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Abstract

There is considerable interest in the simulation of sys-
tems where humans move around, for example for traffic
or pedestrian simulations. Any such simulation consists of
two layers: the simulation of the “physical” system, which
includes effects such as interaction with other agents or
the environment; and the simulation of the “mental” layer,
which generates strategies of the agents. The traditional
way to couple the modules is to use files. The disadvan-
tage of that approach is twofold: The computational per-
formance is limited by I/O; and the modules can only be
run sequentially.

In order to overcome these problems without sacrificing
modularity, a message-based approach is presented. Agent
strategies are sent via messages to the simulation of the
physical system, which executes them and sends back per-
formance information in the form of “events”. The strate-
gic modules listen to these events, memorize them in some
appropriate way, and possibly generate revised strategies.
These strategies are sent to the simulation of the physical
system immediately, so that the representation of the agent
in the physical system will switch to the new strategy right
away.

In addition, the same messages can also be used to
plug helper modules, such as viewers or recorders, into
the system. An implementation of the framework is tested
within our project, which explores the feasibility of using
autonomous agent modeling to evaluate future scenarios in
a tourist landscape in the Swiss Alps.

1. Introduction

As many planning problems focus on processes that
evolve over time in a complex environment, it is often dif-
ficult to evaluate the long term implications of a planning
decision. Computer simulations can be used as a method
for evaluating proposed future scenarios in planning [19].

However, most simulation efforts in spatial planning have
focused on large spatial scales (such as at the city and re-
gional levels) and on relatively abstract concepts (such as
land use patterns, traffic and economic development), while
one can argue that the planning decisions that have the most
impact on individual citizens tend to be either at a relatively
small scale or have very local impacts.

Multi-agent simulations, where each agent is modeled
individually, allow to look at this problem from a point of
view of a person walking in an area. We developed a large
scale pedestrian simulation which is intended for the simu-
lation of hikers in the Alps [1, 9, 10], but which should also
be applicable to related problems such as urban park de-
sign, building design, evacuation simulation [7], department
store design, etc. The same computational techniques will
be applicable for any kind of distributed multi-agent mobil-
ity simulation, in particular for multi-agent traffic simula-
tions.

Any such simulation system does not just consist of the
mobility simulation itself, but also of modules that compute
higher level strategies of the agents. For traffic and for hik-
ing simulations, the most typical of these modules are: (i)
demand generation; (ii) route generation. The demand gen-
eration module generates demand for movement between
different locations (trips); the routing module computes the
actual paths that these trips will follow.

A major and very important difference to the traditional
approach is that it is now possible to make all the modules
completely microscopic on the level of the hikers. Micro-
scopic means that in all modules each individual agent re-
tains its identity, including, for example, gender, age, in-
come, physical fitness, or remaining energy level. It is, we
hope, easy to see how such information can be used for bet-
ter modeling.

Traditional implementations of transportation planning
software, even when microscopic, are monolithic software
packages [16, 3, 14, 17]. By this we do not dispute that
these packages may use advanced modular software engi-
neering techniques; we are rather referring to the user view,



which is that one has to start one executable on one CPU
and then all functionality is available from there. The disad-
vantage of that approach is twofold: All the different mod-
ules add up in terms of memory and CPU consumption, lim-
iting the size of the problem. And second, although the ap-
proach is helpful when starting as one software project, it
is not amenable to the coupling of different software mod-
ules, developed by different teams on possible/different op-
erating systems.

A first step to overcome these problems is to make all
modules completely standalone, and to couple them via
files. Such an approach is for example used by TRANSIMS
[20]. The two disadvantages of that approach are: (1) The
computational performance is severely limited by the file
I/O performance. (2) Modules typically need to be run se-
quentially. Each module needs to be run until completion
before starting the next module. For example, the routing
module can only be run before or after the mobility simu-
lation. This implies that agents cannot change their routes
while the mobility simulation is running.

Another possibility is to use a database system for in-
formation exchange between modules. This is easiest to
imagine if modules still run sequentially. Then each module
changes the state of agents in the database, and some cen-
tral schedule decides which module to run at which time.
This approach is, for example, used by URBANSIM [21].

