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1. INTRODUCTION 
 
One possibility to bring activity-based demand generation into the transportation planning 
processes is to use it to replace the first two (or three) steps of the conventional four step 
process. Activity-based demand generation would produce a standard origin-destination (OD) 
matrix, which would then be fed into the existing assignment model. Both the OD matrix and 
the assignment model could be time-dependent.  
The advantage of this approach is that it ties in with the arguably most sophisticated and best 
understood part of the four step process: route assignment. Yet, some of these advantages 
diasppear when the OD matrices are time-dependent. In that situation, very few of the 
mathematical results of static assignment carry over. In addition, coupling activity-based 
demand generation to network assignment through an OD matrix disrupts the connection 
between individuals and their performance in the simulated traffic system. Harry, you had 
questionmarks here.  I replaced the word “severs” with “disrupts” but I am not sure if that was 
the problem. Kai Any iterative feedback from the traffic system performance to the activity 
generation can only be based on aggregate measures, such as link travel times, not on individual 
performance of the traveler. An obvious case where the coupling through the OD matrix goes 
wrong is when it is possible for a person to complete an activity even before he/she has arrived 
the destination where the activity will be conducted.  



Agent-Based Traffic Flow Simulation 2 

To avoid such situations, we propose to use a truly agent-based representation of the traffic 
system and the assignment process. In a truly agent-based representation, each person remains 
individually identifiable throughout the whole simulation process. In particular, the traffic 
micro-simulation assumes the role of a realistic representation of the physical system, including 
explicit modeling of persons walking to the bus stop, or of a bus being stuck in traffic. Also, in 
terms of analysis such a system offers enormous advantages. It is, for example, possible to 
obtain the demographic characteristics of all drivers being stuck in a particular traffic jam. It is 
also possible to make each traveler react individually to exactly the conditions that this traveler 
has experienced, rather than to aggregated conditions. 
 
This multi-agent concept consists of basically two parts: (i) the simulation of the “physical” 
properties of the system, and (ii) the generation of the agents' strategies. The simulation of the 
physical system is the place where the agents interact with each other—car drivers produce 
congestion, traffic lights change their intervals dependent on the amount of traffic, pedestrians 
wait for the next train to catch, and so on. The agents make their strategies based on what they 
experienced in the physical simulation—car drivers try other routes to avoid congestion, 
pedestrians need to leave earlier to catch the train, traffic lights favor the main streets to 
maximize the throughput of an intersection, etc. 
 
We are in the process of implementing such a multi-agent simulation for the whole  of 
Switzerland. This paper concentrates on the Zurich area, with about 260,000 agents that cross 
this region. The challenges with such an implementation are many: availability and quality of 
input data, computational implementation and computational performance, conceptual 
understanding of agent learning, and validation.  
In previous research (Raney et al., 2003), we have reported the first results based on typical 
transportation planning data: standard origin-destination matrices; the transportation planning 
network from the corresponding Swiss federal planning authority; and performed route 
assignment (dynamic traffic assignment or DTA) based on these input data. The two main 
differences with other DTA systems, such as DYNASMART (www.mit.edu/its) or DYNAMIT 
(www.dynasmart.com), were that our system uses individual route plans for each agent while 
standard DTA systems store the routing decisions in the network, and that our system was run 
on really large scale scenarios with several millions of travelers. A newer version of 
DYNASMART, however, now also uses individual routes, and other systems also move 
towards increasingly large scales. In contrast to TRANSIMS (www.transims.net), which has 
used individual routes and large scales for many years now, we used a so-called agent database, 
which keeps track of several plans for each agent. 
This chapter goes further by now also internalizing the time structure of the input data. In other 
words, it is possible for the simulation system to predict when agents start and end their main 
activities. The main result is that it is possible to completely ignore the time structure of the 
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time-dependent OD matrices without compromising predictive power. This is similar to the 
approach used and results obtained with METROPOLIS (De Palma and Marchal, 2002). The 
main difference is that our implementation uses complete daily activity chains, whereas 
METROPOLIS only uses trips. We believe that our method, while computationally more 
demanding, opens the door to more flexible transportation planning models. 
 
