plausible for the real world. Often, they are just small variations
of already existing paths, with for example leaving the freeway and returning to it at
the same entry/exit point. Only very few of the paths generated in this way are true
innovations.

As an alternative, one could attempt to generate routes heuristically, instead of system-
atically. This is also not a simple problem (Park and Rilett, 1997). Typical heuristic
approaches start searching in the geographic direction of the destination, and in conse-
quence often miss freeway connections which demand some backtracking in order to
reach them. More sophisticated approaches will be necessary here.

One may think that heuristic approaches might also be desirable for computational speed
reasons in very large road networks. In practice, we have never found this to be a prob-
lem. In a typical transportation planning network, with a size of about 10 000 nodes and
20 000 links, a straightforward implementation of the time-dependent Dijkstra algorithm
allows the computation of 10 000 new routes per second on a typicaly 500 MHz CPU
(Jacob et al., 1999), which is fast enough for practical cases. In much larger networks,

1To be entirely precise, one would have to say that the route is best based on the time-averaged information
that the router uses.

19-1

19.4. Logit for routes

A B

1

2
3

Figure 19.1: Correlations between paths

this may no longer be sufficient. In such cases, some hierarchical pre-processing can
help. This is a topic of ongoing research.

19.4 Logit for routes

Another major problem of our approach is that all travellers with the same situation will
be put on the same route, that is, there is no “spread” of solutions.

A typical way to obtain some spread of solutions is to use a logit approach. Remember,
a logit means that the probability of picking a solution i is set to

pi =
eβ Ui

∑

j eβ Uj
, (19.1)

where Ui is the utility of solution i. When the utility of a solution is high, then it will be
selected with a high probability.

For routes, utility is negative, and it becomes more negative the longer the driving time.
For example, one could set Uj = −Tj , where Tj is the driving time for route choice j.

A major problem with this is that it is not easy to generate routing alternatives. Two
approaches, and their drawbacks, are:

• It is possible to compute k-shortest paths.

Then, it is problematic to use logit on routes (e.g. (Cascetta and Papola, 1998)).
This is actually easy to see: In Fig. 19.1, there are three paths from A to B. Assume
they have all the same travel time. The plausible solution then is that path 1 is used
with probability 0.5, and paths 2 and 3 are used with probability 0.25 each.

The logit solution will however be that all three paths are used with equal proba-
bilities 1/3.

The example can be made arbitrarily pathologic by adding more “short” alterna-
tives.

It is however possible to use more sophisticated models than the logit models
(Cascetta and Papola, 1998).

• Another method is to only generate routes which are “real” alternatives (Park and
Rilett, 1997). This is however not an easy problem in itself.

And the problem with the logit still applies, although to a weaker extent.

19.5 Planning for given arrival time

[[todo]]

file: book.tex, p.19-2 January 31, 2005

19.6. Mental maps

19.6 Mental maps

[[todo]]

file: book.tex, p.19-3 January 31, 2005

Chapter 20

Non-car modes of
transportation

20.1 Routing

Another problem is how to include public transportation. It is possible to do this in the
router, that is, the router should figure out if, say, public transportation or car is a better
route for a certain trip (Barrett et al., 2000).

An alternative is to include the mode choice into the activities generation, i.e. where we
have adjusted the trip starting time in the past.

20.2 Simulation

Realistic micro-simulations also need to simulate other modes of transportation besides
the car, such as buses, light rail, walking, bicycle. This makes micro-simulation codes
considerably more complicated to program and to run, the latter in particular since all the
additional information needs to be coded into file, which need to be interpreted correctly
by the simulation.

There is however a trick which considerably simplifies the situation in many cases: As
long as there is no congestion and no interaction between modes, modes can be treated as
“following there schedule”. That is, without congestion a subway or a bus will just depart
and arrive as noted in the schedule, and a pedestrian will walk exactly with the expected
speed. Since this means predictable behavior, such trips or legs can be preplanned by
the router, and the microsimulation just follows the plan. More technically, if a car-
only microsimulation encounters a leg which is not car-based, it would process the leg
according to departure and arrival information from the plan. In this way, the problem of
multi-modal traffic is delegated to the router.

The situation changes when the other modes suffer from congestion, or when there is
interaction between modes. Examples of the former are pedestrian congestion in sub-
way stations, or overcrowded buses. An example of the latter is the interaction between
pedestrians and cars on crosswalks. In those cases, a direct implementation of other
modes into the micro-simulation will be necessary. Some elements, such as buses or
light rail stuck in traffic, can be modeled within the queue model. For other aspects,
more realistic micro-simulations will be necessary.

In such a more realistic micro-simulation, some aspects can in fact be modeled without
too much effort. For example, buses are treated similarly to cars (i.e. they follow a route),

20-1

20.2. Simulation

with the distinction that every time they approach a bus stop, they move into the right lane
and stop there. A light rail (“Tram”) is modelled essentially a bus but with very strong
lane restrictions, that is, it has to stay on its tracks. If the tracks are embedded in regular
traffic, then the tram will just do standard car following; if the tracks are separate, then
the tram will run at free speed except for stops.

Other interactions are more difficult to model and need additional or separate models.
For example, pedestrian congestion follows different rules than traffic congestion; there
are computer codes which simulate this. One could connect such a pedestrian code with
a traffic simulation code. Major implementation problems occur when such simulations
need to be coupled, for example, when pedestrians crossing a street interact with the car
traffic on the street. Little technology seems to be known to couple these simulations
without having to rewrite at least one of them to integrate it into the code of the other.
Our own expectation is that for the foreseeable future enough progress can be made by
working on other aspects of the problem, until some better technology becomes available.
Clearly, other areas of simulation have similar problems.

file: book.tex, p.20-2 January 31, 2005

Chapter 21

Demand

Once the synthetic population is generated, all other modules act directly on the agents.
What is necessary here is a procedure that as a result generates travel demand, i.e. the
wish of people to move from one location to another. As already said in 2.2, [[check]]
two important methods here are: (i) origin-destination matrices, and (ii) activity-based
demand modeling.

21.1 Origin-destination matrices

As also already said in Sec. 2.2, 2.2, [[check]] origin-destination (OD) matrices contain
the number of trips from n starting points to n destinations; it is therefore an n×n matrix.
As also said, these matrices can refer to arbitrary time periods; these days, one typically
uses “morning peak” and “afternoon peak” periods.

There are many ways to obtain origin-destination matrices. In transportation planning,
the typical methods is to anchor them to the land use, and to use behavioral “rates” to
determine trip frequencies (e.g. (Lohse, 1997)). Residential areas “produce” so and so
many trips per capita; commercial areas “attract” so and so many trips per capita. The
matching of origins to destinations is done via gravity methods, i.e. the probability of a
trip to go to a certain destination is some function of the attraction of this destination and
the generalized cost of getting there.

Another method is to derive OD matrices from traffic counts. Here, one collects counts on
as many links of the transportation network as possible, and then uses statistical estima-
tors to derive OD matrices from this (e.g. (Cascetta et al., 1993)). Statistical estimators
are necessary because the problem is under-determined. Sometimes, the two approaches
are combined, i.e. the historical OD-matrices are used as starting points, but they are
corrected via traffic counts (DYNAMIT www page, accessed 2003).

21.2 Activities-based demand modeling

The problem with OD matrices is that they fix the travel demand once they have been
derived. Thus, they fail to generate the effect of “induced” travel, which usually happens
when one expands capacity. For example, a new freeway may induce people to make
more trips, thus increasing overall travel. This means that one needs a demand generation
method that is elastic with changing supply.

Activity-based methods attempt to achieve this by generating directly what people do
during a day and where; transportation demand is thus derived by connecting activities

21-1

21.2. Activities-based demand modeling

HOME

WORK
LUNCH

WORK

DOCTOR

SHOP

HOME

HUSBAND’S ACTIVITIES

Figure 21.1: Example of a sequence of activities for a person in Portland/Oregon. From
R.J. Beckman.

at different locations (Fig. 21.1). There are at least two different methods to generate
activities: econometric, and heuristic.

In principle, one can derive OD-matrices from activities, and many groups do this be-
cause it connects activity-based demand generation to existing models. This has, how-
ever, to be done with care since one loses important information. An important example
of lost information are trip chains, where a person may go to work, may go shopping,
and then home. If the person gets stuck on the way to shopping, the trip from shop-
ping to home will take place later than anticipated; such effects do not get picked up in
the OD matrix. Also, a universal reaction to changes in congestion seems to be to add
or suppress intermediate stops at home, i.e. to replace home-work-home-shop-home by
home-work-shop-home or vice versa. One would have to be careful to not suppress these
possibilities when translating the trip chains into OD-matrices.

Econometric [[I have discrete choice theory now in “background”]]

[[dennoch k”onnte man fast alles hier lassen]]

[[need to sort out the βi]]

Econometric methods (Ben-Akiva and Lerman, 1985; Domencich and McFadden, 1975)
are based on random utility theory, which will be explained in more detail in Chap. 29.
An often-used choice model is the so-called logit model. If there are several options
i = 1..N , then the logit model predicts that the probability to select option i is

pa,i =
eβ Va,i

∑

j eβ Va,j
, (21.1)

file: book.tex, p.21-2 January 31, 2005

21.2. Activities-based demand modeling

where Va,i is the utility (“score”) of option i for a particular individual a, and β is a
parameter characterizing randomness. This equation was already used in Sec. 14.3, and
the consequence of varying β was discussed there.

[[have used U in dep time choice. should use same notation as ben-akiva]]

For demand generation, one needs to make Va,i dependent on the attributes of the options,
and on the properties of the individual under consideration. A typical assumption is to
make this dependence linear:

Vi = β1 xa,1 + ... + βk xa,k + βk+1 xi,k+1 + ... , (21.2)

[[now I have used β twice, in slightly different meanings.]]

where the xa,j , j ≤ k are person attributes, and the xi,j , j > k are option attributes. For
example, one could have

[[find one with bus, car, income]]

Utility theory assumes that the utility a person i sees in a certain action a is composed of
a measurable and a non-measurable part:

U(i, a) = V (i, a) + η(i, a) . (21.3)

Under a variety of assumptions, e.g. that η is a random variable and follows a certain
distribution, this leads to an equation for the probability to choose action a.

An often-used discrete choice model is the so-called logit model. Its main assumptions
are:

• Individuals and actions are characterized by certain attributes, that is, two indi-
viduals with the same attributes will be modeled by the same equation. This also
means that i and a are replaced by a vector of attributes, xi,a.

• The measurable part of the utilities, V , is a linear function of the attributes, i.e.
V = β · x.

• The random variables η do not depend on the attributes xi,a, and they are Gumbel
distributed, i.e. the generating function is

F (η) = exp[−e−µ (η−γ)] , (21.4)

which results in the distribution

f(η) = µ e−µ (η−γ) exp[−e−µ (η−γ)] (21.5)

γ is a location parameter, and µ is a positive scale parameter. This distribution
is somewhat similar to an asymmetric version of the normal distribution; its main
advantage is that it leads to a closed form solution of the choice model.

With a logit model, the probability to choose the bus in a decision between bus and car
could look as follows:

P (bus) =
exp[−βb tb]

exp[−βb tb] + exp[−βc tc]
. (21.6)

tb and tc are the respective travel times the trip would take by bus or by car. βb and βc are
factors which weigh time in the bus vs. time in the car, i.e. they are “values of time”. For
example, one could say that time in the bus is more productive than in the car because one
can read, resulting in βb > βc. However, usually the car is faster, compensating for this
effect. – Note that Eq. 21.6 has the same functional form as a Boltzmann distribution.

file: book.tex, p.21-3 January 31, 2005

21.2. Activities-based demand modeling

The βb and βc are estimated from surveys, for example via maximum likelihood methods.
A sample of the population with different car and bus travel times is asked about their
choices, and the βx are determined such that the probability according to Eq. 21.6 to
re-generate the survey is maximized.

For applications inside a transportation simulation, this becomes a lot more complicated.
An implementation for Portland/Oregon (Bowman, 1998) determines activity patterns
(for example home-work-home or home-work-shop-home), activity timing, activity lo-
cations, mode choice, etc. As long as one wants to treat all alternatives simultaneously,
this has the problem that the number of coefficients grows exponentially. For example, if
one has five activities patterns, and three modes of transportation, this means 15 different
choices and thus 15 parameters. If however one does not treat the alternatives simultane-
ously, one can make mistakes: For example, a person could have a strong preference for
a pattern home-work-home-shop-home when averaged over all possible circumstances,
but may prefer home-work-shop-home when really good bus service is available. When
choosing first the pattern and then the transportation mode, this information gets misrep-
resented.

Heuristic methods The econometric method has a solid theoretical foundation, and it
is currently the only method that is functional for transportation simulations. However,
sometimes it seems like it does not really represent how people behave. The discrete
choice method pretends that people calculate utilities for all possible alternatives and
then choose the alternative with the highest utility. (Remember that the randomization
just comes in because of “unobserved attributes”.) However, people do not do this. For
example, they may discard an activity pattern home-shop-work-home right away without
calculating the utilities of all possible constellations.

Heuristic methods attempt to better represent such human planning processes. For ex-
ample, research shows that humans make their planning decisions on many time scales
simultaneously (Doherty and Axhausen, 1998). The time for work is usually alloted way
in advance, shopping may be planned a day in advance, and then the whole schedule may
be changed short-term because the child gets sick. Prototypes for such models exist, but
they seem currently far away from being operational in any meaningful way.

It should be noted that heuristic and econometric methods can be combined. For example,
one could use a heuristic method to determine which decisions are made how far in
advance, and use an econometric method to make the actual decision. Or the econometric
method could calculate the probability for each activities pattern, the heuristic method
could decide to retain the two most important patterns, the econometric method than
could calculate the utilities for these two patterns for all mode and time combinations,
etc.

Summary of activities-based methods Activities-based demand generation models
are a promising method for transportation simulation. Some implementations of these
methods have reached the state where they can be used for actual applications (Bradley,
1997). However, so far there are only very few results about coupling these methods
together with transportation micro-simulations, as intended with the transportation plan-
ning simulation packages described in this article. The only functional system that we
are aware of uses a very simple method of demand generation; it is described in the ap-
pendix. But we are optimistic that research in the next couple of years will expand the
boundaries in these areas enormously.

file: book.tex, p.21-4 January 31, 2005

Chapter 22

Feedback

22.1 Introduction

A major shortcoming of the departure time choice of Chap. 14 is that the trip time is
treated as being independent from the starting time. This is obviously not realistic. There
are many ways to improve this. Two possibilities are described in the following. In addi-
tion, the difference between day-to-day and within-day replanning is shortly discussed.

22.2 Global trip times table

[[I may have this now in the do-it-yourself part.]]

Recall that the missing information is the expected trip time for a given starting time.
One option is to generate a global trip times table, i.e. for each time slice and each
origin-destination pair the information about the trip time for a departure time within
that time slice. This table would be generated from actual performance of simulated
travelers/vehicles, that is, all travelers/vehicles departing during the time slice from the
same starting location to the same destination would be included, for example by av-
eraging. The table would then be used by the activities generation module to provide
estimated trip time information.

The main disadvantages of this approach are:

• In a large network, there are easily several hundred thousand links, corresponding
to several hundred thousand potential origins/destinations. That is, for a single time
slice, our table would have more than 105 × 105 = 1010 entries, corresponding to
40 GByte per time slice, which is clearly too much for most current computing
environments.

• Going along with the last is that in such a network, with a realistic number of 107

travelers, most entries of the trip time table would be left empty, implying some
other method to fill the missing cells.

Implementation
For our simulations, this could be implemented as follows:

From the events file, generate a table of 5min-by-5min origin-destination trip times. That
is, for each origin-destination pair and for each 5min bin, you average the travel times of
vehicles during that 5min bin.

22-1

22.3. Agent data base

For example, if there were, between 8:00 and 8:05 (planned departure times), two vehicles
traveling from link 100 to link 1900, and the trip took them 30 and 32minutes, respectively,
then the expected trip time for a departure between 8:00 and 8:05 is 31 minutes.

Generating this table would concern the system integration specialists.

That table now is read into the activities generation module, and the departure time choice
is based on that information.

This would concern the route/acts gen specialists.

If there is information missing between time bins, then interpolate. If there is information
missing for early or late times, think about some intelligent solution.

22.3 Agent data base

An approach which seems in general much more robust is the use of an agent database.
Here, we mean that each traveler/agent keeps a memory of options that he/she tried out,
and some measure of the performance of each option. This approach is similar to clas-
sifier systems, genetic algorithms, or reinforcement learning, with the difference that the
number of agents, typically several millions, is much higher in large scale transportation
simulations than in typical applications of the mentioned areas.

The simulation would start with each agent having one or more options, which all have
preliminary scores. Each iteration would consist of the following steps:

• Each agent would chose an option according to the scores, for example taking the
option with the best score.

• The simulation would be carried out.

• Each agent would note the new score of the option that it just carried out.

In addition, it is necessary to inject new options into the system. For example, in each
iteration one could give new options to a fraction of the agents, and then “force” those
agents to immediately try them out. If these options lead to bad scores, the agents will
rarely or never try them again.

Although such an approach is easy to state in principle, it is difficult to implement in
practice because of performance limitations. Using a relational database such as MySQL
is possible but slow with several millions of agents. Also, although a relational database
provides support such as indexing and sorting, it’s emphasis is on consistent and secure
operation, not on computational speed. This is a subject of active research.

Implementation
With respect to our practical examples, the easiest solution is to not worry about the
routing choice, but remember starting times and performance only. That is, after a simu-
lation run one would parse the events file, and for each agent note the starting time and
the corresponding trip time. That information would be merged together with pre-existing
information into some agent data base.

(One could for example do a flat file of agent performance for each iteration; the departure
time choice module would then read all these files.)

For each agent that does departure time choice, the experienced trip times would be used
as a base. For departure times outside the experienced interval, free speed travel times
could be used. For departure times in between experienced travel times, some kind of
interpolation (e.g. linear) could be used.

Note that agent memory needs to age, otherwise agents may remember information that
is no longer relevant. One possibility would be to only read the agent experience from the
last 10 iterations.

file: book.tex, p.22-2 January 31, 2005

22.4. Day-to-day vs. within-day re-planning

This would again be a cooperation between the systems integration specialists and the
route/acts gen specialists.

22.4 Day-to-day vs. within-day re-planning

Day-to-day replanning assumes, in a sense, “dumb” particles. Particles follow routes, but
the routes are pre-computed, and once the simulation is started, they cannot be changed,
for example to adapt to unexpected congestion and/or a traffic accident. In other words,
the strategic part of the intelligence of the agents is external to the micro-simulation. In
that sense, such micro-simulations can still be seen as, albeit much more sophisticated,
version of the link cost function ca(xa) from static assignment, now extended by influ-
ences from other links and made dynamic throughout time. And indeed, many dynamic
traffic assignment (DTA) systems work exactly in that way (e.g. (Bottom, 2000)). In
terms of game theory, this means that we only allow unconditional strategies, i.e. strate-
gies which cannot branch during the game depending on the circumstances.

Another way to look at this is to say that one assumes that the emergent properties of
the interaction have a “slowly varying dynamics”, meaning that one can, for example,
consider congestion as relatively fixed from one day to the next. This is maybe realistic
under some conditions, such as commuter traffic, but clearly not for many other con-
ditions, such as accidents, adaptive traffic management, impulsive behavior, stochastic
dynamics in general, etc. It is therefore necessary that agents are adaptive (intelligent)
also on short time scales not only with respect to lane changing, but also with respect
to routes and activities. It is clear that this can be done in principle, and the importance
of it for fast relaxation (Esser, 1998a; Rickert, 1998) and for the realistic modeling of
certain aspects of human behavior (Axhausen, 1990; Doherty and Axhausen, 1998) has
been pointed out.

file: book.tex, p.22-3 January 31, 2005

Chapter 23

Other Modules

freight

emissions

housing

land use

23-1

Chapter 24

Better file formats

24.1 Introduction

In the longer run, the file formats used in the “do-it-yourself” part are not very robust.
The main problem is that with each change of the file format, several pieces of the simu-
lation package need to be adapted consistently. Two ways to improve the situation are
(a) use the header line not just for consistency checking, but to obtain the information
of the content of each column; (b) use XML (extended markup language). This will be
described in the following.

24.2 Use header line

In the “do-it-yourself” part, the header line was only used for consistency checking, for
example for the nodes file

// process header line:
for (int ii=1; ii<=NTOKENS; ++ii) {

inFile >> aString ;
switch(ii) {
case 1: assert(aString=="ID") ; break ;
case 2: assert(aString=="EASTING") ; break ;
case 3: assert(aString=="NORTHING") ; break ;
}

}

A more robust alternative would be to use the header line as an indication of what each
column contains. Processing of the header line would essentially become

// process header line:
for (int ii=1; ii<=NTOKENS; ++ii) {

inFile >> aString ;
if (aString=="ID") {

column_id=ii ;
} else if (aString=="EASTING") {

column_east=ii ;
...
}

}

These columns would later be used during the file reading, for example via

// main loop:
while(!inFile.eof()) {

...
for (int ii=1; ii<=NTOKENS ; ii++) {

if (ii==column_id) {
inFile >> nodeId ;

24-1

24.3. XML

} else (ii==column_east) {
inFile >> xCoord ;

...
}

}
}

This is in fact not much more work to program, and considerably more robust. The
main reason why it was not introduced ealier is that it does not solve one of the main
inconveniences, which is the parsing of the route-plans file. The problem with route-
plans is that they are not column-oriented, and they cannot be, since the number of nodes
in a route is changing from one route to the next. The next section discusses a robust way
out of this dilemma.

24.3 XML

XML (extendsible markup language) is a system to describe unstructured data for com-
puters. The main idea is that each item of the data is described right where it shows up
instead of somewhere else in the file or even outside it. An XML nodes file would look
like
<nodes>
<node id="15" x="123.45" y="678.9" />
...
</nodes>

That is, the information of where the id or the x/y coordinates are is repeated for each
entry. This makes for larger files and slower parsing speeds, but the disadvantages are
not that big:

• Since this is a standardized method, fast parsers are available.

• The overhead is not more than a factor of two.

• If keywords are repeated often (as they are for our files), compression tools will
find that out so that compressed XML files are not much larger than compressed
files without XML tags.

In general, parsers of XML files will not break when the input format is extended. For
example, when additional keyword-value-pairs are added, they will just be ignored.

The main advantage of XML files is for the description of travelers’ plans, where one
now does not need all those awkward conventions any more. A route-plans file will for
example look like
...
<person id="34">
<trip starttime="8h03" dplink="123" arlink="456" eta="8h33">
<nodes> 23 34 63 62 24 </nodes>
</trip>
</person>
...

This describes a trip from link 123 to link 456, with a starting time at 8h03, and an
estimated arrival time at 8h33.

Further information, such as deomgraphic data or activities, can now just be added to the
same file structure, e.g.
...
<person id="34" income="10000">
<act type="h" link="123" etime="8h03" />
<trip mode="car" starttime="8h03" dplink="123" arlink="456" eta="8h33" >
<nodes> 23 34 63 62 24 </nodes>
</trip>

file: book.tex, p.24-2 January 31, 2005

24.4. Some discussion

<act type="w" link="456" duration="8h" />
<trip mode="car" starttime="16h33" dplink="123" arlink="456" eta="17h00">
<nodes> 24 62 63 34 23 </nodes>
</trip>
<act type="h" link="123" />
</person>
...

This would describe a person with id 34 and an income of 10000, which, at the beginning
of the simulation, is doing at “at-home” activity, at link 123. At 8h03, the person starts
driving to work, where she expects to be at 8h33. The person works for 8 hours, and then
drives back home.

This is in principle a very flexible concept. In particular, there are no longer different
files for activities, trip requests, (route-)plans, etc; everything is just one file format. For
example, the router request (formerly “trips file”) would just be
...
<person id="34" income="10000">
<act type="h" link="123" etime="8h03" />
<trip mode="car" dplink="123" arlink="456"/>
<act type="w" link="456" duration="8h" />
<trip mode="car" dplink="123" arlink="456"/>
<act type="h" link="123" />
</person>
...

and the router would calculate all trip starting times, estimated arrival times, and se-
quences of routes.

As an alternative, there could be separate scheduling and routing modules.

The main issue here is that there is absolutely no standardization available yet. It is
neither clear which concepts are simple in terms of modeling and simulation, nor which
concepts are faithful in terms of human behavior. We will return to some of the latter in
Chap. ??. [[check ... doherty acts scheduling]]

24.4 Some discussion

Why has the do-it-yourself package of this text not used XML? The main problem is that
the parsers are not yet standardized. For example, for unix the C++ computer by itself is
no longer sufficient; one needs to add some additional software. We expect the situation
to be similar under other operating systems. In addition, the situation with parsers still is
in a state of flux. That is, a parser that works today may not work any longer is a couple
of months from now. For all other pieces of our package, we expect that it will work on
standard systems for many years into the future.

For all those reasons, this text does not use XML files, but standard text files. However,
there is a public domain version of our work, currently at [[where]], which uses XML
and which can be used as a starting point for further development.

file: book.tex, p.24-3 January 31, 2005

Chapter 25

Parallel computing

25.1 Introduction

As we have seen, the computational requirements for a large scale simulation can be
rather large, and eventually waiting for a result can take too much time. Using parallel
computers is a way to improve the situation. When done right, using 100 parallel com-
puters can reduce the waiting time by a factor of 100, for example from 100 days to one.
Aspects of this are described in the following.

Note: The following still refers to cellular automata simulation methods. The spirit of
the results is however also valid for the queue simulation used in the class.

[[the following (commented out) needs to be adapted/included/sorted]]

25.2 Micro-simulation parallelization: Domain decom-
position

An important advantage of the CA is that it helps with the design of a parallel and local
simulation update, that is, the state at time step t + 1 depends only on information from
time step t, and only from neighboring cells. (To be completely correct, one would have
to consider our sub-time-steps.) This means that domain decomposition for paralleliza-
tion is straightforward, since one can communicate the boundaries for time step t, then
locally on each CPU perform the update from t to t + 1, and then exchange boundary
information again.

Domain decomposition means that the geographical region is decomposed into several
domains of similar size (Fig. 25.1), and each CPU of the parallel computer computes the
simulation dynamics for one of these domains. Traffic simulations fulfill two conditions
which make this approach efficient:

• Domains of similar size: The street network can be partitioned into domains of
similar size. A realistic measure for size is the accumulated length of all streets
associated with a domain.

• Short-range interactions: For driving decisions, the distance of interactions be-
tween drivers is limited. In our CA implementation, on links all of the Transims-
1999 rule sets have an interaction range of 37.5 meters (= 5 cells) which is small
with respect to the average link length. Therefore, the network easily decomposes
into independent components.

25-1

25.3. Graph partitioning

We decided to cut the street network in the middle of links rather than at intersections
(Fig. 25.2); THOREAU does the same (Niedringhaus et al., 1994). This separates the
traffic complexity at the intersections from the complexity caused by the parallelization
and makes optimization of computational speed easier.

In the implementation, each divided link is fully represented in both CPUs. Each CPU
is responsible for one half of the link. In order to maintain consistency between CPUs,
the CPUs send information about the first five cells of “their” half of the link to the other
CPU. Five cells is the interaction range of all CA driving rules on a link. By doing this,
the other CPU knows enough about what is happening on the other half of the link in
order to compute consistent traffic.

The resulting simplified update sequence on the split links is as follows (Fig. 25.3):1

• Change lanes.

• Exchange boundary information.

• Calculate speed and move vehicles forward.

• Exchange boundary information.

The Transims1999 microsimulation also includes vehicles that enter the simulation from
parking and exit the simulation to parking, and logic for public transit such as buses.
These additions are implemented in a way that no further exchange of boundary infor-
mation is necessary.

The implementation uses the so-called master-slave approach. Master-slave approach
means that the simulation is started up by a master, which spawns slaves, distributes the
workload to them, and keeps control of the general scheduling. Master-slave approaches
often do not scale well with increasing numbers of CPUs since the workload of the master
remains the same or even increases with increasing numbers of CPUs. For that reason, in
Transims1999 the master has nearly no tasks except initialization and synchronization.
Even the output to file is done in a decentralized fashion. With the numbers of CPUs that
we have tested in practice, we have never observed the master being the bottleneck of the
parallelization.

The actual implementation was done by defining descendent C++ classes of the C++
base classes provided in a Parallel Toolbox. The underlying communication library has
interfaces for both PVM (Parallel Virtual Machine (PVM www page, accessed 2004))
and MPI (Message Passing Interface (MPI www page, accessed 2005)). The toolbox
implementation is not specific to transportation simulations and thus beyond the scope of
this paper. More information can be found in (Rickert, 1998).

25.3 Graph partitioning

Once we are able to handle split links, we need to partition the whole transportation
network graph in an efficient way. Efficient means several competing things: Minimize
the number of split links; minimize the number of other domains each CPU shares links
with; equilibrate the computational load as much as possible.

One approach to domain decomposition is orthogonal recursive bi-section. Although less
efficient than METIS (explained below), orthogonal bi-section is useful for explaining
the general approach. In our case, since we cut in the middle of links, the first step is
to accumulate computational loads at the nodes: each node gets a weight corresponding

1Instead of “split links”, the terms “boundary links”, “shared links”, or “distributed links” are sometimes
used. As is well known, some people use “edge” instead of “link”.

file: book.tex, p.25-2 January 31, 2005

25.3. Graph partitioning

CPU link

CPU 2

CPU 3

CPU 1
CPU 2

CPU 1

Master Slave

edge
boundary edge

intersection CPU
tile boundary

CPU 0 CPU 0

Figure 25.1: Domain decomposition of transportation network. Left: Global view. Right:
View of a slave CPU. The slave CPU is only aware of the part of the network which is
attached to its local nodes. This includes links which are shared with neighbor domains.

CPN 1
CPN 2

boundary boundary

active Range [0.5, 1.0]

localremote

0.0 1.00.5

active Range [0.0, 0.5]

remotelocal

Figure 25.2: Distributed link.

to the computational load of all of its attached half-links. Nodes are located at their
geographical coordinates. Then, a vertical straight line is searched so that, as much as
possible, half of the computational load is on its right and the other half on its left. Then
the larger of the two pieces is picked and cut again, this time by a horizontal line. This
is recursively done until as many domains are obtained as there are CPUs available, see
Fig. 25.4. It is immediately clear that under normal circumstances this will be most
efficient for a number of CPUs that is a power of two. With orthogonal bi-section, we
obtain compact and localized domains, and the number of neighbor domains is limited.

Another option is to use the METIS library for graph partitioning (see (www-users.cs.umn.edu/˜karypis/metis/,
accessed 2003) and references therein). METIS uses multilevel partitioning. What that
means is that first the graph is coarsened, then the coarsened graph is partitioned, and
then it is uncoarsened again, while using an exchange heuristic at every uncoarsening
step. The coarsening can for example be done via random matching, which means that
first edges are randomly selected so that no two selected links share the same vertex, and
then the two nodes at the end of each edge are collapsed into one. Once the graph is
sufficiently collapsed, it is easy to find a good or optimal partitioning for the collapsed

file: book.tex, p.25-3 January 31, 2005

25.3. Graph partitioning

At beginning of time step:

CPU 1

CPU 2

CPU 1

CPU 2

After lane changes:

CPU 1

CPU 2

After boundary exchanges (parallel implementation):

CPU 1

CPU 2

CPU 1

CPU 2

After movements:

After 2nd exchange of boundaries:

Figure 25.3: Example of parallel logic of a split link with two lanes. The figure shows the
general logic of one time step. Remember that with a split link, one CPU is responsible
for one half of the link and another CPU is responsible for the other half. These two
halves are shown separately but correctly lined up. The dotted part is the “boundary re-
gion”, which is where the link stores information from the other CPU. The arrows denote
when information is transferred from one CPU to the other via boundary exchange.

graph. During uncoarsening, it is systematically tried if exchanges of nodes at the bound-
aries lead to improvements. “Standard” METIS uses multilevel recursive bisection: The
initial graph is partitioned into two pieces, each of the two pieces is partitioned into two
pieces each again, etc., until there are enough pieces. Each such split uses its own coars-
ening/uncoarsening sequence. k-METIS means that all k partitions are found during a

file: book.tex, p.25-4 January 31, 2005

25.4. Adaptive Load Balancing

single coarsening/uncoarsening sequence, which is considerably faster. It also produces
more consistent and better results for large k.

METIS considerably reduces the number of split links, Nspl, as shown in Fig. 25.5.
The figure shows the number of split links as a function of the number of domains for
(i) orthogonal bi-section for a Portland network with 200 000 links, (ii) METIS decom-
position for the same network, and (iii) METIS decomposition for a Portland network
with 20 024 links. The network with 200 000 links is derived from the TIGER census
data base, and will be used for the Portland case study for TransimsṪhe network with
20 024 links is derived from the EMME/2 network that Portland is currently using. An
example of the domains generated by METIS can be seen in Fig. 25.6; for example, the
algorithm now picks up the fact that cutting along the rivers in Portland should be of
advantage since this results in a small number of split links.

We also show data fits to the METIS curves, Nspl = 250 p0.59 for the 200 000 links
network and Nspl = 140 p0.59−140 for the 20 024 links network, where p is the number
of domains. We are not aware of any theoretical argument for the shapes of these curves
for METIS. It is however easy to see that, for orthogonal bisection, the scaling of Nspl

has to be ∼ p0.5. Also, the limiting case where each node is on a different CPU needs
to have the same Nspl both for bisection and for METIS. In consequence, it is plausible
to use a scaling form of pα with α > 0.5. This is confirmed by the straight line for
large p in the log-log-plot of Fig. 25.5. Since for p = 1, the number of split links Nspl

should be zero, for the 20 024 links network we use the equation A pα − A, resulting in
Nspl = 140 p0.59 − 140 . For the 200 000 links network, the resulting fit is so bad that
we did not add the negative term. This leads to a kink for the corresponding curves in
Fig. 25.12.

Such an investigation also allows to compute the theoretical efficiency based on the graph
partitioning. Efficiency is optimal if each CPU gets exactly the same computational load.
However, because of the granularity of the entities (nodes plus attached half-links) that
we distribute, load imbalances are unavoidable, and they become larger with more CPUs.
We define the resulting theoretical efficiency due to the graph partitioning as

edmn :=
load on optimal partition
load on largest partition

, (25.1)

where the load on the optimal partition is just the total load divided by the number of
CPUs. We then calculated this number for actual partitionings of both of our 20 024 links
and of our 200 000 links Portland networks, see Fig. 25.7. The result means that, ac-
cording to this measure alone, our 20 024 links network would still run efficiently on
128 CPUs, and our 200 000 links network would run efficiently on up to 1024 CPUs.

25.4 Adaptive Load Balancing

In the last section, we explained how the street network is partitioned into domains that
can be loaded onto different CPUs. In order to be efficient, the loads on different CPUs
should be as similar as possible. These loads do however depend on the actual vehicle
traffic in the respective domains. Since we are doing iterations, we are running similar
traffic scenarios over and over again. We use this feature for an adaptive load balancing:
During run time we collect the execution time of each link and each intersection (node).
The statistics are output to file. For the next run of the micro-simulation, the file is fed
back to the partitioning algorithm. In that iteration, instead of using the link lengths
as load estimate, the actual execution times are used as distribution criterion. Fig. 25.8
shows the new domains after such a feedback (compare to Fig. 25.4).

To verify the impact of this approach we monitored the execution times per time-step
throughout the simulation period. Figure 25.9 depicts the results of one of the iteration

file: book.tex, p.25-5 January 31, 2005

25.4. Adaptive Load Balancing

Figure 25.4: Orthogonal bi-section for Portland 20 024 links network.

100

1000

10000

100000

1 4 16 64 256 1024

nu
m

be
r

of
 s

pl
it

ed
ge

s

number of CPUs

orth. bisec. (200k links)
METIS (200k links)

250*x**0.59
METIS (20k links)
140*x**0.59 - 140

Figure 25.5: Number of split links as a function of the number of CPUs. The top curve
shows the result of orthogonal bisection for the 200 000 links network. The middle curve
shows the result of METIS for the same network – clearly, the use of METIS results
in considerably fewer split links. The bottom curve shows the result for the Portland
20 024 links network when again using METIS. The theoretical scaling for orthogonal
bisection is Nspl ∼

√
p, where p is the number of CPUs. Note that for p → Nlinks, Nspl

needs to be the same for both graph partitioning methods.

series. For iteration 1, the load balancer uses the link lengths as criterion. The execu-
tion times are low until congestion appears around 7:30 am. Then, the execution times
increase fivefold from 0.04 sec to 0.2 sec. In iteration 2 the execution times are almost in-
dependent of the simulation time. Note that due to the equilibration, the execution times

file: book.tex, p.25-6 January 31, 2005

25.4. Adaptive Load Balancing

Figure 25.6: Partitioning by METIS. Compare to Fig. 25.4.