The approach presented in this paper is to couple the
modules by messages (Fig. 1). In this way, each module can
run on a different computer using different CPU and mem-
ory resources, which overcomes the memory bottleneck of
the monolithic approach. The approach also avoids the bot-
tleneck of file I/O, since data is not written to file at all while
the simulation is running. Finally, the message-based ap-
proach allows real-time interaction between the modules:
for example, if an agent is blocked in congestion, the strat-
egy generation modules can react to this new situation and
submit, say, new routes or activities while the agent is still
en-route.

On simulations with tens of millions of agents, issues
such as bandwidth usage, packet loss, and latency become
increasingly important. As a result, we use different net-
work protocols and implementations tailored to specific re-
quirements of inter-module communication. This paper will
also discuss some of these protocols, and the diverse pur-
poses they serve in a distributed multi-agent simulation.

2. The Framework

As said above, our approach is to model each tourist in-
dividually as an “agent”. A synthetic population of tourists
is created that reflects current (and/or projected) visitor de-
mographics. These tourists are given goals and expectations
that reflect existing literature, on-site studies, and, in some

cases where sufficient data is not available, are based on ex-
perts’ estimates. These expectations are individual, mean-
ing that each agent could potentially be given different goals
and expectations.

These agents are introduced into the simulation with ini-
tial plans (see later), but with no “knowledge” of the en-
vironment. The agents execute these plans, receiving feed-
back from the environment as they move throughout the
landscape. At the end of each run, the agents’ actions are
compared to their expectations. If the results of a partic-
ular plan do not meet their expectations, on subsequent
runs the agents try different alternatives, learning both from
their own direct experience, and, depending on the learn-
ing model used, from the experiences of other agents in the
system.

After numerous runs, the goal is to have a system that, in
the case of a status quo scenario, reflects observed patterns
in the real world. In this case, this could, for example, be
the observed distribution of hikers across the study site over
time.

A “plan” can refer to an arbitrary period, such as a day or
a complete vacation period. As a first approximation, a plan
is a completely specified “control program” for the agent. It
is, however, also possible to change parts of the plan during
the run, or to have incomplete plans, which are completed
as the system goes.

2.1. The physical layer (mobility simulation)

In our architecture, agents’ plans are submitted to the
mobility simulation. The mobility simulation executes all
plans simultaneously, computing interactions of the agents
with the environment and with each other. For example, if
two agents want, according to their plans, to be at the same
place at the same time, the physical interaction of the sim-
ulation will prevent that and compute physically plausible
solutions instead.

Information about each agent’s performance is sent back
to other modules in the form of events. Examples of events
are “agent left hotel”, “agent entered link”, “agent had nice
view”, etc. Events come together with a time stamp and the
agent id number.

Many modeling techniques exist for the simulation of
pedestrian movements. For our simulations, we need to
maintain individual particles, since they need to be able to
make individual decisions, such as route choices, through-
out the simulation. This immediately rules out field-based
methods, where particles are aggregated into fields. We also
need a realistic representation of inter-pedestrian interac-
tions, which rules out mesoscopic models, such as queue
models or smooth particle hydrodynamics models.

For microscopic simulations, there are essentially two
techniques: methods based on coupled differential equa-
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Figure 1. Any simulation system does not just consist of the pedestrian simulation itself (physical
layer), but also of modules that compute higher level strategies of the agents (mental or strategic
layers).

tions, and cellular automata (CA) models. In our situation,
it is important that agents can move in arbitrary directions
without artifacts caused by the modeling technique, which
essentially rules out CA techniques. We therefore use a cou-
pled differential equation model for pedestrian movement
(social force model [11]).

An important functionality of our simulation is to evalu-
ate the visual quality of the landscape. It turns out that this
can be done by using the 3d visualizer that is also used for
humans to interact with the computer system (see below).
However, instead of displaying a view on the screen after it
is computed, the video memory is read out in order to de-
termine what individual agents “see” as they move through
the landscape. The agents’ field-of-view is analyzed, and
events now contain information describing what the agent
sees. Depending on the needs of the brain modules, these
events either list all of the individual objects (houses, restau-
rants, forest stands, or individual trees) or return synthesized
information about particular visual metrics (such as enclo-
sure, percentage of view that is non-vegetative, etc.)

2.2. Learning

Initially, every agent starts with a plan that, in its opin-
ion, fulfills its expectations. For example, if the period of in-
terest is a day, then such an initial plan might refer to a spe-
cific hike. To do this, the agent chooses activity locations it
wants to visit, like hotel, peak of mountain, restaurant etc.
The chain of activity locations is then handed over to the
routing module, which calculates the routes between activ-
ities according to the information available. This informa-
tion can be static and global, like shortest path information
based on the street network graph.