This chapter will continue with an outline of the general simulation structure,  where we also 
describe in more detail the modules we will use. Next, we introduce the network and the 
scenario. The results of the different setups of the scenario are compared with traffic count data. 
Some computational issues are discussed next. The paper is concluded by a section on future 
work. 
 
 
2. SIMULATION STRUCTURE 
 
2.1. Overview 
 
As pointed out before, our simulation is constructed around the notion of agents that make 
independent decisions about their actions. Each traveler of the real system is modeled as an 
individual agent in our simulation. The overall approach consists of three important pieces: 
 
• Each agent independently generates a so-called plan, which encodes its intentions during a 

certain time period, typically a day. As this is an application to traffic forecasting, a plan 
contains the itinerary of activities the agent wishes to perform during the day, plus the trips 
the agent must take to travel between activities. An agent's plan details the order, type, 
location, duration and other time constraints of each activity, and the mode, route and 
expected departure and travel times of each leg.  

• All agents' plans are simultaneously executed in the simulation of the physical system. In 
this chapter, this is a traffic flow simulation. In other publications, we use the term mobility 
simulation in order to emphasize that the simulation of the physical system can go beyond 
traffic. 

• There is a mechanism that allows agents to learn. In our implementation, the system iterates 
between plan generation and traffic flow simulation. The system remembers several plans 
for each agent, and scores the performance of each plan. Agents normally choose the plan 
with the highest score, sometimes re-evaluate plans with bad scores, and sometimes obtain 
new plans. Further details will be given below. 

 
This chapter concentrates on “home” and “work” as the only activities, and “car” as the only 
mode. We do not distinguish between a trip (between two activities) and a leg (a part of a trip 
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which uses exactly one mode), since the “mode change” can also be defined as an activity 
(which has a specified location, i.e. a train station).  
Each of the details described in the plan, such as activity duration, is a decision that must be 
made by the agent. These decisions are mutually dependent, but the decisions made by one 
agent are independent of those made by another (REFERENCE TO WORK WITH AVODS 
THIS ASSUMPTION???  HM.  I AM AWARE THAT PEOPLE THINK ABOUT SUCH 
THINGS (E.G. CAR SHARING), BUT NOT AWARE OF ACTUAL WORK.  DECISIONS 
AT THE HOUSEHOLD LEVEL ARE NOT A GOOD EXAMPLE SINCE THEY ARE IN 
FACT *NOT* MUCH HARDER TO IMPLEMENT THAN DECISIONS AT TRAVELER 
LEVEL). We divide the task of generating a plan into sets of closely related decisions, and each 
set is assigned to a separate module. An agent strings together calls to various modules in order 
to build up a complete plan. To support this “stringing”, the input to a given module is a 
(possibly incomplete) plan, and the output is plan with some of the decisions updated.  
Some possible modules are: 
 
• Activity pattern generator: Decides which activities an agent actually wishes to perform 

during the day, and in what order. At present, this module is not used, but we have a fixed  
“home-work-home” pattern for all agents. 

• Activity location generator: Determines where the agent will perform a particular activity. 
At present, this module is not used, but we have a fixed location for each agent's “home” 
and “work” activity. 

• Activity time allocator: Determines the timing attributes the agent will utilize for each 
activity in a plan. Activities have two possible timing attributes: “activity duration” and 
“activity end time”. After starting an activity, an agent performs the activity either for the 
length of “duration”, or until the “activity end time”, whichever comes first. Activities 
cannot overlap in time. 

• Router: Determines which route and which mode the agent chooses for each trip leg that 
connects activities at different locations.  

 
A special feature of our approach is that users can choose any  number and type of these 
modules as long as they generate some information that contributes to a plan. For that reason, it 
is easy to  combine for example activity and mode choice into a single module or to add 
residential or workplace choice. This application will employ two modules only: “activity time 
allocator” and “router”. Other modules will be the topic of future work. 
 