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256 1024

m
ax

 e
ffi

ci
en

cy

number of CPUs

e2 network (20k links)

OB
METIS

METIS (k-way)

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256 1024

m
ax

 e
ffi

ci
en

cy

number of CPUs

allstr network (200k links)

OB
METIS

METIS (k-way)

Figure 25.7: Top: Theoretical efficiency for Portland network with 20 024 links. Bottom:
Theoretical efficiency for Portland network with 200 000 links. “OB” refers to orthogonal
bisection. “METIS (k-way)” refers to an option in the METIS library.

for early simulation hours increase from 0.04 sec to 0.06 sec, but this effect is more than
compensated later on.

The figure also contains plots for later iterations (11, 15, 20, and 40). The improvement
of execution times is mainly due to the route adaptation process: congestion is reduced
and the average vehicle density is lower. On the machine sizes where we have tried it (up
to 16 CPUs), adaptive load balancing led to performance improvements up to a factor of

file: book.tex, p.25-7 January 31, 2005

25.5. Performance prediction for the Transims micro-simulation

Figure 25.8: Partitioning after adaptive load balancing. Compare to Fig. 25.4.

Figure 25.9: Execution times with external load feedback. These results were obtained
during the Dallas case study (Beckman et al, 1997; Rickert, 1998).

1.8. It should become more important for larger numbers of CPUs since load imbalances
have a stronger effect there.

25.5 Performance prediction for the Transims micro-
simulation

It is possible to systematically predict the performance of parallel micro-simulations (e.g.
(Jakobs and Gerling, 1993; Nagel and Schleicher, 1994)). For this, several assumptions
about the computer architecture need to be made. In the following, we demonstrate the
derivation of such predictive equations for coupled workstations and for parallel super-
computers.

The method for this is to systematically calculate the wall clock time for one time step of
the micro-simulation. We start by assuming that the time for one time step has contribu-
tions from computation, Tcmp, and from communication, Tcmm. If these do not overlap,
as is reasonable to assume for coupled workstations, we have

T (p) = Tcmp(p) + Tcmm(p) , (25.2)

where p is the number of CPUs.2

Time for computation is assumed to follow

Tcmp(p) =
T1

p
·
(

1 + fovr(p) + fdmn(p)
)

. (25.3)

2For simplicity, we do not differentiate between CPUs and computational nodes. Computational nodes can
have more than one CPU — an example is a network of coupled PCs where each PC has Dual CPUs.

file: book.tex, p.25-8 January 31, 2005

25.5. Performance prediction for the Transims micro-simulation

Here, T1 is the time of the same code on one CPU (assuming a problem size that fits on
available computer memory); p is the number of CPUs; fovr includes overhead effects
(for example, split links need to be administered by both CPUs); fdmn = 1/edmn − 1
includes the effect of unequal domain sizes discussed in Sec. 25.3.

Time for communication typically has two contributions: Latency and bandwidth. La-
tency is the time necessary to initiate the communication, and in consequence it is in-
dependent of the message size. Bandwidth describes the number of bytes that can be
communicated per second. So the time for one message is

Tmsg = Tlt +
Smsg

b
, (25.4)

where Tlt is the latency, Smsg, is the message size, and b is the bandwidth.

However, for many of today’s computer architectures, bandwidth is given by at least two
contributions: node bandwidth, and network bandwidth. Node bandwidth is the band-
width of the connection from the CPU to the network. If two computers communicate
with each other, this is the maximum bandwidth they can reach. For that reason, this is
sometimes also called the “point-to-point” bandwidth.

The network bandwidth is given by the technology and topology of the network. Typical
technologies are 10 Mbit Ethernet, 100 Mbit Ethernet, FDDI, etc. Typical topologies are
bus topologies, switched topologies, two-dimensional topologies (e.g. grid/torus), hyper-
cube topologies, etc. A traditional Local Area Network (LAN) uses 10 Mbit Ethernet,
and it has a shared bus topology. In a shared bus topology, all communication goes over
the same medium; that is, if several pairs of computers communicate with each other,
they have to share the bandwidth.

For example, in our 100 Mbit FDDI network (i.e. a network bandwidth of bnet =
100 Mbit) at Los Alamos National Laboratory, we found node bandwidths of about
bnd = 40 Mbit. That means that two pairs of computers could communicate at full
node bandwidth, i.e. using 80 of the 100 Mbit/sec, while three or more pairs were limited
by the network bandwidth. For example, five pairs of computers could maximally get
100/5 = 20 Mbit/sec each.

A switched topology is similar to a bus topology, except that the network bandwidth is
given by the backplane of the switch. Often, the backplane bandwidth is high enough
to have all nodes communicate with each other at full node bandwidth, and for practical
purposes one can thus neglect the network bandwidth effect for switched networks.

If computers become massively parallel, switches with enough backplane bandwidth be-
come too expensive. As a compromise, such supercomputers usually use a communica-
tions topology where communication to “nearby” nodes can be done at full node band-
width, whereas global communication suffers some performance degradation. Since we
partition our traffic simulations in a way that communication is local, we can assume
that we do communication with full node bandwidth on a supercomputer. That is, on a
parallel supercomputer, we can neglect the contribution coming from the bnet-term. This
assumes, however, that the allocation of street network partitions to computational nodes
is done in some intelligent way which maintains locality.

As a result of this discussion, we assume that the communication time per time step is

Tcmm(p) = Nsub ·
(

nnb(p) Tlt +
Nspl(p)

p

Sbnd

bnd
+ Nspl(p)

Sbnd

bnet

)

, (25.5)

which will be explained in the following paragraphs. Nsub is the number of sub-time-
steps. As discussed in Sec. 25.2, we do two boundary exchanges per time step, thus
Nsub = 2 for the 1999 Transims micro-simulation implementation.

nnb is the number of neighbor domains each CPU talks to. All information which goes
to the same CPU is collected and sent as a single message, thus incurring the latency

file: book.tex, p.25-9 January 31, 2005

25.5. Performance prediction for the Transims micro-simulation

only once per neighbor domain. For p = 1, nnb is zero since there is no other domain
to communicate with. For p = 2, it is one. For p → ∞ and assuming that domains
are always connected, Euler’s theorem for planar graphs says that the average number of
neighbors cannot become more than six. Based on a simple geometric argument, we use

nnb(p) = 2 (3
√

p − 1) (
√

p − 1)/p , (25.6)

which correctly has nnb(1) = 0 and nnb → 6 for p → ∞. Note that the METIS
library for graph partitioning (Sec. 25.3) does not necessarily generate connected parti-
tions, making this potentially more complicated.

Tlt is the latency (or start-up time) of each message. Tlt between 0.5 and 2 milliseconds
are typical values for PVM on a LAN (Rickert, 1998; Dongarra et al., 1998).

Next are the terms that describe our two bandwidth effects. Nspl(p) is the number of
split links in the whole simulation; this was already discussed in Sec. 25.3 (see Fig. 25.5).
Accordingly, Nspl(p)/p is the number of split links per computational node. Sbnd is the
size of the message per split link. bnd and bnet are the node and network bandwidths, as
discussed above.

In consequence, the combined time for one time step is

T (p) =
T1

p

(

1 + fovr(p) + fdmn(p)
)

+ (25.7)

Nsub ·
(

nnb(p) Tlt +
Nspl(p)

p

Sbnd

bnd
+ Nspl(p)

Sbnd

bnet

)

. (25.8)

According to what we have discussed above, for p → ∞ the number of neighbors scales
as nnb ∼ const and the number of split links in the simulation scales as Nspl ∼

√
p. In

consequence for fovr and fdmn small enough, we have:

• for a shared or bus topology, bnet is relatively small and constant, and thus

T (p) ∼ 1

p
+ 1 +

1√
p

+
√

p → √
p ; (25.9)

• for a switched or a parallel supercomputer topology, we assume bnet = ∞ and
obtain

T (p) ∼ 1

p
+ 1 +

1√
p
→ 1 . (25.10)

Thus, in a shared topology, adding CPUs will eventually increase the simulation time,
thus making the simulation slower. In a non-shared topology, adding CPUs will even-
tually not make the simulation any faster, but at least it will not be detrimental to com-
putational speed. The dominant term in a shared topology for p → ∞ is the network
bandwidth; the dominant term in a non-shared topology is the latency.

The curves in Fig. 25.10 are results from this prediction for a switched 100 Mbit Ethernet
LAN; dots and crosses show actual performance results. The top graph shows the time
for one time step, i.e. T (p), and the individual contributions to this value. The bottom
graph shows the real time ratio (RTR)

rtr(p) :=
∆t

T (p)
=

1 sec

T (p)
, (25.11)

which says how much faster than reality the simulation is running. ∆t is the duration a
simulation time step, which is 1 sec in Transims1999. The values of the free parameters
are:

file: book.tex, p.25-10 January 31, 2005

25.5. Performance prediction for the Transims micro-simulation

• Hardware-dependent parameters. We assume that the switch has enough band-
width so that the effect of bnet is negligeable. Other hardware parameters are
Tlt = 0.8 ms and bnd = 50 Mbit/s.3

• Implementation-dependent parameters. The number of message exchanges per
time step is Nsub = 2.

• Scenario-dependent parameters. Except when noted, our performance predic-
tions and measurements refer to the Portland 20 024 links network. We use, for the
number of split links, Nspl(p) = 140 · p0.59 − 140, as explained in Sec. 25.3.

• Other Parameters. The message size depends on the plans format (which de-
pends on the software design and implementation), on the typical number of links
in a plan, and on the frequency per link of vehicles migrating from one CPU to
another. We use Sbnd = 200 Bytes. This is an average number; it includes all
the information that needs to be sent when a vehicle migrates from one CPU to
another. The new Transims multi-modal plans format easily has 200 entries per
driver and trip, resulting in 800 bytes of information just for the plan. In addition,
there is information about the vehicle (ID, speed, maximum acceleration, etc.);
however, not in every time step a vehicle is migrated across a boundary on every
split link. In principle it is however possible to compress the plans information, so
improvements are possible here in the future. Also, we have not explicitely mod-
elled simulation output, which is indeed a performance issue on Beowulf clusters.

These parameters were obtained in the following way: First, we obtained plausible values
via systematic communication tests using messages similar to the ones used in the actual
simulation (Rickert, 1998). Then, we ran the simulation without any vehicles (see below)
and adapted our values accordingly. Running the simulation without vehicles means
that we have a much better control of Sbnd. In practice, the main result of this step
was to set tlat to 0.8 msec, which is plausible when compared to the hardware value of
0.5 msec. Last, we ran the simulations with vehicles and adjusted Sbnd to fit the data. —
In consequence, for the switched 100 Mbit Ethernet configurations, within the data range
our curves are model fits to the data. Outside the data range and for other configurations,
the curves are model-based predictions.

The plot (Fig. 25.10) shows that even something as relatively profane as a combination
of regular Pentium CPUs using a switched 100Mbit Ethernet technology is quite capable
in reaching good computational speeds. For example, with 16 CPUs the simulation runs
40 times faster than real time; the simulation of a 24 hour time period would thus take
0.6 hours. These numbers refer, as said above, to the Portland 20 024 links network. In-
cluded in the plot (black dots) are measurements with a compute cluster that corresponds
to this architecture. The triangles with lower performance for the same number of CPUs
come from using dual instead of single CPUs on the computational nodes. Note that the
curve levels out at about forty times faster than real time, no matter what the number of
CPUs. As one can see in the top figure, the reason is the latency term, which eventually
consumes nearly all the time for a time step. This is one of the important elements where
parallel supercomputers are different: For example the Cray T3D has a more than a factor
of ten lower latency under PVM (Dongarra et al., 1998).

As mentioned above, we also ran the same simulation without any vehicles. In the
Transims1999 implementation, the simulation sends the contents of each CA boundary
region to the neighboring CPU even when the boundary region is empty. Without com-
pression, this is five integers for five sites, times the number of lanes, resulting in about
40 bytes per split edge, which is considerably less than the 800 bytes from above. The

3Our measurements have consistently shown that node bandwidths are lower than network bandwidths.
Even CISCO itself specifies 148 000 packets/sec, which translates to about 75 Mbit/sec, for the 100 Mbit
switch that we use.

file: book.tex, p.25-11 January 31, 2005

25.6. Speed-up and efficiency

results are shown in Fig. 25.11. Shown are the computing times with 1 to 15 single-CPU
slaves, and the corresponding real time ratio. Clearly, we reach better speed-up without
vehicles than with vehicles (compare to Fig. 25.10). Interestingly, this does not matter for
the maximum computational speed that can be reached with this architecture: Both with
and without vehicles, the maximum real time ratio is about 80; it is simply reached with
a higher number of CPUs for the simulation with vehicles. The reason is that eventually
the only limiting factor is the network latency term, which does not have anything to do
with the amount of information that is communicated.

Fig. 25.12 (top) shows some predicted real time ratios for other computing architectures.
For simplicity, we assume that all of them except for one special case explained be-
low use the same 500 MHz Pentium compute nodes. The difference is in the networks:
We assume 10 Mbit non-switched, 10 Mbit switched, 1 Gbit non-switched, and 1 Gbit
switched. The curves for 100 Mbit are in between and were left out for clarity; values
for switched 100 Mbit Ethernet were already in Fig. 25.10. One clearly sees that for this
problem and with today’s computers, it is nearly impossible to reach any speed-up on a
10 Mbit Ethernet, even when switched. Gbit Ethernet is somewhat more efficient than
100 Mbit Ethernet for small numbers of CPUs, but for larger numbers of CPUs, switched
Gbit Ethernet saturates at exactly the same computational speed as the switched 100 Mbit
Ethernet. This is due to the fact that we assume that latency remains the same – after all,
there was no improvement in latency when moving from 10 to 100 Mbit Ethernet. FDDI
is supposedly even worse (Dongarra et al., 1998).

The thick line in Fig. 25.12 corresponds to the ASCI Blue Mountain parallel supercom-
puter at Los Alamos National Laboratory. On a per-CPU basis, this machine is slower
than a 500 MHz Pentium. The higher bandwidth and in particular the lower latency make
it possible to use higher numbers of CPUs efficiently, and in fact one should be able to
reach a real time ratio of 128 according to this plot. By then, however, the granularity
effect of the unequal domains (Eq. (25.1), Fig. 25.7) would have set in, limiting the com-
putational speed probably to about 100 times real time with 128 CPUs. We actually have
some speed measurements on that machine for up to 96 CPUs, but with a considerably
slower code from summer 1998. We omit those values from the plot in order to avoid
confusion.

Fig. 25.12 (bottom) shows predictions for the higher fidelity Portland 200 000 links net-
work with the same computer architectures. The assumption was that the time for one
time step, i.e. T1 of Eq. (25.3), increases by a factor of eight due to the increased load.
This has not been verified yet. However, the general message does not depend on the
particular details: When problems become larger, then larger numbers of CPUs become
more efficient. Note that we again saturate, with the switched Ethernet architecture,
at 80 times faster than real time, but this time we need about 64 CPUs with switched
Gbit Ethernet in order to get 40 times faster than real time — for the smaller Portland
20 024 links network with switched Gbit Ethernet we would need 8 of the same CPUs
to reach the same real time ratio. In short and somewhat simplified: As long as we
have enough CPUs, we can micro-simulate road networks of arbitrarily largesize, with
hundreds of thousands of links and more, 40 times faster than real time, even without
supercomputer hardware. — Based on our experience, we are confident that these pre-
dictions will be lower bounds on performance: In the past, we have always found ways
to make the code more efficient.

25.6 Speed-up and efficiency

We have cast our results in terms of the real time ratio, since this is the most important
quantity when one wants to get a practical study done. In this section, we will trans-

file: book.tex, p.25-12 January 31, 2005

25.6. Speed-up and efficiency

0

0.05

0.1

0.15

0.2

0.25

1 4 16 64 256 1024

w
al

l c
lo

ck
 ti

m
e

pe
r

tim
e

st
ep

number of CPUs

Portland EMME/2 network (20 000 links)

Tcmp(x)
Tlat(x)

Tnode(x)
Tnet(x)

T(x)
Jun 00; Pentium Cluster

Jun 00; Pentium Cluster Dual CPUs

0.25

0.5

1

2

4

8

16

32

64

128

1 4 16 64 256 1024

re
al

 ti
m

e
ra

tio

number of CPUs

Portland EMME/2 network (20 000 links)

1/T(x)
Jun 00; Pentium Cluster

Jun 00; Pentium Cluster Dual CPUs

Figure 25.10: 100 Mbit switched Ethernet LAN. Top: Individual time contributions.
Bottom: Corresponding Real Time Ratios. The black dots refer to actually measured
performance when using one CPU per cluster node; the crosses refer to actually measured
performance when using dual CPUs per node (the y-axis still denotes the number of
CPUs used). The thick curve is the prediction according to the model. The thin lines
show the individual time contributions to the thick curve.

late our results into numbers of speed-up, efficiency, and scale-up, which allow easier
comparison for computing people.

Let us define speed-up as

S(p) :=
T (1)

T (p)
, (25.12)

where p is again the number of CPUs, T (1) is the time for one time-step on one CPU,
and T (p) is the time for one time step on p CPUs. Depending on the viewpoint, for T (1)
one uses either the running time of the parallel algorithm on a single CPU, or the fastest
existing sequential algorithm. Since Transims has been designed for parallel computing
and since there is no sequential simulation with exactly the same properties, T (1) will be

file: book.tex, p.25-13 January 31, 2005

25.6. Speed-up and efficiency

0

0.05

0.1

0.15

0.2

0.25

1 4 16 64 256 1024

w
al

l c
lo

ck
 ti

m
e

pe
r

tim
e

st
ep

number of CPUs

Portland EMME/2 network (20 000 links)

Tcmp(x)
Tlat(x)

Tnode(x)
Tnet(x)

T(x)
Jun 00; Pentium Cluster; no cars

0.25

0.5

1

2

4

8

16

32

64

128

1 4 16 64 256 1024

re
al

 ti
m

e
ra

tio

number of CPUs

Portland EMME/2 network (20 000 links)

1/T(x)
Jun 00; Pentium Cluster; no cars

Figure 25.11: 100 Mbit switched Ethernet LAN; simulation without vehicles. Top: Indi-
vidual time contributions. Bottom: Corresponding Real Time Ratios. The same remarks
as to Fig. 25.10 apply. In particular, black dots show measured performance, whereas
curves show predicted performance.

the running time of the parallel algorithm on a single CPU. For time-stepped simulations
such as used here, the difference is expected to be small.4

Now note again that the real time ratio is rtr(p) = 1 sec/T (p) . Thus, in order to ob-
tain the speed-up from the real time ratio, one has to multiply all real time ratios by
T (1)/(1 sec). On a logarithmic scale, a multiplication corresponds to a linear shift. In
consequence, speed-up curves can be obtained from our real time ratio curves by shifting
the curves up or down so that they start at one.

This also makes it easy to judge if our speed-up is linear or not. For example in Fig. 25.12
bottom, the curve which starts at 0.5 for 1 CPU should have an RTR of 2 at 4 CPU,
an RTR of 8 at 16 CPUs, etc. Downward deviations from this mean sub-linear speed-

4An event-driven simulation could be a counter-example: Depending on the implementation, it could be
extremely fast on a single CPU up to medium problem sizes, but slow on a parallel machine.

file: book.tex, p.25-14 January 31, 2005

25.6. Speed-up and efficiency

0.25

0.5

1

2

4

8

16

32

64

128

1 4 16 64 256 1024

re
al

 ti
m

e
ra

tio

number of CPUs

Portland EMME/2 network (20 000 links)

ASCI Blue Mountain parallel supercomputer
Gbit switched

Gbit non-switched
10 Mbit switched

10 Mbit non-switched

0.25

0.5

1

2

4

8

16

32

64

128

1 4 16 64 256 1024

re
al

 ti
m

e
ra

tio

number of CPUs

Portland TIGER network (200 000 links)

ASCI Blue Mountain parallel supercomputer
Gbit switched

Gbit non-switched
10 Mbit switched

10 Mbit non-switched

Figure 25.12: Predictions of real time ratio for other computer configurations. Top:
With Portland EMME/2 network (20 024 links). Bottom: With Portland TIGER network
(200 000 links). Note that for the switched configurations and for the supercomputer,
the saturating real time ratio is the same for both network sizes, but it is reached with
different numbers of CPUs. This behavior is typical for parallel computers: They are
particularly good at running larger and larger problems within the same computing time.
— All curves in both graphs are predictions from our model. We have some performance
measurements for the ASCI maschine, but since they were done with an older and slower
version of the code, they are omitted in order to avoid confusion.

up. Such deviations are commonly described by another number, called efficiency, and
defined as

E(p) :=
T (1)/p

T (p)
. (25.13)

Fig. 25.13 contains an example. Note that this number contains no new information; it
is just a re-interpretation. Also note that in our logarithmic plots, E(p) will just be the
difference to the diagonal p T (1). Efficiency can point out where improvements would
be useful.

file: book.tex, p.25-15 January 31, 2005

25.7. Other modules

0.0001

0.001

0.01

0.1

1

1 4 16 64 256 1024

ef
fic

ie
nc

y

number of CPUs

Portland TIGER network (200 000 links)

ASCI Blue Mountain parallel supercomputer
Gbit switched

Gbit non-switched
10 Mbit switched

10 Mbit non-switched

Figure 25.13: Efficiency for the same configurations as in Fig. 25.12 bottom. Note that
the curves contain exactly the same information.

25.7 Other modules

As explained in the introduction, a micro-simulation in a software suite for transportation
planning would have to be run many times (“feedback iterations”) in order to achieve
consistency between modules. For the microsimulation alone, and assuming our 16 CPU-
machine with switched 100 Mbit Ethernet, we would need about 30 hours of computing
time in order to simulate 24 hours of traffic fifty times in a row. In addition, we have the
contributions from the other modules (routing, activities generation). In the past, these
have never been a larger problem than the micro-simulation, for several reasons:

• The algorithms of the other modules by themselves did significantly less compu-
tation than the micro-simulation.

• Even when these algorithms start using considerable amounts of computer time,
they are “trivially” parallelizable by simply distributing the households across
CPUs.5

• In addition, during the iterations we never replan more than about 10% of the
population, saving additional computer time.

In summary, the Transims modules besides the traffic micro-simulation currently do not
contribute significantly to the computational burden; in consequence, the computational
performance of the traffic micro-simulation is a good indicator of the overall performance
of the simulation system.

25.8 Summary

This paper explains the parallel implementation of the Transims micro-simulation. Since
other modules are computationally less demanding and also simpler to parallelize, the

5This is possible because of the specific purpose Transims is designed for. In real time applications, where
absolute speed between request and response matters, the situation is different (Chabini, 1998a).

file: book.tex, p.25-16 January 31, 2005

25.8. Summary

parallel implementation of the micro-simulation is the most important and most compli-
cated piece of parallelization work. The parallelization method for the Transims micro-
simulation is domain decomposition, that is, the network graph is cut into as many do-
mains as there are CPUs, and each CPU simulates the traffic on its domain. We cut the
network graph in the middle of the links rather than at nodes (intersections), in order
to separate the traffic dynamics complexity at intersections from the complexity of the
parallel implementation. We explain how the cellular automata (CA) or any technique
with a similar time depencency scheduling helps to design such split links, and how the
message exchange in Transims works.

The network graph needs to be partitioned into domains in a way that the time for mes-
sage exchange is minimized. Transims uses the METIS library for this goal. Based on
partitionings of two different networks of Portland (Oregon), we calculate the number of
CPUs where this approach would become inefficient just due to this criterion. For a net-
work with 200 000 links, we find that due to this criterion alone, up to 1024 CPUs would
be efficient. We also explain how the Transims micro-simulation adapts the partitions
from one run to the next during feedback iterations (adaptive load balancing).

We finally demonstrate how computing time for the Transims micro-simulation (and
therefore for all of Transims) can be systematically predicted. An important result is that
the Portland 20 024 links network runs about 40 times faster than real time on 16 dual
500 MHz Pentium computers connected via switched 100 Mbit Ethernet. These are
regular desktop/LAN technologies. When using the next generation of communications
technology, i.e. Gbit Ethernet, we predict the same computing speed for a much larger
network of 200 000 links with 64 CPUs.

[[in particular look at Nurhan’s “mistakes” and clarify this stuff. In particular,
clarify where on a beowulf the time is spent, and how this degrades performance if
one uses a master etc.]]

[[maybe also explain quantify.]]

[[multi-crit metis??]]

[[threads?? at least mention and discuss.]]

file: book.tex, p.25-17 January 31, 2005

Chapter 26

Distributed computing and truly
distributed intelligence

Once the traffic micro-simulation is parallelized, it becomes considerably more difficult
to add within-day replanning. As long as one runs everything on a single CPU, it is in
principle possible to write one monolithic software package. In such a software, an agent
who wants to change plans calls a subroutine to compute a new plan, and during this
time the computation of the traffic dynamics is suspended. On a parallel computer, if
one traveler on one CPU does this, all other CPUs have to suspend the traffic simulation
since it is not possible (or very difficult) to have simulated time continue asynchronously
(Fig. 26.1 left).

A better approach is to have the re-planning module on a different CPU. The traveler
then sends out the re-planning request to that CPU, and the traffic simulation keeps go-
ing (Figs. ?? and 26.1 right). Eventually, the re-planning will be finished, and its result
will be sent to the simulated traveler, who picks it up and starts acting on it. An experi-
mental implementation of this using UDP (User Datagram Protocol) for communication
shows that it is possible to transmit up to 100 000 requests per second per CPU (Gloor,
2001), which is far above any number that is relevant for practical applications. This
demonstrates that such a design is feasible and efficient.

Race conditions

Some readers may have noticed that success of the re-planning operation is not guaran-
teed. For example, the new plan may say to make a turn at a specific intersection, and
by the time the new plan reaches the traveler, she/he may have driven past that point.
Such situations are however not unusual in real life – how often does one recognize that
a different decision some time ago would have been beneficial. Thus, in our view the
key to success for large scale applications it to not fight asynchronous effects but to use
them to advantage. For example, once it is accepted that such messages can arrive late,
it is also not a problem to not have them arrive at all, which greatly simplifies message
passing.

No memory problems etc.

An additional advantage of such a distributed design is that the implementation of a sep-
arate “mental map” (Sec. 31.3) for each individual traveler does not run into memory
or CPU-time problems. Specific route guidance services can be simulated in a similar
way. Also, non-local interaction between travelers becomes a matter of direct interac-
tion between the corresponding “strategic” CPUs, without involving the rest of the com-
putational engine. This occurs for example for ride sharing, or when family members
re-organize the kindergarten pick-up when plans have changed during the day, and will

26-1

tim
e

CPU 1 CPU 2 CPU 3 ...

timestep n timestep n timestep n

n+1 n+1 n+1

n+2 n+2 n+2

n+3 n+3 n+3

n+4

n+5

n+4

n+5

n+4

n+5

replanningidle idle
n+4

n+5

n+6

n+7

n+4

n+5

n+6

n+7

n+4

n+5

n+6

n+7

tim
e

CPU 1 CPU 2 CPU 3 ...

timestep n timestep n timestep n

n+1 n+1 n+1

n+2 n+2 n+2

replanning

n+3 n+3 n+3

Figure 26.1: Parallel implementation of within-day replanning. LEFT: Implementation
as subroutine of parallel traffic simulation. RIGHT: Implementation via separate plans
server.

necessitate complicated negotiations between agents. However, neither the models nor
the computational methods for this are developed.

Similarity to robot design and humans

This design is similar to many robot designs, where the robots are autonomous on short
time scales (tactical level) while they are connected via wireless communication to a
more powerful computer for more difficult and more long-term time scales (strategic
level); see, e.g., Ref. (Kim, 1997) for robot soccer. Also, the human body is orga-
nized along these lines – for example, in ball catching, it seems that the brain does an
approximate pre-“computation” of the movements of the hands, while the hands them-
selves (and autonomously) perform the fine-tuning of the movements as soon as the ball
touches them and haptic information is available (Sternad). This approach is necessitated
by the relatively slow message passing time between brain and hands, which is of the or-
der of 1/10 sec, which is much too slow to directly react to haptic information (Rothwell,
1994).

That is, in summary we have a design where there is some kind of “real world dynamics”
(the traffic simulation), which keeps going at its own pace. Agents can make strategic
decisions, which may take time, but the world around them will keep going, meaning that
they will have to continue driving, or deliberately park the car. As pointed out, such an
architecture is very well supported by current distributed computers, although the actual
implementation still needs to be done.

file: book.tex, p.26-2 January 31, 2005

Part IV

Some background

26-3

Chapter 27

Traffic flow theory

[[In fact, I need something like simple micro-models, than simple fdyn, then more
micro-models, etc. ???]]

27.1 Introduction

This text has started with a minimal representation of traffic on a link, the single-lane
deterministic CA with maximum speed one. We have then explored ways to make that
model more realistic, for example with respect to fundamental diagrams, or with respect
to multi-lane traffic. The focus of this chapter will be to provide some basic underlying
theory. Understanding some theory is necessary in particular if one wants to use simple
models, because then one needs to understand their deficiencies and the consequences of
this.

27.2 Traffic flow measurements

It was already pointed out in Sec. 17.3 that important real world quantities for traffic
are flow and density. A third quantity is speed. In fact, there are two different ways to
measure traffic: space-averaged measurements, and point (= spot) measurements. The
space-averaged measurements are done at specific points in time, and they correspond
to what one is used to from, say, fluid-dynamics. The point measurements are closer to
what is measured in reality: A sensor, e.g. an induction loop, usually covers only a small
amount of space. It is common use to average point measurements over sometime T , for
example T = 60 sec or T = 5 min.1 These differences are not particularly intereresting,
but they are necessary to avoid some caveats.

27.2.1 Speed

The two measurements are:

• Space-mean speed, also called travel velocity:

vL =
1

NL

NL
∑

i=1

vi . (27.1)

1From a theoretical perspective, it is questionable if this averaging is a good idea. It is however necessary
to compare with field data.

27-1

27.2. Traffic flow measurements

Thus, one averages over a stretch of road of length L.

• Point velocity, also called spot speed or instantaneous velocity. We observe at
a fixed position, and we average over the velocities of all vehicles that pass by.
When NT is the number of vehicles that passed by, then spot speed is

ṽT =
1

NT

∑

vi . (27.2)

One can immediately see that there is a difference between space-mean speed and spot
speed by noting that space-mean speed includes vehicles of speed zero into the aver-
age while spot speed does not. If, however, all vehicles always have the same velocity,
then both measurements lead to the same result. The formal relationship is a bit more
complicated.2

Travel velocity v is the more relevant quantity since L/v is the time an average trav-
eller needs for a distance L. It is also the quantity which is relevant for fluid-dynamical
relations, for example q = ρ v.

27.2.2 Flow

(also throughput). This is traditionally the most important quantity, since it is easy to
measure (one just has to count the number of passing vehicles at a fixed location), and
it is important for the performance of the transportation system as a whole. In order to
allow comparison, it is often useful to divide flow by the number of lanes. Say that during
time T we have measured NT vehicles. Flow then is

qT =
NT

T Nlanes
. (27.4)

A typical unit of flow is “(number of) vehicles per hour and lane”.

Transportation science also uses the term volume. According to Gerlough and Huber
(1975), this should be reserved to hourly flows (i.e. measured over one hour and ex-
pressed in “vehicles per hour”). Maximum flow is also called capacity.

There is no direct way to measure space-mean flow. However, sometimes it is useful to
use the relation q = ρv. We then have

qL = ρL vL =
1

L Nlanes

Nveh
∑

i=1

vi (27.5)

where ρL is taken from the next section.

2Assume that (vi)i is a sequence of speed measurements of different vehicles for the space-mean speed.
The probability of a vehicle of veloctiy vi to cross a sensor within a given time period is proportional to vi.
Thus, in order to obtain spot speed from (vi)i, each vi has to be weighted by wi = vi:

vspot = � wivi

� wi

= � v2
i

� vi

= � (v2
i − v2) + � v2

� vi

=
N σ2 + Nv2

Nv
= v +

σ2

v
, (27.3)

where σ is the variance of the velocity measurement. This confirms that spot speed is larger than space-mean
speed, and the difference increases with increasing velocity fluctuations. – An alternative derivation is, for
example, in (Gerlough and Huber, 1975).

file: book.tex, p.27-2 January 31, 2005

27.3. Fundamental diagrams

0

20

40

60

80

100

120

565000 570000 575000 580000 585000 590000 595000

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

ve
lo

ci
ty

 [k
m

/h
],

de
ns

ity
 [c

ar
s/

km
]

flo
w

 [c
ar

s/
s]

time [s]

velocity
density

flow

Figure 27.1: Time series of speed, flow, and density.

27.2.3 Density

Space-averaged density ρL is the number of vehicles on a certain stretch of road, divided
by the length L of that stretch. In order to allow comparison, it is useful to also divide by
the number of lanes:

ρL =
Nveh

L Nlanes
. (27.6)

The resulting density is for example given in “(number of) vehicles per km and lane”.

Point density has no natural measurement. One can use ρT = qT /vT .

An alternative method for point density is the “fraction of time that a sensor is covered
by a vehicle”, also called occupancy. Unfortunately, this quantity is difficult to obtain
from a time-discrete simulation. Since the duration a sensor is covered by a vehicle is
`i/vi, the correct measurement in a simulation would be [[check]]

ρT =
1

T

∑

`i/vi . (27.7)

In the CA context, `i = const = 1. In field measurements, it is usually impossible
to obtain `i for each vehicle, which means that an exact translation of occupancy into
density is impossible.

27.3 Fundamental diagrams

As already stated in Sec. 17.3, often speed, flow, and density are not simply plotted as
time series, but the relations between them are plotted as so-called fundamental diagrams.
Typical fundamental diagrams are speed or flow as the function of density or occupancy.
Fig. 27.2 shows the fundamental diagram of flow vs. density obtained from the data of
Fig. 27.1. Plausibly, flow is low at low densities (because no vehicle is on the road),
and it is low at high densities (because all vehicles are stuck). The behavior in between
is however more complex than one maybe would expect, and no complete theoretical
explanation is available (Kerner and Rehborn, 1996b; Daganzo et al., 1999; Jost and
Nagel, 2003).

[[Some of this will be discussed in Sec. ??]]

file: book.tex, p.27-3 January 31, 2005

27.4. Car following

0

1000

2000

3000

0 10 20 30 40 50 60 70

free
congested

q

ρ

Figure 27.2: Fundamental diagram of flow vs. density from the measurements of
Fig. 27.1.

27.4 Car following

27.4.1 Reaction time argument for car following

Any more realistic car micro-simulation first needs to have a method for simple car fol-
lowing. Such methods can be developed on single-lane loops, similar to a single-lane
race track. A good way to start is the rule of thumb of “two seconds time headway”,
that many of us learn at driving school. We are supposed to have two seconds between
the time when the car ahead passes a certain location, and the time when we pass it.
The reason for this is related to our reaction time. If the car ahead starts braking really
hard right when its back bumper is at that location, and if, after a reaction time, we start
braking when our front bumper is at that same position, we will barely avoid a crash
(see Fig. 27.3). Thus, time headway needs to be larger than reaction time, which trans-
lates into a space headway proportional to speed. As a consequence, most car following
models have as their most important term one that makes the velocity a roughly linear
function of the space headway or gap, although usually a reaction delay of one instead
of two seconds is used.3 All car following models based on this principle have a simi-
lar dynamical behavior. For example, the transition from laminar to start-stop traffic is
similar for all these models (Krauß et al., 1998). Car following models which are used in
micro-simulations are usually designed to be free of accidents.