The mobility simulation then executes the routes. The
agent experiences the environment and sends its perception
as events to the other modules.

From here on, the system enters the replanning or learn-
ing loop. The idea, as mentioned before, is that the agents
go through the same period (e.g. day) over and over again.
During these iterations, they accumulate additional infor-
mation, and try to improve their plan.

The two critical questions are (1) how to accumulate,
store, and classify that information, and (2) how to come
up with new plans. Both questions are related to (artificial)
intelligence, and we are certainly far away from answering
them in their entirety. Nevertheless, our system contains the
following elements which makes it able to learn.

As one can see in Fig. 1, there are agent databases as-
sociated with each level of the planning hierarchy (e.g. ac-
tivities, routes). The task of these agent databases is to store
plans and to accord scores to them. That is, every time an
agent comes up with a new plan, that plan is added to the
repertoire of plans. In addition, the agent databases listen to
the events emitted by the mobility simulation, and use these
events to calculate a score for each plan once it has com-
pleted. If an agent database module assigns a bad score to a
simulated hike, it tries to avoid its elements in future hikes.
If it gets good feedback, however, it will try to reuse the el-
ements of a hike, and combine these into a new hike, which
will be simulated and scored again.

The agent databases, at each level of the hierarchy, need
to obtain new plans from time to time. Such plans can be
constructed by the following methods:

• New plans can be constructed from global information.



• New plans can be constructed from information that an
individual agent has accumulated.

• New plans can be constructed by randomly modifying
an existing plan. In the language of genetic algorithms,
this is called (generalized) mutation.

• New plans can be constructed by taking two existing
plans and combining elements of them. In the lan-
guage of genetic algorithms, this is called (general-
ized) crossover.

An example of a method that generates elements of plans
from scratch based on global information is a shortest
(fastest, best) path algorithm. This algorithm takes start-
ing and ending location as input, and computes the best
path connecting those two as output. An example of such a
method is a Dijkstra algorithm [4]. It is possible to use gen-
eralized cost functions in such a router, which makes it pos-
sible to find different solutions for different types of agents.
For example, a physically fit person might prefer a route
that is steeper, while a physically less fit person might get a
route that includes more possibilities to rest. It is also pos-
sible for the router to listen to the streams of events, for ex-
ample finding out how many agents are on which links as
a function of the time-of-day. This makes it possible to in-
clude congestion effects.

An example of a method that generates elements of plans
from individual agent information is a module based on a
mental map (e.g. [2]). This module listens to the stream
of events. However, rather than scoring complete plans as
the agent database does, it constructs a mental map of the
spatial environment. From the times when agents enter and
leave links, the mental map learns how long it takes for an
agent to walk along each link in the network. Also, the men-
tal map accumulates all the other events that occur on ev-
ery link. Using these values for each link in the network,
a router based on this mental map is able to return a route
for each agent, based on its expectation and demographic
data. A prototype implementation of such an approach can
be found in Ref. [12].

It is possible to make the mental layer module dynamic.
In this case, it observes the agent on its path through the vir-
tual environment. As soon as it detects an option that might
yield a better score than the current plan, e.g. using a bet-
ter path, or entering a restaurant, it notifies the agent in the
simulation. Using this mechanism, agents are able to re-
act to unpredicted changes in the environment, like weather
changes or congestion.

It should be noted that the distinctions between these
modules are not sharp. For example, an agent database
may run out of memory if it memorizes as separate enti-
ties plans that differ only in small details; in that case, the
agent database might have to start building a mental map

Figure 2. Agents leave the hotel (A) in the
morning and hike to the mountain peak (B).
On the first run, where no hiker knew about
the others’ intentions (top), and the situation
after 50 iterations.

of the world. In this case, it becomes similar to the men-
tal map module as described above.

Fig. 2 shows an example of agent learning. Both pictures
show a snapshot of the same region at the same time of day.
All agents leave the hotel (A) in the morning, and hike to
the mountain peak (B). On the first run (top), when the hik-
ers do not know about the other hikers’ intentions, all hik-
ers take the same path, which they consider the best. Af-
ter 50 iterations, agents have learned to spread out in order
to somewhat avoid each other. – Clearly, this depends on
how much hikers really want to be alone, which is a param-
eter that needs to be estimated from real-world surveys. The
simulation can then show the results of changes in that pa-
rameter, or it can show how much the satisfaction of hikers
with respect to that parameter can change when the environ-
ment is changed.