Once the agent's plan has been constructed, it can be fed into the traffic flow simulation module. 
This module executes all agents' plans simultaneously on the network, allowing agents to 
interact with one another, and provides output describing what happened to the agents during 
the execution of their plans.  
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The modules produce dependencies. The outcome of the traffic flow simulation module (e.g., 
congestion) depends on the planning decisions made by the decision-making modules. 
However, those modules can base their decisions on the output of the traffic flow simulation 
(e.g., knowledge of congestion). This creates an interdependency (“chicken and egg”) problem 
between the decision-making modules and the traffic flow simulation module.  
We need these modules to be consistent with one another, and therefore we introduced feedback 
into the traffic flow simulation structure (Kaufman et al., 1991; Nagel, 1995; Bottom, 2000). 
This involves an iteration cycle which runs the traffic flow simulation with specific plans for 
the agents, then uses the time allocator and the router to update the plans, and these changed 
plans are again fed into the traffic flow simulation, etc., until consistency between modules is 
reached.  
The feedback cycle is controlled by the agent database, which also keeps track of multiple plans 
generated by each agent, allowing agents to reuse those plans at will. The repetition of the 
iteration cycle coupled with the agent database enables the agents to learn how to improve their 
plans over many iterations.  
In the following sections we describe the modules in more detail. 
 
 
2.2. Activity Time Allocator 
 
This module is called to change the timing of an agent's plan. At this point, a very simple 
approach is used which just applies a random mutation to the duration and end time of an 
agent's activities. More precisely, for the first activity, the activity end time is the only attribute 
that is specified and thus mutated, while for all other activities, the duration is what is specified 
and mutated. For each such attribute of each activity in an agent's plan, this module picks a 
random time from the uniform distribution [-30 min, +30 min] and adds it to the attribute. Any 
negative duration is reset to zero; any activity end time before 00:00 AM is reset to 00:00 AM. 
The entire plan is returned to the agent, with only the time attributes modified. 
 
Although this approach is not very sophisticated, it is sufficient to obtain useful results . This is 
consistent with our overall assumption that, to a certain extent, simple modules can be used in 
conjunction with a large number of learning iterations (e.g., Nagel, Strauss, and Shubik, 2004). 
Since each module is implemented as a “plug-in”, this module can be replaced by an enhanced 
implementation if desired. 
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2.3. Router 
 
The router is implemented as a time dependent Dijkstra algorithm. It first calculates link travel 
times from the events output of the previous traffic flow simulation. The link travel times are 
aggregated into 15 minute time bins, and then used as the weights of the links in the network 
graph. Apart from relatively small but essential technical details, the implementation of such an 
algorithm is straightforward (Jacob et al., 1999). With the knowledge about activity chains, it 
computes the fastest path from each activity to the next one in the sequence as a function in 
time. It returns the entire plan, completed with updated paths, to be used by the agents for the 
next run of the traffic flow simulation. 
 
 
2.4. Traffic Flow Simulation 
 
The traffic flow simulation simulates the physical world. It is implemented as a queue 
simulation (Gawron, 1998; Cetin and Nagel, 2003), which means that each street (link) is 
represented as a FIFO (first-in first-out) queue with three restrictions. First, each agent has to 
remain for a certain time on the link, corresponding to the free speed travel time. Second, a link 
storage capacity is defined which limits the number of agents on the link. If this capacity has 
been reached, no more agents can enter this link. Third, there is a flow capacity, which limits 
the number of vehicles that can leave the link in any given time step. 
 
Even though this structure is indeed very simple, it produces traffic as expected and it can run 
directly using the data typically available for transportation planning purposes. On the other 
hand, there are some limitations compared to reality, i.e., the number of lanes, weaving lanes, 
turn connectivities across intersections or signal schedules cannot be included into this model. 
 