27.4.2 Discrete space and discrete time: Cellular automata rules

Incarnations of car following can use continuous or discrete time, and continuous or
discrete space. While continuous space and continuous time is more realistic, discrete
space and time are more natural for a digital computer. And recent research has shown
that, in the spirit of Statistical Physics, extremely simple and even unrealistic rules on the
microscopic level can still lead to reasonable behavior on the macroscopic level (Krauß,
1997; Nagel, 1996, 1999; Nagel et al., 1998; Brilon and Wu, 1998). In consequence,
cellular automata (CA) techniques, which are discrete in space and time, plus have a
parallel local update, can actually simulate traffic quite well. They also have a didactic

3“Gap” denotes the space from my front bumper to the rear bumper of the car ahead, sometimes minus
some safety space one would like to have. Space headway is used less uniformly; for example, it sometimes
denotes the front-bumper-to-front-bumper space, thus including the length of the car ahead.

file: book.tex, p.27-4 January 31, 2005

27.4. Car following

t1

t1 +t_rct

t2

t2+t_rct

space

tim
e

t1

t1 +t_rct

t2

t2+t_rct

space

tim
e

overlap

Figure 27.3: Reaction time argument. The left figure shows the trajectories of the front
bumpers of two vehicles. At t1, the leader starts breaking; at t2, she has come to a
standstill. The follower starts breaking at t1+trct; and since his breaking follows exactly
the same characteristics, he comes to a standstill at t2 + trct. The right figure shows the
same, with vehicle outlines superimposed. If at t1 + trct, the follower’s front bumper is
beyond where the back bumper of the leader was when she started breaking, and accident
cannot be avoided (but happens slightly later).

advantage, since coding many aspects of traffic flow such as car following, lane changing,
or gap acceptance, is straightforward with a CA approach.

Deterministic traffic CA

As already discussed in Secs. 7 and 17, typical CA for traffic represent the single-lane
road as an array of cells of length `, each cell either empty or occupied by a single vehicle.
Vehicles have integer velocities between zero and vmax. A possible update rule is (Nagel
and Herrmann, 1993)

(1) vt+1 = min[g, vt + 1, vmax]

(2) xt+1 = xt + vt+1

g is the number of empty cells between the vehicle under consideration and the vehicle
ahead, and v is measured in “cells per time step”.

As will be discussed below, this model has some important features of traffic, such as
start-stop waves, but it is unrealistically “stiff” in its dynamics.

As also already discussed in Sec. 17, ` is the length a vehicle occupies in a jam, it is often
taken as ` = 7.5 m. In order to get realistic results, a time step of one second is a good
choice (remember the reaction time), and then vmax = 5 corresponding to 135 km/h is
a good choice. In applications, vmax can be set according to a speed limit on the link.
Note that in the traffic CA community distances and speeds are often given without units,
which means that they refer to “cells” or “cells per time step”, respectively.

This rule is similar to the CA rule 184 according to the so-called Wolfram classification
(Wolfram, 1986); indeed, for vmax = 1 it is identical.

It turns out that, after transients have died out, there are two regimes (Figs. 27.4 and 27.5):

• Laminar traffic. All vehicles have gaps of vmax or larger, and speed vmax. Flow
in consequence is q = ρ vmax.

file: book.tex, p.27-5 January 31, 2005

27.4. Car following

...00001.2..3...3...2..3...4....1.01.1.2..3...4
3...00001.2..3...3...2..3...4....1.01.1.2..3...
.3...00001.2..3...3...2..3...4....1.01.1.2..3..
..3...00001.2..3...3...2..3...4....1.01.1.2..3.
...3...00001.2..3...3...2..3...4....1.01.1.2..3
....3...00001.2..3...3...2..3...4....1.01.1.2..
.....3...00001.2..3...3...2..3...4....1.01.1.2.
5.....3...00001.2..3...3...2..3...4....1.01.1.2
.5.....3...00001.2..3...3...2..3...4....1.01.1.

....................5.....5.....5..............

...............5.....5.....5...................

..........5.....5.....5....................5...

.....5.....5.....5....................5.....5..

..00001.2..3...3...2..3...4....1.01.1.2..3...4.

Figure 27.4: Space-time plot of deterministic CA. Each line a configuration of the simu-
lated road; traffic goes from left to right; time is going downward. Numbers denote the
velocity for the next movement (in cells per time step). TOP: Laminar traffic. BOTTOM:
Congested traffic. Some trajectories are added to guide the eye. Note that the structures
move backwards while the vehicles themselves move forwards. These structures are what
the deterministic CA model generates in terms of traffic jams.

ρ

A

B

density

fl
o

w
 q

Figure 27.5: Fundamental diagram for the deterministic CA.

• Congested traffic. All vehicles have gaps of vmax or smaller. It turns out that
they allways have a speed equivalent to their gap. This means that

∑

vi =
∑

gi =
Nveh × 〈g〉. Since density ρ = 1/(〈g〉 + 1), this leads to

q = ρ v = 1 − ρ . (27.8)

The two regimes meet where ρ vmax = 1− ρ, i.e. at

ρ∗ =
1

vmax + 1
. (27.9)

This is also the point of maximum flow, with

qmax =
vmax

vmax + 1
. (27.10)

Stochastic traffic CA (STCA)

One can add noise to the CA model by adding a randomization term:

file: book.tex, p.27-6 January 31, 2005

27.4. Car following

(1b) With probability pnoise do: vt+1 = max[vt+1 − 1, 0] ; the “max” is needed to
prevent negative speeds.

This makes the dynamics of the model significantly more realistic (Fig. 27.6). pnoise =
0.5 is a standard choice for theoretical work; as already discussed in Sec. 17.3, pnoise =
0.2 is more realistic with respect to the resulting value for maximum flow (capacity).
The stylized fundamental diagram for the STCA looks the same way as the fundamental
diagram for the deterministic CA, i.e. as Fig. 27.4. Despite the same shape, the value
of maximum flow will however be much lower than with the deterministic CA: about
2000 veh/hr for the STCA with vmax = 5 and pnoise = 0.2 (Fig. 17.1) in contrast to
5 veh/6 sec = 3000 veh/hr (Eq. 27.10) for the deterministic CA with vmax = 5.

Slow-to-start rules for STCA

Real traffic may have a strong hysteresis effect near maximum flow; there is however
no agreement among researchers if or under which circumstances this effect truly exists.
If it exists, it looks as follows: When coming from low densities, traffic stays laminar
and at free speed up to a certain density ρ2 (see Fig. 27.7). Above that, traffic “breaks
down” into start-stop traffic. When lowering the density again, however, it does not
become laminar again until ρ < ρ1, which is significantly smaller than ρ2, up to 30%
(Kerner and Rehborn, 1996a,b). This effect can be included into the above rules by
making acceleration out of stopped traffic weaker than acceleration at all other speeds,
for example by:

• if
(

vt = 0 and gt ≤ 1
)

then vt+1 = 0

• else vt+1 = min[gt, vt + 1, vmax].

This means that the vehicle needs a larger g than before to start moving. Such rules are
called “slow-to-start” rules in the physics community (Barlovic et al., 1998; Chowdhury
et al., 1999).

Time-oriented CA (TOCA)

A modification to make the STCA more realistic is the so-called time-oriented CA (TOCA)
(Brilon and Wu, 1998). The motivation is to introduce a higher amount of elasticity in
the car following, that is, vehicles should accelerate and decelerate at larger distances to
the vehicle ahead than in the STCA, and resort to emergency braking only if they get
too close. For the TOCA velocity update, the following operations need to be done in
sequence for each car:

1. if (g > v · τH) then, with probability pac,

v := min{v + 1, vmax} ; (27.11)

2. v := min{v, g}
3. if (g < v · τH) then, with probability pdc,

v := max{v − 1, 0} . (27.12)

Typical values for the free parameters are (pac, pdc, τH) = (0.9, 0.9, 1.1). The TOCA
generates more realistic fundamental diagrams than the original STCA, in particular
when used in conjunction with lane-changing rules on multi-lane streets.

file: book.tex, p.27-7 January 31, 2005

27.4. Car following

..5.....5..........5.......5............5.................5...........

.......4.....4..........5.......5............4.................5......

...........4.....5...........4.......5...........4..................4.

..4............4......5..........4........5..........5................

......5............4.......5.........5.........4..........4...........

...........5...........5........4.........4........5..........4.......

................4...........4.......5.........5.........4.........5...

.4..................4...........4........5.........4........5.........

.....4..................4...........5.........5........5.........4....

.........4..................5............5.........5........4........5

....4........5...................5............5.........4.......5.....

........4.........4...................5............5........4........4

...4........5.........5....................5............4.......5.....

.......4.........4.........4....................5...........4........5

....4......4.........4.........5.....................5..........5.....

...........01.....1..2..3.......4..........5...............5.......4..

.5.........1.2.....2...2...3........5...........4...............4.....

......4.....1..2.....3...2....3..........5..........5...............4.

..5.......2..1...2......1..2.....4............4..........5............

.......3....1.2....2.....1...2.......4............4...........5.......

..........1..1..3....2....1....2.........5............4............4..

.4.........1..2....2...3...2.....3............4...........4...........

.....5......2...2....3....1..3......4.............5...........4.......

..........3...3...3.....1..1....4.......4..............5..........4...
4............3...2...3...2..1.......5.......4...............4.........
....4...........2..2....1..1.1...........4......5...............4.....
........4.........1..2...2..1.2..............5.......4..............4.
..4.........4......2...3...1.1..2.................4......4............
......5.........4....2....1.0.2...2...................4......4........
...........5........2..3...01...2...2.....................4......5....
5...............4.....2...00.1....3...3.......................4.......
.....4..............2...0.01..2......3...3........................5...
.5.......4............1.0.0.1...3.......3...3.........................
......5......5.........00.1..2.....3.......3...4......................
...........5......3....00..1...3......3.......4....4..................
................4....0.01...1.....4......4........4....5..............
....................01.0.1...2........4......5........4.....4.........
....................1.00..1....3..........4.......4.......5.....5.....
.....................000...2......3...........5.......4........5.....5
....5................000.....3.......3.............5......4.........4.
..4......5...........001........3.......4...............5.....4.......
......5.......4......00.1..........3........5................4....4...
5..........5......1..01..2............3..........5...............4....
.....5..........2..1.0.2...3.............3............5..............4
...4......4.......1.00...2....3.............3..............4..........
.......4......3....001.....2.....3.............3...............5......
...........5.....1.00.1......3......4.............4.................4.
..4.............1.000..1........3.......5.............5...............
......5..........0000...1..........3.........4.............4..........
...........4.....0001....2............4..........5.............5......
...............1.001.2.....2..............5...........4.............5.
...5............001.2..3.....2.................5..........4...........
........5.......00.2..3...4....2....................5.........4.......
.............2..00...3...3....2..2.......................5........5...
.4.............000......3...3...2..2..........................4.......
.....4.........000.........2...2..2..2............................5...
.5.......5.....001...........3...1..2..2..............................
......4.......001.2.............0.1...2..2............................
..........3...00.2..3...........1..2....2..2..........................
.............000...2...3.........1...2....1..3........................
.............000.....3....4.......1....2...1....4.....................

Figure 27.6: Space-time plot of stochastic CA. Each line is a configuration of the simu-
lated road; traffic goes from left to right; time is going downward. TOP: Laminar traffic.
BOTTOM: Jam out of nowhere leading to congested traffic.

ρ21

B

A C

ρρ density

fl
o

w
 q

st
ab

le

bi
−

st
ab

le

un
st

ab
le

D

Figure 27.7: Stylized fundamental diagram for slow-to-start STCA.

Dependence on the velocity of the car ahead

It makes sense to assume that velocity difference between vehicles should be included.
The idea is that if the car ahead is faster, then this adds to one’s effective gap and one may
drive faster than without this. In the CA context, the challenge is to retain a collision-free
parallel update. Wolf (1999) achieves this by going through the velocity update twice,
where in the second round any major velocity changes of the vehicle ahead are included.
Barrett et al. (1996) instead additionally look at the gap of the vehicle ahead. The idea
here is that, if we know the gap of the vehicle ahead, and we make assumptions about the

file: book.tex, p.27-8 January 31, 2005

27.4. Car following

driver behavior of the vehicle ahead, then we can compute bounds on the behavior of the
vehicle ahead in the next time step.

Theory

CA rules can also be analyzed analytically, by means of statistical techniques which look
at sequences of configurations of the dynamical evolution of the system (e.g. Schad-
schneider and Schreckenberg, 1993; Schadschneider, 1998; Chowdhury et al., 2000).
Note that this is possible because the cellular approach makes the dynamical states count-
able: There is only a finite number of possible states for a given number of cells.

27.4.3 Continuous space and continuous time

Making both space and time continuous results in coupled differential equations. Such
models for car following were established quite some time ago (e.g. Gerlough and Huber,
1975, and references therein). Most of them also use in one way or other the reaction
time argument of Sec. 27.4.1 (as they should). For example, one could use

v(t + τ) = α ∆x(t) , (27.13)

where ∆x is the distance to the car ahead.4 This just means that, after some time de-
lay, our velocity is proportional to ∆x, as it should be according to the reaction time
argument.

One can expand v(t + τ) = v(t) + τ v̇(t) + ..., drop second order terms, and rearrange,
resulting in

v̇(t) =
1

τ

(

α ∆x(t) − v(t)
)

(27.14)

That is, we adjust our velocity change so that we are adjusting towards the “correct” ve-
locity v = α∆x. Eqs. (27.13) and (27.14) do not in general generate the same dynamics,
in spite of having the same dynamic origin.

A generalization of Eq. (27.14) is to replace α ∆xt with a function V (∆x(t)):

v̇(t) =
1

τ

(

V (∆x(t)) − v(t)
)

(27.15)

We will need this again later.

[[bando ref]]

The “classic” car-following model family (Gerlough and Huber, 1975) comes from
taking a time-derivative of the reaction-time relation Eq. (27.13), leading to

v̇(t + τ) = α∆v(t) . (27.16)

After adding some more or less plausible prefactors, this leads to

v̇(t + τ) = α
[v(t + τ)]l

[∆x(t)]m
∆v(t) . (27.17)

These models are however unstable (e.g. Nagel et al., 2003). The reason behind that is
that they allow vehicles to follow each other at extremely close distances with very high
speeds as long as there is no velocity difference between them: From ∆v = 0 follows

4Car-following models have a tendency to not distinguish cleanly between g (which is space between cars)
and ∆x (which is usually front-bumper-to-front-bumper distance). As long as vehicles do not pass each other,
these differences are indeed irrelevant.

file: book.tex, p.27-9 January 31, 2005

27.4. Car following

v̇ = 0. Once a small velocity difference shows up, they react with violent fluctuations.
Note that neither Eq. (27.13) nor (27.14) allow such a solution.

For computer implementations, models with continuous time are inconvenient, since time
needs to be discretized in one way or other. Because of the reaction delay, many of these
car-following equations are delay equations, where considerable effort needs to be spent
for faithful numerical results. Given this observation, it seems to be simpler to build
models that use discretized time to their advantage (see next section). This is not to
say that continuous car-following models are useless; indeed, they continue to contribute
to our understanding of the matter (e.g. Bando et al., 1994, 1995). We would expect,
however (see below), that any faithful discretization of these equations will run a lot
more slowly on a computer than the model presented in the next section, which explicitly
uses discrete time.

Another possible implementation of continuous space and time would be event-driven.
This works best when particles move with constant velocity for periods of time, inter-
rupted by events where they change it. Molecular dynamics with hard core interactions
is an example. Since human driving behavior can probably indeed be characterized like
that (Wiedemann, 1994), this should be a promising approach. However, parallel im-
plementations of event-driven simulations are hard and therefore large scale simulations
currently not done with this method.

27.4.4 Discrete time and continuous space car following

A disadvantage of the CA approach to traffic is that the coarse-gained description makes
fine tuning of many properties difficult. For example, it is difficult to represent fine-
grained differences in speed limits, or different acceleration profiles.

On the other hand, the use of coupled ordinary differential equations turns out to be
inconvenient for traffic simulations, in particular because of the explizit handling of the
reaction time, which means that for numerical integration one needs to maintain the entire
dynamical history between t and t− τ in increments of the time discretization ∆t. There
are however also models that are continuous in space but coarse-grained discrete in time
which work extremely well for traffic (Gipps, 1981; Krauß, 1997; Krauß et al., 1997;
Yukawa and Kikuchi, 1995; Sauermann and Herrmann, 1998). The reason for this is
that drivers have a reaction delay of about one second, and it is advantageous to use this
reaction delay as the time step for the micro-simulation. From a practical point of view,
traffic models which use discrete time but continuous space are numerically as efficient
as the CA models but are much easier to calibrate. Obviously, a multitude of models
is possible here – as is with CAs. We want to concentrate on a single model, a model
described by Krauß (Krauß, 1997; Krauß et al., 1997). This model is particularly well
understood.

The approach starts again from the reaction time argument (Sec. 27.4.1), this time taking
into account the possibility that the two cars can have different velocities. This results in
the condition that one’s braking distance plus the distance that one drives until one reacts
should be smaller than the braking distance of the car ahead plus the space in between
the two vehicles. Formally, this yields

d(v) + v τ ≤ d(ṽ) + g , (27.18)

where d(v) is the braking distance of a car moving with speed v, τ is the reaction time,
g is the distance to the car ahead, and ṽ is the speed of the car ahead (“leader”).5

5Note that this formulation includes the effect of different velocities, but it assumes that acceleration of the
follower is zero (?).

file: book.tex, p.27-10 January 31, 2005

27.4. Car following

Derivation of the safe velocity
Let us first Taylor-expand the function d(v) describing the braking distance around the
operating point v := (v + ṽ)/2, where v and ṽ are again the velocity of the follower and
leader, respectively:

d(v) = d(v) + (v − v) d′(v) +
(v − v)2

2
d′′(v) + O � (v − v)3 � .

Inserting this into Eq. 27.18, one obtains first

(v − v) d′(v) + v τ ≤ (ṽ − v) d′(v) ṽ + g

and then
v d′(v) + v τ ≤ ṽ d′(v) ṽ + g . (∗)

Note that this is correct up to and including second order, since the second order terms
cancel out.
Next, we note the kinematic relation

d′(v) ≡
d

dv
d(v) =

v

b(v)
,

where b(v) is the deceleration of the car. This relation can be easily derived when one
assumes a constant b until the car is stopped, but is also true for an arbitrary braking
profile b(v).
Inserting this into Eq. (∗) and rearranging terms yields

v ≤ ṽ +
g − ṽ τ

τ + v/b(v)
.

Showing the collision freeness
In continuous time and after the assumptions made, the above is the condition for
collision-free driving. This is true also for the discrete analogue of this formula, pro-
vided the step-size h is smaller than τ : First, in general one obtains for the gap

gt+h = gt + h � ṽt+h − vt+h � .

After using Eq. (27.19) of the main text, rearranging terms, and using the notation ξt :=
gt − h ṽt one gets

ξt+h ≥ ξt � 1 −
h

τ + v/b
� + h ṽ

τ − h

τ + v/b
,

a map ξt → ξ(t + h). Thus, h ≤ τ is a sufficient condition to ensure that if ξt ≥ 0,
then ξt + h ≥ 0, meaning that ξt ≥ 0 for all t if ξt=0 ≥ 0. Because of the definition
of ξ, this ensures that gt ≥ 0 for all t ≥ 0.

Figure 27.8: Derivation of the model by Krauss.

This can be used to derive (see Fig. 27.8) a simple update scheme for the dynamical state
of a car:

vsafe = ṽt +
gt − ṽtτ

v/b + τ
(27.19)

vdes = min{vt + a h, vsafe, vmax} (27.20)

vt+h = max{0, vdes − ε a η} (27.21)

xt+h = xt + h vt+h . (27.22)

v = (v + ṽ)/2 is the average velocity of the two cars involved, a is the maximum
acceleration of the vehicles, b their maximum deceleration, ε is the noise amplitude, and
η is a random number following a flat distribution in [0, 1].

The terms can be interpreted as follows:

• The first rule (i.e. Eq. 27.19) can be rewritten as

vsafe = α
gt

τ
+ (1 − α) ṽt (27.23)

file: book.tex, p.27-11 January 31, 2005

27.5. Kinematic waves and fluid-dynamics

with

α =
1

v/(b τ) + 1
. (27.24)

[[check on paper]] That is, vsafe is a weighted average of g/τ and ṽ. For α < 1,
the velocity of the car ahead is added to the calculation in the following way: If the
car ahead is faster, then one can be a little faster than allowed by the gap alone; if
the car ahead is slower, then one needs to be slower than allowed by the gap alone.

Note that for α = 1 and τ = 1 we recover the STCA rule.

• The second rule (i.e. Eq. (27.20)) just states that the velocity is limited by the
desired acceleration a, by the safe velocity vsafe as calculated above, and by the
maximum velocity vmax .

Note that this is the same as the CA rule.

• In the third term, noise η is added by randomly making the vehicle slower than
so far calculated. η denotes a random variable between zero and one, ε is a noise
scaling factor.

Again, this is the same as the CA rule.

• The fourth term denotes the forward movement.

For h ≤ τ one can show that this model is free of collisions (Fig. 27.8); normally, one
uses h = τ . Typical values for (a, b, ε) are (0.2, 0.6, 1).

27.5 Kinematic waves and fluid-dynamics

27.5.1 The Lighthill-Whitham-Richards equation

The intuition for kinematic waves is easy to understand. Start with five vehicles of ve-
locity zero in five adjoining cells. In the first time step, only the first vehicle can move.
In the second time step, the second vehicle can start, etc. However, in the meantime it
can happen that another vehicle joins the queue at the tail.

Given the right conditions (more vehicles joining at the tail than leaving at the head), this
results in a cluster of vehicles of velocity zero and that cluster will move against the traffic
direction. Note that the vehicle composition of this cluster is constantly changing – from
the perspective of a driver, you join the jam from the end, the jam “moves through you”,
and then you can start again (look at the two trajectories in the lower part of Fig. 27.4 for
an illustration). This is a standard wave phenomenon.

A detailed introduction into such waves can for example be found by Haberman (1977).
Here, we will just [[word?]] give an overview for people who have some prior knowl-
edge about partial differential wave equations.

One way to see all the connections [[word?]] is to start from the standard equation of
continuity, which needs to be fulfilled as long as our traffic obeys mass conservation (no
vehicles leaving or joining). This equation is

∂tρ + ∂xq = 0 (27.25)

(equation of continuity). This equation can be easily understood when it is discretized
(with discretization constants ∆t = 1 and ∆x = 1):

Nt+1(x) = Nt(x)−
(

qt(x+
1

2
)−qt(x−

1

2
)
)

= Nt(x)+qt(x−
1

2
)−qt(x+

1

2
) (27.26)

file: book.tex, p.27-12 January 31, 2005

27.5. Kinematic waves and fluid-dynamics

x−1/2 x x+1/2

N(x)

N(x−1)
N(x+1)

q(x−1/2) q(x+1/2)

Figure 27.9: Illustration of Eq. (27.26).

where Nt(x) is the number of vehicles in a spatial interval of size ∆x = 1. The notation
mirrors the computational implementation, where the spatial index would be represented
by an array index, while the temporal index would typically not show up at all. The
equation states that the number of vehicles at time t+1 is equal to the number of vehicles
at time t, plus what flows in from the left, and minus what flows out to the right.

We now need a relation between q and ρ. Let us assume that q is a function of ρ only,
i.e. the total differential is dq = dq

dρ dρ. The meaning of this (instantaneous velocity
adaptation) will be discussed below. The resulting theory is also called the Lighthill-
Whitham-Richards (LWR) theory (Lighthill and Whitham, 1955). [[Richards ref]]
The equation of continuity can immediately re-written as

∂tρ +
dq

dρ
(ρ) ∂xρ = 0 (27.27)

(LWR equation), where q(ρ) is some externally given but as of yet unspecified function.

27.5.2 Linearization

Since we now have a fully defined partial differential equation, we can try to understand
some of it. A typical first step is “linearization”. For this, ρ is replaced by ρ + ρ′, with
∂tρ = 0 (stationary) and ∂xρ = 0 (homogeneous); this is always possible. One now
assumes that ρ′ is small. Functions in ρ are Taylor-expanded:

F (ρ) = F (ρ) + ρ′ dF

dρ
(ρ) + ... ; (27.28)

in our case, we need F = dq/dρ. This results in

∂tρ
′ +
(dq

dρ
(ρ) + ρ′

d2q

dρ2
(ρ) + . . .

)

∂xρ′ = 0 . (27.29)

Finally, higher-order terms (i.e. which contain products of ρ′) are dropped, resulting in

∂tρ
′ +

dq

dρ
(ρ) ∂xρ′ = 0 . (27.30)

This is now a linear equation in ρ′, since in each term ρ′ occurs at most once. In such
cases, one knows that one can make the ansatz

ρ′ = A ei(ωt−kx) . (27.31)

If one has never seen this before, it is probably impossible to explain this in two minutes.6

Inserting Eq. (27.31) into Eq. (27.30) leads to

ω − dq

dρ
(ρ) k = 0 (27.33)

6There are several elements:

file: book.tex, p.27-13 January 31, 2005

27.5. Kinematic waves and fluid-dynamics

density

flo
w

tangent slope positive:
wave travelling forward

density

flo
w

tangent sloping down:
waves travelling backward

Figure 27.10: Phase speeds of kinematic waves

and therefore to

c :=
ω

k
=

dq

dρ
(ρ) . (27.34)

This is the phase velocity of the travelling wave. That is, this wave will travel in traffic
direction when q(ρ) is increasing (dq

dρ (ρ) positive), and against the traffic direction when
q(ρ) is decreasing (Fig. 27.10).

27.5.3 Macroscopic shocks

Linearization is not very useful for traffic, since it assumes small ρ′, which is often not
fulfilled in traffic. Let us thus look at a macroscopic front with speed c. Let us go to the
same reference system as the front. In that reference system, the flow to the left of the
front needs to be the same as the flow to the right of the front, because otherwise there
would either be an excess or a lack of “material” at the front. Let us denote variables in
the reference system of the front with a tilde. In equations, the statement means

q̃l = q̃r . (27.35)

Now q̃ = ρ ṽ, where the density ρ does not need a tilde because it is independent from
the speed of the reference system. That is, one has

ρl ṽl = ρr ṽr . (27.36)

For the translation into a non-moving coordinate system, one has ṽ = v+c, and therefore

ρl (vl + c) = ρr (vr + c) (27.37)

Rearranging yields

ρlvl − ρrvr

ρl − ρr
=:

∆q

∆ρ
= c . (27.38)

One can see geometrically that this is just the slope of the line connecting the correspond-
ing points on the fundamental diagram (Fig. 27.11).

• The notation using the complex number i essentially means an equation of type

ρ′ = A cos(ωt − kx) . (∗) (27.32)

What is missing in this simplification is the so-called phase information.

• Eq. (∗) is a wave equation. As one can easily verify, it has wave length 2π/k, that is, the function is
periodic under additions of 2π/k to x. k is called the wave number. Similarly, the function is periodic
under additions of 2π/ω to t; ω is called the frequency.

• One can also verify that, say, a wave crest travels with velocity c := ω/k. In Eq. (∗), at time t = 0
there is a wave crest at position x = 0. At time t, the wave crest is where ωt − kx = 0, which means
a velocity x/t = ω/k.

file: book.tex, p.27-14 January 31, 2005

27.5. Kinematic waves and fluid-dynamics

density

flo
w

Secant sloping down:
wave travelling backw.

rho_1 rho_2

Figure 27.11: Speed of discontinuous fronts

27.5.4 The deterministic CA in terms of kinematic waves

We can now analyse our deterministic CA (Sec. 27.4.2) in terms of kinematic waves (see
also Fig. 27.5):

• In the laminar regime, we have dq/dρ = vmax. This means that our waves have
the same speed as the traffic — that is, they are the “clusters” or “platoons” of cars.

• In the congested regime, dq/dρ = −1. This can be seen in the space-time diagram
via the fact that the “patterns” move backwards one cell in each time step (Fig. 27.4
bottom).

• With respect to our introductory problem with the five cars: The jam has density
ρ = 1 and speed v = 0, thus also q = 0. Outflow from the jam is eventually at
v = vmax and ρ = 1/(vmax + 1) (this can be seen by following the dynamics). In
consquence,

∆q

∆ρ
=

vmax/(vmax + 1) − 0

1/(vmax + 1) − 1
= −1 . (27.39)

Thus, the downstream front of the jam moves backwards with speed c = −1. —
One could also have seen that by noticing that the outflow is equal to the maximum
flow in this model, and then do the geometric solution similar to Fig. 27.11.

[[might be good to do xfig here too]]

The inflow is somewhere on the “laminar” branch of the fundamental diagram.
That means that the slope of the line connecting to (ρ = 0, q = 0) is either −1
or less steep. The inflow front thus moves backwards with speed 1 or less — that
is, the jam will eventually vanish except when inflow is exactly equal to maximum
flow.

One can treat queues at traffic lights similarly. While the traffic light is red, qout = 0 and
thus the outflow front does not move (which we know since the first car is waiting at the
red light). The inflow front moves backwards with cin = qin/(ρin − 1).

Once the traffic light turns green, the outflow front now moves backwards with −1, while
the inflow front keeps moving backwards with cin. The situation remains like that until
the outflow front catches up with the inflow front. And if the traffic light turns red before
that, one needs to include that effect (Fig. 27.12).

27.5.5 More advanced fluid-dynamical models

The kinematic theory is entirely sufficient to understand the most important theoretical
aspects of traffic flow. This section goes a little bit beyond that, by providing an outlook
what else could be done.

file: book.tex, p.27-15 January 31, 2005

27.5. Kinematic waves and fluid-dynamics

tim
e

trajectory

space

Figure 27.12: Traffic light in terms of kinematic waves

The STCA and in particular the slow-to-start model are not entirely described by the
kinematic theory. This is in part due to the stochastic elements, which are not captured
in the equation. It is also due to the hysteresis which is displayed by the slow-to-start
model (Fig. 27.7) but not by kinematic theory. This motivates to look for fluid-dynamical
equations for traffic that capture effects beyond the kinematic theory. Two extensions of
the kinematic theory will be discussed.

Addition of diffusive terms

Diffusive terms can be justified for many reasons. The result is an equation like

∂tρ + ∂xq = D∂2
xρ . (27.40)

The wave solution after linearization now is [[check]]

ρ′ = A e−k2Dt ei(ωt−kx) (27.41)

which means that it has the same phase velocity c = dq/dρ as before but in addition a
decreasing amplitude — waves slowly die out.

Addition of inertia

Above, we have assumed that flow q is a function of the density ρ only. This is in general
not true — if a driver suddenly comes into denser traffic, she/he will need some time to
adjust; the same is true if density suddenly decreases. That means that velocity will be
delayed in its adaptation to density.

A way to capture this is to add an equation for the velocity. One can for example use the
car following equation (27.15)

a =
Dv

Dt
=

1

τ

(

V (∆x) − v
)

. (27.42)

file: book.tex, p.27-16 January 31, 2005

27.6. Capacities, especially at bottlenecks

The translation of the particle-oriented Dv/Dt into the fluid-dynamical ∂tv + v ∂xv
yields

∂tv + v ∂xv =
1

τ

(

V (∆x) − v
)

. (27.43)

We need however V (ρ) instead of V (∆x), and we also need ρ measured at the location
of the vehicle and not in the middle between two vehicles, where ∆x is measured.7 This
is the mathematical reason for what is usually called the anticipation term

−c2
0

ρ
∂xρ . (27.46)

If density goes up in the driving direction, then ∂xρ is positive, thus the term causes
negative acceleration, which is plausible.

In addition, we will again add a diffusion term, ν ∂2
xv. Overall, one obtains the momen-

tum equation

∂tv + v ∂xv =
1

τ

(

V (ρ) − v
)

− c2
0

ρ
∂xρ + ν ∂2

xv . (27.47)

Note that we still need to specify V (ρ), which is the same information as q(ρ) introduced
after Eq. (27.25). The only difference is that we now allow that it can take some time
until velocities have adjusted accordingly. Indeed, the relaxation time is τ . If we let τ go
to zero, then the momentum equations becomes v = V (ρ), which means instantaneous
adaptation.

There is quite a lot of theory about this equation and its meaning for traffic (e.g. Helbing,
1997; Kerner, 1998). Much of the behavior of the micro-simulation models can be ex-
plained using these equations; in fact, much of it was first observed in the fluid-dynamical
equations. This, however, would be a full class in traffic flow theory and would thus go
beyond the scope of this text.

[[breakdown and recovery. do I really want that for this text?]]

27.6 Capacities, especially at bottlenecks

An important concept is capacity. The capacity of a link is its maximum flow. As we see
from our fundamental diagrams, this looks like a fairly well-defined quantity. For field
measurements, a question is which time averages one wants to use. Another question
comes up when traffic can “break down”, something that we have not discussed in this
course.

However, in city traffic, the main obstruction to flow is not the dynamics along the link,
but the dynamics at intersections. As an approximate number, an unobstructed link
has a capacity of 2000 vehs/hour/lane. If at the end of the link we have a traffic light

7Linearization yields

V (ρ(∆x/2)) = V (ρ(0)) +
∆x

2

dV

dρ
∂xρ + ... (27.44)

The second term (“anticipation term”) is usually approximated by

−
c2
0

ρ
∂xρ (27.45)

in analogy to the sound wave solution of the Navier-Stokes equations. [[fig for this?]]

file: book.tex, p.27-17 January 31, 2005

27.7. Cost-flow curves for static assignment

Fundamental dia−

density

flo
w

A

gram on unob−
structed link

density

sp
ee

d
Cap cut−off

Figure 27.13: Fundamental diagrams when node capacity is smaller than link capacity.

which is green half of the time, then the result will be a link capacity of approximately
1000 vehs/hour/lane. This is a time-averaged number; we have already learned how to
describe queue dynamics at traffic lights more realistically via kinematic waves. Here,
we will however use the time-averaged description.

If, via the link, there are more cars flowing towards the node than the node can process,
then a queue will form. The density inside that queue can be found via the fundamen-
tal diagram by going to the high density branch for the given node capacity (point “A”
in Fig. 27.13). In consequence, in a situation where the node capacity is smaller than
the link capacity, certain density ranges of the fundamental diagram do not occur under
steady state conditions.

27.7 Cost-flow curves for static assignment

Traditional models for transportation planning, called “static assignment”, do not use any
representation of link dynamics at all. The purpose of this section is to explain the traffic
dynamics representation of static assignment, and how that relates to the traffic dynamics
we have seen so far.

Quite in general, any assignment method needs to be able to calculate link travel times
from demand for traffic on a link. Intuitively, travel times increase with demand. The
problem seems to be to find a good equation for that – it will however turn out that there
is no simple solution.

Static assignment generates steady state solutions. So from a dynamic point of view,
steady state assignment would be a better name. This means that continuous streams
of traffic are fed into the system at the origins, and they move via their routes to their
destinations, where they are removed. In consequence, demand for a link comes as a
flow. So for a simple demand-cost relation we need to find link delay as a function of
link flow.

This is actually similar to electricity, where steady-state currents follow an equilibrium
pattern through a network according to Kirchhoff’s laws. The cost function is Ohm’s

file: book.tex, p.27-18 January 31, 2005

27.7. Cost-flow curves for static assignment

Figure 27.14: Illustration of steady-state network flow.
de

ns
ity

flow

flow

link ttime
propto 1/v

sp
ee

d

flowdensity

sp
ee

d

Figure 27.15: Construction of v(q) and thus T (q) for link dynamics. Starting points are
the v(ρ) diagram at the left and the q(ρ) diagram at the top.

law, U = RI . With constant R, cost is proportional to flow, but R can also depend on I ,
making this non-linear. The main difference to steady state assignment is that in traffic
the particles have fixed destinations which cannot be interchanged.

Now let us construct link travel time as a function of steady state flow for link dynamics.
We start from simplified link fundamental diagrams v(ρ) and q(ρ), see Fig. 27.15 left
and top, where dashed lines are used in the congested regimes. One can construct or
calculate v(q) from that (center right in Fig. 27.15). Link travel time is T (q) = L/v(q);
a sketch of this is shown at the bottom of Fig. 27.15.

A problem with this is that there is in general either more than one or no velocity/time
value for every given flow value. Looking at the case where the node capacity is the
restricting quantity (Fig. 27.16), we see that the problem remains similar for that case.
The normal simplification for static assignment has been to only use the upper branch of
v(q), which corresponds to the lower branch of Tlink(q). This results in functions T (q)

file: book.tex, p.27-19 January 31, 2005

27.7. Cost-flow curves for static assignment

de
ns

ity

flow

flow

link ttime
propto 1/v

sp
ee

d

flowdensity

sp
ee

d

Figure 27.16: Construction of speed and link travel time as function of flow, now for a
link with a bottleneck at the end. Inputs are the speed-density relation on the left and the
flow-density relation on the bottom.

which in general start at the free speed travel time for zero flow, and which increase with
increasing flow, which is plausible.