2.3. Initial conditions

The learning process needs to be started somehow. For
this, an initial population needs to be generated, and they



need to compute initial activities and routes. For the gener-
ation of the initial population, a synthetic population gen-
eration module is used. This could use aggregated informa-
tion, such as known age or gender distribution of tourists,
and generate individual agents from this, which have in-
dividual age, gender, income, etc. At this point, the im-
plemented module generates agents with random attributes
(varying walking speed, different weights for the general-
ized cost function in the router).

Initial activity plans are constructed from some global
knowledge of the area (i.e. agents are told where attractive
view points or where restaurants are); initial routes are con-
structed based on geometrical distance.

2.4. Helper Modules

For computing a solution, the following modules are not
needed. However, a simulation system without would be
useless:

Recorder/Player. This module receives and processes
agents positions and other data from the simulation. It can
store them in a file and/or forward them to any viewers
which are currently connected to it.

There are several reasons that the simulation does not di-
rectly write to log files itself:

• The simulation can be parallelized, and we need the
log output of all the instances in a single file.

• Writing to a remote file system (i.e. NFS) can be very
slow.

• There is a single interface for viewers.

• By splitting the logging functionality from the simu-
lation, we are able to change implementation details
for all of the simulation modules without needing to
modify the logging code. For example, one could use
a database to log the events instead of a file.

A recorder module can be attached to any event
stream.

In order to visualize simulation runs, we have developed
Viewer Modules, which are stand-alone applications that
connect to the simulation system via the network. Viewers
are built so that they directly plug into the live system. The
simulation sends agents’ positions to the viewer, which al-
lows to look at the scenario from a bird’s eye view and ob-
serve how the agents move. It is also possible to send that
same data stream to a recorder which records it to file, while
a player can read the file and send the data stream to the
viewer exactly the same way it would come from the simu-
lation directly. Finally, in order to deal with data conversion
issues, it is also possible to pipe the data stream from the
simulation through the recorder directly to the player and
from there to the viewer.

Figure 3. A 3-dimensional viewer has been
implemented, since one of our overall project
goals is to integrate decisions based on vi-
sual stimuli.

We have implemented two different viewers. One dis-
plays a 2D view, and is suited for situations where a lot
of detailed information is needed, for example while de-
bugging (Fig. 2). Also, a 3D viewer has been implemented
(Fig. 3), as one of our overall project goals is to integrate de-
cisions based on visual stimuli. The 3D viewer connects to
the simulation using the same protocol as the 2D viewer.
The user can move independently of the agents or can at-
tach the camera viewpoint to a specific agent and see the
landscape through the eyes of the agent. In order to reduce
code duplication, the 3D viewer is essentially the same soft-
ware as the 2-dimensional viewer described above.

It is possible to connect a viewer directly to an event
stream, which allows to look at a running simulation in
“real time”, or to connect to a player module. There can
be any number of viewers connected to a player module,
each showing the same scenario from a different perspec-
tive, or displaying different accumulations of events.

3. Technical Implementation

As described above, the modules need to communicate
with each other. The mobility simulation receives plans and
outputs events. The mental modules receive events, and out-
put and receive plans. The helper modules normally deal
with events only.

3.1. MPI/PVM

When a single module is distributed across multiple
computational nodes, one often uses MPI (Message Passing
Interface [13]) or PVM (Parallel Virtual Machine [15]). It is



also possible to use MPI or PVM for the communication be-
tween different modules as described in this paper. That ap-
proach has, however, the disadvantage that one is bound to
the relatively inflexible options that MPI offers. For exam-
ple, options to add or remove modules during runtime have
only recently been added to the MPI standard, and multi-
cast (see below) is not possible at all.

3.2. TCP

On clusters of workstations, MPI is often implemented
on top of TCP (Transmission Control Protocol). TCP is the
connection based, reliable protocol of the TCP/IP suite. Ini-
tially, a connection from the sender to the receiver must be
opened. With this connection, both sides can send their mes-
sages as the connection is symmetric. TCP guarantees that
the messages arrive, in correct order, and without errors.