The output that the traffic flow simulation produces is a list of events for each agent, such as 
entering/leaving link, left/arrived at activity, and so on. Data for an event includes which agent 
experienced it, what happened, at what time it happened, and where (link/node) the event 
occurred. With this data it is easy to produce different kinds of information and indicators such 
as link travel time, trip travel time, trip length, percentage of congestion, and so on. 
 
 
2.5. Agent Database—Feedback 
 
As mentioned above, the feedback mechanism is important for making the modules consistent 
with one another, and for enabling agents to learn how to improve their plans. In order to 
achieve this improvement, agents need to be able to try out different plans and to tell when one 
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plan is “better” than another. The iteration cycle of the feedback mechanism allows agents to try 
out multiple plans. To compare plans, the agents assign each plan a “score” based on how it 
performed in the traffic flow simulation. Essentially, each agent is running its own classifier 
system (e.g. Holland, 1992; Palmer et al, 1994).  Some traffic-specific learning references given 
below. 
 
It is very important to note that our framework always uses actual plan performance for the 
score. This is in contrast to all other similar approaches that we are aware ofDON”T THINK 
THIS IS TRUE IF YOU COUNT IN NUMERICAL SIMULATION STUDIES, E.g. 
KITAMURA, ARENTZE & TIMMERMANS ETC, SEE EINDHOVEN WORKSHOP 
MATERIAL FOR EXAMPLE.  Harry, everything that I am aware of takes link travel times 
from the assignment and then re-constructs individual agent performances from those ... 
including the Eindhoven reference (``travel times are drawn from a normal distribution with 
mean mu–0.5*sigma - and standard deviation 0.75*sigma'').  This is due to the fact that most 
DTA packages can only process OD matrices as input, and not individual agent plans.  
Exceptions of which I am aware are TRANSIMS, MATSIM, and some version of 
DYNASMART. I have replaced the iatbr reference with the Eindhoven reference. Kai—these 
other approaches always feedback some aggregated quantity such as link travel times and 
reconstruct performance based on those (e.g., URBANSIM—www.urbansim.org; Ettema et al., 
2003). Because of unavoidable aggregation errors, such an approach can fail rather badly in the 
sense that the performance information derived from the aggregated information may be rather 
different from the performance that the agent in fact experienced (Raney and Nagel, 2003). The 
procedure of the feedback and learning mechanism is as follows: 
 
1. Initial conditions: Start with a plan file that specifies one complete plan for each agent. The 

agent database loads these plan files into the memory of the agents. Each agent marks its 
initial plan as the “selected” plan. 

2. Simulate: The agent database sends the set of “selected” plans (one for each agent) to the 
traffic flow simulation. The simulation executes the plans simultaneously and outputs 
events. 

3. Process events: The agent database reads the events that are output by the traffic flow 
simulation and sends each one to the agent identified within it. Each agent uses its events to 
calculate the score of its “selected” plan—the one it most recently sent to the traffic flow 
simulation. 

4. Plan pruning: The number of plans kept in an agent's memory for reuse can be limited to N  
plans to conserve memory. If N  is defined, each agent that has NP >  plans deletes its 
lowest-scoring NP −  plans in this step. Note that when an agent that has N  plans 
generates a new one, it temporarily keeps 1+N  plans until the new plan has been scored. 
Then, in this step, it deletes the worst plan (even if it is the newest one). 
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5. Select plans: Each agent decides which plan to select for execution by the next traffic flow 
simulation. It chooses from the following selection options, according to the indicated 
probabilities: 

(a) (10 %) New plan, routes only: The agent sends an existing plan (chosen with equal 
probability among all plans in memory) to the router. The router calculates new routes in 
that plan based on the link travel times calculated from the events data from the most 
recent traffic flow simulation, and returns the updated plan. The new plan is added to the 
agent's memory and marked as “selected”. 