However, what happens if the assignment model assigns more flow to a link than capacity
cap? We know that this is dynamically impossible under steady state conditions. So
the only consistent choice for this situation is to set the link travel time to infinity for
q > cap. This is in fact what static assignment models essentially do, except that they
use a smooth function (i.e. no jump at q = cap). The main difference between different
cost-flow-curves is which cost they give to assigned flows above capacity.

In that sense, it is more reasonable to think about capacity for static assignment as just a
free parameter of a cost-flow curve. The calibration of a cost-flow curve is quite difficult,
and given the fact that there is no dynamical basis for such a curve, it is clear that it has
to be more an art than a science. Nevertheless, the resulting models work quite well, and
in spite of knowing better from a theoretical perspective, it is difficult to come up with
models that work better in practice.

So far, we have described steady state traffic dynamics and how they are mapped on
cost-flow curves for steady state assignment. We have described that one aspect that
such models do not pick up are queues upstream of bottlenecks. Note that such queues
can well exist under steady state conditions; they violate however the condition that there
should only be one velocity/travel time value for each flow value.

There are dynamic aspects of traffic that steady state models cannot pick up at all. A
typical scenario is that we have a wide freeway eventually ending in a bottleneck. During
rush-hour build-up, the freeway may be used at capacity, resulting in a growing queue at
the bottleneck, which will not vanish until the end of the rush period (Fig. 27.17). The
steady-state solution would not allow that amount of traffic for the freeway. So here lies
one of the reasons why assigment models that are used in practice allow flows above
capacity.

file: book.tex, p.27-20 January 31, 2005

27.7. Cost-flow curves for static assignment

At onset of rush period:

Some time later:

Even more time later:

Figure 27.17: A freeway ending in a bottleneck.

There have been attempts to make static assignment models dynamic by solving separate
models for several time slices. It is clear that from a dynamical perspective this is not
a realistic solution – e.g., the above example with the freeway being used above the
bottleneck capacity could still not be picked up.

file: book.tex, p.27-21 January 31, 2005

Chapter 28

Static assignment

28.1 Introduction

The traditionally (and currently) most important method for transportation planning is
Static Assignment. As said in Sec. 27.7, from our point of view a better word might be
Steady State Assignment, since the assumption is that one has constant traffic streams. In
fact, the model is very similar to steady state current calculations for electricity or water,
where electrons or water molecules enter the system at certain points and are removed at
certain other points. The main difference is that for traffic the particles have destinations
which they need to reach, which means that in traffic we cannot exchange particles.

This is an extremely basic introduction into static assignment. An introduction at the
same level, but with much more material in particular with respect to the history of static
assignment, can be found in (Ortúzar and Willumsen, 1995). A comprehensive but still
didactic treatment is in (Sheffi, 1985).

28.2 Equilibrium principle

The steady state assignment of electric or water currents to a network follows an equi-
librium principle: Along any path through the network, the sum of the voltages is the
same. This means that the amount of energy (cost) necessary to go from one point in the
network to another one does not depend on the path.

For traffic, the situation is similar, except that our particles have destinations. We thus
characterize particles/streams by their (origin,destination) (OD). Only particles which
have the same origin and the same destination are treated as interchangeable.

The equilibrium principle is stated as

Under equilibrium conditions traffic arranges itself in such a way that no
individual trip maker can reduce his/her path costs by switching routes.

This is Wardrop’s (first) principle.

If all trip makers perceive the same cost functions, then one can move the point of view
from individual travelers to OD flows:

Under equilibrium conditions traffic arranges itself such that all used routes
between an OD pair have equal costs while all unused routes have a cost
equal to that or greater.

28-1

28.2. Equilibrium principle

B

A

Figure 28.1: Three different path flows connecting A and B.

The idea behind this is: If, for a given OD pair, there is a faster path, then people will
start using it, thus making it slower. This process will stop once the new path is as slow
as the other paths which are used for this OD pair.

For a mathematical formulation, one needs notation:

• qa: Flow on link a.1 q = (q1, q2, ...) is the vector of all link flows.

• ta = ta(qa): Link travel time, as a function of the link flow. Remember that we
have discussed (Sec. 27.7) that such a function does not exist if one looks at the
full dynamics. This is the main “problem” with static assignment.

• Qrs OD flow from r to s (OD matrix).

• There are usually multiple paths p from r to s. f rs,p is the path flow of path p (see
Fig. 28.1). In consequence:

∑

p

frs,p = Qrs . (28.1)

We also reasonably assume that path flows cannot be negative:

frs,p ≥ 0 . (28.2)

• δrs,p
a indicates if path rs, p uses link a or not:

δrs,p
a =

{

1 if used
0 if not used

. (28.3)

• The link flow is the sum of all path flows which use that link (Fig. 28.2):

qa =
∑

rs,p

frs,p δrs,p
a . (28.4)

• crs,p is the cost of path rs, p. It is the sum of all link cost contributions:

crs,p =
∑

a

ta δrs,p
a . (28.5)

The translation of Wardrop’s equilibrium principle into our new notation means that we
we are searching for an assignment of the OD streams to the network so that we have

crs,p

{

= crs if path p used for rs
≥ crs if path p not used for rs

(28.6)

1Conventionally, one uses x here; I will use q because that’s what we have used in traffic flow theory.

file: book.tex, p.28-2 January 31, 2005

28.3. Beckmann’s mathematical programming formulation

Figure 28.2: A link flow consisting of three path flows.

28.3 Beckmann’s mathematical programming formula-
tion

Define a function

z(q) :=
∑

a

∫ qa

0

ta(ω) dω . (28.7)

The sum is over all links a; for each link, we integrate over the travel time as flow
increases, up to the flow qa actually used on that link.

This is a function which maps high-dimensional space into a scalar number. The number
of dimensions is the number of links in the network.

I am not aware of an intuitive motivation for this function. It just turns out that it works:
Minimization of this function subject to

∑

p

frs,p = Qrs , frs,p ≥ 0 (28.8)

and together with the definitions from above gives the desired equilibrium solution. This
is actually not too hard to show. However, the derivation does not give any intuitive
insight why z(q) is the correct function.

With this transformation, the equilibrium problem is transformed into a constrained op-
timization problem. Optimization problems are in general much better understood than
equilibrium problems.

28.4 Constrained optimization

Can one provide some intuition of how to solve the problem defined by Eqs. (28.7)
and (28.8)? First, ignore the right hand side of Eq. (28.7) and recall that z(q) is just
a scalar function in high dimensional space. If q had only two dimensions, then z(q)
could be interpreted as a height function.

The task is to find the global minimum of this function. This is for example similar to
finding a global maximum of a fitness function in evolutionary computing.

Since z(q) is analytically given, one can use mathematics to find candidates for global
minima. As is known from calculus, all q∗ where ∇z (q∗) = 0 are such candidates. If
the problem is constrained, additional candidates are along the boundaries of the allowed
regions, see Fig. 28.3. A formal description of this leads to notions such as the Kuhn-
Tucker-conditions and Lagrangian multipliers.

file: book.tex, p.28-3 January 31, 2005

28.5. Uniqueness

q1

q2

height contours of z(q)

constraint
global
optimum
within
constraint

Figure 28.3: Constrained optimization

28.5 Uniqueness

One of the major advantages of static assignment is that, under certain conditions, it has
one unique solution. This means that no matter what the solution method, all solutions
are the same. This is vastly different from our simulation approach, and certainly one of
the big drawbacks of simulation that we have to consider in our work.

Sufficient conditions for uniqueness of Static Assignment are:

• strict convexity of z(q)

together with

• convexity of the feasible region.

These conditions are not minimal, but they are normally used in practice. They will be
described in more detail in the following.

28.5.1 Convexity of z(q)

Strict convexity of z(q) means, intuitively, that it is “bent” (curved) upwards everywhere.
In one dimension, this would be ensured by having a second derivative that is > 0 ev-
erywhere. In higher dimensions, it is ensured by having a Hessian (= matrix of second
derivatives) that positive definite. A matrix H is positive definite if v · Hv > 0 for all
v 6= 0 – this is just the higher dimensional version of “second derivative > 0 every-
where”.

For an unconstrained problem, the intuitive interpretation is as follows: Assume there
is one location q∗ where ∇z (q∗) ≡ 0, which is therefore a candidate for an optimum.
Now if z(q) is curved upwards everywhere, then candidate is a local minimum, and there
cannot be a second place where ∇z(q) ≡ 0.

For constrained optimization, one has in addition to make sure that the boundaries coop-
erate. This is indeed achieved by the convexity of the feasible region, see Sec. 28.5.2.

file: book.tex, p.28-4 January 31, 2005

28.6. A solution method

For Static Assignment, it is possible to simplify the condition of a positive definite Hes-
sian. The calculus for this is a bit tricky, but workable. The result is that the statement

H positive definite ⇒ z(q) strictly convex (28.9)

can be replaced by

∀a:
∂ta(qa)

∂qa
> 0 ⇒ z(q) strictly convex. (28.10)

So what we need is that link travel time increases strictly monotonically with link flow.
Given the assumptions that we have already accepted, this one is easy to accept.

One has to note that the above will prove convexity of z(q) with respect to the link flows
qa, not with respect to the path flows f rs,p. And indeed, the solution is unique with
respect to the link flows, but not with respect to the path flows.

28.5.2 Convexity of the feasible region

The feasible region is the set of all solutions which fulfill the constraints. That is, all path
flows which fulfill the OD matrix.

Convexity of the feasible region means that any convex combination of feasible solutions
is again feasible. A convex combination is a normalized linear combination: If X1 and
X2 are both feasible, then

X3 := α X1 + (1 − α) X2 (28.11)

should also be feasible (α ≤ 1).

frs,p ≥ 0 together with
∑

p frs,p = Qrs will always result in a convex feasible region.

28.6 A solution method

Constrained optimization is a large area of mathematics, with very sophisticated tech-
niques. Some of these techniques can be used for the static assignment problem (Patriks-
son, 1994).

Here we want to outline one well-known technique. It is known as Frank-Wolfe algo-
rithm, or convex combinations method. It can be explained in a general way, and then
be applied to static assignment, but it can also be applied directly to static assignment,
which allows to take advantage of some simplifications right from the beginning. Here
we will do the latter.

The idea is to iteratively apply three steps:

1. Linearize z(q) around some operating point qn, where n denotes the iteration.
That is, approximate z(q) ≡ z(qn + y) by

z(qn) + y · ∇z (qn) . (28.12)

The result of this is that the fitness landscape z(q) is replaced by a hyperplane
which goes through z(qn) and which has the correct slope at qn.

2. Search, on that hyperplane, for the best solution. On a plane, the best solution
is necessarily at the border, so it is sufficient to search the border. Denote this
solution by xn = qn + yn.

file: book.tex, p.28-5 January 31, 2005

28.7. Summary

3. Use a convex combination of qn and xn for a new solution:

qn+1 = αqn + (1 − α)xn . (28.13)

Ad Item 1: Let us calculate ∇z when applied to z(q) as defined in Eq. (28.7). Let us do
that by component, i.e. (∇z)b ≡ ∂b ≡ ∂

∂qb
. This is the partial derivative with respect to

the bth link flow. Only one contribution of the sum depends on qb at all, and for this one
the derivative is trivial:

∂b

∑

a

∫ qa

0

ta(ω) dω = ∂b

∫ qb

0

tb(ω) dω = tb . (28.14)

Therefore, Eq. (28.12) becomes

z̃ := z(qn) +
∑

a

ya ta(qn
a) . (28.15)

Ad Item 2: Eq. (28.15) is maybe a little difficult to interpret at first sight, but it is actually
rather straightforward. The task is to minimize z̃ such that the constraints are fulfilled.
The constraints are that qn + y fulfills the OD flow conditions. Note that there is no
difference if one minimizes z̃ or

ẑ :=
∑

a

(qn
a + ya) ta(qn) . (28.16)

ẑ just means that one has to find feasible flows x = qn + y such that the sum of all link
travel times is minimized, together with the property that link travel times do not depend
on the flows (since qn is fixed; only ya is varied). This is achieved when every flow takes
the fastest path through the network. In other words, z̃ is minimized when OD flows are
assigned according to fastest paths based on the last iteration.

Interpret that in terms of our agent-based approach: one finds that, given an iteration,
progress is made be rerouting some of the OD flows according to what would have been
fastest in the last iteration. This is exactly the same in both approaches.

Ad Item 3: The remaining task is to combine the previous solution qn and the solution,
let us call it xn, which minimizes z̃. As said above, this is done via a convex combination,
i.e.

qn+1 = αqn + (1 − α)xn . (28.17)

In the agent-based approach, α was just set to 10%, corresponding to a replanning rate of
10%. Because of the analytic formulation in Static Assignment, one can actually search
systematically for an optimal α. Alternatively, it is possible to make α dependent on the
iteration number via αn = 1/n (method of successive averages, MSA). For MSA one
can prove that the method converges towards the correct solution, although convergence
may be slow.2

28.7 Summary

The two most important ingredients to static assignment are the assumption of equi-
librium and the assumption of steady state, i.e. steady state OD flows. Equilibrium is

2The intuitive reason both for convergence and for slowness is that � ∞

n=m 1/n always diverges, no matter
what m is. This means that any initial contributions to q can always be fully corrected by later iterations.
However, it is also clear that such late corrections take very many iteration steps.

file: book.tex, p.28-6 January 31, 2005

28.7. Summary

plausible; and variants of it are currently also used in simulation approaches. The as-
sumption of steady state in contrast leads to the unrealistic distortions of the traffic flow
dynamics that we have discussed earlier.

Once these assumptions are made, it turns out that one can formulate the resulting prob-
lem as a constrained minimization problem. Under weak additional assumptions (strict
monotonicity of the cost-flow-relation), the problem has a unique solution in the link
flows. This is a very desirable property, since the solution will not depend on the par-
ticular computational method that is used. This is very different from simulation, and
certainly an important reason why static assignment is liked so well.

file: book.tex, p.28-7 January 31, 2005

Chapter 29

Discrete choice theory

[[this is not entirely consistent in terms of β, µ, and βi. Would probably be best to
replace the β from the dept time choice by µ.]]

[[this is possibly not entirely consistent in UX and VX .]]

[[It might make sense to just teach probit ... would mean however to also replace
exp(...) in dept time choice by erf(...).]]

29.1 Introduction

We have seen: Proba to select an alternative A

PA ∝ eVA , (29.1)

where VA utility of option A.

Today: Some formal background.

• Get intuition where functional form eVA comes from and how other plausible forms
can be obtained.

• Learn to interpret coefficient tables (Axhausen).

• Understand how the coefficients are obtained.

Note: Marketing (“toothpaste A or toothpaste B”) uses exactly the same technology.

29-1

29.2. Binary choice

Contents

Binary choice (two alternatives):

• Explain random component.

• Explain choice based on “systematic plus random”.

• Understand examples.

• Binary probit or binary logit, depending on distriubtion of randomness.

Multinomial choice (many alternatives). Recover functional form from exercise.

Estimation of the βi from a survey.

29.2 Binary choice

= choice between two options.

29.2.1 Systematic vs random component of utility

Option A, for example “go swimming”.

Has systematic utility (that we compute): VA.

Assume that (for whatever reason) there is also a random component:

UA = VA + εA . (29.2)

Choice is made according to UA.

Possible interpretations:

• Person making the choice is not determinstic.

• Person making the choice is deterministic, but there are additional criteria (for
example “was swimming yesterday”) which are not included.

If they were included, then there would be no εA in this interpretation.

29.2.2 Choice based on random utilities

Now let us assume there are two options, A (“go swimming”) and B (“stay home”).

We assume that the option with the larger utility is selected (cf. Fig. 29.1):

Pr(A) = Pr(UA > UB) = Pr(VA + εA > VB + εB) (29.3)

= Pr(εB − εA < VA − VB) (29.4)

file: book.tex, p.29-2 January 31, 2005

29.2. Binary choice

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

-5 0 5 10 15

f_
A

(U
_A

),
 f_

B
(U

_B
)

U_A, U_B

f_A
f_B

Figure 29.1: Two random distributions, centered around 〈UA〉 = 3 and 〈UB〉 = 9.
Normally, solution B will win because it has higher utility, but there is a finite probability
that UB will come out really low and UA comes out really high, in which case A will
win.

29.2.3 Linear decomposition of systematic part of utility

Assume that VA, VB are linear in contributions:

VA = β1 xA,1 + β2 xA,2 + ... = β · xA (29.5)

and similarly
VB = ... = β · xB . (29.6)

In principle, the xX,i can be arbitrary functions. In practice, they are usually simple
transformations of basic variables, e.g. time, or distance, or distance squared.

29.2.4 Simple example

A result from discrete choice modeling often looks like this:

Car Bus Coeff
1 0 -1.4

time with car[min] time with bus[min] -0.1
cost with car[cent] cost with bus[cent] -0.012

(29.7)

Interpretation: Systematic utility with car is

Vcar = −1.4− 0.1

min
× time w/ car − 0.012

cents
× cost w/ car ; (29.8)

systematic utility with bus is

Vbus = 0 − 0.1

min
× time w/ bus − 0.012

cents
× cost w/ bus . (29.9)

(Compare: departure time ex.; but this here has only two options.)

For example: Time with car 10min; with bus 20min. Cost with car 200cents; with bus
100cents. Then

Vcar = −1.4 − 1 − 2.4 = −4.8 ; (29.10)

file: book.tex, p.29-3 January 31, 2005

29.2. Binary choice

Vbus = 0 − 2 − 1.2 = −3.2 . (29.11)

The probas to select car/bus (see later) will be something like

Pcar =
eVcar

eVcar + eVbus
. (29.12)

Pbus =
eVbus

eVcar + eVbus
. (29.13)

29.2.5 2nd example

Car Bus Coeff
1 0 -1.4
time with car[min] time with bus[min] -0.1
cost with car[cent] cost with bus[cent] -0.012
1 if female 0 0.6
1 if (unmarried OR spouse cannot drive OR travels to work
w/ spouse)

0 -0.2

1 if (married AND spouse is working AND spouse drives to
work indep’y)

0 1.2

Meanings:

If person is female, utility of car is increased.

If person is unmarried OR if spouse cannot drive OR if person travels to work with
spouse, then utility of car is decreased.

Etc.

29.2.6 Probability distributions, generating functions, etc.

From this point on, progress is made by making assumptions about the statistical distri-
butions of the noise parameters εi. Different assumptions will lead to different models.

Before looking into some specific forms, it makes sense to quickly recall probability
distributions and generating functions.

A probability density function essentially gives the probability that a certain option is
selected. For example, the Gaussian probability density function

f(x) =
1√
2π σ

exp

(

−1

2

(x

σ

)2
)

. (29.14)

gives the probability that option x is selected. More precisely, one would have to say that

∫ x+∆x

x

f(x) (29.15)

is the probability that anything between x and x + ∆x is selected.

The generating function F (x) is the integral of the probability density function. That is

f(x) = F ′(x) . (29.16)

In some cases, the generating function is simpler than the probability density function.

file: book.tex, p.29-4 January 31, 2005

29.2. Binary choice

The generating function can be used to compute the probability that the selected value is
smaller than some given value X . Rather obviously, one has

Pr(x < X) =

∫ X

−∞

f(x) = F (X) − F (−∞) . (29.17)

29.2.7 Binary Probit (Randomness is Gaussian)

Recall: We have

Pr(A) = Pr(UA > UB) = Pr(εB − εA < VA − VB) . (29.18)

We are now looking for mathematical forms of Pr(A).

Assume that εA and εB are Gaussian distributed.

Gaussian distributions have the property that sums/differences of Gaussian distributed
variables are still Gaussian distributed. In consequence, ε := εB − εA is Gaussian dis-
tributed, for example (with mean zero and “width” σ):

f(ε) =
1√
2π σ

exp

(

−1

2

(ε

σ

)2
)

. (29.19)

See Fig. 29.2[[top]].

Now we need Pr(ε < C), where C := VA − VB , and we know that ε is normally
distributed. As equation:

Pr(ε < C) =
1√
2π σ

∫ C

−∞

exp

(

−1

2

(ε

σ

)2
)

. (29.20)

[[See Fig. 29.2 bottom.]]

The solution of this needs the so-called error function, sometimes denoted by erf, or
double erf(double x) under linux. Before the age of electronic computers, the
error function was inconvenient to use, which is why the main theoretical development
followed a different path, described in the following.

An important piece of knowledge is what happens when random variables are combined.
For example, the sum of two Gaussian-distributed random variables are again Gaussian-
distributed.

29.2.8 Gumbel distribution

As preparation, learn about the so-called Gumbel distribution:

• Generating function
F (ε) = exp[−e−µ (ε−η)] . (29.21)

• Probability denstity function

f(ε) = F ′(ε) = µ e−µ (ε−η) exp[−e−µ (ε−η)] . (29.22)

Location of maximum: η (location parameter).

Variance: π2

6µ2 ∼ 1
µ2 (µ = width parameter).

file: book.tex, p.29-5 January 31, 2005

29.2. Binary choice

0

0.1

0.2

0.3

0.4

–4 –2 0 2 4

x

[[
 -1

 -0.8
 -0.6
 -0.4
 -0.2
 0

 0.2
 0.4
 0.6
 0.8
 1

-10 -5 0 5 10

exp(-x**2)
sqrt(3.14)*erf(x)/2

]]

Figure 29.2: [[TOP:]] Gaussian distribution. [[BOTTOM: Error Function “erf”, giv-
ing the probability that a random variable is larger than x.]] [[this would better be
gnuplot]]

29.2.9 Combination of Gumbel-distributed variables

(Remember: Sum of two Gaussian rnd variables new Gaussian rnd variable with
properties ...)

For Gumbel:

• If ε1 and ε2 indep Gumbel with same µ, then max(ε1, ε2) also Gumbel-distributed
with the same µ and a new η of

µ−1 ln[eµη1 + eµη2] . (29.23)

• If ε1 and ε2 indep Gumbel with same µ, then ε = ε1 − ε2 is logistically distributed
(see below) with generating function

F (ε) =
1

1 + eµ (η2−η1−ε)
. (29.24)

29.2.10 Logistic distribution

• Generating function:

F (ε) =
1

1 + e−µ ε
. (29.25)

file: book.tex, p.29-6 January 31, 2005

29.2. Binary choice

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

-10 -5 0 5 10

gauss(x)
logistic(x)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

-10 -5 0 5 10

gauss(x)
logistic(x)

Figure 29.3: Logistic distribution vs. Gaussian distribution, TOP: linear y-axis, BOT-
TOM: logarithmic y-axis. The logistic distribution is more pointed at its maximum, but
has fatter tails (i.e. towards small/large x).

Note that

F (−∞) =
1

1 + e∞
=

1

∞ = 0 ; F (+∞) =
1

1 + e−∞
= 1 , (29.26)

as it should be for a generating function.

• Probability density function:

f(ε) =
µ e−µ ε

(1 + e−µ ε)2
. (29.27)

The logistic probability density function looks somewhat similar to the Gaussian
probability density function (Fig. 29.3). µ is the width parameter.

29.2.11 Binary logit (randomness is Gumbel distributed)

Coming back to binary choice, one now assumes that εA and εB are Gumbel distributed,
meaning that ε = εB − εA is logistically distributed.

Again, find Pr(ε < C). This is

∫ C

−∞

f(ε) dε = F (C) − F (−∞) =
1

1 + e−µ C
. (29.28)

If we re-translate this into our original variables, we obtain

Pr(A) =
1

1 + e−µ VA+µ VB
=

eµ VA

eµ VA + eµ VB
. (29.29)

file: book.tex, p.29-7 January 31, 2005

29.3. Multinomial choice

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

-5 0 5 10 15

f_
X

(U
_X

)

U_X

f_A
f_B
f_C

Figure 29.4: Multiple probability density functions for different options. If one picks
UA and UB , then the probability that C is selected is given by the probability that UC is
larger than the maximum of UA and UB .

This is similar to what we have seen in the departure time choice (except that here are
only two options; for departure time choice we had many).

Note that the noise parameter µ comes from the width parameter of the logistic distribu-
tion. Large noise = small µ (= small inverse temperature) = choice more random.

29.3 Multinomial choice

Now more than two choices, e.g.:

• Go swimming, go shopping, stay home, go to movies, ...

• Many possible times-to-depart (discretized into 5-min bins).

See Fig. 29.4.

Concentrate on option “1”.

P1 = Pr(U1 > Uj , ∀j 6= 1) (29.30)

= Pr(V1 + ε1 > Vj + εj , ∀j 6= 1) = Pr(εj < ∆V1j + ε1, ∀j 6= 1) . (29.31)

Alternatively:

P1 = Pr

[

ε1 > max
j 6=1

[∆V1j + εj]

]

. (29.32)

This is similar to binary choice, i.e. Eq. (29.3). In binary choice, progress was made by
assuming that the εi were either Gaussian or Gumbel distributed. The same will happen
here.

As in binary choice, a Gaussian distribution will lead to use of the error function. This
will not be discussed any further here.

A Gumbel distribution will lead to the use of the logistic distribution.

29.3.1 Multinomial logit (MNL)

= multinomial choice with Gumbel-distributed randomness.

file: book.tex, p.29-8 January 31, 2005

29.4. Discussion of modeling assumptions

We had:

P1 = Pr

[

ε1 > max
j 6=1

[∆V1j + εj]

]

. (29.33)

Two steps:

1. εj (j 6= 1) Gumbel-distributed

⇒ ε∗ := maxj 6=1[∆V1j + εj] also Gumbel-distributed.

2. ε1 and ε∗ Gumbel-distributed

⇒ ε∗ − ε1 logistically distributed.

Only problem is to keep track of the transformations of the two parameters η and µ.

Result of second step is (remember: similar to binary logit)

1

1 + eµ (V∗−V1)
=

eµ V1

eµ V1 + eµ V∗
. (29.34)

Either via normalization or via really computing V∗ as the new η of the Gumbel distribu-
tion one obtains

=
eµ V1

∑

j eµVj
. (29.35)

29.4 Discussion of modeling assumptions

29.4.1 Independence from irrelevant alternatives (IID)

The multinomial logit model (MNL) predicts that the ratio between two options does not
depend on other options:

pi

pj
=

eµ Vi

eµ Vj
. (29.36)

There are many cases where this assumption is too strong. The maybe most famous
case is the “red bus, blue bus” example. Assume that a traveler has the choice between
taking the car, taking a blue bus, and taking a red bus. Assume that the two buses have
exactly the same service characteristics; for example, assume that the traveler is the only
passenger. Further assume that the probabilities to select the car, the blue bus, and the
red bus are 50%, 25%, and 25%, respectively, corresponding to the ratios 2 : 1 : 1. In
consequence, the model predicts that the traveler will take her/his car with probability
1/2.

Now assume that the blue bus is taken out of service. The model now predicts that the
ratio between car and red bus will be 2 : 1, meaning that the traveler will now take
her/his car with probability 2/3. This is rather implausible since one would assume that
the availability of several colors for the bus will not affect the mode choice behavior
significantly.

The reason for this behavior can be traced back to the assumption that the εi are all
statistically independent from each other; this assumption is used when the statistical
properties of maxj [∆V1j + εj] and of ε∗ − ε1 are derived. If they are not statistically
independent, then other (usually more complicated) formulations result.

[[the above a little different??]]

file: book.tex, p.29-9 January 31, 2005

29.5. Maximum likelihood estimation

29.5 Maximum likelihood estimation

Situation:

• Have survey of n = 1..N persons, and options A, B.

• Also have attributes xn,A,1, xn,A,2, ... = xn,A as well as xn,B,1, xn,B,2, ... =
xn,B .

[This means for example that we know the “time by bus” even if the person never
tried that option.]

Note that we now have a person index n everywhere.

• Also have model specification

VA = β1 xA,1 + β2 xA,2 + ... = β · xA . (29.37)

How to find β1, ..., βk?

29.5.1 ... for binary choice in general

Assume set of persons n = 1..N that were asked.

yn,A = 1 means person n chose option A. (Implies that yn,B = 0.)

Assuming that we have our model, what is the proba that persons (1, 2, 3, 4, ...) make
choices (A, B, A, A, ...)? It is (as usual, assuming that the choices are indep)

PA,B,A,A,... = P1,A P2,B P3,A P4,A (29.38)

Using the yn,B:

Psurvey =
∏

n

P
yn,A

n,A P
yn,B

n,B . (29.39)

We want, via varying the (β1, ..., βk), to maximize this function.

In words, again: Want high probability that survey answers would come out of our model.

Maximizing in 1d means: Set first derivative to zero, and check that second derivative
negative.

Maximizing in multi-d means: Set all first partial derivaties to zero; check that matrix of
mixed second derivaties is negative semi-definite.

Instead of maximizing the above function, we can maximize its log (monotonous trans-
formation). Usual trick with probas since it converts products to sums.

L = log Psurvey =
∑

n

[yn,A log Pn,A + yn,B log Pn,B] . (29.40)

So far this is general; next it will be applied to Logit.

29.5.2 ... for binary logit model

(Remember: “Logit” means “Gumbel distributed randomness”.)

file: book.tex, p.29-10 January 31, 2005

29.5. Maximum likelihood estimation

Strategy: Replace Pn,X in Eq. (29.39) or in Eq. (29.40) by specific from of logit model,
i.e.

Pn,X =
eβ·xX

eβ·xA + eβ·xB
(29.41)

and then find values βi such that Psurvey or L are maximized.

Computer science solution

From a computer science perspective, the maybe easiest way to understand this is to just
define a multidimensional function in the variables β0, β1, ... and then to use a search
algorithm to optimize it.

This function would essentially look like

double psurvey (Array beta) {
double prod = 1. ;
for (all surveyed persons n) {

// calculate utl of option A:
double utlA = 0. ;
for (all betas i) {

// utl contrib of attribute i:
utlA += beta[i] * xA[n,i] ;

}
double expUtlA = exp(utlA) ;

// calculate utl of option B:
double utlB = 0. ;
for (all betas i) {

// utl contrib of attribute i:
utlB += beta[i] * xB[n,i] ;

}
double expUtlB = exp(utlB) ;

// contribution to prod:
if (person n had selected A) {

prod *= expUtlA/(expUtlA+expUtlB) ;
} else {

prod *= expUtlB/(expUtlA+expUtlB) ;
}

}
return prod ;

}

Search algorithms could for example come from evolutionary computing.

The “computer science” way is almost certainly more computer intensive and less robust
than the conventional strategy, lined out next. It does however have the advantage of
being applicable also to cases where the conventional strategy fails.

Conventional strategy

The conventional strategy, mathematically more sound but also conceptually somewhat
more difficult, is to first invest everything that one knows analytically and only then use
computers.

The analytical knowledge mostly involves that one can search for maxima in high-dimensional
differentiable functions by first taking the first derivative and then setting it to zero. This
is lined out in the following.

Preparations

• Define

ξn = xn,A − xn,B . (29.42)

file: book.tex, p.29-11 January 31, 2005

29.5. Maximum likelihood estimation

In consequence

Pn,A =
1

1 + e−β·ξn
(29.43)

and

Pn,B =
e−β·ξn

1 + e−β·ξn
=

1

1 + e+β·ξn
. (29.44)

(Left version is sometimes useful.)

• First derivative of log Pn,A:

∂ log Pn,A

∂βk
= − ∂

∂βk
log(1 + e−...) = − 1

(1 + e−...)
e−... (−ξn,k) (29.45)

or

∂ log Pn,A

∂βk
= ξn,k Pn,B . (29.46)

Similarly

∂ log Pn,B

∂βk
= −ξn,k Pn,A . (29.47)

• We will also need

∂Pn,A

∂βk
= (−1)

1

(1 + e−...)2
e−... (−ξk) = Pn,B Pn,A ξk . (29.48)

Core calculation

Now we can do

∂L

∂βk
=
∑

n

(

yn,A Pn,B ξn,k − yn,B Pn,A ξn,k

)

(29.49)

=
∑

n

(

yn,A (1−Pn,A) − (1−yn,A) Pn,A

)

ξn,k = ... (29.50)

=
∑

n

(

yn,A − Pn,A

)

ξn,k . (29.51)

When replacing Pn,A:

=
∑

n

(

yn,A − 1

1 + e−β·ξn

)

ξn,k . (29.52)

Very good. Now remember that we need to set this, simultaneously for all k, equal to
zero in order to obtain the values for β which maximize L.

(E.g. Newton in higher dimensions.)

Uniqueness (no contribution to understanding)

Need to check that this is a max (and not a min), and that it is the global max and not a
local one.

file: book.tex, p.29-12 January 31, 2005

29.6. Discussion

Reminder: 1d function has max if 1st derivative is zero and 2nd deriv is negative. If 2nd
deriv is globally negative, then this is the also the global max.

Translation to higher dimensions: Matrix of 2nd derivatives is globally negative semidef-
inite.

M negativ semidefinite: xT Cx > 0 except for x = 0.

Note: Assume C = MT M . Then xT MT Mx = (Mx)T (Mx) > 0 except for x = 0 as
long as all entries of Mx are real (i.e. not complex).

Now

(∇2L)kl =
∂2L

∂βk ∂βl

∑

n

(

...
)

= −
∑

n

Pn,A Pn,B ξn,k ξn,l . (29.53)

Def

Mn,k =
(

Pn,A Pn,B

)1/2

ξn,k . (29.54)

Then
∇2L = −MT M . (29.55)

Since all entries of M are real, MT M is positive definite, and therefore−MT M negativ
definite.

29.6 Discussion

29.6.1 The beta parameter from earlier

Sec. 14.3 had used a factor β in front of the utilities, and it was said that smaller β leads to
a more random choice, while larger β leads to a stronger preference for the best options.
What happened to this β in the theoretical treatment of this chapter?

In fact, the β from Sec. 14.3 is related to the width parameter µ showing up in some
equations of this chapter. It is however not systematically treated by this text. The reason
for this is that in the maximum likelihood estimation, it does not show up as a separate
variable anyway. But what is the reason for this now?

What happens here is that the maximum likelihood estimation automatically includes the
meaning of the prefactor β or µ into the other βi. So if the theoretical form says

pX ∝ eµ VX (29.56)

and
VX =

∑

k

βk xX,k , (29.57)

then the maximum likelihood estimation in practice estimates the products

β̃k := µ βk . (29.58)

The consequence of this is that, if a set of attributes is not useful to predict the choice,
then all estimated β̃k will be small, leading to quasi-random choice.

[[also: which assumptions were made? Also see in “improvements”]]

file: book.tex, p.29-13 January 31, 2005

29.7. Summary

29.7 Summary

Foundation: Add random component to systematic utility. We only know systematic
component. Assume that max of the sums always wins, which because of random com-
ponent means that the lower systematic utility sometimes “wins” anyway.

Specific model depends on the distribution function of the random compoment.

Binary choice:

• Gaussian randomness Binary Probit. No closed form solution.

• Gumbel randomness Binary Logit. Closed form solution PA ∝ eVA .

Multinomial choice:

• Gaussian randomness Multinomial Probit. Not treated; no closed form solu-
tion. Feasible with computers, and has many theoretical advantages.

• Gumbel randomness Multinomial Logit (MNL). Result again PA ∝ eVA .

Max likelihood estimation of β: Adjust the β so that the probability for the model to
generate the survey is maximized.

file: book.tex, p.29-14 January 31, 2005

Chapter 30

Axhausen lecture

30-1

Chapter 31

Learning and feedback

31.1 Introduction

In Chap. 22, some pragmatic ways to improve the feedback dynamics were described.
This chapter will discuss some background. It will turn out that there are many relations
to fixed point relaxation techniques, to Markovian processes, to game theory, and to
machine learning. For some aspects, it is possible to provide computational evidence
about partial aspects. In general, it however turns out that significant parts of “learning
in transportation systems” is a challenging topic where many open questions remain.

31.2 Additional aspects of day-to-day learning

With the exception of Sec. 22.4, we have concentrated on day-to-day learning. Our
typical approach is:

1. Generate some initial option for each traveler.

2. Execute that option in the micro-simulation.

3. Allow a certain fraction of the travelers to replace their option with another one,
generated by an external module.

4. Goto 2.

In all our implementations, we have suggested to use a randomly selected 10% sample of
the population for replanning. Fig. 31.1 shows the effect of different replanning schedules
with respect to the sum of all travel times. This figure suggests that all relaxation series
relax to the same final result; looking at traffic patterns provides additional support for
this statement. There are however important differences in terms of relaxation speed.
In particular, runs 4 and 5 were done with a replanning fraction of one percent. Note
that in this case, the probability of a traveler never having undergone replanning after
100 iterations is 0.99100 ≈ 0.366, more than one third of the population. This is an
unacceptably high number, and it explains why even after so many iterations the sum of
the travel times is not at the same level as for the others.