3.3. UDP

UDP offers, in comparison to TCP, no control for packet
loss. This means that there is no guarantee that the sent
packets will arrive. The advantage is that there is consid-
erably less overhead. Also, as will be described later, this
offers (via multicast) the option to send events only once,
even when many modules listen to them. In a TCP-based
implementation, events need to be sent to each listener sep-
arately. A message that arrives is guaranteed to be error free,
since the UDP protocol includes a checksum.

We use UDP to transmit the agent positions to the visu-
alizers. If the network is down for a few seconds, the simu-
lation does not need to slow down because of lost packets.
Once the viewer is back on line, it will receive the latest po-
sitions.

There are other situations in which one may accept the
loss of messages. For example, if an agent reports that it
is blocked in unexpected congestion (e.g. waiting for a ca-
blecar, traffic jam), it needs a new route instantly. If its re-
quest is lost or delayed, it makes no sense for the system to
buffer its request, since the agent has moved on, and the lo-
cation in the original request might now be invalid. A new
route computed based on the old information will be invalid
as well. It is the agent’s responsibility to restate its posi-
tion again if it does not receive a new route after a certain
time has elapsed [8].

The amount of packet loss is strongly dependent on the
overall number of packets in the network. In state-of-the-art
networks, which today are often 1 Gbit Ethernet, there is
hardly any packet loss in the network itself. Losses occur
mainly in the sending and receiving network interface cards
(NICs), due to overflowing buffers. This is the case, for ex-
ample, if the CPU is busy so that it cannot read the packets
from the buffer quickly enough. The more packets that are

ViewerSimulation

Network
Router

Network
Router5 km

UDP Packets

Viewer Viewer

ViewerSimulation

Network
Router

Network
Router5 km

Multicast Packets

Viewer Viewer

Figure 4. Multicast uses one data connec-
tion, even if there are multiple receivers sub-
scribed to the multicast channel.

sent, the higher the chance that one is lost. With Gbit Ether-
net communication, up to 180’000 raw data packets can be
sent per second without any losses. Using a naive approach,
which is packing one event into one network packet, one ob-
tains 180’000 events per wall-clock second. Since the mo-
bility simulation runs more than 100 times faster than wall-
clock time, this results in 1’800 events per simulated sec-
ond. This is not very much for a simulation of 1000 or more
agents that report their perceptions.

Recently, new networking infrastructures have been de-
veloped which allow to send packets reliably with UDP. An
example is the TNet Hardware [18], used in computer clus-
ters. The TNet hardware assigns a 16 bit CRC (cyclic redun-
dancy check) to each packet. This checksum is used for er-
ror detection. After every transmission over a network link
the packet is checked for correctness, and retransmitted if
an error is detected. The 16 bit CRC is generated in the NIC
and not changed in the network, therefore bit errors in the
switches themselves can be also detected. This link-level
protocol guarantees that no packets are lost in the network.

3.4. Multicasting

Often there is a need for sending the same packet to more
than one receiver. This can be achieved by opening multi-
ple TCP connections or by sending multiple UDP packets to
the receivers. However, on large simulations, the network
interface card (NIC) of the sending host quickly becomes
the bottleneck, as it is unable to send out enough packets to
keep the receivers fully occupied.

On Internetworks, it is possible to use multicasting to
send a single message from one computer to several other
computers, instead of having to send that message once for
every destination. Because multiple machines can receive



the same packet, bandwidth is conserved. Multicasting is
particularly useful for any kind of streaming data such as
radio or television broadcasts over the network. Its advan-
tage is that the multiplication of the packets for multiple re-
ceivers is not done by the NIC, but by the network itself.
This allows to avoid the NIC bottleneck.

Multicasting provides groups of hosts, that are ref-
erenced using special IP addresses (224.0.0.0 –
239.255.255.255). The sender chooses one of these
groups and sends a single packet to this IP address. A re-
ceiver must explicitly join a group first, telling its NIC and
the operating system to listen for packets sent to this group.

An advantage of this addressing scheme is that the
sender does not need to know the IP address of the re-
ceiver. This simplifies the configuration of the system
substantially. The Internet routers ensure that the pack-
ets find their way from the sender to the receivers, once
they are registered to the multicast group.

A drawback with multicasting is that it has, similar to
UDP, no arrival control. There is no feedback to the sender
if all packets arrived at all destinations, or even at any des-
tination at all. In consequence, this is not useful when mes-
sage arrival needs to be guaranteed. To live with this prob-
lem, it often is possible to implement some sort of flow con-
trol into the application (see, e.g. [6]). This, however, is a
hard task and does introduce performance issues under cer-
tain circumstances. But often there is no need for the full
flow control available in TCP, and a lightweight solution
can increase the performance substantially. An implemen-
tation using flow control is beyond the scope of this paper.