(b) (10 %) New plan, times and routes: The agent sends an existing plan (chosen with equal 
probability among all plans in memory) to the activity time allocation module. This 
module “mutates” the durations and/or end times of all activities in the plan and returns 
the updated plan. The returned plan is also sent to the router for route re-planning. When 
it comes back from the route re-planner, it is added to the agent's memory and marked as 
“selected”. (Note that now 20 % of agents will have new routes, while only 10 % will 
have new times.) 

(c) (10 %) Random selection: The agent picks an existing plan, chosen with equal 
probability among all plans in memory, without regard to their scores. This plan is 
marked as “selected”. 

(d) (Rest) Probabilistic selection: The agent picks an existing plan from memory, choosing 
according to probabilities based on the scores of the plans. The probabilities are of the 
form 

 
jSep ⋅∝ β

, 
 
where jS  is the score of plan j , and β  is an empirical constant. This is equal to a logit 

model from discrete choice theory. The chosen plan is marked as “selected”. 
6. The cycle returns to step 2, and continues until the system has reached a relaxed state. At 

this point, there is no quantitative measure of when the system is “relaxed”; we just allow 
the cycle to continue until the outcome seems stable. 

 
Note that when an agent reuses an existing plan, its previous score is not forgotten, but averaged 
with its new score: 
 

( ) newold SSS ⋅+⋅−= αα1: , 

 
with the blending factor α . This allows the agent to base plan selection on the plans' history 
and not only on the last iteration. With 0=α  no score will be updated and the agents will not 
learn. With 1=α  the history of a plan is neglected. Score averaging requires all plans to have 
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an oldS , so when a new plan is generated, it is optimistically given a preliminary score equal to 

the score of the agent's best plan. More sophisticated approaches to agent learning are discussed 
in Timmermans, Arentze, and Ettema (2003). 
 
 
2.6. Scores for plans 
 
In order to compare plans, it is necessary to assign a quantitative score to the performance of 
each plan. In principle, arbitrary scoring schemes can be used (e.g., prospect theory by Avineri 
and Prashker, 2003). We used  a simple utility-based approach, which is related to the Vickrey 
bottleneck model (Arnott et al., 1993), but needs to be modified to be consistent with our 
approach based on complete daily plans (Charypar and Nagel, 2003; Raney and Nagel, in 
press). The elements of our approach are as follows: If space saving is an issue, then most if not 
all of the following equations could be put within the text instead of on a separate line. Kai 
 
• The total score of a plan is computed as the sum of individual contributions: 
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where totalU  is the total utility for a given plan; n  is the number of activities, which equals 

the number of trips; iperfU ,  is the (positive) utility earned for performing activity i ; ilateU ,  is 

the (negative) utility earned for arriving late at activity i; and itravelU ,  is the (negative) utility 

earned for traveling during trip i . In order to work in plausible real-world units, utilities are 
measured in Euro. 

• A logarithmic form is used for the positive utility earned by performing an activity 
(e.g. Axhausen, 1990b): 
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where iperft ,  is the actual performed duration of the activity, *

it  is the “typical” duration of 

an activity, and perfβ  is the marginal utility of an activity at its typical duration. perfβ  is the 

same for all activities, since in equilibrium all activities at their typical duration need to 
have the same marginal utility.  
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it ,0  is a scaling parameter that is related both to the minimum duration and to the importance 

of an activity. If the actual duration falls below it ,0 , then the utility contribution of the 

activity becomes negative, implying that the agent should completely drop that activity. A 

it ,0  only slightly less than *
it  means that the utility of activity i  rapidly decreases with 

decreasing iperft , , implying that the agent should rather cut short other activities where the 

utility does not decrease as quickly when reducing their duration. In this application, we use 
 

( )**
,0

itp
ii ett ⋅−⋅= ς , 

 
where ς  is a scaling constant set to 10 hours, and p  is a priority indicator, here set 

uniformly to one.   Note that with this specific form, ( ) ςβ ⋅= perfiiperf tU *
, , independent of the 

activity type.   This “consequence” is actually the motivation for the specific mathematical 
form of the activity performance utility contribution, which was used because no better 
argument was available (Charypar and Nagel, in press); future research should lead to better 
versions. 
 