All other runs represent higher replanning fractions. Run 1 uses a schedule: 20% replan-
ning in iterations 1–3, 10% replanning in iterations 4–6, 5% in iterations 7–9, and 2%
afterwards. Runs 7, 8, and 11 use 5% replanning throughout the iterations, but with a
bias towards agents which have not been replanned for a long time. Run 7 in addition

31-1

31.3. Individualization of knowledge

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

4.5e+08

0 20 40 60 80 100 120

V
T

T
 u

nt
il

10
:0

0
A

M
 [s

ec
]

iteration

run 1
run 2
run 4
run 5
run 7
run 8

run 10
run 11
run 12

Figure 31.1: Different relaxation paths in day-to-day replanning. The plot shows the sum
of all travel times VTT (Vehicle Time Traveled) as a function of the iteration for different
relaxation methods. All methods relax to the same value of VTT. From (Rickert, 1998).

loads the network successively, i.e. in the zeroth iteration only 20% of the traffic is put on
the network, another 20% is added in the first iteration, etc. Run 10 uses a deterministic
instead of a random selection of the travelers for replanning. The advantage is that, with
5% replanning, after 20 iterations one is certain that each traveler was picked exactly
once for replanning. In comparison, run 12 uses a simple 5% arbitrary random sample of
the population.

The overall result seems to be that, when done right, about 30 iterations are enough to
reach relaxation. Also, more complicated selection of agents has no significant advan-
tages over just plain and simple random selection. All simulations refer to the replanning
of routes only.

31.3 Individualization of knowledge

31.3.1 Classifier System and Agent Database

Knowledge of agents should be private, i.e. each agent should have a different set of
knowledge items. For example, people typically only know a relatively small subset of
the street network (“mental map”), and they have different knowledge and perception of
congestion. This suggests the use of Complex Adaptive Systems methods (e.g. (Holland,
1992)). Here, each agent has a set of strategies from which to choose, and indicators
of past performance for these strategies. The agent normally choses a well-performing
strategy. From time to time, the agent choses one of the other strategies, to check if its
performance is still bad, or replaces a bad strategy by a new one.

This approach divides the problem into three parts (see also (Ben-Akiva, 2001)):

• Generation of new options. Here new options are generated.

• Evaluation. Here, plans (or strategies) are evaluated. In our context this means that
travelers try out all their different strategies, and the strategies obtain scores.

• Exploitation. Eventually, the agents settle down on the better-performing strate-
gies.

file: book.tex, p.31-2 January 31, 2005

31.3. Individualization of knowledge

As usual, the challenge is to balance exploration (including generation) and exploitation.
This is particularly problematic here because of the co-evolution aspect: If too many
agents do exploration, then the system performance is not representative of a “normal”
performance, and the exploring agents do not learn anything at all. If, however, they
explore too little, the system will relax too slowly (cf. “run 4” and “run 5” in Fig. 31.1).
We have good experiences with the following scheme:

• A randomly selected 10% of the population obtains new options, and tries them
out immediately in the following simulation run.

• All other travelers choose between their existing options, where the probability of
selecting option i is taken as

pi ∝ e−β Ti , (31.1)

where Ti is the remembered travel time for that option. β was taken as 1/360 sec,
which lead (in the scenario that was used) to another 10% of travelers not selecting
the optimal option.

A major advantage of this approach is that it becomes more robust against artifacts of the
router: if an implausible route is generated, the simulation as a whole will fall back on
a more plausible route generated earlier. Fig. 31.2 shows an example. The scenario is
the same as in Fig. 2.4 of Chap. 2; the location is slightly north of the final destination
of all trips. We see snapshots of two relaxed scenarios. The left plot was generated with
a standard relaxation method as described in the previous section, i.e. where individual
travelers have no memory of previous routes and their performance. The right plot in
contrast was obtained from a relaxation method which uses exactly the same router but
which uses an agent data base, i.e. it retains memory of old options. In the left plot,
we see that many vehicles are jammed up on the side roads while the freeway is nearly
empty, which is clearly implausible; in the right plot, we see that at the same point in
time, the side roads are empty while the freeway is just emptying out – as it should be.

The reason for this behavior is that the router miscalculates at which time it expects
travelers to be at certain locations – specifically, it expects travelers to be much earlier
at the location shown in the plot. In consequence, the router “thinks” that the freeway is
heavily congested and thus suggests the side road as an alternative. Without an agent data
base, the method forces the travelers to use this route; with an agent data base, agents
discover that it is faster to use the freeway.

This means that now the true challenge is not to generate exactly the correct routes, but
to generate a set of routes which is a superset of the correct ones (Ben-Akiva, 2001).
Bad routes will be weeded out via the performance evaluation method. For more details
see (?). Other implementations of partial aspects are (Unger, 1998, 2002; Gloor, 2001;
Weinmann, in preparation).

31.3.2 Individual plans storage

The way we have explained it, each individual needs computational memory to store
his/her plan or plans. The memory requirements for this are of the order of O(Npeople ×
Ntrips × Nlinks × Noptions), where Npeople is the number of people in the simulation,
Ntrips is the number of trips a person takes per day, Nlinks is the average number of
links between starting point and destination, and Noptions is the number of options re-
membered per agent. For example, for a 24-hour simulation of all traffic in Switzerland,
we have Npeople ∼ 7.5 mio, Ntrips ∼ 3, Nlinks ∼ 50, and Noptions ∼ 5, which results
in

7.5 · 106 persons × 3 trips per person × 50 links per trip (31.2)

file: book.tex, p.31-3 January 31, 2005

31.4. Interpretation as dynamical system

× 5 options × 4 bytes per link = 22.5 GByte (31.3)

of storage if we use 4-byte words for storage of integer numbers. Let us call this agent-
oriented plans storage.

Since this is a large storage requirement, many approaches do not store plans in this
way. They store instead the shortest path for each origin-destination combination. This
becomes affordable since one can organize this information in trees anchored at each
possible destination. Each intersections has a “signpost” which gives, for each destina-
tion, the right direction; a plan is thus given by knowing the destination and following
the “signs” at each intersection. The memory requirements for this are of the order of
O(Nnodes × Ndestinations × Noptions), where Nnodes is the number of nodes of our
network, and Ndestinations is the number of possible destinations. Noptions is again the
number of options, but note that these are options per destination, so different agents
traveling to the same destination cannot have more than Noptions different options be-
tween them.

Traditionally, transportation simulations use of the order of 1000 destination zones, and
networks with of the order of 10 000 nodes, which results in a memory requirement of

1 000 destinations × 10 000 nodes × 5 options per destination × 4 bytes per node
(31.4)

= 200 MByte, considerable less than above. Let us call this network-oriented plans
storage.

The problem with this second approach is that it explodes with more realistic represen-
tations. For example, for our simulations we usually replace the traditional destinations
zones by the links, i.e. each of typically 30 000 links is a possible destination. In addition,
we need the information time-dependent. If we assume that we have 15-min time slices,
this results in a little less than 100 time slices for a full day. The memory requirements
for the second method now become

30 000 links × 10 000 nodes × 100 time slices (31.5)

× 5 options × 4 bytes per entry ≈ 600 GByte , (31.6)

already more than for the agent-oriented approach. In contrast, for agent-oriented plans
storage, time resolution has no effect. The situation becomes worse with high resolution
networks (orders of magnitude more links and nodes), which leaves the agent-oriented
approach nearly unaffected while the network-oriented approach becomes impossible.
As a side remark, we note that in both cases it is possible to compress plans by a factor
of at least 30 (Bush, 1998).

31.4 Interpretation as dynamical system

We like to interpret our agents and in consequence the whole system as “learning”. It is
however difficult to exactly define the term “learning”; for example, what is the difference
between learning and adaptation? Similarly, it is difficult to formally state the goal of
our agents. In the traditional interpretation of economics, reflected in Wardrop’s first
principle in Chap. 28, agents try to reach a Nash equilibrium, meaning that they are not
able to improve by unilaterally changing their strategy. This is however well-defined
only within relatively confined formal frameworks and difficult to apply both in complex
simulations such as ours and in the real world.

As a first step, it is useful to treat our learning dynamics as a time-discrete dynamical
system, and ignore all interpretation. The learning system iterates from one day (period)

file: book.tex, p.31-4 January 31, 2005

31.4. Interpretation as dynamical system

Figure 31.2: Individualization of plans and interaction with router artifacts. LEFT: All
vehicles are re-planned according to the same information; vehicles do not use the free-
way (arrrows) although the freeway is empty. As explained in the text, this happens
because the router makes erroneous predictions about where a vehicle will be at what
time. RIGHT: Vehicles treat routing results as additional options, that is, they can revert
to other (previously used) options. As a result, the side road now empty out before the
freeway. – The time is 7pm.

to the next; a state is all information the system possesses or generates during that day,
including agent memory and the trajectory of the simulation through one day; an iteration
is the update from one day to the next (Fig. 31.3, although that figure excludes agent
memory).

Let us, in order to have some formal symbols at our disposal, denote the state of the
system on day n as Xn, and let us denote the operator which maps the system from day
n to day n + 1 as Φ:

Xn+1 = Φ(Xn) . (31.7)

This operator subsumes everything that our simulation system does: generation of new
options, selection of options, running of the transportation simulation, extraction of
scores etc.

[[bottom multi-step iteration?]]

In such a dynamical system, one can search for properties like fixed points, steady state
probabilities, multiple basins of attraction, strange attractors, etc. The assumption behind
all these concepts is that the system starts out with some arbitrary state, given by the
experimentators, but from there on goes to some other state where it will remain.

[[need fig]]

We will assume that our simulations are Markovian, meaning that the state at period n+
1 depends on information from the period n only. If some knowledge about earlier history
is involved, then we assume that this is made part of the state at period n. An example
for this are the scores of the agents, which contain knowledge from earlier periods. We
also assume that the knowledge space of the agents does not infinitely increase, i.e. there
is a limit on how many options they remember, and a limit on how much information
about the past they remember. For example, when trying the same option several times,
the information could be subsumed into a moving average.

Next, we differentiate between deterministic and stochastic systems. Clearly, our trans-
portation simulations are stochastic. Nevertheless, the theory of deterministic dynamic

file: book.tex, p.31-5 January 31, 2005

31.4. Interpretation as dynamical system

n −> n+1

time−of−day time−of−day

ph
as

e
sp

ac
e

ph
as

e
sp

ac
e

X_n X_{n+1}

Figure 31.3: Schematic representation of the mapping generated by the feedback itera-
tions. Traffic evolution as a function of time-of-day can be represented as a trajectory in
a high dimensional phase space. Iterations can be seen as mappings of this trajectory into
a new one. Note that this figure excludes the additional update of agent memory.

systems provides useful insights and often a language to describe what we observe in our
systems.

31.4.1 Deterministic systems

It is often of interest to describe the behavior of a system for long times. The following
are examples of what can happen. The phenomena do not exclude each other:

• Fixed point: A state which repeats itself:

X∗ = Φ(X∗) . (31.8)

See, for example, Newton iteration in numerical analysis.

• Periodic behavior: A cycle which repeats itself:

Xn+k = Xn (31.9)

for some given k.

• Chaotic behavior: Complicated movement, seemingly without rules or structure.
Slightly different initial conditions eventually lead to total divergence of the tra-
jectories.

• Attractor: A sub-region in state space where the system goes to. Attractors can
for example be fixed points, periodic or chaotic.

A basin of attraction is the region of state space which leads to a specific attractor.

• Ergodic behavior: The long time trajectory comes arbitrarily close to every point
in state space.

Note, for example, that static assignment (Chap. 28) has, under certain conditions, only
one optimum. That means that plausible learning dynamics for the static assignment
problem have exactly one basin of attraction, and they all lead to the same fixed point
solution. This lets us speculate that the result of Sec. 31.2, i.e. that many learning algo-
rithms seem to lead to the same steady state behavior, is caused by structural aspects of
the problem, which carry over from static assignment to the simulation variant.

file: book.tex, p.31-6 January 31, 2005

31.4. Interpretation as dynamical system

31.4.2 Stochastic systems

In stochastic systems, a state at period n can typically go to more than one state at period
n + 1. This means that in general the notion of a fixed point does not make sense, and
needs to be replaced by a time-invariant probability distribution. That is, one looks
at the probability p(X) for each state X , and how it behaves under our update. Such a
probability distribution is time-invariant if

p∗ = Φ(p∗) . (31.10)

Note that this identifies the update operator Φ(X) for a state with the update operator
Φ(p) for a whole distribution. In stochastic simulation practice, already the computation
of Φ(X) is difficult since it involves running one time iteration over and over again, each
time with a different random seed. The computation of a Φ(p) is normally impossibe and
thus useful mostly as a theoretical construct.

Often the words “in equilibrium”, “steady-state”, or “stationary” are used instead of
time-invariant probability distribution.

Again, very little can be said in general about when a system reaches equilibrium. Two
conditions which when simultaneously fulfilled lead to convergence to equilibrium are
“ergodic” and “mixing”:

• Ergodic: A system is ergodic if the system can get arbitrarily close to each state
from every other state, possibly via a chain of intermediate states.

[[This definition does not satisfy detailed balance. But I think it is correct.
Check!!]]

• Mixing: Any initial distribution in state space will spread out and eventually cover
the whole state space.

[[check. In particular, in det Hamiltonian systems, initial phase space vol does
not increase, it only fuzzyfies. In stoch systems, this should be different.]]

What this means intuitively is: Let us start with infinitely many replicas of the
same state X0 but with different random seeds. Being in the same state means that
p(X) = δ(X−X0). If the system is mixing, then after infinite time the probability
to find a randomly picked system in state X is p∗(X), i.e. the steady state density.

In simulation practice, these characterizations are close to useless. Even when a system is
both ergodic and mixing, it can display broken ergodicity, meaning that it can remain in
a part of the state space for arbitrarily long time (Palmer, 1989). For those who happen to
know this, a finite size Ising model below the critical temperature is an example. Another
example is a stochastic search algorithm being stuck in a local optimum.

[[fig]]

31.4.3 Transients

To make matters worse, we are not necessarily interested in the steady state learning
solution, but possibly in the transients. For example, when an important bridge is closed
for construction, prediction of the first days after the closure may be as important as
prediction of the long term behavior. Worse, aspects such as land use or the housing
market in practice probably never reach the steady state.

To put this into context, consider a simple ordinary differential equation,

df

dt
= −f . (31.11)

file: book.tex, p.31-7 January 31, 2005

31.5. Relation to game theory

The steady state solution to this can be found by setting df/dt = 0, that is, it is f = 0 .
The well-known complete solution is

f(t) = f0 e−t , (31.12)

where f0 is the initial state. What this means is that we are used to systems where we
can describe not only the steady state solution, but also the transients. It is not clear if we
will ever reach a similar level of understanding of learning dynamics.

31.5 Relation to game theory

A Nash Equilibrium (NE) is a state where no agent can improve its payoff by unilat-
erally changing its strategy. In terms of this text, this means the system is at a NE if
no agent can improve its score by unilaterally selecting a different (routing/activity/...)
option. An equilibrium in game theory is a static concept; it is in consequence not the
same as an equilibrium in dynamical systems.

For static assignment (Chap. 28), we have seen this as Wardrop’s first principle, and the
theory of static assignment started from there. We have also seen that in the case of static
assignment, under certain conditions the solution was unique, meaning that there was
only one NE.

The construct of a NE does not say anything about how a system can reach it. In standard
game theory, it is assumed that each agent completely pre-computes its moves and then
submits a “strategy book” to the referee, who will then play the game for the agents. The
Nash Equilibrium definition implies that the solution is (marginally) stable if exactly one
player deviates from the NE. Nothing is said about stability if two players simultaneously
deviate from the NE.

Sometimes, a NE is a fixed point of a certain type of deterministic learning dynamics.
A typical example is best reply, where each player plays what would have been optimal
in the last period. If an agent has several best options, it choses the same as in the last
period (if applicable). Under best reply, a NE, once reached, is repeated forever. Again,
this does not say anything about stability, since fixed points can be attractive (= stable),
neutral, or repulsive (= unstable).

There are subtleties involved in a translation from game theory to dynamical systems.
Most importantly, one has to assume that in the dynamical system interpretation, the
agents do not actively optimize any given quantity beyond the prescription of the dy-
namics. Rather, their behavior is completely given by the dynamic description, and this
dynamics sometimes happens to have the NE as a fixed point. For example, the situation
is different if an agent attempts to optimize the average reward over all iterations.

When moving from deterministic to stochastic simulations, the usual changes are neces-
sary. In particular, the NE has to be suitably redefined, for example that each agent should
not be able to improve the expected reward. Although this sounds feasible in theory, it
is difficult in practice, since we do not know how to compute the expected reward via
simulation. An approximation to the expected reward would be to simulate the transition
from n to n+1 with many different random seeds and average over all occuring rewards;
however, this is neither computationally efficient nor plausible from the point of view of
reality.

In conclusion, it seems that we are left with a system which has some relation to game
theory, but they are not exactly the same. It is possible to change our system so that it
maps exactly on game theory, but only by moving it farther away from what we would
expect as plausible human behavior.

file: book.tex, p.31-8 January 31, 2005

31.6. Relation to machine learning

31.6 Relation to machine learning

There is also a connection of our simulations to machine learning. This connection be-
comes clear if we consider each agent as a learning machine – in consequence, all knowl-
edge from machine learning (which typically considers a single agent in an environment)
could be applied to our agents. In other word, each agent could be programmed as a
learning machine, using the best of methods available from machine learning. This leads
to several issues:

• In how far are machine learning methods applicable under the constraints that we
face? In particular, we need to have of the order of 107 learning agents, and we
have a non-stationary environment (since also the other agents learn).1

On the other hand, very little of what we have considered concerns states being
dependent on each other, i.e. the situation faced in reinforcement learning that the
expected pay-off has both immediate and long-term contributions. This is how-
ever a simplification in transportation that does not truly apply. For example, path
finding could also be considered as a state-dependent operation; and weekly activ-
ity lists where leisure, shopping, going to the doctor has to be distributed across
several days leads to similar issues.

• In how far does the result resemble human learning? In other words, how far dif-
ferent is human learning and machine learning for the questions we are interested
in?

• Does our system have anything to do with distributed machine learning? That is,
can the whole transportation system be considered as a large multi-agent learn-
ing system? In contrast to typical approaches in artificial intelligence, there is no
obvious goal that the transportation system attempts to optimize.

In other words: How large is the difference between distributed learning systems
for solving a given task, and distributed learning systems as models for human
society?

The last aspect also becomes apparent when comparing the concept of a Nash Equilib-
rium with the concept of a System Optimum (SO). Whereas the first assumes that every
agent opimizes its own utility, the latter assumes that some system-wide quantity is op-
timized. For example, one could optimize the sum of all travel times rather than having
each individual agent optimizing its travel time. The results are in general not the same;
the NE solutions lead to larger travel times.

[[additional section: Gibbs sampling (Markov chain monte carlo)?]]

[[with-day section–??]]

31.7 Smart agents and non-predictability

A curious aspect of making the agents “smarter” is that, when it goes beyond a cer-
tain point, it may actually degrade system performance. More precisely, while average
system performance may be unaffected, system variance, and thus unpredictability, in-
variably goes up. An example is Fig. 31.4, which shows average system performance
in repeated runs as a function of the fraction f of travelers with within-day replanning
capability. While average system performance improves with f increasing from zero to
40%, beyond that both average system performance and predictability (variance) of the

1More precisely: The agent cannot assume that the probabilities are constant since the other agents also
learn. However, in the long run all probabilities will become constant.

file: book.tex, p.31-9 January 31, 2005

31.8. Conclusion

660

680

700

720

740

760

780

0 20 40 60 80

ac
cu

m
ul

at
iv

e
av

er
ag

e
tr

av
el

tim
e

un
til

 1
1:

07
am

 [s
ec

]

market saturation [%]

Figure 31.4: Predictability as function of within-day rerouting capabilities. The result
was obtained in the context of a simulation study of route guidance systems. The x-
axis shows the fraction of equipped vehicles; the y-axis shows average travel time of all
vehicles in the simulation. For each value of market saturation, five different simulations
with different random seeds were run. When market saturation increases from zero to
40%, system performance improves. Beyond that, the average system performance, and,
more importantly, also the predictability (variance) of the system performance degrade.
From (Rickert, 1998).

system performance degrade. In other words, for high levels of within-day replanning
capability, the system shows strong variance between uncongested and congested. From
a user perspective, this is often not any better than bad average system performance – for
example, for a trip to the airport or to the opera, one usually plans according to a worst
case travel time. Also, if the system becomes non-predictable, route guidance systems
are no longer able to help with efficent system usage. The system “fights back” against
efficient utiliziation by reducing predictability.

Results of this type seem to be generic. For example, Kelly reports a scenario where
many travelers attempt to simultaneously arrive at downtown for work at 8am (Kelly,
1997). In this case, the mechanism at work is easy to see: If, say, 2000 travelers want
to go to downtown, and all roads leading there together have a capacity of 2000 vehicles
per hour, then the arrival of the travelers at the downtown location necessarily will be
spread out over one hour. Success or failure to be ahead of the crowd will decide if one is
early or late, very small differences in the individual average departure time will result in
large differences in the individual average arrival time, and because of stochasticity there
will be strong fluctuations in the arrival time from day to day even if the departure time
remains constant. Ref. (Nagel and Rasmussen, 1994a) reports from a scenario where
road pricing is used to push traffic closer towards the system optimum. Also in this case,
the improved system performance is accompanied by increased variability. Both results
were obtained with day-to-day replanning.

31.8 Conclusion

The approach of this class [[book]] to agent learning was that the learning method is first
described as a computer algorithm, and the behavior of the algorithm is analyzed later.

file: book.tex, p.31-10 January 31, 2005

31.8. Conclusion

The first level of analysis is the analysis of the resulting dynamics, without any normative
statements. Day-to-day dynamics is discrete in time, and can be analyzed as any time-
discrete deterministic or stochastic system. In all generality, this does not help much,
since possible outcomes range from fixed points to chaotic attractors; it does however
provide a language to describe resulting behavior and to classify what to expect.

In terms of a normative theory, game theory comes in. Our system can be interpreted
as all agents attempting to find their best solution, given the behavior of all other agents
(Nash Equilibrium). With appropriate care, some versions of a learning dynamics will
contain Nash Equilibria as fixed points. The mapping of our learning dynamics into game
theory does however move the simulations away from what seems behaviorally plausible.

Third, there are relations to machine learning. In particular, each agent can be seen as a
learning machine. The two most important differences to standard machine learning are:
We have many more agents, and there is no common goal.

Finally, the chapter has described some examples of where smarter agents lead to larger
instabilities. Such examples seem to be generic, also outside the area of transportation.
Care needs therefore to be taken to not make simulations and reality more unstable by
adding more information.

file: book.tex, p.31-11 January 31, 2005

Part V

Calibration and validation

31-12

[[It would make sense to put traffic flow characteristics at the end of improvements
and then rename this chapter “real world case studies”. However, do we need stuff
from “traffic flow theo” in “background” for the traff flow char chapter?]]

file: book.tex, p.31-13 January 31, 2005

Chapter 32

Traffic flow characteristics

32.1 Introduction

One could probably reach agreement that the traffic flow behavior of traffic simulation
models should be well documented. Yet, in practice, this turns out to be somewhat dif-
ficult. Many traffic simulation models are under continuous development, and the traffic
flow dynamics documented in a certain publication is often a “snapshot”, valid at the
time of writing, but no longer the true state of the model.

It thus makes sense to agree on a certain set of tests for traffic flow dynamics which
should be run and documented together with “real” results. In this paper, we propose
a (probably incomplete) suite of traffic flow measurements. Also, some of the results
in this paper are arguably unrefined with respect to reality. Yet, as we stated above,
we are continuously working on improvements, and this publication represents both a
snapshot of where we currently stand and an argument for a standardized traffic flow test
suite for simulation models. We hope that this publication will both open the way for
a constructive dialogue on which standardized traffic flow tests should be run for traffic
simulation models, and which of the features of our traffic simulation models may need
improvement.

This paper starts with a general section on validation and calibration (Sec. 2), followed
by a high-level description of the Transims microsimulation approach (Sec. 3). Sec. 4 is
a fairly technical description of the actual implementation. Sec. 5 contains a description
of the test cases that we ran for this paper and presents the simulation results. Sec. 6
contains an example of parameter sensitivity testing for the case of a yield sign, followed
by a short section outlining differences in the logic when the simulation was used for the
so-called Dallas case study (Sec. 7). The paper is concluded by a discussion section and
a summary.

32.2 Validation, Calibration, etc.

Prerequisite of any simulation model to be used is a certain amount of confidence in
its output. The process of building confidence depends on human nature and is some-
times hard to explain. Yet, an organized process towards model acceptance would help.
Such an acceptance process may be composed of the following four elements Van Aerde
(personal communication):

• Verification – have the hypothesized behavioral rules been implemented correctly?

32-1

32.2. Validation, Calibration, etc.

• Validation – do the hypothesized behavioral rules produce correct emergent be-
havior, such as correct fundamental diagrams? Note that this does not specify a
quantitative procedure; plausibility, consistency with theory and experience, and
documentation of emergent behavior are the important elements here.

• Calibration – have the model parameters been optimized to (possibly site specific)
settings? This requires a decision on a data set and a decision on an objective
function that can quantify the closeness of the simulation to the data set.

• Accreditation – Given a question, is the model indeed powerful enough to help
with it?

Note that this process is not uni-directional. For example, if one cannot calibrate a model
very well for a given scenario and a given objective function, one will go back and change
the microscopic rules and then have to go through verification and validation again.

Also, a formally correct verification process can be shown to be mathematically hard or
computationally impossible except in very simple situations (see, e.g., Chapters 14 - 16
in Van Leeuwen (1990)). Intuitively, the problem is that seemingly unrelated parts of the
implementation can interact in complicated ways, and to exhaustively test all combina-
tions is impossible. For that reason, both practitioners and theoreticians suggest that one
needs to allocate resources intelligently between verification and validation.

Sometimes, the word “validation” is also used when a simulation model, after calibration
to a scenario and data set A, is run under another scenario to test its predictive perfor-
mance. Since this represents in principle the same procedure – run the simulation model
against a scenario without further adjustment in the process – we do not see a problem in
the use of the word validation in both cases.

Next, one needs to decide on which networks to run the above studies. The following
seem to be useful:

• Building block cases such as “traffic in a loop” or “traffic through yield sign”. The
chapters of the Highway Capacity Manual Transportation Research Board (1994b),
despite being under discussion, seem to be a good starting point here. Maybe these
cases will not be very useful for calibration since “clean” data on these cases is dif-
ficult if not impossible to obtain. Yet, these cases would certainly allow plausibility
check of a simulation model, and comparison to other simulation models.

• Complicated test cases, which test a variety of behavior such as merging or traffic
signals, in a larger context (i.e. when interacting). It would be nicest to have test
cases from the real world, together with real data. – These test cases would best be
made electronically available.

Of course, models have always been validated and calibrated, e.g. Cassidy and Han
(1995); Mahmassani et al. (1987); Ponzlet and Wagner (1996). For fluid-dynamical mod-
els, calibration can be formalized Cremer and Papageorgiou (1981); Cremer and Schütt
(1990). Yet, we would like to stress that there are two diverging tendencies here:

• Models which are simple (i.e. have few parameters) are easy to be formally cali-
brated in the sense that one can adjust the parameters so that some objective func-
tion is minimized. Yet, the model may be too simple to indeed reflect the “mean-
ing” of the data.1

• Models which have many parameters are in principle capable of representing a
much wider variety of dynamics. Yet, they are difficult for formal calibration be-
cause the degrees of freedom are too large. Here, the intuition of the developer

1Bluntly, one can always fit a straight line to a data cloud.

file: book.tex, p.32-2 January 31, 2005

32.3. The Transims microsimulation approach

is important, who prescribes the simplifications, usually by making the problem
more homogeneous than it is (for example prescribing that drivers only fall into
few behavioral classes). – Microscopic models fall into this category.

Ref. Denney et al. (1993) nicely illustrates the problem: The authors indeed decide on an
objective function (match the two parameters of a two-fluid model description of the real
world traffic); yet the procedure is trial and error in the sense that the authors themselves
decide on which aspects of NETSIM they believe to be important.

This indicates, consistent with our own experience, that formal calibration (in the sense of
a formal procedure as opposed to trial-and-error) of microscopic models is currently very
hard to achieve. This, in addition to the generally valid argument that calibration does not
protect one against having the wrong model, implies to us that on the “validation” level,
comparable and meaningful test suites should be constructed, and that the model behavior
in these test suites should be publicly documented. This effort should be geared towards
understanding the strength and weaknesses of a/the participating model (as opposed to
deciding which is the “best” model).

In this paper, we want to concentrate on the “validation” part in the above sense in con-
junction with “building block” test cases. We mean that as a first important step; in the
future, we would like to be able to say something like “the simulations in this study are
based on driving rules with their emergent behavior documented in the appendix”, which
would recognize the fact that the rules may have changed since the last “major” publica-
tion. This does not preclude that we will attempt to construct more realistic test scenarios
in the future.

32.3 The Transims microsimulation approach

When designing a traffic microsimulation model, the first idea might be to measure all
aspects of human driving and put them in algorithmic form into the computer. Unfor-
tunately, such attempts cause many problems. The first is a data collection problem,
because one can certainly not measure “all” aspects of human driving and is thus faced
with the double sided problem that the necessary data collection process is extremely
costly and still selective. Second, what if the emergent flow properties of such a model
are clearly wrong, for example producing an hourly flow rate that is much too high?

For that reason, the Transims (TRansportation ANalysis and SIMulation System TRAN-
SIMS www page (accessed 2004)) microsimulation starts with a minimal approach. A
minimal set of driving rules is used to simulate traffic, and this set of rules is only ex-
tended when it becomes clear that a certain important aspect of traffic flow behavior
cannot be modeled with the current rule set.2 Besides the conceptual clarity, this also has
the advantage that it is usually computationally fast – minimal models have few rules and
thus run fast on computers.

The last paragraph leaves open what the “important aspects” are. In our view, this can
only be decided in the proper context, i.e. when the question or problem area of applica-
tion is known. The questions that Transims is currently designed for are transportation
planning questions. These questions have traditionally been approached using traffic as-
signment models based on link performance functions (link capacity functions). Link
performance functions are known to be dynamically wrong in the congested regime Pa-
triksson (1994); they simply do not model queue build-up when demand is higher than
capacity.

The most important result of a transportation microsimulation in that context should be
the delays, since they dominate travel times, and also hinder discharge of the transporta-

2Note, though, that it is certainly desirable to have reasonable microscopic rules.

file: book.tex, p.32-3 January 31, 2005

32.4. Rules of the model

tion system, thus leading to grid-lock. Delays are caused by congestion, and congestion
is caused by demand being higher than capacity. This implies that the first thing the
Transims traffic microsimulation has to get right are capacity constraints (and possibly
their variance). Capacity constraints are caused by a variety of effects:

• Undisturbed roadways such as freeways have capacity constraints given by the
maximum of the flow-density diagram.

• Typical arterials have their capacity constraints given by traffic lights.

• In the case of unprotected turning movements (yield, stop, ramps, unprotected left,
etc.), the capacity constraints are given as a function of opposing traffic flows. For
example, the number of vehicles making an unprotected left turn depends on the
oncoming traffic.

Building a simulation which can be adjusted against all these diagrams seems a hopeless
task given the enormous amount of degrees of freedom. The Transims approach for that
reason has been to generate the correct behavior from a few much more basic parameters.
The correct behavior with respect to the above criteria can essentially be obtained by
adjusting two parameters: (i) The value of a certain asymmetric noise parameter in the
acceleration determines maximum flow on freeways and through traffic lights; (ii) the
value of the gap acceptance determines flow for unprotected movements.

It needs to be emphasized again that these remarks are only valid in our context: There
are many questions for which the models need to have a higher fidelity, and then more
details, higher resolution, etc. may need to be added (e.g. Wiedemann (1994); Van Aerde
et al. (1996)).

There is sometimes debate whether the model we thus obtain is truly “microscopic”. We
use the term “microscopic” with respect to the resolution of the model, i.e. a model is
microscopic as soon as it allows the identification of individual particles (here cars). The
proposed area of application, though, is where traditionally more macroscopic models
have been used Patriksson (1994); Chang et al. (1985); Schwerdtfeger (1987); Herman
and Prigogine (1979).

32.4 Rules of the model

32.4.1 Single lane uni-directional traffic

Our traffic simulation is based on a cellular automata technique, i.e., a road is composed
of cells, and each cell can either be empty, or occupied by exactly one vehicle Nagel
(1992); Nagel and Schreckenberg (1992), see Fig. 32.1 (a). Since movement has to be
from one cell to another cell, velocities have to be integer numbers between 0 and vmax,
where the unit of velocity is [cells per time-step]. It turns out that reasonable values
are Nagel and Schreckenberg (1992); Barrett et al. (1995):

• length of a box = 1/ρjam = 7.5 m (ρjam = density of vehicles in a jam).

• time step = 1 sec

• maximum velocity = 5 boxes per time step = 5 · 7.5 m/sec = 135km/h ≈ 85mph

For other conditions, such as higher or lower speed limits, this can be adapted.

Note that this approach implies a coarse graining of the spatial and temporal resolution
and therefore of the velocities. A vehicle which has a speed of, say, 4 in this model

file: book.tex, p.32-4 January 31, 2005

32.4. Rules of the model

stands for a vehicle which has a speed anywhere between 3.5 · 7.5 meters/sec ≈ 95 km/h
(59 mph) and 4.49999 · 7.5 meters/sec ≈ 121 km/h (75 mph).

Vehicles move only in one direction. For an arbitrary configuration (velocity and po-
sition), one update of the traffic system consists of two steps: a velocity update step
consisting of three consecutive rules, and a movement step according to the result of the
velocity update. The whole update is performed simultaneously for all vehicles. The
complete configuration at time step t is stored and the configuration at time step t + 1
is computed from that “old” information. Computationally we calculate in time step t
(with the three rules) the new velocity of each car and write this newly calculated veloc-
ity in the same site without moving the car (velocity update). After that we move all cars
according to their newly calculated velocity (movement update).

1. (velocity update)

For all particles i simultaneously, do the following:

IF (vi ≥ gapi)

vi :=

{

gapi − 1 with probability pnoise if possible3

gapi else
(close following/braking)

ELSE IF (vi < vmax)

vi :=

{

vi with probability pnoise

vi + 1 else
(acceleration)

ELSE (i.e. (vi = vmax AND vi < gapi)

vi :=

{

vmax − 1 with probability pnoise

vmax else
(free driving)

ENDIF

2. (movement update)

Move all particles i to xi(t + 1) = xi(t) + vi.

The index i denotes the position (an integer number) of a vehicle, v(i) its current veloc-
ity, vmax its maximum speed, gap(i) the number of empty cells ahead, and pnoise is a
randomization parameter.

The first velocity rule represents noisy car following or braking. If the vehicle ahead is
too close, the vehicle itself attempts to adjusts its velocity such that it would, in the next
time-step, reach a position just behind where the vehicle ahead is at the moment. Yet,
with probability pnoise, the vehicle is a bit slower than this.

The second velocity rule represents noisy acceleration. Essentially, the acceleration is
linear (i.e. independent from current speed), but with probability pnoise, no acceleration
happens in the current time step (maybe as a result of switching gears etc.). Instead of an
acceleration sequence of 0 → 1 → 2 → 3 → . . ., a possible acceleration sequence can
now be 0 → 0 → 1 → 2 → 2 → 2 → 3 →

The last velocity rule represents free driving. Instead of remaining always at the same
speed, such vehicles fluctuate between vmax (with probability 1− pnoise) and vmax − 1
(with probability pnoise). Note that a vehicle which is set to vmax − 1 will go through
the acceleration step next time, thus in the next time step either staying at vmax − 1 with
probability pnoise or getting back to vmax. Note that the resulting average speed of a
freely driving vehicle is thus vmax − pnoise.

In terms of a microscopic foundation, the model is composed of the following elements:

• If a vehicle does not have enough space ahead, speed is proportional to space
headway, which implies constant time headway (Pipes’ theory, May (1990)).

file: book.tex, p.32-5 January 31, 2005

32.4. Rules of the model

• If there is enough space ahead for the given velocity, the vehicle accelerates lin-
early either to maximum speed or until the space headway becomes too small for
further acceleration. A more realistic acceleration would probably be proportional
to 1/v, where v is the speed. This would be computationally more burdensome;
nevertheless, studies about the effect are under way. The effect on the principal
traffic dynamics seem to be minimal Nagel and Paczuski (1995).

