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Abstract

Activity-based models in Transportation Sci-
ence focus on the description of human trips and
activities. We address the modeling of activity lo-
cation decision for large data sets: given both
home and work locations, where do individuals
perform so-called secondary activities (e.g shop-
ping)? We propose a model where agents have lim-
ited, accurate information about a small subset of
the overall spatial environment. Agents are inter-
connected by a social network through which they
can exchange information. This approach has sev-
eral advantages: a) it can be faster to find subop-
timal solutions to build plausible choice sets b) the
learning speed of the overall process is governed
by the greediness of the exchange and c) it can pro-
vide a useful framework to study the propagation
of any newly available information.

1. General context

Activity-based models in Transportation Sci-
ence focus on the description of the organization
of human activities in time and space. This organi-
zation determines the demand for travel, that is the
amount of users that the various transportation sys-
tems need to accommodate. It is assumed that the

demand for travel is derived from the demand for
performing activities at specific locations. Obvi-
ously, individuals constantly perform some trade-
off between enjoying activities that have a high
reward value (for instance working at a company
in the downtown area) and the time and budget it
takes to get to the specific location of these activi-
ties. Various operational models such as URBAN-
SIM ? are available to describe this trade-off for
the choice of the home and work locations. It is
essentially assumed that users perform a trade-off
between rents, travel costs and wages. However,
empirical evidence ? have shown that a significant
amount of traffic is generated for other purposes
than commuting, often referred to as secondary ac-
tivities: shopping, leisure, going to social events,
etc.

2. Problem statement

Our work intends to model the specific process
of the location choice of secondary activities in
the case of high resolution data sets. The method-
ological constraints are that the modeling should
be behaviorally sound, compatible with micro-
economics foundations and computationally fea-
sible. The temporal dimension (i.e. the schedul-
ing of the activities) is ignored for the time being.
We assume that the order of the activities called



a plan is given (i.e. getting out from home, going
to work, working for eight hours, going for shop-
ping at lunch time, etc.). The physical environment
is described by two large data sets that typically
originate from Geographical Information Systems
(GIS): a) the land-use data and b) the transporta-
tion system data. The land usage is a raster-type
description that includes the information about the
nature of each parcel of the studied area (e.g. hous-
ing density, number of shops, type of area: rural,
commercial, industrial). The transportation system
is a vector-type description of the various trans-
portation mode available (e.g. car, rail, bus) as a
network with nodes and links. Nowadays, these
data have reached a very high resolution: typical
land-use cells are 100 meter square and road net-
works are described down to 10 meter road sec-
tions. The long-term goal of our research is to
model entire metropolitan areas microscopically
by simulating the individual decision of millions
of citizens. Therefore, the problem at hand can be
stated as follows: how to simulate the selection of
the activity locations of A = 106 citizens in a grid
that has C = 105 cells. Note that the travel times
from cell to cell have to be given by external traf-
fic models. Multi-agents traffic assignment mod-
els such as those developed by the authors ?? are
now able to predict travel time patterns for large-
scale data sets. Therefore, this issue will not be
considered here. The generation of travel demand
for these models is addressed here.

3. Micro-Economics foundation

The standard practice in Transportation Science
to approach such problems is to use random utility
models (RUM) borrowed from the discrete choice
theory of Micro-Economics (??). These models
assume that individual are maximizing their own
utility. For instance, the utility to go shopping at a
mall located in cell i for a simple plan (i.e. home -
shopping - work) is given by

Ui = Ri − Chi − Ciw + µεi = Vi + µεi

, where Ri is the reward associated to shopping at
that particular facility that depends on the avail-
ability of goods, their prices, etc.; Cih is the travel
cost to travel from home to cell i; Ciw is the travel
cost to travel cell i to work; µ is a scale factor and
εi is a random variable that is specific to the indi-
vidual. The latter random utility part captures all
the hidden preferences of a specific user for loca-
tion i that are not accessible to the modeler. By

contrast, Vi is called the deterministic part of the
utility. Under the assumption that εi are i.i.d ex-
treme value distribution of type I, it can be shown
that the probability to choose to go shopping at cell
k is given by:

P (k) = P (Ui < Uk∀i 6= k) =
exp(−Vk/µ)

∑
i
exp(−Vi/µ)

Since a probability greater than zero is assigned to
each potential intermediary stop on a cell, this for-
mulation requires a full enumeration of the pos-
sibilities on the spatial grid. For trips that count
S intermediary stops, the complexity is O(ACS)
which is not feasible in realistic cases. Initially,
RUMs are intended for the description of choices
between a finite set of alternatives distinguishable
by humans (e.g. car brands). But their application
to a discretized continuum (i.e. urban space) re-
mains behaviorally questionable. Still, we believe
it is fundamental to keep some compatibility with
RUMs because a huge amount of the literature has
been devoted to developing empirical techniques
(e.g. surveys) to calibrate the parameters of those
models. Another drawback of RUMs is that they
provide only a static representation that does not
take into account the temporal dimension of the
decision process. RUMs do not model explicitly
the learning process performed by human beings
and the dynamics due, for instance, to some modi-
fication in the land-use patterns.