Our project is a collaboration between two institutes
at ETH Zürich. One of them is located more than 5 km
away from where our computational cluster is. For every
viewer that is connected to the simulation, extra bandwidth
is needed. Using multicast, we cannot reduce the bandwidth
used for one viewer. But as soon as there are multiple view-
ers looking at the same general area, the bandwidth remains
constant (Fig. 4). Sending agent data to multiple viewers is
an instance where multicasting is extremely effective. Us-
ing multicasting, we were able to allow multiple viewers at
the remote institute without saturating the network.

A typical position update message, sent every timestep
by the simulation for each agent to announce its new posi-
tion to the other modules, has a size of 100 bytes per agent.
Since our mobility simulation is able to simulate more than
100 real-time seconds per second, 100 × 100 bytes/s need
to be sent per agent. A simulation of 1000 agents there-
fore needs 100 × 100 × 1000 = 10’000’000 bytes/s, which
is already close to the theoretical limit of a 100 Mbit NIC
(100 Mbit/s = 12.5 Mbytes/s). By using multicasting, this
bandwidth can be effectively shared between viewers, espe-
cially when they are viewing approximately the same loca-
tion. As we build our datasets to a realistic scale (thousands

Figure 5. Agents hiking from a hotel (A) to the
peak of a mountain (B). The 2-dimensional
viewer displays the events, which contain
the agents’ perception and performance in-
formation, in different colors. Here, red marks
mean “too crowded”, green “can see a trees”
and blue “nice scenic view”.

of pedestrians), this bandwidth saving will become increas-
ingly important.

3.5. XML: Extensible ASCII Messages

Viewers are built so that they directly plug into the live
system. The simulation sends agents’ positions to the view-
ers, which allows to look at the scenario from a bird’s eye
view and observe how the agents move. As mentioned be-
fore, at this point there are two different viewers, one in 2D
and mostly intended for debugging, and on in 3D.

For the 3D viewer, more data has to be sent, since it
needs also the altitude of an agent. One needs the ability
to add this value to the data stream in a way that there is no
need to change existing viewers.

The Extensible Markup Language (XML) is a simple,
very flexible text format derived from SGML (ISO 8879).
Originally designed to meet the challenges of large-scale
electronic publishing, XML is also playing an increasingly
important role in the exchange of a wide variety of data on
the Web and elsewhere.

The main advantage of XML is that there is no need to
enforce a mandatory file format between the sender and the
receiver.

Tags (e.g. event) and attributes (e.g. agent="42")
are not defined in any XML standard per se. These tags
are introduced by the author of the XML document. This
makes XML a perfect choice as a format for data exchange
among different modules of a simulation. Whenever a mod-
ule introduces a new kind of message, there is no need for
a change in any of the modules that listens to the message



stream—unless of course, a module wants to handle this
new information specifically. This is also the case for a at-
tribute introduced additionally. It is, however, not possible
to change the name of existing tags or attributes.

A typical position update message used in our simula-
tion system encoded in a XML fragment looks like this:

<event type="position" agent="42"
x="588440.1" y="150281.4" />

Frequent changes in messages, something that happens
often in research and development, are possible. Since the
receiving modules search for “keyword=value” pairs, an
additional attribute is simply ignored. As a result, there is no
need to adopt existing modules. Further, due to the fact that
messages are transmitted in plain text, debugging of com-
munication is possible without further tools. The example
message is perfectly understandable by all modules if an-
other attribute is added:

<event type="position" time="23"
agent="42" x="588440.1" y="150281.4" />

Since it is possible to attach existing XML parsers to any
I/O stream or buffer, there is no difference between read-
ing messages from a file or receive messages over the net-
work. We tested XML over UDP and TCP, both versions are
very flexible. Using UDP, however, if a packet containing a
piece of a message is lost during transmission, the resulting
stream is not necessarily still a valid XML document. This
problem is circumvented by always sending complete mes-
sages in a packet. Recall that packets are guaranteed to be
error free. UDP packets arriving with an error are discarded;
TCP packets arriving with an error are re-transmitted.