• The (dis)utility of being late is defined as: 
 

ilatelateilate tU ,, ⋅= β , 

 
where 0≤lateβ  is the marginal utility (in Euro/h) for being late, and ilatet ,  is the number of 

hours late for activity i . To be able to calculate the utility of being late, a starting time 
window for the activities has to be given. 

• The (dis)utility of traveling is defined as: 
 

itraveltravelitravel tU ,, ⋅= β , 

 
where 0≤travelβ  is the marginal utility (in Euro/h) for travel, and itravelt ,  is the number of 

hours spent traveling during trip i . 
 
At this point, our traffic flow simulation does not differentiate between “being at an activity 
location” (which potentially includes waiting) and “performing an activity”. In consequence, the 
simulation makes the agent stay at the activity location for the length of “duration”, no matter 
whether the agent can perform the activity or not.   For example, when work starts at 8 AM but 
the agent arrives at 7 AM with a duration of 8 hours, then the agent will depart from the activity 
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location at 7 AM plus 8 hours = 3 PM.   The utility function, however, differentiates between 
“arrival time” and “activity start time”.   The “work” activity has a particular starting time (see 
sec. 3.4 for the particular value), and arriving before this time causes the agent to wait until then 
before actually starting the activity.   This means that arriving early to an activity does not gain 
an agent any activity performance utility. 
 
 
2.7. Verification of Implementation 
 
We have verified that the simulation structure as described above works as we intended by 
running it on a simple test scenario consisting of a circular network with 2,000 agents going 
back and forth between home and work. All agents have the same “home” location on one side 
of the circle and the same “work” location on the other side. Nine routes are available between 
home and work, and one route is available between work and home. We ran three setups with 
various combinations of decision-making modules enabled: 
 
• New plan, routes only: The agents are only allowed to use the router module. They may do 

so with a 10 % probability. 
• New plan, times only: The agents are only allowed to use the activity time allocation 

module. They may do so with a 10 % probability. 
• New plan, times and routes: Agents may use the router module with 10 % probability, or 

both modules, with 10 % probability. This is just as described in the step 5 of Sec. 2.5 
above. 

 
The results from these three scenarios were as expected (Raney and Nagel, in press). 
 
IN WHAT FOLLOWS PRESENTA ND PAST IS USED. SUGGEST TO USE PAST 
THROUGHOUT. I DID NOT MAKE THIS CHANGE YET.  I always have problems with 
this.  My tendency is to write most things in the past tense (since the simulations ran physically 
on a computer in the past), but traditional scientific writing style seems to be in the present 
tense, and co-authors/referees have routinely changed this.  In the following, I tried to write 
stuff that was done ``before'' this paper in the past tense, but stuff that was done for this paper in 
the present tense.  Not sure if this is much better. Kai 
 
3. INPUT DATA AND SCENARIO 
 
3.1. Network 
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The street network that is used was originally developed for the Swiss regional planning 
authority (Bundesamt fuer Raumentwicklung), and covered Switzerland. It was extended with 
the major European transit corridors for a railway-related study (Vrtic et al., 1999). Some 
further modifications, in particular a capacity increase inside the Zurich city area, are described 
in Raney et al. (2003). The resulting network has the fairly typical size of 10,564 nodes and 
28,624 links (Figure 1). Also fairly typical, the major attributes on these links are type, length, 
speed, and capacity. 
 
 

Figure 1: Switzerland network 

 
 
 
 
3.2. Zurich Area Scenario 
 
The full Switzerland scenario demand generation is based on 24-hour origin-destination 
matrices from the Swiss regional planning authority (Bundesamt fuer Raumentwicklung). The 
original 24-hour matrix was converted into 24 one-hour matrices using a three step heuristic 
(Vrtic and Axhausen, 2002). The first step employed departure time probabilities by population 
size of origin zone, population size of destination zone and network distance. These were 
calculated using the 1994 Swiss National Travel Survey (BfS, 1996). The resulting 24 initial 
matrices were then corrected (calibrated) against available hourly counts using the OD-matrix 
estimation module of VISUM (www.ptv.de). Hourly traffic count data are available from the 
counting stations on the national motorway system. Finally, the hourly matrices were rescaled 
so that the totals over 24 hours match the original 24h matrix. VISUM assignment of the 
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matrices showed that the patterns of congestion over time are realistic and consistent with the 
known patterns. 
 