• Deceleration is instantaneous within one time step. If one wants to constrain the
model to realistic deceleration values, one needs to look at the velocity of the
vehicle ahead. This is again computationally more burdensome, and the precise
difference when changing this element alone with respect to the traffic dynamics
is unclear Krauß et al. (1997) although it is clear that throughput will go up Barrett
et al. (1996).

• On top of these rules, we add a fairly large amount of random noise in the velocity
decision.

Somewhat shorter, the model enforces constant time headway for close following and
for braking, but acceleration is “delayed”. This puts the model into a large class of
dynamically similar models which use “time delayed” constant time headway, e.g. of the
type a(t) ∝ V [∆x(t)] − v(t) or v(t + τ) ∝ V [∆x(t)], where a is the acceleration, v
is the vehicle’s velocity, ∆x is the space headway, V (∆x) is a desired speed function,
and τ is a time delay. It is certainly arguable that this does not catch all aspects of
traffic; yet, all of these models are remarkably robust with respect to their traffic dynamics
behavior, both in microscopic Krauß et al. (1997); Nagel (1996); Bando et al. (1995)
and in fluid-dynamical Kühne and Beckschulte (1993); Kerner and Konhäuser (1994)
implementations.

32.4.2 Lane changing for passing

For multi-lane traffic, the model consists of parallel single lane models with additional
rules for lane changing. Here we describe the two lane model which can be modified
to any kind of multi lane model. Lane changing is modeled by an additional update
step, which is added before the velocity update. The new sequence of steps is presented
below. Steps two and three are the same in the single lane model and they are executed
separately for each lane.

1. Lane changing decision

2. Velocity update

3. Vehicle movement

According to this lane changing rule set the vehicles are only moving sideways during
the lane changing step; forwards movement is done in the vehicle movement step. One
should, though, look at the combined effect of the lane changing and vehicle move-
ment, and then vehicles will usually have moved sideways and forwards. The decision
to change lane is implemented as strictly parallel update, i.e. each vehicle is making its
decision based upon the configuration at the beginning of the update.

• Lane changing decision for passing

– IF neighboring position xo(i) in other lane is vacant

∗ THEN Calculate:

· gap(i) Gap Forward in Current Lane,

file: book.tex, p.32-6 January 31, 2005

32.4. Rules of the model

· gapo (i) Gap Forward in Other Lane,

· gapb(i) Gap Backward in Other Lane,

· IF (gap(i) < v(i) AND gapo (i) > gap(i))
− THEN weight1 = 1
− ELSE weight1 = 0

· weight2 = v(i) − gapo(i)

· weight3 = vmax − gapb(i).

∗ IF (weight1 > weight2) AND (weight1 > weight3)4

· THEN mark vehicle for lane change5

The rules are working in the following way (see Fig. 32.1 (b)): First we look at the neigh-
boring position in the target lane. If this cell is vacant, we calculate the gap forward in
the current lane (gap), the gap forward in the target lane (gapo), and the gap backward in
the target lane (gapb). With these results we calculate the weight1 to weight3 described
above. Finally if the weight comparisons render true the car will change to the new lane.
After executing the lane changing decision we calculate the new velocity for all cars and
move them according to this velocity.

This lane changing implementation follows a usual structure Sparmann (1978); Gipps
(1986):

• Reason to change lanes? (Slow car ahead? Need to make turn later (see below)?)

• If yes: Target lane empty? (Definition of “empty” depends on “urgency”)

• If yes: change lanes except for stochastic noise

Lane change implementations using this framework are remarkably robust in their dy-
namic behavior Sparmann (1978); Gipps (1986); Rickert et al. (1996b); Nagel et al.
(1998). This allows us, for example, not to look at other vehicle’s velocities: The for-
ward condition for the target lane, gapo ≥ v, is consistent with the condition v ≤ gap for
the car following; the backward condition for the target lane, gapb ≥ vmax is simply a
worst case scenario which nevertheless does not perform, in the analysis of the emergent
properties, any worse than a condition which depends on the velocity of the other car
(compare, e.g., Wagner et al. (1997) with Wagner (1996)).

For three or more lanes, a simultaneous implementation of the lane changing decision
can lead to collisions. For example, in a three-lane road two vehicles on the left and right
lane could decide to go to the same spot in the middle lane. From an algorithmic point
of view, this is possible because the lane changing decision is based on the configuration
on time t; but it is also an entirely realistic situation.6 To avoid collision we only allow
lane changes in a certain direction in each time step:

• IF the time step is even

THEN start procedure lane changing decision to the left for cars on the middle
and then on the right lane

4Weights are used because of extensibility towards “lane changing for plan following”. See below.
5In the current version, the lane change is actually still rejected with a probability of 0.01 even when all

the rules are fulfilled. This is in order to break the following artifact or variations of it: Assume one lane is
completely occupied and one is completely empty. The above rule set will result in these vehicles just changing
back and forth between the lanes—the vehicles will never get smeared out across the lanes. See Ref. Rickert
et al. (1996a) for more details.

6In a deeper sense, the problem is caused by the fact that the underlying decision making dynamics has a
time scale which is smaller than the time resolution of the simulation. The simulation thus must resolve the
conflict by other means Barrett (Personal communication).

file: book.tex, p.32-7 January 31, 2005

32.4. Rules of the model

• IF the time step is odd

THEN start procedure lane changing decision to the right side for cars on the
middle and then on the left lane

Thus, left lane changes occur only on even time steps, right lane changes occur only on
odd time steps. This behavior is collision free.

32.4.3 Lane changing for plan following

Vehicles in Transims follow route plans, i.e. they know ahead of time the sequence of
links they intend to follow. This means that, when they approach an intersection, they
need to get into the correct lanes in order to make the intended turn. For example, a vehi-
cle which intends, according to its route plan, to make a left turn at the next intersection
needs to get into one of the lanes which actually allow a left turn.

This is achieved in Transims by supplementing the basic lane changing rules with a
bias towards the intended lanes. This bias increases with increasing urgency, i.e. with
decreasing distance to the intersection. Technically, this is achieved by adding another
weight to the acceptance conditions for lane changing:

• IF (weight1 + weight4 > weight2) AND (weight1 + weight4 > weight3)

THEN change lane

weight4 is calculated according to

weight4 = max

[

d∗ − d

vmax
, 0

]

(32.1)

for lane changes in the desired direction as long as the vehicle is not in one of the correct
lanes, cf. Fig. 32.1 (c). d is the remaining distance to the intersection, d∗ is a parameter;
both are given in the unit of “cells”. d∗ is currently set to 70 cells, i.e. approx. 500 m
or 1/3 of a mile, throughout the simulation. In consequence, weight4 increases from
zero to d∗/vmax = 14 during the approach to the intersection. If weight4 = 0, then it
does not influence lane changing decision. weight4 = 1 has the same effect as a slower
vehicle ahead on the same lane. Further increases of weight4 more and more override
the security criterions that the forward and the backward gap on the destination lane need
to be large enough. weight4 > vmax lets the vehicle make the lane change even if only
the neighboring cell on the destination lane is free.

Once a vehicle is in one of the “correct” lanes within 70 cells (525 m) of the intersection,
it is only allowed to change lanes if the target lane is also “correct”. For movements that
are allowed on multiple lanes through the intersection, this leads to equal usage of these
lanes. This algorithm is not capable of leaving a single “correct” lane temporarily when
encountering, say, a stopped bus on the same lane.

32.4.4 Unprotected turning movements

A necessary element of traffic simulations are unprotected turning movements. By this
we mean that that for the movement the driver intends to make, some other lanes have
priority. Examples are stop signs, yield signs, on-ramps, unprotected left turns.

The general modeling principle for this in Transims is based on a gap acceptance in the
opposing (in Transims sometimes called “interfering”) lanes, see Fig. 32.1 (d). Opposing
lanes are the lanes which have priority; for example, for a stop-controlled left turn onto
a major road this would be all lanes coming from the left plus the leftmost lane coming

file: book.tex, p.32-8 January 31, 2005

32.4. Rules of the model

from the right. In order to accept the turn, there has to be a sufficient gap in each of these
lanes.

Note that “gap divided by the velocity of the oncoming vehicle” is the oncoming vehi-
cle’s time headway, so the dynamics of this follows the Highway Capacity Manual Trans-
portation Research Board (1994b). If one wants a time headway on an opposing lane of
at least 3 seconds, then a vehicle with a velocity of 4 cells/second would have to be at
least 12 cells away from the intersection.

The current Transims microsimulation uses a gap acceptance (gap between intersection
and nearest car to the intersection which is approaching) of 3 times the oncoming ve-
hicle’s velocity, i.e. when the gap on each opposing lane is larger than or equal to the
first vehicle on that lane, the move is accepted. For example, if the oncoming vehicle
has a speed of 3, at least 9 empty cells have to be between the oncoming vehicle and the
intersection. A special case is if the oncoming vehicle has the velocity zero, in which
case no gap is necessary.

32.4.5 Signalized intersections

In Transims, we distinguish between signalized intersections and unsignalized intersec-
tions. In signalized intersections, the priorities are changing in time and regulated by
signals. In unsignalized intersections, the priorities are fixed.

When a simulated vehicle approaches a signalized intersection, the algorithm first de-
cides if, according to its current speed, it potentially wants to leave the link, i.e. its cur-
rent speed (in cells per update) is larger than or equal to the remaining number of cells on
the link.7 If a vehicle wants to leave the link, the algorithm checks the “traffic control”,
which determines if the vehicle can leave the link. If it encounters a red light, it can not
leave the link and no further action is taken. If it encounters a protected (green arrow) or
caution (yellow) signal, the vehicle is allowed to enter the intersection. If it encounters
a permitted signal (green, for example permitted left turn against oncoming traffic), the
vehicle checks all opposing flows for a gap that is larger or equal to 3 times the oncoming
vehicle’s velocity (see Subsec. 32.4.4 above).

If the movement into the intersection is accepted, the vehicle is moved into an “inter-
section queue”; there is one queue for each incoming lane. This queue models vehicle
behavior inside an intersection. The vehicle gets a “time stamp”, before which it is not
allowed to leave the intersection; this time stamp is representative of the duration of the
movement through the intersection. The intersection queues have finite capacity; once
they are full, no more vehicles are accepted and the vehicles start to queue up on the link.
This models the finite vehicle storing capacity of an intersection.

Once a vehicle is ready to leave the intersection, it moves to the first cell on the destina-
tion link if available. The speed of the vehicle is not changed when it is in the intersection
queue so it exits on the destination link in the first cell with the same velocity that it had
when it entered the queue.

Note that vehicles turning against opposing traffic make their decision to accept the turn
when they enter the intersection queue, not when they leave it. This can have the effect
that a vehicle enters the intersection queue when there is no oncoming traffic, but, be-
cause of other vehicles ahead of it in the same queue, cannot make its turn immediately.
Yet, since the turn was already accepted, it will be executed as soon as all vehicles ahead
in the same queue have cleared the queue and a cell on the destination link is available.
The turn can occur during oncoming traffic. So in some sense vehicles will go “through”
each other. Yet, note that on average the result is still correct. The approach described
above will not let more vehicles through the intersection than a gap acceptance calcu-

7Vehicles may accelerate or slow down before they actually reach the intersection. See below.

file: book.tex, p.32-9 January 31, 2005

32.4. Rules of the model

lated when leaving the intersection queue. The above logic was chosen for simplification
purposes since unsignalized intersections (see below) do not have queues and thus need
to make their acceptance decisions when entering the intersection.

32.4.6 Unsignalized intersections

Unsignalized intersections in Transims have no internal queues, i.e. vehicles go right
through them.8 Also, vehicles leaving an unsignalized intersection go down the destina-
tion link as far as prescribed by their velocity, not just into the first cell as in the signalized
intersections. Apart from these two differences, unsignalized intersections are similar to
signalized ones.

When a simulated vehicle approaches an unsignalized intersection, the algorithm first
decides if, according to its current speed, it potentially wants to leave the link, i.e. its
current speed (in cells per update) is larger than or equal to the remaining number of sites
on the link. If a vehicle wants to leave the link, the algorithm checks the “traffic control”,
which determines if the vehicle can leave the link. Currently occuring traffic controls
are: no control, yield, and stop.

If a “no control” is encountered, the vehicle is moved to its destination cell without any
further checks. For example, if a vehicle has a velocity of 5 cells per update and 2 more
cells to go on its link, then it attempts to go 3 cells into the destination link. If that cell
is already reserved (either by another “reservation” or by a real vehicle), then the next
closer cell is attempted, etc., until the algorithm either finds an empty cell or returns that
the destination lane is full. “No control” is usually used for the major directions, i.e. for
the lanes which have priority.

If a yield sign is encountered, the vehicle checks the gap on all opposing lanes. According
to the same rules as above, on all opposing lanes the gap needs to be larger or equal three
times the first vehicle’s speed on that lane. If the movement is accepted, the destination
cell is selected according to the same rules as with the “no control” case.

If it encounters a stop sign, the vehicle is brought to a stop. Only when the vehicle has
a velocity of zero for at least one time step on the last cell of the link is it allowed to
continue. If the result of the regular velocity update indeed accelerates the vehicle,9 then
it attempts to go through the intersection. On all opposing lanes the gap, according to the
same rules as above, needs to be larger or equal to three times the first vehicle’s speed on
that lane. If the movement is accepted, a vehicle coming from a stop sign will always go
to the first cell on the destination link (if empty) and will have a velocity of one.

32.4.7 Parking locations

In the current Transims microsimulation, vehicular trips start and end at parking loca-
tions. Each link in the microsimulation, except for freeway ramps, freeway links, and
some “virtual” links such as centroid connectors, has at least one parking location. Park-
ing locations thus represent the aggregated parking options on that link. Parking locations
have rules about how vehicles enter and exit the simulation:

• Each vehicle in Transims has a complete route plan, together with a starting time.
At the starting time, the vehicle is added to a queue of vehicles that want to leave
the same parking location. When the vehicle is the first one in the queue, it at-
tempts to enter the link. The acceptance logic is in spirit similar to the logic of the

8Again, technically the vehicles only reserve cells on the destination links. The actual move through the
intersection happens later and can also be postponed if after the velocity update the vehicle actually does not
make it to the intersection.

9I.e. there is a probability of 1 − pnoise that the vehicle will not accelerate in the given time step.

file: book.tex, p.32-10 January 31, 2005

32.4. Rules of the model

unsignalized intersections, i.e. vehicles check the available gap and make their de-
cision based on that. Parking accessory logic is not the focus of the current paper,
and since that logic may change in Transims in the near future and we also expect
no influence on the results presented here, we omit further technical details.

• A vehicle that has reached its destination parking location according to its plan
will leave the microsimulation.

32.4.8 Parallel logic

Transims is designed to run on parallel computers, such as coupled workstations, desk-
top multi-processors, or supercomputers. The parallelization approach used for the mi-
crosimulation is a geographical distribution, i.e. different geographical parts of the sim-
ulated area are computed on different CPUs.

The current Transims microsimulation has these boundaries always in the middle of links.
This is done in order to keep the complexity of the parallel computing logic as far away
as possible from the complexity of the intersection logic.

Information needs to be exchanged at the boundaries several times per update in order
to keep the dynamics consistent. For example, if a vehicle changes lanes and ends up
close in front of another one, that other one is probably forced to brake. Now, if the
lane changing vehicle is on one CPU and the following one on another, one needs to
communicate the lane change. This will be called “Update boundaries” in the following
section.

32.4.9 Complete scheduling

For a complete transportation microsimulation, we need to specify when movements
are accepted, and also how conflicts are resolved. For example, vehicles simultaneously
attempting to change lanes into the middle lane represent such a conflict. Another conflict
is two vehicles from two different links competing for the same site on the destination
link.

The complete update of the current Transims microsimulation is as follows. Assume that
the state at time t is the result of the last update. Let t1, t2, etc. be intermediate partial
time steps.

1. Vehicles which are ready to leave intersection queues from signalized intersections
reserve cells on outgoing lanes. They only attempt to reserve the first cell on
the link; their velocity is the same as it was when they entered the intersection.
When the cell is occupied (either by another “reservation” or by a vehicle), then
the vehicle cannot leave the intersection. Note that there can be a conflict between
different queues for the same destination cell. The current solution in Transims is
that queues are served on a first come first served basis in some arbitrarily defined
way, i.e. a queue which happens to be treated earlier in the microsimulation has a
slightly higher chance of unloading its vehicles. — Result: t1 information.

2. Vehicles change Lanes. Use information from time t1 to calculate situation at time
t2.

3. Exit from Parking. Results in t3 information.

4. Exchange boundary information for parallel computing.

5. Non-signalized intersections reserve sites on target lanes. Note that there can be
a conflict of two incoming links competing for the same destination cell. The

file: book.tex, p.32-11 January 31, 2005

32.5. Towards a standardized flow test suite for simulation models

current solution in Transims is that links are served on a first come first served
basis, i.e. a link which happens to be treated earlier in the microsimulation has
a slightly higher chance of unloading its vehicles. Note that this conflict only
happens between minor links. Major links never compete for the same outgoing
link except when there is a network coding error; and for the competition between
major and minor links, the major link always wins because of the opposing lanes
conditions.10 Result: t4 information.

6. Calculate speeds and do movements. If a vehicle scheduled for an intersection does
not go through the intersection as a result of the velocity update, the reservation is
cancelled. Vehicles which go through unsignalized intersections have p set to zero,
i.e. if it turns out that the result of the velocity update indeed brings them into the
intersection, they need to go to the site on the destination lane which was reserved
earlier. Result: t5 = t + 1 information.

7. Exchange boundary information and migrate vehicles for parallel computing.

32.5 Towards a standardized flow test suite for simula-
tion models

In order to control the effect of driving rules, Transims provides controlled tests for traffic
flow behavior. These tests are simplified situations where elements of the microsimula-
tion can be tested in isolation. This test suite uses the standard microsimulation code in
the same way it is used for full-scale regional simulations, and it also uses the same input
and output facilities: The test network is currently defined via a table in an Oracle data
base, in the same format as the Dallas/Fort Worth network is kept. Input of vehicles is,
following individual vehicle’s plans, via parking locations, the same way vehicles enter
regional simulations.11 Output is collected on certain parts of the network on a second-
by-second basis, the same way it can be collected for regional microsimulations. The
collected output is then post-processed to obtain the aggregated results presented in this
paper.

The test cases we look at in this paper are the following (see also Fig. 32.1 (e)):

• One-lane traffic, in order to see if car following behavior generates reasonable
fundamental diagrams.

• Three-lane traffic, in order to see if the addition of passing lane changing behavior
still generates reasonable fundamental diagrams, and in order to look at lane usage.

• Stop sign, yield sign, and left turns against oncoming traffic, in order to see it the
logic for non-signalized intersections generates acceptable flow rates.

• A signalized intersection, in order to see of we obtain reasonable flow rates, and in
order to check lane changing behavior for plan following purposes.

32.5.1 Measured quantities

We look at three minute averages of the following quantities:

10Note that the situation slightly different when the speed of the vehicle on the major link is zero – see below.
11Route plans are simply necessary to be consistent with the way the simulation is normally used; for the

test cases we use very few types of generic route plans (like “enter the microsimulation and keep on driving
in a circle indefinitely”) and replicate them with different starting times to fulfill our needs. This is not much
different from departure rates.

file: book.tex, p.32-12 January 31, 2005

32.5. Towards a standardized flow test suite for simulation models

• Flow, Volume. Flow q is defined as usual by:

q =
N

T
[vehicles/hour]

N is the number of cars which pass a certain site at a time period T.

• Density. Density is in principle easily defined, ρ = N/L, where N is the number
of vehicles on a piece of roadway of length L. Yet, given current sensor technology,
this is not easy to achieve since one would need a sensor which counts, say once
a second, cars on a predefined stretch of length L of the roadway. For that reason,
empirical papers sometimes resort to occupancy, which is the fraction of time a
given sensor has been occupied by a vehicle. Currently Transims measures density
according to its original definition, i.e., once a time step, we count the number of
vehicles on a stretch of roadway of L = 5 sites = 5 × 7.5 m = 37.5 m.12 We
add these counts for k = 180 measurement events and then divide the resulting
number by L and by k:

ρ =
N

k ∗ L

The result can be scaled to convenient units, for example “vehicles per km”.

Note that this way of computing density averages the counts over a length of
37.5 m, which is longer than most traffic detectors. The effect of this should be
systematically studied.

• Space Mean Speed, Travel Velocity. It is well known that one can measure ve-
locity either analogous to our flow definition (Time Mean Speed, Spot Speed) or
analogous to our density definition (space mean speed, travel velocity). Under non-
stationary conditions, the measurements give different results, since, for example,
the first definition never counts vehicles with velocity zero. Time mean speed is
easier for field measurements; space mean speed is easier to interpret since it is
equal to the travel velocity and it is also the velocity which needs to be used in
the fundamental relationship between flow, density, and velocity, q = ρ · v. Since
in a simulation model both are similarly easy to measure, we measure the more
meaningful travel velocity. Once a time step, we sum up the individual velocities
of all vehicles on a stretch of roadway of L = 5 sites = 5 × 7.5 m = 37.5 m.
We add these sums for k = 180 measurement events and then divide the result-
ing number by N and by k, where N is the same number as obtained during the
density measurement above:

v =

∑

v

k ∗ N
(32.2)

• Lane usage. Lane usage of a particular lane is the number of cars on this lane
divided by the number of cars on all lanes. It can be computed as:

fi =
ρi

∑n
j=1 ρj · n

, (32.3)

where i is the lane we look at and n is the number of lanes.
12The “magical” number of L = 5 sites is equal to the maximum velocity of vmax = 5 sites/update. This

ensures that each vehicle is counted at least once.

file: book.tex, p.32-13 January 31, 2005

32.5. Towards a standardized flow test suite for simulation models

32.5.2 Test networks

Essentially two test networks are used: a circle of 1 000 sites = 0.75 km in various
configurations, and a simple signalized intersection. Most of the tests are run on the
circle networks. The circle can have one, two, or three lanes. In all tests, the circle is
slowly loaded with traffic via a parking location at site x = 1 (where the unit of x is
“cells”). Velocity, flow, and density are measured on 486 ≤ x ≤ 490, thus generating
the fundamental diagrams for one-lane, two-lane, and three-lane traffic. Since the circle
gets slowly loaded, the complete fundamental diagram is generated during one run.

For testing yield signs and stop signs, an incoming lane is added on the right side of
traffic at x = 501. The characteristics of the incoming traffic are measured by a detector
on the last 5 sites of the incoming lane. The incoming lane is operated at maximum flow,
i.e. with as many vehicles as possible entering. The incoming vehicles are removed at
x = 900 via a parking accessory. The result of this measurement is typically a diagram
showing the flow of incoming vehicles on the y-axis versus the flow on the circle on the
x-axis.

For testing left turns against oncoming traffic, an opposing lane is added so that it ends
at x = 500. The traffic control here is again a “yield” logic; the difference from before
is that vehicles only traverse the opposing traffic, they do not join it.

Last, a three-lane intersection approach is used. The left lane makes a left turn, the
middle lane goes straight, the right lane makes a right turn. Incoming vehicles have plans
about their intended movement at the intersection and attempt to reach the corresponding
lane. The intersection has signals with 1 minute green phase and 1 minute red phase. The
typical output from this run is the flow of vehicles which go through the intersection, and
the number of vehicles which cannot make their intended turn because they did not reach
their lane.

32.5.3 Results

The results are shown in Figs. 32.2 to 32.5.

• Single lane traffic (Fig. 32.2a) has a realistic value of maximum flow (= capacity),
but one may argue that it is at a somewhat low density. The problem here is that we
do not include slow vehicles; introducing slow vehicles into a single lane closed
circle simulation just means that all fast vehicles bunch up behind them, which
does not result in a very useful fundamental diagram. In terms of the “building
block” philosophy, we prefer to run the single lane test with identical vehicles.

• Our lane changing rules do neither change maximum flow per lane nor the density
(per lane) at maximum flow. That need not be the case, Rickert et al. (1996b).
Again, the density at maximum flow seems a bit low. This changes considerably
when one introduces slower vehicles: The free flow part of the curve then bends
more to the right and the maximum is at higher densities Nagel et al. (1998). Also,
there are measurements in Germany where traffic with trucks reaches maximum
flow at approx. 20–22 veh/km/lane Wiedemann (1995), so without more specific
data this discussion seems pointless. – We think that the curve without slow ve-
hicles is “cleaner” and thus facilitates comparison between models; in reality, the
problem is more complicated anyway.

Also, we generate equal lane usage between the lanes, as should be expected for a
symmetric lane changing model (in the absence of on-ramps).

• The flow through a traffic signal that is 50% green should be at half the value of the
maximum single lane flow, i.e. at 1000 veh/hour, which is what we find (Fig. 32.4).

file: book.tex, p.32-14 January 31, 2005

32.6. Yield sign behavior

• The curves for traffic through stop and yield signs follows the general form of the
curve of the Highway Capacity Manual Transportation Research Board (1994b).
We added the HCM curves for comparison only. In general, we find that a yield
sign, when there is no traffic on the major road, generates the same traffic as if
there were no sign at all, which should be expected the way the simulation is set
up. (It is a bit lower than for the “circle” before because the speed limit is lower
here.) The stop sign generates a much lower flow in the same situation, because
the explicit stop decreases capacity.

From there, the curves for “traffic into” the major road decrease roughly linearly
to zero when the flow on the major road reaches capacity. The curve for traffic
across a single lane road looks similar to its “traffic into” counterpart, which is to
be expected because the number of opposing lanes is one in both cases. The curve
for traffic across a two lane road provides roughly half the flow of traffic across a
single lane road.

For densities above capacity on the major road, all curves bend “back on them-
selves”. If the major road is congested, the speed there is zero, and the gap ac-
ceptance criterion “accept if gap ≥ 3 · voncoming” is always fulfilled, even for
gap = 0. Nevertheless, for “traffic into”, very little traffic makes it through the
yield or the stop sign. The reason is that in Transims, vehicles on the major road
that may go through the intersection “reserve” the first cell at the beginning of the
next link, thus blocking this link for vehicles from the minor link even if the gap
acceptance rule would allow the movement. For “traffic across”, this restriction
does not exist, and many vehicles make it through the intersection, probably many
more than is realistic. – Note that the HCM does not provide any information in
the congested regime.

32.6 Yield sign behavior

All runs for this paper were first done with an experimental code and then repeated with
the Transims production code; all results shown so far were obtained from the Transims
production code. The disadvantage of an experimental code is that actual implemen-
tation in the production version may still introduce changes in the results due to small
discrepancies.13 The advantage of an experimental code is that turnover (compile times,
complexity of code, etc.) is much better than with a production version. We used that
advantage to test many different rules. In the following, we want to present a small subset
of tests.

All results presented in this section refer to the situation of a 1-lane minor street merging
into a 1-lane major street, with the intersection control being a yield sign. Fig. 32.6 (a)
shows what happens if the “reservation” rule from the Transims production code is no
longer used. Clearly, if vehicles from the major road do reserve cells on the outgoing link
only if they are actually going there, many more vehicles from the minor lane can make
the turn, effectively leading to an “alternating” vehicle pattern. This may be desirable in
some situations.

Figs. 32.6 (b) shows what happens when one then changes “accept when gap ≥ 3voncoming”
to “accept when gap > 3voncoming”. This seems like a negligible difference in the rules;
yet, the results are quite different in the congested regime. Whereas in the first, many
vehicles are able to get into the congested major road, in the second, only few of them
make it. The difference is easiest explained by looking at a vehicle of speed zero on the
major road just in front of the merge point, with space for a vehicle downstream of the

13This explains the differences to the TRB preprint version of this paper, which contained results from the
experimental code.

file: book.tex, p.32-15 January 31, 2005

32.7. Comparison to Case Study Logic

merge point. With the first rule, a vehicle at the yield sign will accept the move and move
in front of the vehicle on the major road, in the second case, it will not. Both scenarios
seem to be plausible to us; only systematic measurements can probably resolve which
one is better for a simulation model. – Also note that the rule in (b) generates similar
flows as the Transims production version.

Fig. 32.6 (b), (c) and (d) show the result of different speed limits (same speed limit for
both streets). A high average free speed of approx. 130 km/h (≈ 80 mph, generated by
vmax = 5), maybe a freeway merge, generates a flow of approx. 2000 veh/hour/lane in
the incoming lane when there is no traffic on the major road (Fig. 32.6 (c)). From there,
maximum incoming flow decreases continuously. Lower average free speeds of approx.
75 km/h (50 mph, Fig. 32.6 (b)) and 50 km/h (30 mph, Fig. 32.6 (d)) generate lower
maximum incoming flows and are generally closer to the Highway Capacity Manual
curve. Yet, it should be clear that, contrary to the HCM, the “minor” flow is also a
function of the speed limit and not only of the gap acceptance (the gap acceptance is the
same in all three simulations).

A last series of experiments shows the effect of different values for the gap acceptance.
Figs. 32.6 (e) and (f) show “accept when gap > voncoming and gap > vmax”. Clearly,
more vehicles are accepted, leading to a higher flow of turning vehicles as a function of
the flow on the major road. Note that the flow via the yield sign is never higher than 1800
minus the flow on the major road. This reflects the fact that the major road cannot have
a higher flow than 1800 veh/h/lane (free speed approx 50 mph); traffic through the yield
sign can thus at most fill the major road to capacity. This explains why the acceptance of
much smaller gaps do not produce a stronger difference. The situation is clearly different
for unprotected turns across instead of into traffic, as can be seen for the left turns in the
next section.

32.7 Comparison to Case Study Logic

The gap acceptance logic presented here and used in the March 1998 Transims microsim-
ulation is different from the logic used in the “Dallas/Fort Worth Case Study” Beckman
et al (1997); Nagel and Barrett (1997). The logic during that case study was: “Accept an
unprotected movement if in all opposing lanes the gap is larger than vmax = 5.” This
means that at low density on the major road, more turns were accepted, whereas at high
density on the major road, less turns were accepted – with the extreme case that no turns
were possible against oncoming traffic of speed zero.

Fig. 32.7 compares the results for the current gap-acceptance logic and the one used in
the case study for the case where the major road is a 3-lane road. Note that the results
for the turns into other traffic are not that much different whereas the result for the turns
across other traffic yields much higher uncongested and much lower congested flows
with the case study logic. This is due to the fact that for turns into other traffic, there is a
capacity constraint of the form that the joint flows from the major and the incoming road
cannot exceed capacity of the major road, see last section. Such a constraint obviously
does not exist for turns across the major road.

32.8 Short discussion

We presented test of what we believe are “building blocks” of microsimulation models.
Further “building blocks”, not included here, are probably freeway ramps with merge
lanes, and freeway weaving sections. We plan to include these tests into future versions.

file: book.tex, p.32-16 January 31, 2005

32.9. Summary and conclusion

As pointed out earlier, we believe that “clean” real world measurements of the “building
block” situations are hard to obtain. Thus, one may consider them primarily useful for
comparing simulations with each other and with theory; nevertheless, we think that one
can judge from the results at least if the simulation is “in the right ballpark”. It would
certainly be desirable in the future to also have test suites for more complex situations.
– For the same reason, we did not make any attempt to get “better” results than the ones
presented here: we know that the results change in more complex scenarios, and it is
therefore unclear if a change “to the better” in the test cases may not be a change “to the
worse” with respect to reality.

Also, we would shortly like to point out again that “verification” of simulation models,
i.e. the question if an actual code corresponds to a (possibly incomplete) specification in
a paper, is in practice a difficult question. An alternative approach would be to try to find
a suite that decides if we are macroscopically convincing without the need to go through
testing the rules on an individual scale. Arguing about the microscopic rules could then
be left to a small group of specialists; the end user could just look at the test suite results
and judge in a matter of minutes if the simulation has faults that would seriously affect
the analysis of their problem.

Last, all these problems imply to us that one should expect that simulation models will
undergo continuous improvements, and it seems more realistic to us to expect “test
suites” to be run at regular intervals instead of expecting that parts of simulation models
can be validated and calibrated “once and for all” at certain stages and then never be
touched again. In consequence, we would like to shift the argument from a discussion
whether a model is “correct or not” to the discussion about which tests should be run
to enable the user to make that decision, and how these tests can be made comparable
between different simulation models.

32.9 Summary and conclusion

In transportation simulation models for larger scale questions such as planning, the flow
characteristics of the traffic dynamics are in some sense more important than the mi-
croscopic driving dynamics of the vehicles itself. This becomes especially true since a
“complete” representation of human driving is impossible anyway, both due to knowl-
edge constraints and due to computational constraints. Yet, calibrating a traffic simula-
tion model against all types of desired behavior (for example against all HCM curves and
values mentioned in this paper) seems a hopeless task given the high degrees of freedom.

Transims thus attempts to generate plausible emergent macroscopic behavior from sim-
plified microscopic rules. This paper described the more important aspects of these rules
as currently implemented or under implementation in TransimsḂefore we implement
rules in the Transims production version, we usually try to run systematic studies with
more experimental versions. The results of the traffic flow behavior from that study were
presented. Also, we showed the effects of some changes in the rules for the example of
a yield sign. Finally, some comparisons were made between the logic currently under
implementation and the logic used for the Dallas/Fort Worth case study.

One problem with microscopic approaches is that, in spite of all diligence, subtle differ-
ences between design and actual implementation can make a significant difference in the
emergent outcome. For that reason, this paper should also be seen as an argument for
a standardized traffic flow test suite for simulation models. We propose that simulation
models, when used for studies, should first run these tests to demonstrate the dynamics
of their emergent macroscopic flow behavior. We think that the combination of results
presented in Figs. 32.2 to 32.5 are a good test set, although extensions may be necessary

file: book.tex, p.32-17 January 31, 2005

32.9. Summary and conclusion

1 5 2

gap

1 vehicle with velocity 1 cell per time-step (a)

5

3 2

2

forward gapbackward gap

 gap

forward gap

gap

Situation I

Situation II

5

2

3

backward gap

(b)

Wrong Lane

Turn Lane

Weight 4

1212120 1 1 1 1 1 2 131312 13 13 13 14

No Weight 4 added for lane changing

4

3

Weight 4 added for lane changing (c) 1

5

3

5

3

2

1

2

3

gap = 3 * velocity(oncoming vehicle) (d)

Locationx=1

Flow

Parking
Lane

Box

Opposing Lane

Measurement

Incoming

Parking
Accessory

x=501
x=490
x=486

x=900

(e)

Figure 32.1: (a) Definition of gap and examples for one-lane update rules. Traffic is moving to the right. The
leftmost vehicle accelerates to velocity 2 with probability 0.8 and stays at velocity 1 with probability 0.2. The
middle vehicle slows down to velocity 1 with probability 0.8 and to velocity 0 with probability 0.2. The right
most vehicle accelerates to velocity 3 with probability 0.8 and stays at velocity 2 with probability 0.2. Velocities
are in “cells per time step”. All vehicles are moved according to their velocities at a later phase of the update.
(b) Illustration of lane changing rules. Traffic is moving to the right; only lane changes to the left are considered.
Situation I: The leftmost vehicle on the bottom lane will change to the left because (i) the forward gap on its own
lane, 1, is smaller than its velocity, 3; (ii) the forward gap in the other lane, 10, is larger than the gap on its own
lane, 1; (iii) the forward gap in the target lane is large enough: weight2 = v − gapo = 3− 10 = −7 < 1 =
weight1; (iv) the backward gap is large enough: weight3 = vmax −gapb = 5−6 = −1 < 1 = weight1.
Situation II: The second vehicle from the right on the right lane will not accept a lane change because the gap
backwards on the target lane is not sufficient. (c) Value of weight4 when in wrong lane during the approach
to the intersection. (d) Example of a left turn against oncoming traffic. The turn is accepted because on all
three oncoming lanes, the gap is larger or equal to three times the first oncoming vehicle’s velocity. (e) Test
networks.

in the future (e.g. merge lanes, weaving, etc.). We will attempt to provide future Transims
results also with updated versions of the results of the traffic flow tests.

file: book.tex, p.32-18 January 31, 2005

32.9. Summary and conclusion

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90 100

flo
w

 [v
eh

/h
ou

r/
la

ne
]

density [veh/km/lane]

1-lane freeway

TRANSIMS Mar 1998

0

20

40

60

80

100

120

140

0 500 1000 1500 2000 2500

ve
lo

ci
ty

 [k
m

/h
]

flow [veh/h/lane]

TRANSIMS Mar 1998

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

ve
lo

ci
ty

 [k
m

/h
]

density [veh/km/lane]

TRANSIMS Mar 1998

Figure 32.2: One-lane traffic: Flow vs. density, travel velocity vs. flow, and travel velocity vs. density.

file: book.tex, p.32-19 January 31, 2005

32.9. Summary and conclusion

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90

flo
w

 [v
eh

/h
ou

r/
la

ne
]

density [veh/km/lane]

3-lane freeway

TRANSIMS Mar 1998

0

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000 6000 7000

ve
lo

ci
ty

 [k
m

/h
]

flow [veh/h/lane]

TRANSIMS Mar 1998

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90

ve
lo

ci
ty

 [k
m

/h
]

density [veh/km/lane]

TRANSIMS Mar 1998

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500

la
ne

 u
sa

ge

density [veh/km/lane]

1-lane freeway

middle lane
left lane

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

la
ne

 u
sa

ge

density [veh/km/lane]

1-lane freeway

middle lane
left lane

Figure 32.3: Three-lane circle: Flow vs. density, travel velocity vs. flow, travel velocity vs. density, lane
usage vs. flow, and land usage vs. density. The asymmetry in the lane usage at low densities is due to the fact
that the parking locations start filling in vehicles on the right lane, and they only move to the left when traffic
on the right lane becomes dense.