Problems with XML are that (i) searching for
“keyword=value” pairs is slow, (ii) if part of a XML
stream is lost, the whole XML context may become in-
valid, and (iii) XML is plain text, so we have to convert
binary numbers into ASCII characters and back. To over-
come problems (i) and (ii), we have developed a parser that
is specialized in parsing a certain subset of the XML stan-
dard. This subset consists of simple tags with no nested
tags inside:

<tag {attr="value"} />

Note that all information is inside the attributes, and there-
fore inside the tag as well. Therefore no nesting of tags is
possible. This subset parser is written as a substitute for ex-
isting XML parsers, such as Expat [5]. Therefore, the pro-
grammer’s interface is exactly identical.

We measured the performance of our subset parser by
parsing messages of different size for one second. These
measurements were done on a 700MHz Pentium III. The
messages were taken directly out of the machines main
memory, so no network or disk access was involved. The re-
sults are that the off-the-shelf Expat parser parses 110’000

 0

 0.5

 1

 1.5

 2

 2.5

 3

Expat XML Subset Ext. Binary Raw Binary

M
ill

io
n 

pa
rs

ed
 p

ac
ke

ts
/s

ec
on

d

Parsing Method

Figure 6. Comparison of parsing speed: Ex-
pat, XML Subset Parser, Extensible Binary
Protocol vs. raw binary messages.

0 200 400 600 800 1000 1200
30

40

50

60

70

80

90

100
Bandwidth of Sender and different Receiver

Packet size (Bytes)

B
an

dw
id

th
 (

M
bp

s)

Sender
Receiver only
Receiver w/ fXML
Receiver w/ Expat
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module is able to parse. The more CPU cy-
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sages are lost in the network (NIC buffers).

messages per second, while our specialized XML subset
parser parses 210’000 messages per second (see Fig. 6).
Thus, our XML subset parser is faster by a factor of 2.

Further, it is very important not to send small messages
over the network. The overhead for each packet sent is 78
bytes (for Ethernet), and there may be a gap between pack-
ets for a proper aligning or collision detection. Whenever
possible, combine multiple messages into one packet (see
Figure 7).



3.6. Extensible Binary Protocol

The flexibility of XML is achieved at the cost of parsing
ASCII files for tags and well-formatted entries. In multi-
agent simulations, millions of individual agents are sim-
ulated and have to report to external applications such as
graphical viewers or storage managers.

Our experiments have shown that the exchange of multi-
agent data in the form of XML streams is very flexible but
can reduce the bandwidth substantially due to the overhead
of parsing the streams and due to converting numbers rep-
resented binary internally into ASCII and back.

In terms of CPU time, parsing the same type of streams
data all the time is a waste. Often the structure of a message
is known once the simulation is running.

A potential strategy is: initially, the consumer module
connects to the producer module and receives a description
of the available data. Then the consumer specifies which
part of the data and which formatting it needs. Based on that
specification, the producer begins to output binary streams
formatted according to the consumer specification.

For instance, if agents are agents in a cablecar, a 2D
viewer will only require x/y coordinates, while a 3D viewer
will require x/y/z positions. The whole process can be seen
as a user-defined on-the-fly serialization of the producer’s
objects (i.e. the agents) and their transfer over a high band-
width binary channel.

We have implemented a protocol that follows these steps:

• A receiving module asks for certain data values to be
transmitted in data messages. This is done by specify-
ing the XML tag names, e.g. “agent” or “time”.

A example request, as sent over the network,
looks like <request request name="event"
time="" agent="" x="" y="" />.

• The sending module transmits a description of future
data
messages, e.g. <description name="event"
d version="1" time="i" agent="i" x="d"
y="d" >. The field d version is the sequence num-
ber of the description. It is unique for each new de-
scription sent.

• The sending module from then on sends plain
data, packed according to the description into a bi-
nary buffer.

As soon as another receiving module asks for additional
data values, they are included into the message as well, af-
ter a new description is sent to all the receiving modules.
A description is sent every second as well, in case a receiv-
ing module lost a description or joined the system without
requesting a new message format.

Our measurements have shown that this strategy yields
in a factor of 17 faster than by using Expat, and in a factor

of 8 faster than by using our XML subset parser (Figure 6,
3rd bar).

3.7. Sending raw binary data

For comparison, also the exchange of raw, binary mes-
sages was measured. It communicates the same amount of
information as the above, but does nothing with it. This re-
sults in the 4th bar in Fig. 6. As one can see, the maximum
possible speed as measured by this method is only about a
third faster than our extensible binary protocol.