For the multi-agent simulation, these hourly matrices were then disaggregated into individual 
trips. That is, we generated individual trips such that summing up the trips would again result in 
the given OD matrix. The starting time for each trip was randomly selected between the starting 
and the ending time of the validity of the OD matrix. The OD matrices assume traffic analysis 
zones (TAZs) while in our simulations trips start on links. We converted traffic analysis zones 
to links by the following heuristic. First, the geographic location of the zone is found via the 
geographical coordinate of its centroid given by the database. Next, a circle with radius 3 km is 
drawn around the centroid. Finally, each link starting within this circle is now a possible 
starting link for the trips. One of these links is randomly selected and the trip start or end is 
assigned.  
This led to a list of approximately 5 million trips, or about 1 million trips between 6 AM and 
9 AM. Since the origin-destination matrices are given on an hourly basis, these trips reflect the 
daily dynamics. Intra-zonal trips are not included in those matrices, as by tradition.  
Since an agent should keep more than one plan during the iteration process, the memory 
requirements of one million agents exceeded the available memory. So we restricted our 
interests to the Zurich Area only. This was done with the following steps: (i) all trips are routed 
using free flow travel times; (ii) we define the area of interest as a circle of 26 km radius around 
the center (“Bellevue”) of Zurich City, and (iii) each trip that does not cross this area is 
removed.  
This results in 260,275 trips between 6 AM and 9 AM. All trips are now identified with an 
agent. The “origin” location for the morning trip is assigned to the home activity, and the 
“destination” location is assigned to the work activity. The end time of the home activity is set 
to the departure time of the original trip. The daily patterns “home-work” are then extended to 
the “home-work-home” pattern, where the two homes are at the same location. The duration of 
the “work” activity is set to 8 hours, with no fixed activity end time. At the end we get 260,275 
agents that have an initial day plan. 
 
 
3.3. Traffic Count Data 
 
There are about 230 automatic counting stations registered with the Swiss Federal Roads 
Authority (Bundesamt fuer Strassen). Of those, we had hourly traffic count data for 75 stations. 
Out of those, we were able to locate 33 unequivocally on our network. Since we are just 
interested in the Zurich area, only a subset can be used. Unfortunately there are only 6 useful 
counting stations left. Since they are bi-directional, this means that we can compare 12 links to 
reality. 
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3.4. Simulation Parameters 
 
The maximum number of plans that agents are allowed to keep in the agent database, N , is set 
to 5 plans. This number results from the scenario size in conjunction with computer memory 
limitations. The value of the empirical constant β  used to convert plan scores to selection 
probabilities, is Euro/0.2 . We use the following values for the marginal utilities of the utility 
function used for calculating scores: 
 

hEuroperf /6+=β , hEurotravel /6−=β  and hEurolate /18−=β Epf+=β 

 
Although it is not obvious at first glance, these values mirror the standard values of the Vickrey 
scenario (Arnott et al., 1993): An agent that arrives early to an activity must wait for the activity 
to start.   During this time, the agent cannot perform any activity and therefore forgoes the 

hEuroperf /6+=β  that it could accumulate instead (opportunity cost). An agent that travels 

fore-goes the same amount, plus a loss of hEuro /6  for traveling.   And finally, an agent that 
arrives late receives a penalty of Euro18  per hour late, but is not losing (or gaining) any time 
elsewhere by being late. 
We only look at daily activity chains that consist of one home and one work activity. The 
“typical” times were set to hoursth 16* =  and hourstw 8* = . With these assumptions, the 

maximum score is Euro120  ( Euro60  per activity). For the work activity a starting time 
window is defined between 7:08 AM and 8:52 AM.  The blending factor α  is set to 0.1. This is 
a useful compromise between zero learning and overreaction. We expect that changes in α  will 
mostly affect the speed of relaxation; this may be a topic of future research. 
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4. RESULTS 
 