0 5 10 15 20 25
800

850

900

950

1000

1050

1100

1150

1200

F
lo

w
 T

−
In

te
rs

ec
tio

n
[v

eh
/h

r/
la

ne
]

Time [min]

Time − Flow Diagram for traffic light controlled T−intersection

Figure 32.4: Number of vehicles going through the intersection and number of vehicles “off plan” (= 0)
per green phase, re-scaled to hourly flow rates per lane.

file: book.tex, p.32-20 January 31, 2005

32.9. Summary and conclusion

0

500

1000

1500

2000

0 500 1000 1500 2000

flo
w

 th
ro

ug
h

un
pr

ot
ec

te
d

tu
rn

s
[v

eh
/h

/la
ne

]

flow of opposing lane(s) [veh/h/lane]

stop from minor into 1-lane major

TRANSIMS Mar 1998
HCM

0

500

1000

1500

2000

0 500 1000 1500 2000

flo
w

 th
ro

ug
h

un
pr

ot
ec

te
d

tu
rn

s
[v

eh
/h

/la
ne

]

flow of opposing lane(s) [veh/h/lane]

stop from minor into 2-lane major

TRANSIMS Mar 1998
HCM

0

500

1000

1500

2000

0 500 1000 1500 2000

flo
w

 th
ro

ug
h

un
pr

ot
ec

te
d

tu
rn

s
[v

eh
/h

/la
ne

]

flow of opposing lane(s) [veh/h/lane]

yield from minor into 1-lane major

TRANSIMS Mar 1998
HCM

0

500

1000

1500

2000

0 500 1000 1500 2000

flo
w

 th
ro

ug
h

un
pr

ot
ec

te
d

tu
rn

s
[v

eh
/h

/la
ne

]

flow of opposing lane(s) [veh/h/lane]

yield from minor into 2-lane major

TRANSIMS Mar 1998
HCM

0

500

1000

1500

2000

0 500 1000 1500 2000

flo
w

 th
ro

ug
h

un
pr

ot
ec

te
d

tu
rn

s
[v

eh
/h

/la
ne

]

flow of opposing lane(s) [veh/h/lane]

left turn (yield) from major across 1-lane major

TRANSIMS Mar 1998
HCM

0

500

1000

1500

2000

0 500 1000 1500 2000

flo
w

 th
ro

ug
h

un
pr

ot
ec

te
d

tu
rn

s
[v

eh
/h

/la
ne

]

flow of opposing lane(s) [veh/h/lane]

left turn (yield) from major across 2-lane major

TRANSIMS Mar 1998
HCM

Figure 32.5: Flow through stop sign, yield sign, and unprotected left turn. Left column: Major road
(“circle”) has one lane. Right column: Major road (“circle”) has two lanes. Solid line: Highway Ca-
pacity Manual Transportation Research Board (1994b). vmax = 3, gap acceptance rule is “accept if
gap ≥ 3 · voncoming , and if first site on target lane available”. Note that for “left turn across two lanes”
(bottom right) the opposing volume is the sum of both lanes, i.e. twice the value shown on the x-axis.

file: book.tex, p.32-21 January 31, 2005

32.9. Summary and conclusion

0

500

1000

1500

2000

0 500 1000 1500 2000

flo
w

 th
ro

ug
h

un
pr

ot
ec

te
d

tu
rn

s
[v

eh
/h

/la
ne

]

flow of opposing lane(s) [veh/h/lane]

(a) no reservation of first cell; gap >= 3*v; vmax = 3

study simulation

0

500

1000

1500

2000

0 500 1000 1500 2000

flo
w

 th
ro

ug
h

un
pr

ot
ec

te
d

tu
rn

s
[v

eh
/h

/la
ne

]

flow of opposing lane(s) [veh/h/lane]

(b) no reservation; gap > 3*v; vmax = 3

study simulation

0

500

1000

1500

2000

0 500 1000 1500 2000

flo
w

 th
ro

ug
h

un
pr

ot
ec

te
d

tu
rn

s
[v

eh
/h

/la
ne

]

flow of opposing lane(s) [veh/h/lane]

(c) no reservation; gap > 3*v; vmax = 5

study simulation

0

500

1000

1500

2000

0 500 1000 1500 2000

flo
w

 th
ro

ug
h

un
pr

ot
ec

te
d

tu
rn

s
[v

eh
/h

/la
ne

]

flow of opposing lane(s) [veh/h/lane]

(d) no reservation; gap > 3*v; vmax = 2

study simulation

0

500

1000

1500

2000

0 500 1000 1500 2000

flo
w

 th
ro

ug
h

un
pr

ot
ec

te
d

tu
rn

s
[v

eh
/h

/la
ne

]

flow of opposing lane(s) [veh/h/lane]

(e) no reservation; gap > v; vmax = 3

study simulation

0

500

1000

1500

2000

0 500 1000 1500 2000

flo
w

 th
ro

ug
h

un
pr

ot
ec

te
d

tu
rn

s
[v

eh
/h

/la
ne

]

flow of opposing lane(s) [veh/h/lane]

(f) no reservation; gap > vmax; vmax = 3

study simulation

Figure 32.6: Comparison between different rules for the case of a 1-lane minor road controlled by a yield
sign merging into a 1-lane major road. (a) Same as Fig. 32.5 (i.e. vmax = 3 and “accept if gap ≥ 3 ·

voncoming”), except that traffic on major road does not reserve the first cell on the outgoing link, thus giving
traffic from the yield sign more opportunities. Note that this seemingly small difference has big consequences
in the congested regime. (b) Same as (a) except that acceptance rule now “accept if gap > 3 · voncoming”.
(c) Same as (b) except that vmax = 5. (d) Same as (b) except that vmax = 2. (e) Same as (b) except that
acceptance rule now “accept if gap > voncoming . (f) Same as (b) except that acceptance rule now “accept if
gap > vmax”.

file: book.tex, p.32-22 January 31, 2005

32.9. Summary and conclusion

0

100

200

300

400

500

600

1000 1200 1400 1600 1800 2000 2200

flo
w

 th
ro

ug
h

un
pr

ot
ec

te
d

tu
rn

s
[v

eh
/h

/la
ne

]

flow of opposing lane(s) [veh/h/lane]

stop from minor into 1-lane major

TRANSIMS Mar 1998
HCM

0

100

200

300

400

500

600

1000 1200 1400 1600 1800 2000 2200

flo
w

 th
ro

ug
h

un
pr

ot
ec

te
d

tu
rn

s
[v

eh
/h

/la
ne

]

flow of opposing lane(s) [veh/h/lane]

stop from minor into 3-lane major

case study logic

0

100

200

300

400

500

600

1000 1200 1400 1600 1800 2000 2200

flo
w

 th
ro

ug
h

un
pr

ot
ec

te
d

tu
rn

s
[v

eh
/h

/la
ne

]

flow of opposing lane(s) [veh/h/lane]

yield from minor into 1-lane major

TRANSIMS Mar 1998
HCM

0

100

200

300

400

500

600

1000 1200 1400 1600 1800 2000 2200

flo
w

 th
ro

ug
h

un
pr

ot
ec

te
d

tu
rn

s
[v

eh
/h

/la
ne

]

flow of opposing lane(s) [veh/h/lane]

yield from minor into 3-lane major

case study logic

0

200

400

600

800

1000

1200

1400

1000 1200 1400 1600 1800 2000 2200

flo
w

 th
ro

ug
h

un
pr

ot
ec

te
d

tu
rn

s
[v

eh
/h

/la
ne

]

flow of opposing lane(s) [veh/h/lane]

left turn (yield) from major across 1-lane major

TRANSIMS Mar 1998
HCM

0

200

400

600

800

1000

1200

1400

1000 1200 1400 1600 1800 2000 2200

flo
w

 th
ro

ug
h

un
pr

ot
ec

te
d

tu
rn

s
[v

eh
/h

/la
ne

]

flow of opposing lane(s) [veh/h/lane]

left turn (yield) from minor across 1-lane major

case study logic

Figure 32.7: Comparison between the March 1998 Transims microsimulation gap acceptance logic and the
one used in the case study. Flow through stop sign, yield sign, and unprotected left turn into/across traffic
on major road. Left column: March 1998 Transims microsimulation. Right column: case study Transims
microsimulation. The arrows in the left turn case indicate the direction of increasing congestion. – The results
are not strictly comparable because (i) the simulations in the right column were run with a maximum speed of
vmax = 5 cells/update (135 km/h) vs. vmax = 3 cells/update (81 km/h) in the left column (mostly noticeable
in the lower maximum flow on the major road); and (ii) the stop and yield cases on the right describe flow into
a 3-lane road vs. flow into a 1-lane raod in the left column. Note that the results for the turns into other traffic
(“stop” and “yield”) are not that much different between the two whereas the result for the turns across other
traffic (“left turn”) leads to much higher flows in the uncongested and lower flow in the congested regime with
the case study logic.

file: book.tex, p.32-23 January 31, 2005

Chapter 33

Intersection test suite

[[where should this go??]]

In order to systematically test this intersection logic, an intersection test suite was imple-
mented. This test suite goes through several different intersection layouts and tests them
one by one if the dynamics behaves according to the specifications. The results typi-
cally look like as shown in Fig. ??. In this particular example, one link with 500veh/sec
and one link with 2000veh/sec merge into a link with a capacity of 500veh/sec. The
curves are, for different algorithms, time-dependent accumulative vehicle numbers for
the two incoming links. In this case, one sees that until approx time-step 3400, both
links discharge at rates 400 and 100veh/sec, respectively. After that time, the first link is
empty, and the second link now discharges at 500veh/sec. Not all algorithms are simi-
larly faithful in generating the desired dynamics; the thick black lines denote results from
the algorithm that got finally implemented. For further details, see Burriad (2002).

[[there is in fact a 3rd case, see daganzo network cell transmission: outgoing links
and ONE incoming link congested, other incoming link not congested. Do we catch
that? Do we have to?]]

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000 6000 7000 8000

C
ou

nt

Time

algorithm 1: link 400
algorithm 1: link 200
algorithm 2: link 400
algorithm 2: link 200
algorithm 3: link 400
algorithm 3: link 200
algorithm 4: link 400
algorithm 4: link 200
algorithm 5: link 400
algorithm 5: link 200

Figure 33.1: Test suite results for intersection dynamics. The curves show the number of
discharging vehicles from two incoming links as explained in section 18.3.

33-1

Chapter 34

Routing

[[ben-akiva??]]

34-1

Chapter 35

A Dallas case – do I want this??

35-1

Chapter 36

A Portland/Oregon case

36.1 Introduction

Several groups are developing simulations which can microscopically simulate whole
metropolitan areas in faster than real time (e.g. DYNAMIT, 2000; MITSIM, 2000; Mah-
massani et al, 1995 (DYNASMART); Rickert, 1998 (PAMINA); Gawron, 1998 (LEGO);
Rakha and Van Aerde, 1996 (INTEGRATION); Esser, 1998 (OLSIM)). By “micro-
scopic” we mean that each traveller is individually resolved. Thus, if one can generate
detailed travel plans for each individual, these simulations can execute these plans, while
recording for example where conflicts in the form of congestion delay the plans.

In consequence, it is only a question of time until it will be easy to couple such models
with models of travel demand generation, as has been demanded for many years (e.g. Ax-
hausen, 1990). Such a coupling will probably include a modal-choice-and-routing mod-
ule (“router”), and it will do systematic feedback iterations between all the modules. That
is, the results of the micro-simulation will be fed back into the router again and again un-
til some relaxation with respect to route choice is obtained, and then the result will be
fed back into the activities generation module, which will generate new activities which
now take into account the slower speeds in the network caused by congestion.

In this paper, an early implementation of such a computational feedback of the microsim-
ulation into the activities module is demonstrated. In fact, practitioners have often done
some version of such a feedback, by adjusting origin-destination matrices in order to
move the volume counts of the assignment model closer to reality. There are also com-
putational procedures with respect to assignment models (e.g. Metaxatos et al, 1995).
What will be done here is use such a computational procedure in connection with an
explicit traffic microsimulation. We will however simplify in several ways: Cars will be
used as the only mode, travel from home to work will be the only demand, and the traffic
micro-simulation is rather simplified. The simulation will be iteratively adjusted towards
the census trip time distribution. This is an early step, and we expect much progress in
the near future. In particular, we expect that transportation microsimulation, where each
traveller is individually resolved, will lend itself much better to integration with activity-
based demand generation than the aggregating technique of traditional assignment does.
Although the focus of our work was the compuration integration of dynamic traffic as-
signment with demand generation, we will compare our results with existing volume
counts in the Portland/Oregon area.

The structure of the paper is as follows: In Sec. 36.2, the problem is stated, followed by a
description of our approach with respect to demand generation and feedback (Sec. 36.3).
After a discussion of related work (Sec. 36.4), the paper moves on to our actual study

36-1

36.2. Problem statement

(Sec. 36.5) and its results (Sec. 36.6). The paper is concluded by a discussion and a
summary.

36.2 Problem statement

In general, we want to generate “realistic traffic” via computer simulation. Thus, our
ultimate research goal is to have a model which, when applied to today’s situation, will
yield today’s traffic, and when applied to a hypothetical scenario, will yield a meaning-
ful prediction. In our actual implementations, however, we (as everybody else) make
simplifications. We are, however, not interested in optimal solutions of the simplified
problems; our interest is how close to reality we can get with our simplified models and
computational procedures.

We envisage that such a realistic computer simulation will be a combination of popu-
lation generation, activities generation, routes assignment, and traffic micro-simulation,
coupled via feedback iterations. So what is done in the following is to pick (simple) ver-
sions of these modules, embed them into feedback iterations, and try this on real world
input data. The research question was twofold: (1) What are the computational issues?
(2) How close to reality (or not) does one get with simple assumptions?

The question of the necessary degree of realism in each of these modules is an open prob-
lem which will need further research. That question is not treated in this paper. We do not
claim that the degree of realism (or not) chosen in any of the modules used for our investi-
gation is the correct degree of realism in order to obtain meaningful results. In particular,
we expect that more sophisticated demand generation techniques (e.g. Bowman, 1998;
Doherty and Axhausen, 1998; Arentze et al, 1998) will lead to more realistic results. We
do expect, however, that a systematic inclusion of transportation network impedance, as
demonstrated in our study, will contribute to better and more robust models.

The problem for this paper is how to assign workplace locations to workers via using
computer simulation. It is known from data where people live, and it is also known
where they work, but one has to match these two sets of data. The problem is similar
to the trip distribution step in the four step process. In the work described here, this is
done via some strongly simplified assumptions. One of these simplifications is to only
look at traffic resulting from people driving from home to work. By this one neglects, for
example: delivery trucks, people returning from night shifts, travelers using alternative
modes of transportation, etc. There is also much more complexity in the afternoon peak
than in the morning peak. Again, our investigation is a demonstration of a computational
procedure, not an attempt to obtain the most possible realistic results for a certain field
problem.

Having said that, let us describe our scenario. Our scenario area is Portland in Oregon.
Our input data are: (a) a description of the Portland transportation network; (b) a syn-
thetic population based on Portland demographic data; (c) a list of workplaces including
location and size; (d) the distribution Ncns(T) of actually encountered trip times T from
home to work by the Portland population; and (e) a distribution of starting times. The
problem for this study was to match workers (who have home locations) and workplaces
such that the resulting traffic yields trip times which, when aggregated, match the census
trip times.1

1Since the whole travel of each traveller in our simulation consists of exactly one trip, “trip time” and “travel
time” will be used synonymously.

file: book.tex, p.36-2 January 31, 2005

36.3. Our approach

36.3 Our approach

The approach that is maybe closest to our work are the discrete choice models (Ben-
Akiva and Lerman, 1985). As is well known, in that approach the utility Vi of an alterna-
tive i is assumed to have a systematic component Ui and a random component ηi. Under
certain assumptions for the random component this implies that the probability pi (called
choice function) to select alternative i is

pi = exp(βUi)/
∑

k

exp(βUk) . (36.1)

pi could for example represent the probability to accept a workplace that is i seconds
away. If i is indeed taken as time, then Ui is negative, and it follows an inverse S-shaped
curve which starts at zero, decreases slowly for small times, decreases faster for medium
times, and decreases again slowly for large times (Bowman, 1998). By this approach,
our above location choice problem would be solved by weighting each given workplace
according to time-distance i by pi and then making a random draw in these probabilities.
Clearly, for the discrete choice approach one needs to know the function βUi.

In this paper, the “psychological” function βUi is obtained from “observed” trip time
distributions, using new methods of micro-simulating large geographical regions. The
core idea is that an observed trip time distribution Ntr(t) can be decomposed into an
accessibility part Nacs(t) and an acceptance (= choice) function fch(t)

Ntr(t) = Nacs(t) fch(t) . (36.2)

Nacs(t) is the number of workplaces at time-distance t; fch(t) is proportional to the
probability that a prospective worker will accept this trip time. Thus, apart from nor-
malization fch is the same as the choice function in discrete choice theory. Our decom-
position allows to separate the network specific accessibility distribution Nacs(t) from
the “psychological” trip time acceptance function. In principle, fch(t) as found via our
relaxation method should be the same as when obtained via an estimation of a survey
when suitably averaged over the whole population.

Given a micro-simulation of traffic, Nacs(t) can be derived from the simulation result.
For a given home location (and a given assumed starting time), one can build a tree
of time-dependent shortest paths, and every time one encounters a workplace at time-
diestance t, one adds that to the count for trip time t. The challenge is that this result
depends on the traffic: Given the same geographic distribution of workplaces, these
are farther away in terms of trip time when the network is congested than when it is
empty. That is, given the function fch(t), one can obtain the function Nacs(t) via micro-
simulation, i.e. Nacs(t) = G[fch(.)](t), where G is the micro-simulation which can be
seen as a functional operating on the whole function fch(.). The problem then is to find
the macroscopic (i.e., averaged over all trips) function fch(.) self-consistently such that,
for all travel times t,

Ntr(t) = G[fch(.)](t) fch(t). (36.3)

For this, a relaxation technique is used. It starts with a guess for fch(t) and from there
generates Nacs(t) = G[fch](t) via simulation. A new guess for fch(t) is then obtained
via

f
(n+1)
ch (t) = Ntr(t)/N

(n)
acs(t) . (36.4)

A fraction fact of all travelers will do their workplace selection again, using the new
f

(n+1)
ch . G[.] is generated again via micro-simulation, and this is done over and over

again until a sufficiently self-consistent solution for fch(t) is found.

file: book.tex, p.36-3 January 31, 2005

36.3. Our approach

Real census data is used for Ntr(t) (see “census-100”-curve in Fig. 36.3; from now on
denoted as Ncns(t)). People usually give their trip times in minute-bins as the highest
resolution. Since our simulation is driven by one-second time steps we need to smooth
the data in order to get a continuous function instead of the minute-histogram. Many
possibilities for smoothing exist; one of them is the beta-distribution approach in Wagner
and Nagel (1999). Here, we encountered problems with that particular fit for small trip
times: Since that fit grows out of zero very quickly, the division Ntr/Nacs had a tendency
to result in unrealistically large values for very small trip times. We therefore used a
piecewise linear fit with the following properties: (i) For trip time zero, it starts at zero.
(ii) At trip times 2.5 min, 7.5 min, 12.5 min, etc. every five minutes, the area under the
fitted function corresponds to the number of trips shorter than this time according to the
census data.

Obtaining G[fch] itself via simulation is by no means trivial. It is now possible to micro-
simulate large metropolitan regions in faster than real time, where “micro”-simulation
means that each traveler is represented individually. The model used here is a simple
queuing type traffic flow model described in Simon and Nagel (1999). However, even if
one knows the origins (home locations) and destinations (workplaces), one still needs to
find the routes that each individual takes. This “route assignment” is typically done via
another iterative relaxation, where, with location choice fixed, each individual attempts to
find faster routes to work. Rickert (1998) and Nagel and Barrett (1997) give more detailed
information about the route-relaxation procedure; see also Fig. 36.1 and its explanation
later in the text.

Once f
(n+1)
ch (t) = Ncns(t)/N

(n)
acs(t) is given, the workplace assignment procedure works

as follows: The workers are assigned in random order. For each employee the time
distances t for all possible household/workplace pairs [hw] are calculated, while the
home location h is fixed and taken directly from the household data for each employee.
Let thw be the resulting trip time for one particular [hw] and nwo(w) the number of
working opportunities at workplace w. Then, an employee in household h is assigned to
a working opportunity at place w with probability

phw ∝ nwo(w)fch(thw). (36.5)

In addition to work location, home-to-work activity information also includes the times
when employees start their trip to work. These are directly taken from the household
data.

The complete approach works as follows:

(1) Synthetic population generation: First a synthetic population was generated based on
demographic data (Beckman et al, 1996). The population data comprises microscopic
information on each individual in the study area like home location, age, income, and
family status.

(2) Compute the acceptance function fch(T). This is done as follows:

(2.1) For each worker i, compute the fastest path tree from his/her home location. Com-
pute the resulting workplace distribution Nwp(i, T) as a function of trip time T .2

(2.2) Average over all these workplace distributions, i.e.

Nwp(T) := 〈Nwp(i, T)〉i := (1/N)
∑

i

Nwp(i, T) , (36.6)

where N is the number of workers, which is by definition also equal to the number of
workplaces. Nwp(T) is thus equivalent to our earlier Nacs(T).

2In contrast to the routing module, no time-dependence was used here although future implementations
should do so.

file: book.tex, p.36-4 January 31, 2005

36.4. Related work

Act. Gen.

Router

Time

Simulator

Figure 36.1: Iterative Activity Re-Assignment: Schematic subsequent application of ac-
tivity generator, router, and traffic simulator.

(2.3) Compute the resulting average choice function via

fch(T) ∝ Ncns(T) / Nwp(T) . (36.7)

In addition, a normalization constant needs to be computed such that
∑

T

fch(T) = 1 . (36.8)

(3) Assign workplaces. For each worker i do:

(3.1) Compute the congestion-dependent fastest path tree for the worker’s home location.

(3.2) As a result, one has for each workplace the expected trip time T . Counting all
workplaces at trip time T results in the individual accessibility distribution Nacs(i, T).

(3.3) Randomly draw a desired trip time T ∗ from the distribution Nacs(i, T) fch(T).

(3.4) Randomly select one of the workplaces which corresponds to T ∗. (There has to be
at least one because of (3.1).)

(4) Route assignment: Once people are assigned to workplaces, the simulation is run
several times (5 times for the simulation runs presented in the paper) while people are
allowed to change their routes (fastest routes under the traffic conditions from the last
iteration) as their workplaces remain unchanged.

(5) Then, people are reassigned to workplaces, based on the traffic conditions from the
last route iteration. That is, go back to (2).

This sequence, workplace reassignment followed by several re-routing runs, is repeated
until the macroscopic traffic patterns remain constant (within random fluctuations) in
consecutive simulation runs. For this, one looks at the sum of all people’s trip times
in the simulation. The simulation is considered relaxed when this overall trip time has
leveled out.

Running this on a 250 MHz SUN UltraSparc architecture takes less than one hour compu-
tational time for one iteration including activity generation, route planning, and running
the traffic simulator. The 70 iterations necessary for each series thus take about 4 days of
continuous computing time on a single CPU.

36.4 Related work

The topic of this paper is a computational procedure of how to systematically feed back
the results of a dynamic traffic assignment (DTA) to demand generation. In principle,
any route assignment could be used instead of ours. However, since our work are steps
towards a completely microscopic simulation approach, we are primarily interested in

file: book.tex, p.36-5 January 31, 2005

36.5. Experimental setup and simulation results

simulation-based route assignment and network loading. For this, one needs traffic
flow simulations where one is able to follow each vehicle individually. Some simula-
tions which fulfill this requirement besides the queue simulation used in the paper are:
PAMINA (Rickert, 1998); the Transims main micro-simulation (Transims, 1992); LEGO
(Gawron, 1996); INTEGRATION (Rakha and Van Aerde, 1996); DYNASMART (Mah-
massani et al, 1995); PARAMICS (1996); MITSIM (Yang, 1997); DYNAMIT (2000);
DYNEMO (Schwertfeger, 1987) or VISSIM (2000). Out of these, probably only LEGO,
DYNASMART, DYNEMO, and DYNAMIT are fast enough to run iteration series such
as ours on a single CPU. Within these four, LEGO is based on a queue model very sim-
ilar to ours, while the other three use macroscopic equations for the movement of the
vehicles.

In terms of re-routing during the route iterations, we use a standard time-dependent
fastest path Dijkstra (see, e.g., Jacob et al, in press) based on 15-min link trip time aver-
ages. However, for this paper only a fraction of the population is re-planned. A widely
used alternative is to re-plan 100% of the population in each iteration but to use a dis-
crete choice approach approach to spread travelers across different routes (Cascetta and
Papola, 1998; Bottom, 2000). Besides different theoretical properties, these approaches
also have different computing complexities. The time complexity of our approach for
the routing is O(f N E log K), where N is the number of travelers, f is the re-planning
fraction (usually 10% in this paper), and E log K is the complexity of the Dijkstra al-
gorithm where E is the number of edges and K the number of nodes. Note that this
is independent of the time resolution. The approaches which re-plan everybody usually
exploit the fact that, for any given starting location, one obtains the complete shortest
path calculation for all destinations with the same worst case complexity as the calcu-
lation for just one destination. One thus obtains O(F (∆T) M E log K), where M is
the number of possible starting points (traditionally zones) and F (∆T) is some function
that increases with increasing time resolution (decreasing ∆T) (Chabini, 1998). Since in
our work each link is a potential starting point, this translates into O(F (∆T) E2 log K).
In this paper, where E ≈ 20k, N ≈ 500 000, and f = 0.1, the two approaches are
about equivalent. For street networks with higher resolution, E grows while N remains
constant, making our approach grow more slowly in time complexity.

Also the workplace assignment is an old problem. An example of such a matching is
the classic “Hitchcock” solution (Sheffi, 1985), where the workplace assignment is done
in such a way that the overall sum of all trip times is minimized. This clearly results in
much shorter trips than in reality. Axhausen (1990) suggests to couple demand genera-
tion, route assignment, and traffic simulation, although he puts more emphasis on on-trip
learning than in the implementation presented here. Several groups such as the groups
of Ben-Akiva or Mahmassani are actively working on this as extensions of their ITS
projects. We are not aware of any results of these attempts yet. There are also earlier
versions of the work presented in this paper (Wagner and Nagel, 1999, Esser and Nagel,
1999).

36.5 Experimental setup and simulation results

The study described in this paper was carried out as part of the Transims project (Tran-
sims, 1992), which was at that time aimed at simulating the whole city of Portland mi-
croscopically (i.e., with resolution down to single individuals) under consideration of
activity generation, modal choice and route planning, and transportation dynamics. The
simulations described in this paper were run on a road network consisting of 8,564 nodes
and 20,024 links representing a subset of the real network.

Traffic counts for validation are available for 495 links comprising flow data for the
morning peak from 7:15am to 8:15am. Data are available for the years 1992 and 1994.

file: book.tex, p.36-6 January 31, 2005

36.5. Experimental setup and simulation results

Data for 1992 is used for those links for which no 1994 data are available (68 links); for
all other links, the counts of 1994 are used.

The data were collected using pneumatic road tubes and averaged over two or three week-
days; mostly on Tuesdays, Wednesdays, and Thursdays outside of holiday periods and
while school was in session. The counts are not seasonally adjusted. Axle adjustment
factors are applied to account for trucks, which are not explicitely counted. The accu-
racy of the counts is considered to be 80 − 85% (Bill Stein, Portland Metro, personal
communication).

Another set of data available are the results of assignment runs by Portland Metro. These
runs use their own demand generation, and the EMME/2 assignment algorithm (Babin,
1982). Note that “EMME/2” results in this paper will refer to results of that particular
study by Portland Metro including its demand generation.

One problem with our census based assignment approach is that trip times are overesti-
mated for at least two reasons:

(1) First, when people are asked for the time they spend for their trip to work they usually
report the total door to door time including the time to get to the car or park the car. On
top of that, people tend to overestimate the time they spend driving especially in stop-
and-go traffic (K. Lawton, personal communication).

(2) Second, the road network used for our simulation does not cover most minor streets.
That means the time people spend on these roads should be taken out of the distribution.

The amounts of those times can however not be estimated without further information.
To get an idea whether a trip time distribution which is shifted to lower trip times yields
more realistic results, two different workplace assignment iterations were done: One with
the original census distribution, and another with all desired travel times reduced to 80%
of the original value. In the following we refer to these runs as run sim-100 and sim-80,
respectively.

In Fig. 36.2 the total trip time is plotted for both series, sim-100 and sim-80. Each
simulation run refers to running the queue simulation for the morning (from 4am till
12pm). After every 5 iterations in which people are rerouted only, people are assigned to
new workplaces. This can be seen as a sudden, normally upward jump of the total trip
time in the plot. The reason for the jump is that it takes some reroute iterations to adjust
the routes to the changes in the trip demand pattern. We ran 20 route iterations after the
last workplace assignment to make sure that the routes are actually relaxed.

As expected, the total trip times are lower for sim-80 (Fig. 36.2). Yet, it is striking that
a decrease in desired trip times by 20% results in actual trip times which are about 50%
lower. The reason will be explained in the next paragraph.

By looking at the trip time distributions in the simulation (Fig. 36.3), it can be seen that
the resulting distribution for sim-80 is closer to the corresponding census distribution
than it is for sim-100. Even after assignment and route relaxation, there are still a lot
of unrealistically high trip times for sim-100. This results from the fact that the over-
all traffic demand is more than the network can carry, leading to a lot of congestion.
It is well known that large fluctuations occur when transportation systems are operated
with demands that exceed capacities (Kelly, 1997; Nagel and Rasmussen, 1994). Ac-
tually, detailed investigation shows that in each simulation run different people account
for the very high trip times, which underlines the influence of large fluctuations. Also
for sim-80, the distribution resulting from the simulation does not perfectly match the
corresponding modified census distribution. Nevertheless, the effect of large fluctuations
due to congestion is smaller than for sim-100. These erratic occurrences of large trip
times are also the reason why the reduction of the desired trip times by 20% leads to a
decrease in actual trip times by 50%: In sim-100, the system is simply not capable to

file: book.tex, p.36-7 January 31, 2005

36.6. Comparison to field data and to emme/2 study results

find a solution that is able to match the demand, and thus has too few contributions at trip
times around 500 secs while it has too many contributions at trip times above 3000 secs.

As mentioned above, we do not claim that the 80% census trip time distribution leads to a
realistic representation of the real traffic flows in the study area. The idea is just to check
the assumption that a reduced distribution leads to more realistic traffic flow patterns.
The comparison with the field data is topic of the following section.

36.6 Comparison to field data and to emme/2 study
results

First, the field count data is compared with the results of our simulation runs directly for
every link. For comparison, the results of the “EMME/2 study” are also shown. Fig. 36.4
shows the typical scatterplots, with field data on the x-axis and simulation results for the
same links on the y-axis. Note that both axes are logarithmic.

The first observation is that the plots look remarkably similar in structure. All three
studies give relatively unbiased results for high flows, and underestimate low volumes.
In addition, there are a few data points where simulation and reality are rather far apart.

At closer inspection, one notes that EMME/2 is somewhat overestimating high volumes,
whereas our simulations are underestimating them. This is confirmed by bias calculations
(see below). Such an effect is consistent with what one would expect: The Portland Metro
assignment model for the presented results does not have a flow cutoff at capacity, so that
it is possible to actually put more flow on a link than that link has capacity. This happens
in particular at bottlenecks on short links in an otherwise relatively uncongested area.3

The queue model traffic simulation tends to behave in the opposite way. If demand is
higher than capacity, the queue spills back. Once this queue reaches another intersection,
that intersection will normally be blocked for all directions, not just for the direction into
the congested link. This is a consequence of the fact that the queue model neglects multi-
lane effects at intersections. This means, for instance, that a car waiting for a chance to
make a left turn blocks all following cars on this link. This tends to cause unrealistically
large spill backs.

When one compares sim-80 to sim-100, the flows for sim-80 are closer to the field data
for high volumes, and farther away for medium volumes. It is striking that demand
reduction by as much as 20% changes the resulting flows so little. This adds to the
conjecture that measured flows in a network depend as much on the network structure as
on the demand structure.

For more detailed information, one can look at links in different classes regarding field
data and direction (Table 36.1). For each class c we calculated the mean absolute and
relative bias, i.e.

babs,c = (1/Nc)
∑

i

(xi−ξi) = (1/Nc)

(

∑

i

xi−
∑

i

ξi

)

and brel,c = babs,c / 〈ξ〉c ,

(36.9)
the mean deviation from the field data, i.e.

dabs,c = (1/Nc)
∑

i

|xi − ξi| and drel,c = dabs,c / 〈ξ〉c , (36.10)

3This really depends on the cost function which is used. Most cost functions set link speed v to a very low
number (but not to zero) at high volumes. Since link costs are proportional to L/v, where L link length, one
has that congested links do not contribute much to the cost of a route as long as these links are short and rare.
In consequence, much too high volumes can be assigned to such links.

file: book.tex, p.36-8 January 31, 2005

36.7. Discusssion

and the root mean square deviation from the field data, i.e.

varc =

(

(1/Nc)
∑

i

(xi − ξi)
2

)1/2

and σc = varc / 〈ξ〉c . (36.11)

Links were classified by visual inspection into links leading towards the Portland down-
town area, and all other links. The tables show that our simulations are underestimating
the flows on the “other” links more than they are underestimating the flows on the links
towards downtown. Visual inspection of the simulations reveals that this is probably a
result of too much demand (and thus congestion) for traffic away from the downtown
area. This is what one would expect from our simplifications: We are assuming a spa-
tially homogeneous trip time distribution; yet, one would expect that people who live
downtown moved there because they have a higher dislike of long trip times than the
average population.

Regarding the size classes, sim-100 systematically underestimates volumes except for
class 1 (< 250). Sim-80 underestimates less for class 6 (> 1500), underestimates more
for all intermediate classes, and is nearly unbiased for class 1. The interpretation of this
is that in sim-100, traffic on the major roads is so congested that the routes are pushed
onto the smaller streets. The EMME/2 studies, in contrast, systematically over-estimate
volumes. Similar to our results, the ratio of traffic on small vs traffic on large roads is
too high. Quite possibly, the fastest path search that is used in both approaches makes
simulated travelers accept complicated detours on minor streets more easily than in the
real world.

Last, one should also remember that the estimated error of the field counts is assumed to
be no better than ±15− 20%. We will come back to this point in the discussion.

In summary, one can say the following: Our simulations are far enough progressed to
allow tentative comparisons to real world volume counts. The simulations done for this
investigation lead to traffic flows with volumes that are somewhat low when compared to
reality. Due to the complexity of the approach, there can be many reasons for this, and
the systematic analysis of these effects should be the subject of future research.

36.7 Discusssion

The purpose of this study was to couple a simple demand generation method with route
assignment and transportation micro-simulation via a computational feedback procedure.
We wanted to explore in how far such an approach is feasible, and then out of scientific
curiosity and as a benchmark we compared the results with real world data and with
existing EMME/2 study results for the same problem. What can one learn from this?