4. Multi-agent based approach

To overcome these limitations, we propose a
multi-agent based simulation where each agent
(i.e. each simulated citizen) has only limited, ac-
curate information about N cells (N � C) called
the “memory” of the agent. The intuition is that
real humans have limited cognitive abilities and
can only consider a small amount of options at
the same time. The organization of these options in
the mind and the human representation of space is
probably far different from “pixels” but we put that
problem aside for the time being. Furthermore, we
assume that agents are inter-connected by a social
network through which they can exchange infor-
mation about their respective subsets. Each agent
is socially connected to K acquaintance or “kins”.
The simulation is iterative and each round has four
stages: evaluation, socialization, exchange and ex-
ploration.

Evaluation: each agent performs the loca-
tion choice of the intermediary stops based



on his own private information. The choice
can be deterministic (the best cells are se-
lected from the memory of the agent) or
probabilistic (a RUM is applied to the fi-
nite set limited to the memory of the agent).
The computing load for building and stor-
ing the travel plans is O(ANS). At this
point, the plans are fed in some traffic model
which is run to compute the delays in-
curred due to traffic congestion. These penal-
ties are to be used in the next round of evalu-
ation.

Socialization: social connections are created and
delete dynamically. The deletion mechanism
is a simple exponential decay. The creation
mechanism is a spatial re-inforcement remi-
niscent of pheromones in ant colonies opti-
mization ?.

Exchange: for each of its social connection, an
agent has the opportunity to exchange a piece
of information. A cell is picked up randomly
from the agent’s memory and the other agent
is informed about it. The exchange is bi-
directional and the outcome of the exchange
is described by the learning mechanism be-
low.

Exploration: agents have the possibility to ex-
plore neighboring cells to those that they
visit. This stage is mainly intended to re-
cover potential information loss in the
other stages, thus relieving the implementa-
tion from checking that no cells is lost from
the global knowledge of all the agents. Obvi-
ously O(A) operations are required.

5. Learning mechanism

The memory of an agent is represented on Fig-
ure ??: a first buffer contains the information about
locations that are either close to home or close
to work (e.g. a small circular area). The second
buffer called “elite” buffer corresponds to location
that have a high score values and the third buffer
contains “vague” information about cells that have
poor score values. When an agent inform another
agent during the exchange stage, a cell is picked
randomly from the three buffers of memory of the
informer. At that point, the informed agent evalu-
ates how this new cell information can potentially
improve his/her plan score. This implies to eval-
uate the replacement of any intermediary stop by
the new cell: O(N (S−1)) operations are needed.
If the score is better than the worst solution of

the elite buffer, the new cell is promoted to that
buffer and it is sorted: O(K ln K) operations are
needed. If the cell does not improve one of the elite
plans, the cell information replace a previous cell
from the vague buffer. This has two consequences:
Firstly, agents keep information that is not rele-
vant to themselves but that might be to others in
the future, hence they adopt a cooperative behav-
ior that is not supervised. Secondly, the informa-
tion in the vague buffer can be erased and lost for-
ever, which is most likely except for cells with the
lowest utility. The exploration phase allows still to
recover them. So far, the computation load of a sin-
gle round is O(AN (S−1))+O(AK ln K)+O(C)
which is feasible for reasonable assumptions (S ≤

3, N < 50, K < 50). However, the number of
iterations is still to be determined. Note that the
learning speed of the overall process depends on
the greediness of the exchange which is a func-
tion of the ratio between the sizes of the elite and
the vague buffers.
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Figure 1. Agent memory organization
and learning

6. Social network dynamics

Social links disappear following an exponential
decay law at the end of each iteration. Initially, the
social network is a random graph of degree K and
each social connection has the same decay time.
When two agents perform activities at the same
location, two situations can occur: 1) if there is
a social connection between them, the strength of
the connection is reinforced and its decay time in-
creases 2) if not, a new social connection is cre-
ated. This task requires O(AK) operations for the
enumeration of the social links and O(C) opera-
tions to browse the cells for detecting interactions



between agents. However, the detection of the ex-
istence of a social link between two given agents
would require O(AK) operations for each cell to
browse the connections. An alternative solution
would be to store the connections of a given agent
in a hash table. Both solutions are costly in mem-
ory or computation time. For these reasons, we
adopt a slightly different implementation which is
equivalent statistically. Every connection has the
same decay time but multiple connections can ex-
ist between two given agents. When an agent vis-
its a cell, the cell keeps a pointer to the agent un-
til a second one visits the cell. A new connection
is then created. A hash table of visited cells needs
to be maintained, which is O(log(C)) costly. At
the end of each iteration, connections are randomly
deleted so that the total number of connections in
the system remains constant. Agents visit cells se-
lected randomly from their elite buffer.

7. Implementation issues

The code of the simulation has been written in
Java. Input and output files use the XML file for-
mat which is well suited to variable length con-
tent such as the description of the individual plans
with multiple stops. The goal being to simulate 106

agents on a single CPU, some performance con-
cerns have to be taken into account.