3.8. Conclusions

Using the Extensible Binary Protocol, it was possible to
visualize scenarios containing more than 1000 agents run-
ning more than 100 times faster than real time. An agent
number and the x and y co-ordinates of a position update
message consume 20 bytes, when packed binary. It is there-
fore possible to transmit up to 75 agent positions per packet.
If the viewer is able to receive 200’000 packets per second,
we are able to display 15 million agents per second. Since
the viewer uses its host’s CPU cycles for drawing the graph-
ical output as well, the actual number drops again substan-
tially.

4. Discussion and Outlook

It is important to note that the task of the mobility sim-
ulation is simply to send out events about what happens;
all interpretation is left to the mental modules. In contrast
to most other simulations in the area of mobility research,
the simulation itself does not perform any kind of data ag-
gregation. For example, link travel times are not aggregated
into time bins, but instead link entry and link exit events
are communicated every time they happen. If some external
module, e.g. the router, wants to construct aggregated link
travel times from this information, it is up to that module
to perform the necessary aggregation. Other modules, how-
ever, may need different information, for example specific
progress reports for individual agents, which they can ex-
tract from the same stream of events. This would no longer
be possible if the simulation had aggregated the link en-
try/exit information into link travel times.

Despite this clean separation – the mobility simulation
and the modules in the physical layer compute “events”, all
interpretation is left to mental modules – there are concep-
tual and computational limits to this approach. For example,
reporting everything that an agent sees in every given time
step would be computationally too slow to be useful. In con-
sequence, some filtering has to take place “at the source”
(i.e. in the simulation), which corresponds to some kind of
preprocessing similar to what real people’s brains do. This



is once more related to human intelligence, which is not
well understood. However, also once more it is possible to
pragmatically make progress. For example, it is possible to
report only a random fraction of the objects that the agent
“sees”. Calibration and validation of these approaches will
be interesting future projects.

5. Summary

This paper reports basic elements of a distributed mo-
bility simulation system. The simulation system consists of
two layers, the physical layer (mobility simulation), and the
mental layer (strategy/plans generation). The mental layer
generates plans, which are submitted to the mobility simu-
lation for execution. The mobility simulation returns events
to the mental layer. The modules of the mental layer use
these events in different ways, for example to score plans,
to compute best paths, or to construct mental maps.

Since the communication needs between these modules
is substantial, several methods for message passing are eval-
uated. Traditional approaches, such as MPI or PVM, are too
inflexible for what was intended for this project. For that
reason, specialized protocols based directly on the operat-
ing system are evaluated. These protocols have trade-offs in
terms of ease-off-use, bandwidth consumption, and poten-
tial message loss. The overall result is that, albeit at the ex-
pense of having to use a variety of protocols for different
purposes, even with existing technology simulations with
thousands of agents running hundreds of times faster than
real time are possible with our approach.

6. Acknowledgments

We thank Duncan Cavens for Figure 3 and for his con-
tributions to the framework development, Ingo Opperman
for his work on the binary XML-like protocol, and Bryan
Raney for the learning mechanism which computed the
transition in Figure 2.

References

[1] ALPSIM www page. www.sim.inf.ethz.ch/projects/alpsim/,
accessed 2004. Planning with Virtual Alpine Landscapes and
Autonomous Agents.

[2] T. Arentze and H. Timmermans. Representing mental
maps and cognitive learning in micro-simulation models of
activity-travel choice dynamics. In Proceedings of the meet-
ing of the International Association for Travel Behavior Re-
search (IATBR), Lucerne, Switzerland, 2003.

[3] A. Babin, M. Florian, L. James-Lefebvre, and H. Spiess.
EMME/2: Interactive graphic method for road and transit
planning. Transportation Research Record, 866:1–9, 1982.

[4] E. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik 1, (1):269 – 271, 1959.

[5] Expat www page. James Clark’s Expat XML parser library.
expat.sourceforge.net, accessed 2004.

[6] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang.
A reliable multicast framework for light-weight sessions and
application level framing. IEEE/ACM Transactions on Net-
working, 5(6):784–803, 1997.

[7] E. R. Galea, editor. Pedestrian and Evacuation Dynamics
2003. Proceedings of the 2nd international conference. CMS
Press, University of Greenwich, 2003.

[8] C. Gloor. Modelling of autonomous agents in a realistic road
network (in German). Diplomarbeit, Swiss Federal Institute
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