First, it is now indeed both methodologically and computationally possible to system-
atically couple demand generation, route selection, and transportation micro-simulation.
Again, this does not automatically mean that this is always the best method; however,
it can and thus should be explored as one of many alternatives. Also note again that
practitioners have always done some version of this feedback: If an assignment did not
generate plausible flows, it was common practice to adjust the trip matrix (K. Cervenka,
personal communication). The main differences thus are that we do it systematically and
computerized, and that we use a micro-simulation instead of a static assignment. — The
second result is that for the morning peak, extremely simple assumptions yield results
which are comparable to results of an EMME/2 study.

An important task would be to separate the influences of the different modules. In addi-
tion to the input data, there are four computational modules involved in this study: de-
mand generation, routing, traffic flow simulation, and feedback mechanism. All of these

file: book.tex, p.36-9 January 31, 2005

36.7. Discusssion

class n mean bias mean err RMS err

total 495 -195 (-20%) 342 (36%) 611 (63%)
to-downtown 142 -166 (-15%) 313 (29%) 473 (44%)

other 353 -207 (-23%) 354 (39%) 658 (72%)
< 250 104 46 (32%) 129 (90%) 186 (130%)

250− 500 126 -51 (-14%) 184 (50%) 226 (61%)
500− 750 87 -96 (-15%) 226 (37%) 278 (45%)
750− 1000 44 -184 (-21%) 285 (33%) 367 (43%)
1000− 1500 62 -274 (-23%) 382 (32%) 512 (43%)

> 1500 71 -855 (-25%) 1068 (31%) 1428 (41%)

class n mean bias mean err RMS err

total 495 -209 (-22%) 344 (36%) 556 (58%)
to-downtown 142 -191 (-18%) 366 (34%) 575 (53%)

other 353 -216 (-24%) 335 (37%) 548 (60%)
< 250 104 2 (1%) 117 (82%) 167 (116%)

250− 500 126 -83 (-23%) 200 (54%) 241 (65%)
500− 750 87 -171 (-28%) 263 (43%) 307 (50%)
750− 1000 44 -212 (-25%) 291 (34%) 370 (43%)
1000− 1500 62 -308 (-26%) 388 (32%) 510 (42%)

> 1500 71 -684 (-20%) 1011 (29%) 1249 (36%)

class n mean bias mean err RMS err

total 495 83 (9%) 275 (29%) 413 (43%)
to-downtown 142 215 (20%) 318 (29%) 476 (44%)

other 353 30 (3%) 258 (28%) 385 (42%)
< 250 104 84 (59%) 146 (102%) 259 (181%)

250− 500 126 71 (19%) 199 (54%) 263 (71%)
500− 750 87 57 (9%) 212 (34%) 297 (48%)
750− 1000 44 106 (12%) 314 (36%) 376 (44%)
1000− 1500 62 147 (12%) 364 (30%) 473 (39%)

> 1500 71 73 (2%) 574 (16%) 757 (22%)

Table 36.1: TOP: sim-100. MIDDLE: sim-80. BOTTOM: EMME/2 study.

can contribute to variations in the volumes. A systematic study would vary or switch
these modules one by one and establish the effect on the volumes. This was beyond the
scope of this investigation; the following paragraphs will discuss some of the issues.

NETWORK DATA: We have used the same network input data as the EMME/2 studies.
Errors here should, to a certain extent, show up similarly with both approaches. It seems
that at the level of current accuracy, there are no major errors in these files. That belief is
reinforced by the fact that Portland Metro has been using these files for many years.

DEMAND GENERATION INPUT DATA: The data used here was: household loca-
tions, workplace locations, and distributions of start times and trip times. The accuracy
of these is unkown. With regard to trip times, it was already discussed earlier that the
trip times from the census most probably over-estimate times on our network, for two
reasons: (1) Travelers intuitively report the time from door to door, not the time actually
on the road. (2) Since many local streets are missing in our network, the time spent in
our network should be smaller than the complete time on the road. Indeed, reducing all
trip times to 80% (“sim-80”) in our study did not lead to significant changes in volumes
and even led to higher (and more realistic) volumes on the major streets, adding to the

file: book.tex, p.36-10 January 31, 2005

36.7. Discusssion

assumption that reported trip times are probably too high. Also, just looking at home-to-
work trips is a simplification. Any traffic besides home-to-work trips is neglected, such
as deliveries, people returning from night shifts, shopping, leisure, etc. All these will be
indispensable in order to understand 24-hour traffic patterns.

VOLUME COUNT DATA: There is a slight inconsistency between the input data and
the volume count data: Input relies on the census, which is from 1990, while the volume
counts are from 1992 and 1994. In fact, the average change (mean bias; see above for
definition) of traffic flows from 1992 to 1994 is +4%. A bigger challenge is the variabil-
ity of the data. Fig. 36.5 shows, where available, the counts from 1992 against the counts
from 1994. There is strong variability of the counts, and the average absolute difference
(mean error, see above for definition) is in fact 31%.4 This indicates that in future two
things need to be done: (1) Field data need to include a measure of variability; and (2) the
corresponding variability measure needs to be obtained from simulations.

ROUTING: This study assumes fastest path routing. Most probably, this is only an
approximation of what real people do. In fact, both our simulation results and the model
results from the Portland Metro study over-state traffic on minor streets, indicating that
the simulated travelers are more willing to accept complicated detours than real world
travelers. Also, at the moment no other mode of transportation is included. For the
Portland case, this should for example lead to an over-estimation of car traffic between
downtown locations.

TRAFFIC FLOW SIMULATION (also called network loading): As discussed earlier,
our traffic flow simulation (the queue model) underestimates volumes. In contrast, tra-
ditional assignment network loading usually over-estimates volumes (depending on the
cost function).

A heuristic possibility for progress would be to design a traffic flow simulation with a
behavior somewhere in between our queue model and the traditional assignment network
loading. A more systematic approach would be to use a more realistic micro-simulation
in order to exactly pin-point the deficiencies. In that context, it would be interesting to
also look at link speeds in order to decide whether low counts are caused by low traffic
or by congestion. This data is easy to extract from the simulations, but it typically does
not exist for the field. ITS technology will have a significant impact here.

FEEDBACK: Our feedback method performs slow adaptation based on the previous
iteration, similar to fictitious play in game theory. While the result of such an approach
is not exactly a Nash Equilibrium, it is assumed to be close.5 Two aspects need to be
considered separately:

• Convergence/uniqueness: If one sees the second-by-second trajectory of the micro-
simulation as a point in state space, then the iterations are mappings from that state
space into itself (e.g. Bottom, 2000). The way our iterations are set up, they de-
scribe a Markov-process in that state space, which means that the iterations even-
tually reach a steady state with a corresponding steady state density in state space
(e.g. Cantarella and Cascetta, 1995). Little is known about the characteristics of
this steady state density distribution, for example if it is unique, or how many it-
erations one would need to be reasonably close to ergodicity. In practice, it seems
that route iterations behave in a similar way as traditional steady state assignment,
that is, they normally yield, within Gaussian fluctuations, unique results for the
traffic on the link level (e.g. Bottom, personal communication; Nagel et al, 1999).
We are not aware of results of how this extends to feedback iterations into the trip
distribution as considered in this paper.

4This number is larger than one would expect from Fig. 36.5. The reason is that many high volume streets
were not counted in both years, thus leading to a smaller mean, which leads to a larger relative error.

5For certain –much simpler– systems, one can show that many plausible iteration schemes converge towards
the same state (Hofbauer and Sigmund, 1998).

file: book.tex, p.36-11 January 31, 2005

36.8. Summary

• Human behavior: It is well-known that convergence results are used only because
they are scientifically well-defined, not because they are realistic. When comparing
to field data, one should keep in mind that it is unclear how close real systems are
to the converged result.

INHOMOGENEITIES: One aspect already mentioned earlier in the text but that should
be stressed again is that our method unrealistically assumes homogeneity of all aspects
of the scenario except for traffic. For example, it is assumed that the behavioral function
fch is the same for everybody, and that one can obtain it by averaging both the trip times
and the accessibility over the whole population and the whole region. This is clearly a
simplifying assumption — for example, one might expect that people living downtown
have a stronger dislike of long trip times than the average population.

Another inhomogeneity in the Portland situation stems from the fact that the part of the
metro region which is north of the Columbia river, so-called Clark County, is part of the
State of Washington, while the rest of Portland is part of the State of Oregon. Many
Oregon workers choose to live in Clark County for the lower property taxes and cheaper
large-lot housing (an effect of differences in land use policy), despite the congested com-
mute and Oregon income tax. Oregon has one of the highest personal income taxes of
the U.S. States, while Washington does not have a State tax on personal income. Oregon
personal income tax is also paid by non-Oregon residents as long as they work in Ore-
gon. Thus, there is a substantial tax incentive for those who live in Clark County to also
work there. This, however, is often not possible due to a low jobs-housing ratio in Clark
County. All this results in a relatively high split between peak and non-peak direction
volumes on the Columbia River bridges. Sales tax is the opposite: There is no sales tax
in Oregon while sales taxes in Clark county average 8%. In consequence, retail activity
in Clark County is somewhat suppressed by residents’ proximity to tax-free shopping
in Oregon. For example, there is a major big-box retail area on the Oregon side of the
I-5 bridge that owes its existence to the sales tax disparity. (Bill Stein, Portland Metro,
personal communication)

This should result in less traffic northbound into Clark county in the morning peak in
reality than in our model. This is easy to check since there are only two bridges across the
Columbia river. Indeed, with sim-80 we obtain 7473 veh/hour northbound as opposed
to 4650 in the field, while southbound the numbers are comparable: 10052 and 9740,
respectively. Sim-100 numbers are lower than sim-80 numbers, due to congestion in the
model, but have the same tendency.

36.8 Summary

We have implemented a computational feedback between demand generation and traffic
simulation in a real world setting in Portland/Oregon. This was done via a double re-
laxation loop: an inner loop for relaxation of the route assignment with fixed demand,
and an outer loop for relaxation of the demand. Typically, about 70 runs of the traffic
micro-simulation are necessary for one relaxed result. We have used data from Port-
land/Oregon.

For simplicity, we have concentrated on assigning workplaces to workers (whose home
locations were given). The challenge was to perform this workplace assignment self-
consistently such that the resulting trip times correspond to the trip time distribution
given via census data.

Our results demonstrate that with current computational technology and simple mod-
els, it is possible to do such studies while retaining microscopic resolution through-
out the whole computation. Microscopic resolution here means that each of the about
500 000 travelers and each vehicle are represented individually in each step of the method.

file: book.tex, p.36-12 January 31, 2005

36.9. Acknowledgments

Our simulations were run on single CPU workstations; one relaxation series typically
took about four days of computer time.

Because of the many simplifications, we did not expect our results to be a good model
of reality. Nevertheless, in order to provide a benchmark we compared our results to
real world morning peak volume counts from the Portland/Oregon area, and we included
into the comparison results of an older study by Portland Metro using different methods.
These results are summarized in Fig. 36.4. It is encouraging that one gets so close with
so relatively little investment in terms of input data. In fact, input data consists of noth-
ing more but the EMME/2 street network information, some population characteristics
from the census (home locations of workers; overall trip time distribution for home-to-
work trips; overall trip starting time distribution), and the locations of workplaces. The
methodology uses a relaxation algorithm of workplace assignment, a fastest-path rout-
ing, and a queuing micro-simulation. Our study demonstrates that such a microscopic
approach is both computationally and methodologically feasible even on modest com-
puting hardware.

36.9 Acknowledgments

We are extremely grateful to B. Stein, D. Walker, K. Lawton, and others at Portland Metro
for providing the data for the Portland/Oregon area, without which this study would not
have been possible at all. Much of the work was done while the authors were at Los
Alamos National Laboratory (LANL) and at Santa Fe Institute (SFI). We thank the Tran-
sims project at LANL for providing the technical infrastructure necessary for running
these studies.

file: book.tex, p.36-13 January 31, 2005

36.9. Acknowledgments

0

5e+08

1e+09

1.5e+09

2e+09

2.5e+09

3e+09

3.5e+09

4e+09

4.5e+09

5e+09

0 10 20 30 40 50 60

T
ot

al
 tr

av
el

 ti
m

e
/ s

ec

Simulation run

sim-100
sim-80

Figure 36.2: Total trip time in the simulation during the iterative assignment with the
original census trip time distribution (sim-100) and the census distribution with trip times
reduced to 80% (sim-80).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

0 1000 2000 3000 4000 5000 6000

N
b

of
 w

or
ki

ng
 o

pp
or

tu
ni

tie
s

travel time

census-080
sim-080

census-100
sim-100

Figure 36.3: Trip time distributions in the queuing simulation at the 70th iteration in
comparison to the 100% and the 80% census trip time distribution. Only completed trips
contribute to the distribution.

file: book.tex, p.36-14 January 31, 2005

36.9. Acknowledgments

100

1000

100 1000

field data 1994

sim-100

100

1000

100 1000

field data 1994

sim-80

100

1000

100 1000

1994 field data

Portland METRO study

Figure 36.4: Scatterplot of simulated data (y-axis) vs. field data (x-axis). TOP: sim-100.
CENTER: sim-80. BOTTOM: EMME/2-study. It is remarkable that reducing the desired
trip times by 20% (top to middle) does not seem to change very much at all.

file: book.tex, p.36-15 January 31, 2005

36.9. Acknowledgments

100

1000

100 1000

1994 field data

field data 1992

Figure 36.5: Variability of field data. For some measurement locations, count data were
available both for 1994 and 1992. For those locations, the 1992 value is plotted against
the 1994 value. A better understanding of field data variability will be necessary for
further progress.

file: book.tex, p.36-16 January 31, 2005

Chapter 37

A Switzerland case

37-1

Acknowledgments

Los Alamos National Laboratory makes the Transims software available to academic
institutions for a small charge.

The Swiss Federal Administration provides the input data for the Switzerland studies.

Res Voellmy, Nurhan Cetin, Bryan Raney, Nicolas Lefebvre, Roger Ruegg, Adrian Burri.

Kay Axhausen.

37-2

Bibliography

PhD thesis.

T.A. Arentze, F. Hofmann, C.H. Joh, and H.J.P. Timmermans. Experiences with devel-
oping ALBATROSS: A learning-based transportation oriented simulation system. In
Verkehr und Mobilität, volume 66 of “Stadt Region Land”, pages 61–70. Institut für
Stadtbauwesen, Technical University, Aachen, Germany, 1998.

K.W. Axhausen. A simultaneous simulation of activity chains. In P.M. Jones, editor,
New Approaches in Dynamic and Activity-based Approaches to Travel Analysis, pages
206–225. Avebury, Aldershot, 1990.

A. Babin, M. Florian, L. James-Lefebvre, and H. Spiess. EMME/2: Interactive graphic
method for road and transit planning. Transportation Research Record, 866:1–9, 1982.

M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama. Structure stability of
congestion in traffic dynamics. Japan Journal of Industrial and Applied Mathematics,
11(2):203–223, 1994.

M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama. Dynamical model of
traffic congestion and numerical simulation. Phys. Rev. E, 51(2):1035–1042, 1995.

R. Barlovic, L. Santen, A. Schadschneider, and M. Schreckenberg. Metastable states in
CA models for traffic flow. European Physical Journal B, 5(3):793–800, 1998.

C. L. Barrett, Personal communication.

C. L. Barrett, S. Eubank, K. Nagel, J. Riordan, and M. Wolinsky. Issues in the represen-
tation of traffic using multi-resolution cellular automata. Los Alamos Unclassified Re-
port (LA-UR) 95-2658, Los Alamos National Laboratory, Los Alamos, NM, U.S.A.,
see www.lanl.gov, 1995.

C. L. Barrett, R. Jacob, and M. V. Marathe. Formal-language-constrained path problems.
SIAM J COMPUT, 30(3):809–837, 2000.

C. L. Barrett, M. Wolinsky, and M. W. Olesen. Emergent local control properties in
particle hopping traffic simulations. In D.E. Wolf, M. Schreckenberg, and A. Bachem,
editors, Traffic and granular flow, pages 169–173. World Scientific, Singapore, 1996.

R. J. Beckman, K. A. Baggerly, and M. D. McKay. Creating synthetic base-line popula-
tions. Transportion Research Part A – Policy and Practice, 30(6):415–429, 1996.

R.J. Beckman et al. TRANSIMS–Release 1.0 – The Dallas-Fort Worth case study. Los
Alamos Unclassified Report (LA-UR) 97-4502, Los Alamos National Laboratory, Los
Alamos, NM, see transims.tsasa.lanl.gov, 1997.

M. Ben-Akiva. Route choice models. Presented at the Workshop on “Human Behaviour
and Traffic Networks”, Bonn, December 2001.

37-3

Bibliography

M. Ben-Akiva and S. R. Lerman. Discrete choice analysis. The MIT Press, Cambridge,
MA, 1985.

J.A. Bottom. Consistent anticipatory route guidance. PhD thesis, Massachusetts Institute
of Technology, Cambridge, MA, 2000.

J. L. Bowman. The day activity schedule approach to travel demand analysis. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA, 1998.

M. Bradley. A system of activity-based models for Portland, Oregon, Draft final report,
1997.

W. Brilon and N. Wu. Evaluation of cellular automata for traffic flow simulation on
freeway and urban streets. In W. Brilon, F. Huber, M. Schreckenberg, and H. Wallen-
towitz, editors, Traffic and Mobility: Simulation – Economics – Environment, pages
163–180. Springer, Berlin, 1998.

A. Burriad. Intersection dynamics in queue models. Term project report, Swiss Federal
Institute of Technology, 2002. See sim.inf.ethz.ch/papers.

B. W. Bush, 1998. Personal communication.

G. D. B. Cameron and C. I. D. Duncan. PARAMICS — Parallel microscopic simulation
of road traffic. Journal of Supercomputing, 10(1):25, 1996.

C. Cantarella and E. Cascetta. Dynamic process and equilibrium in transportation net-
work: Towards a unifying theory. Transportation Science A, 25(4):305–329, 1995.

E. Cascetta, D. Inaudi, and G. Marquis. Dynamic estimators of origin-destination matri-
ces using traffic counts. Transportation Science, 27(4):363–373, 1993.

E. Cascetta and A. Papola. An implicit availability/perception random utility model for
path choice. In Proceedings of TRISTAN III, volume 2, San Juan, Puerto Rico, 1998.

M.J. Cassidy and J. Han. Validation and evaluation of freeway simulation models. final
report. Technical Report FHWA/CA/Purdue-RR-95-1, Purdue University, School of
Civil Engineering, West Lafayette IN 47907, USA, 1995.

I. Chabini. Discrete dynamic shortest path problems in transportation applications: Com-
plexity and algorithms with optimal run time. Transportation Research Record, 1645:
170–175, 1998a.

I. Chabini. Discrete dynamic shortest path problems in transportation applications: Com-
plexity and algorithms with optimal run time. In Transportation Research Record
(Chabini, 1998a), pages 170–175.

G.L. Chang, H.S. Mahmassani, and R. Herman. A macroparticle traffic simulation model
to investigate peak-period commuter decision dynamics. Transportation Research
Record, 1005:107–120, 1985.

D. Chowdhury, L. Santen, and A. Schadschneider. Statistical physics of vehicular traffic
and some related systems. Physics Reports, 329(4–6):199–329, May 2000.

D. Chowdhury, L. Santen, A. Schadschneider, S. Sinha, and A. Pasupathy. Spatio-
temporal organization of vehicles in a cellular automata model of traffic with ’slow-to-
start’ rule. J. Physics A: Math. General, 32:3229, 1999.

S. Clarke, A. Krikorian, and J. Rausen. Computing the n best loopless paths in a network.
J. Soc. Indust. Appl. Math., 11(4):1096–1102, December 1963.

file: book.tex, p.37-4 January 31, 2005

Bibliography

M. Cremer and M. Papageorgiou. Parameter identification for a traffic flow model. Au-
tomatica, 17(6):837–843, 1981.

M. Cremer and H. Schütt. A comprehensive concept for simultaneous state observation,
parameter estimation, and incident detection. In Proceedings of the 11th Int. Sympo-
sium on Transportation and Traffic Theory, Yokohama, Japan, 1990.

Carlos F. Daganzo, M. J. Cassidy, and R. L. Bertini. Possible explanations of phase
transitions in highway traffic. Transportation Research A, 33:365–379, 1999.

R.W. Denney, J.C. Williams, S.C.S. Bhat, and S.A. Ardekani. Calibrating NETSIM for a
CBD using the two fluid model. In Large Urban Systems. Proceedings of the Advanced
Traffic Management Conference. Federal Highway Administration, 400 7th Street SW,
Washington DC, USA, 1993.

S. T. Doherty and K. W. Axhausen. The developement of a unified modelling frame-
work for the household activity-travel scheduling process. In Verkehr und Mobilität,
volume 66 of “Stadt Region Land”. Institut für Stadtbauwesen, Technical University,
Aachen, Germany, 1998.

Th. A. Domencich and D. McFadden. Urban travel demand. In D.W. Jorgenson and
J. Waelbroeck, editors, Urban travel demand, number 93 in Contributions to Economic
Analysis. North-Holland and American Elsevier, 1975.

J.J. Dongarra, I.S. Duff, D.C. Sorensen, and H.A. van der Vorst. Numerical linear algebra
for high-performance computers. Software, Environments, and Tools. SIAM Society
for Industrial and Applied Mathematics, Philadelphia, 1998.

DYNAMIT www page. See mit.edu/its and dynamictrafficassignment.org, accessed
2003.

DYNASMART www page. See www.dynasmart.com and dynamictrafficassignment.org,
accessed 2003.

J. Esser. Simulation von Stadtverkehr auf der Basis zellularer Automaten. PhD thesis,
University of Duisburg, Germany, 1998a.

J. Esser. Simulation von Stadtverkehr auf der Basis zellularer Automaten. PhD thesis,
University of Duisburg, Germany, 1998b. See also www.traffic.uni-duisburg.de.

J. Esser and K. Nagel. Census-based travel demand generation for transportation simula-
tions. In W. Brilon, F. Huber, M. Schreckenberg, and H. Wallentowitz, editors, Traffic
and Mobility: Simulation – Economics – Environment, pages 135–148, Berlin, 1998.
Springer.

U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for navier-stokes equa-
tion. Phys. Rev. Letters, 56:1505, 1986.

C. Gawron. An iterative algorithm to determine the dynamic user equilibrium in a traffic
simulation model. International Journal of Modern Physics C, 9(3):393–407, 1998a.

C. Gawron. An iterative algorithm to determine the dynamic user equilibrium in a traffic
simulation model. International Journal of Modern Physics C, 9(3):393–407, 1998b.

D. L. Gerlough and M. J. Huber. Traffic Flow Theory. Special Report No. 165. Trans-
portation Research Board, National Research Council, Washington, D.C., 1975.

P. G. Gipps. A behavioural car-following model for computer simulation. Transportation
Research B, 15:105–111, 1981.

file: book.tex, p.37-5 January 31, 2005

Bibliography

P. G. Gipps. A model for the structure of lane-changing decisions. Transportation Re-
search B, 20B(5):403–414, 1986.

C. Gloor. Modelling of autonomous agents in a realistic road network (in German).
Diplomarbeit, Swiss Federal Institute of Technology ETH, Zürich, Switzerland, 2001.

R. Haberman. Mathematical models in mechanical vibrations, population dynamics, and
traffic flow. Prentice-Hall, Englewood Cliffs, NJ, 1977.

D. Helbing. Verkehrsdynamik. Springer, Heidelberg, Germany, 1997.

R. Herman and I. Prigogine. A two-fluid approach to town traffic. Science, 204:148–151,
1979.

J. Hofbauer and K. Sigmund. Evolutionary games and replicator dynamics. Cambridge
University Press, 1998.

J.D. Holland. Adaptation in Natural and Artificial Systems. Bradford Books, 1992.
Reprint edition.

R. R. Jacob, M. V. Marathe, and K. Nagel. A computational study of routing algorithms
for realistic transportation networks. ACM Journal of Experimental Algorithms, 4
(1999es, Article No. 6), 1999.

A. Jakobs and R.W. Gerling. Scaling aspects for the performance of parallel algorithms.
Parallel Computing, 19(9):1063–1073, 1993.

D. Jost and K. Nagel. Probabilistic traffic flow breakdown in stochastic car following
models. Transportation Research Record, (1852):152–158, 2003.

T. Kelly. Driver strategy and traffic system performance. Physica A, 235:407, 1997.

B. S. Kerner. Traffic flow: Experiment and theory. In Wolf and Schreckenberg (1998),
pages 239–267.

B. S. Kerner and P. Konhäuser. Structure and parameters of clusters in traffic flow. Phys.
Rev. E, 50(1):54–83, 1994.

B. S. Kerner and H. Rehborn. Experimental features and characteristics of traffic jams.
Phys. Rev. E, 53(2):R1297–R1300, 1996a.

B. S. Kerner and H. Rehborn. Experimental properties of complexity in traffic flow. Phys.
Rev. E, 53(5):R4275–R4278, 1996b.

J.H. Kim. Special issue about the first micro-robot world cup soccer tournament,
MIROSOT. Robotics and Autonomous Systems, 21(2):137–205, 1997.

S. Krauß. Microscopic modeling of traffic flow: Investigation of collision free vehicle
dynamics. PhD thesis, University of Cologne, Germany, 1997. See www.zaik.uni-
koeln.de/˜paper.

S. Krauß, K. Nagel, and P. Wagner. The mechanism of flow breakdown in traffic flow
models. Technical report, 1998.

S. Krauß, P. Wagner, and C. Gawron. Metastable states in a microscopic model of traffic.
Phys. Rev. E, 55(5):5597–5602, 1997.

R.D. Kühne and R. Beckschulte. Non-linearity stochastics of unstable traffic flow. In
C.F. Daganzo, editor, Proc. 12th Int. Symposium on Theory of Traffic Flow and Trans-
portation, page 367. Elsevier, Amsterdam, The Netherlands, 1993.

file: book.tex, p.37-6 January 31, 2005

Bibliography

M. J. Lighthill and J. B. Whitham. On kinematic waves. I: Flow movement in long rivers.
II: A Theory of traffic flow on long crowded roads. Proceedings of the Royal Society
A, 229:281–345, 1955.

D. Lohse. Verkehrsplanung, volume 2 of Grundlagen der Straßenverkehrstechnik und
der Verkehrsplanung. Verlag für Bauwesen, Berlin, 1997.

H.S. Mahmassani, J.C. Williams, and R. Herman. Performance of urban traffic net-
works. In N.H. Gartner and N.H.M. Wilson, editors, Transportation and Traffic The-
ory, page 1. Elsevier Science Publishing Co., Inc., 1987.

A.D. May. Traffic flow fundamentals. Prentice Hall, Englewood Cliffs, NJ, 1990.

P. Metaxatos, D. Boyce, M. Florian, and I. Constantin. Implementing combined model
of origin-destination and route choice in EMME/2 system. Transportation Research
Records, 1493:57–63, 1995.

MITSIM, 1999. Massachusetts Institute of Technology, Cambridge, Massachusetts. See
its.mit.edu.

MPI www page. www-unix.mcs.anl.gov/mpi/, accessed 2005. MPI: Message Passing
Interface.

K. Nagel. Freeway traffic, cellular automata, and some (self-organizing) criticality. In
R.A. de Groot and J. Nadrchal, editors, Physics Computing ’92, page 419, Prague,
1992. World Scientific.

K. Nagel. Particle hopping models and traffic flow theory. Phys. Rev. E, 53(5):4655–
4672, 1996.

K. Nagel. From particle hopping models to traffic flow theory. Transportation Research
Records, 1644:1–9, 1999.

K. Nagel and C.L. Barrett. Using microsimulation feedback for trip adaptation for re-
alistic traffic in Dallas. International Journal of Modern Physics C, 8(3):505–526,
1997.

K. Nagel and H. J. Herrmann. Deterministic models for traffic jams. Physica A, 199:
254, 1993.

K. Nagel and M. Paczuski. Emergent traffic jams. Phys. Rev. E, 51:2909–2918, 1995.

K. Nagel and S. Rasmussen. Traffic at the edge of chaos. In R. A. Brooks and P. Maes,
editors, Artificial Life IV: Proceedings of the Fourth International Workshop on the
Synthesis and Simulation of Living Systems, pages 222–235. MIT Press, Cambridge,
MA, 1994a.

K. Nagel and S. Rasmussen. Traffic at the edge of chaos. In R. A. Brooks and P. Maes,
editors, Artificial Life IV: Proceedings of the Fourth International Workshop on the
Synthesis and Simulation of Living Systems, pages 222–235. MIT Press, Cambridge,
MA, 1994b.

K. Nagel, M. Rickert, P. M. Simon, and M. Pieck. The dynamics of iterated transportation
simulations. See www.arXiv.org, nlin.AO/0002040, 2000. Earlier version in: Proceed-
ings of 3rd TRIannual Symposium on Transportation ANalysis (TRISTAN-III) 1998
in San Juan, Puerto Rico.

K. Nagel and A. Schleicher. Microscopic traffic modeling on parallel high performance
computers. Parallel Computing, 20:125–146, 1994.

file: book.tex, p.37-7 January 31, 2005

Bibliography

K. Nagel and M. Schreckenberg. A cellular automaton model for freeway traffic. Journal
de Physique I France, 2:2221–2229, 1992.

K. Nagel, P. Stretz, M. Pieck, S. Leckey, R. Donnelly, and C. L. Barrett. TRANSIMS
traffic flow characteristics. Los Alamos Unclassified Report (LA-UR) 97-3530, Los
Alamos National Laboratory, Los Alamos, NM, see transims.tsasa.lanl.gov, 1997.

K. Nagel, P. Wagner, and R. Woesler. Still flowing: Approaches to traffic flow and traffic
jam modeling. Operations Research, 51(5):681–710, 2003.

K. Nagel, D.E. Wolf, P. Wagner, and P. M. Simon. Two-lane traffic rules for cellular
automata: A systematic approach. Phys. Rev. E, 58(2):1425–1437, 1998.

W. Niedringhaus, J. Opper, L. Rhodes, and B. Hughes. IVHS traffic modeling using par-
allel computing: Performance results. In Proceedings of the International Conference
on Parallel Processing, pages 688–693. IEEE, 1994.

J. de D. Ortúzar and L.G. Willumsen. Modelling transport. Wiley, Chichester, 1995.

R. Palmer. Broken ergodicity. In D. L. Stein, editor, Lectures in the Sciences of Com-
plexity, volume I of Santa Fe Institute Studies in the Sciences of Complexity, pages
275–300. Addison-Wesley, Redwood City, CA, 1989.

D. Park and L. R. Rilett. Identifying multiple and reasonable paths in transportation
networks: A heuristic approach. Transportation Research Records, 1607:31–37, 1997.

Michael Patriksson. The Traffic Assignment Problem: Models and Methods. Topics in
Transportation. VSP, Zeist, The Netherlands, 1994.

A. Perko. Implementation of algorithms for k shortest loopless paths. Networks, 16:
149–160, 1986.

M. Ponzlet and P. Wagner. Validation of a CA–model for traffic simulation of the
Northrhine-Westphalia motorway network. In The 24th European Transport Forum,
Proceedings, volume P404-1, 1996.

PVM www page. www.epm.ornl.gov/pvm/, accessed 2004. PVM: Parallel Virtual Ma-
chine.

H. A. Rakha and M. W. Van Aerde. Comparison of simulation modules of TRANSYT
and INTEGRATION models. Transportation Research Record, 1566:1–7, 1996.

M. Rickert. Traffic simulation on distributed memory computers. PhD thesis, University
of Cologne, Cologne, Germany, 1998. See www.zaik.uni-koeln.de/˜paper.

M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour. Two lane traffic simulations
using cellular automata. Physica A, 231(4):534–550, 1996a.

M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour. Two lane traffic simulations
using cellular automata. Physica A, 231:534, 1996b.

J.D. Rothwell. Control of Human Voluntary Movement. Chapman and Hall, 1994.

G. Sauermann and H.J. Herrmann. A 1d traffic model with threshold parameters. In Wolf
and Schreckenberg (1998), pages 481–486.

A. Schadschneider. Analytical approaches to cellular automata for traffic flow: Approx-
imations and exact solutions. In Wolf and Schreckenberg (1998), pages 417–432.

A. Schadschneider and M. Schreckenberg. Cellular automaton models and traffic flow.
J. Physics A: Math. General, 26:L679, 1993.

file: book.tex, p.37-8 January 31, 2005

Bibliography

T. Schwerdtfeger. Makroskopisches Simulationsmodell für Schnellstraßennetze mit Be-
rücksichtigung von Einzelfahrzeugen (DYNEMO). PhD thesis, University of Karsruhe,
Germany, 1987.

Y. Sheffi. Urban transportation networks: Equilibrium analysis with mathematical pro-
gramming methods. Prentice-Hall, Englewood Cliffs, NJ, USA, 1985.

P. M. Simon and K. Nagel. Simple queueing model applied to the city of Portland.
International Journal of Modern Physics C, 10(5):941–960, 1999.

U. Sparmann. Spurwechselvorgänge auf zweispurigen BAB–Richtungsfahrbahnen.
Number 263 in Forschung Straßenbau und Straßenverkehrstechnik. Bundesminister
für Verkehr, Bonn–Bad Godesberg, Germany, 1978.

D. Sternad. personal communication.

TRANSIMS www page. TRansportation ANalysis and SIMulation System. tran-
sims.tsasa.lanl.gov, accessed 2004. Los Alamos National Laboratory, Los Alamos,
NM.

Transportation Research Board. Highway Capacity Manual. In Special Report No. 209,
Transportation Research Board (1994b), 3rd edition, 1994a.

Transportation Research Board. Highway Capacity Manual. Special Report No. 209.
National Research Council, Washington, DC, 3rd edition, 1994b.

H. Unger. An approach using neural networks for the control of the behaviour of au-
tonomous individuals. In A. Tentner, editor, High Performance Computing 1998,
pages 98–103. The Society for Computer Simulation International, 1998.

H. Unger. Modellierung des Verhaltens autonomer Verkehrsteilnehmer in einer variablen
staedtischen Umgebung. PhD thesis, TU Berlin, 2002.

M. Van Aerde, personal communication.

M. Van Aerde, B. Hellinga, M. Baker, and H. Rakha. INTEGRATION: An overview
of traffic simulation features. 1996. A paper accepted for presentation at the 1996
Transportation Research Board Annual meeting.

J. Van Leeuwen, editor. Formal models and semantics, volume B of Handbook of Theo-
retical Computer Science, 1990. Elsevier and MIT Press.

VISSIM www page. www.ptv.de, accessed 2004. Planung Transport und Verkehr (PTV)
GmbH.

P. Wagner. Traffic simulations using cellular automata: Comparison with reality. In D E
Wolf, M.Schreckenberg, and A.Bachem, editors, Traffic and Granular Flow. World
Scientific, Singapore, 1996.

P. Wagner and K. Nagel. Microscopic modeling of travel demand: Approaching the
home-to-work problem. Paper 99 09 19, Transportation Research Board Annual Meet-
ing, Washington, D.C., 1999.

P. Wagner, K. Nagel, and D.E. Wolf. Realistic multi-lane traffic rules for cellular au-
tomata. Physica A, 234:687, 1997.

S. Weinmann. Simulation of spatial learning mechanisms. PhD thesis, Swiss Federal
Institute of Technology ETH, Zürich, Switzerland, in preparation.

R. Wiedemann. Simulation des Straßenverkehrsflusses. Schriftenreihe Heft 8, Institute
for Transportation Science, University of Karlsruhe, Germany, 1994.

file: book.tex, p.37-9 January 31, 2005

Bibliography

R. Wiedemann. Beschreibung des Staus. In H. Keller, editor, Beiträge zur Theorie
des Straßenverkehrs. Forschungsgesellschaft für Straßen- und Verkehrswesen, Köln,
Germany, 1995.

D.E. Wolf. Cellular automata for traffic simulations. Physica A, 263:438–451, 1999.

D.E. Wolf and M. Schreckenberg, editors. Traffic and granular flow ’97. Springer, Berlin,
1998.

S. Wolfram. Theory and Applications of Cellular Automata. World Scientific, Singapore,
1986.

www-users.cs.umn.edu/˜karypis/metis/. METIS library, accessed 2003.

Yin Y. Yen. Finding the k shortest loopless paths in a network. Management Science, 17
(11):712–716, July 1971.

S. Yukawa and M. Kikuchi. Coupled-map modeling of one-dimensional traffic flow.
Journal of the Physical Society of Japan, 64(1):35–38, 1995.

file: book.tex, p.37-10 January 31, 2005