Cells: each grid cell is stored as an individual ob-
ject. With 105 cells, it is not crucial to store
the cell attributes as plain arrays. This allows
to keep cell characteristics private and to have
cell references. Since cells have to be often
compared during the learning process to de-
termine if a new cell is already known to an
agent, it is far more efficient to use the equal
operator == than the default Java equals()
method. This is valid as long as the cells are
not dynamically allocated or cloned once the
simulation starts. Cells have to keep refer-
ences to agents that visit them (see the social-
ization stage). The average number of visits
per cell is small (O(SA/C)) so that we can
allow for the overhead of a dynamic container
(e.g. vector).

Agents: it is tempting to have a dynamic con-
tainer steadily increasing in size for the
agent memory. However, that would com-
pletely ruin the performances and is not com-
patible with our assumption that only a lim-
ited number of simultaneous options can be

memorized. Each cell is referenced on av-
erage by O(AN/C) so that the initial cov-
erage is sufficient to ensure that there is not
any information missing about the environ-
ment.

Random numbers: a typical bottleneck of this
kind of simulation is the computation of ran-
dom numbers. A priori, O(AK) random
numbers have to be computed for each sin-
gle iteration of the information exchange
stage. This quickly becomes prohibitive
and can be avoided by using two inte-
ger random seeds at the beginning of the ex-
change stage. One is used to pick a cell
from the informer agent, the other to re-
place a cell in the memory of the informed
agent. These two pointers can be simply in-
cremented from one social link to the other
since there is no correlation between so-
cial links and they are accessed in a a priori
random order.

8. Results

The simulation is tested on a real-world exam-
ple for the Zurich region for which have avail-
able a high resolution transportation network and
land-use raster (see Figure ??). The area covers ap-
proximately a 50x50 kilometer square area where
about one million inhabitants are living. The land-
use utility values Ri are generated based on census
data. Random plans with 1 or 2 intermediary stops
are generated for 106 agents that are distributed
on the area according to job and housing densities.
The home to work pairs are computed using an ex-
ternal model written by one of the author (see ?
for the computation of the rent values presented in
Figure ??). The initial social network that connects
them is a random graph. Obviously, this is not re-
alistic but we intend to evaluate only the computa-
tional feasibility in this preliminary work.

Figure ?? presents the evolution of the sum of
the scores of all the agents during the iterative pro-
cess. It can be seen that the process converges in a
few dozens of iterations but that the choices are not
optimal since the utility does not reach the max-
imum value obtained with a full enumeration of
the alternatives. This is due to the fact that some
information is lost in the process and slow to be
recovered. Still, the value of the plateau is high
enough to ensure plausible strategies for the plans.
Note that the size of the memory of the agent only
slightly affect the convergence properties.
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Figure 2. Zurich area: transportation
network and rent values
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Figure 3. Performance of the multi-
agent simulation

Figure ?? illustrates the spatial adaptation pro-
cess for a single agent with a two-stop plan:
home-work-leisure-shopping. On the first it-
eration, leisure (L1) and shopping (S1) are
performed at the home place because the agent ig-
nores good locations to perform these activities.
In the second iteration, he/she learns that the lo-
cation L2 − S2 is a good location for one of the
two activities, hence making the extra trip dis-
tance worth it. On the third iteration, the agent
discover that the area around S3 has a high util-
ity for shopping. During the fourth and fifth it-
erations, the agent keeps shopping close to
that area and only optimize the leisure loca-
tion (L3 → L4 → L5).

Home=L1=S1

Work

L2=S2

L3

S3L4 L5

S4=S5

Home-Work-Leisure-Shopping

Figure 4. Adaptation of the location
for a two-stop plan

Figure ?? shows the evolution of the distribu-
tion of social connections in the system. The ini-
tial condition is a random graph of degree K = 20.
On the first iteration, the distribution is rouhgly a
N(20, 1) distribution. Progressively, the distribu-
tions shifts toward the left. In the end, we have
a self-sustained distribution that can be approxi-
mated by a N(13, 4) distribution.

All the experiments were done on a computer
equipped with a Intel Pentium4 clocked at 2.5Ghz.
The typical simulation performance for 100 iter-
ations of a system with 106 agents is below one
hour of CPU time. This is for plans that have only
one or two intermediary stops. In term of mem-
ory requirement, about 400 Mbytes of RAM are
needed. Obviously, the simulation of larger sys-
tems and more sophisticated plans with more than
two stops will require to distribute the workload on
several computers.
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9. Conclusions

This preliminary work has shown that a multi-
agent based approach to the location of secondary
activities is technically feasible and behaviorally
plausible for high resolution data sets. Many as-
pects still need to be addressed to improve the real-
ism of the model. Nevertheless, the fact that agents
cooperate in even some simplistic way yields an
important gain in term of computation workload.
This has to be compared with the standard prac-
tice in Transportation Science where it is typically
assumed that users are in the situation of a non-
cooperative Nash equilibrium.
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