4.1. Overview 
 
We present the results of four different setups, which result from two different initial conditions 
and from using time re-planning or not. The two initial conditions are: 
 
• Initial departure times given externally: Here, the activity end times from the home activity 

are generated as described earlier. When the home activity ends, agents immediately depart 
and drive to work, where they stay for 8 hours, and then return. We will call the two setups 
where agents initially use externally defined times times-routes-initial-times-extern and 
routes-only-initial-times-extern when times re-planning is enabled and disabled, 
respectively. 

• All agents depart home at 6 AM: Once departed, agents drive to work, where they work for 
8 hours, and then return. These initial conditions are used to have a scenario where the 
simulation starts with a clearly implausible situation. The question that is tested is whether it 
will recover to a realistic solution by itself. We will call the two setups where all agents 
depart at 6 AM times-routes-initial-times-all6am and routes-only-initial-times-all6am when 
times re-planning is enabled and disabled, respectively. 

 
Note that when times re-planning is disabled, only 10 % of agents perform route re-planning, 
but when it is enabled, a total of 20 % of agents perform route re-planning, with half of those 
also performing times re-planning.  
We compare the results with the following indicators: (i) Average travel time: The average 
travel time across all agents plans for each iteration; (ii) Average score: The average score 
across all agents for each iteration; (iii) Departure and arrival time histograms: The number of 
agents that arrive/depart from an activity over time during a certain iteration; (iv) Traffic count 
data comparison: Mean bias and error of the simulations compared to the counting data 
described above. 
 
 
4.2. Initial Plans with Externally Defined Departure Times 
 
This setup tests whether or not the learning, once time re-planning is switched on, drifts away 
from the time structure given by the external data. Since these initial plans are based on realistic 
time distributions, one would assume that the time re-planning will not affect the result that 
much. Re-routing alone should decrease the average travel time and congestion.  
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Figure 2 compares the average travel times over the iterations. The routes-only iteration 
(Figure 2a) quickly gets to a stable result because re-routing is the only part, which has to be 
optimized. The small fluctuations are due to the fact that some percentage of the agents always 
re-plans, and that the traffic flow simulation is stochastic.  
The iterations where time re-planning is switched on (Figure 2b) behave in a similar way, but 
the average travel time is slightly higher than routes-only and also it fluctuates more. However, 
the scores of the times-routes setup are not worse than the scores of the routes-only setup. This 
indicates that the agents are “trading off” travel time for other parts of their utility. In other 
words, by adjusting their activity times (i.e., the times they make their trips) they make up for 
the fact that trips are longer by arriving at a more suitable time to work. The higher fluctuations 
can be attributed to the fact that there are now two re-planning parts, which have to be 
optimized.
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Figure 2: Average travel times of routes-only-initial-times-extern and times-routes-initial-
times-extern 
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(a) average travel times per iteration for 
routes-only-initial-times-extern setup 

(b) average travel times per iteration for 
times-routes-initial-times-extern setup 

 
Figure 3 shows the scores for each iteration of both setups. They are once more similar to each 
other, and once more the routes-only setup (Figure 3a) shows less fluctuation than the setup 
with time  re-planning (Figure 3b). The reason is the same as described above. Comparing to 
Figure 2, one can see that in both setups, the average scores relax considerably more slowly 
than the average travel times. This is due to the score averaging in the agent database.
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Figure 3: Average scores of routes-only-initial-times-extern and times-routes-initial-times-
extern 
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The histograms (Figure 4) show how the re-planning affects the agents. Starting with the same 
configuration (Figure 4a), the routes-only iteration only tries to minimize travel times, so that 
the periods of arrivals decreases (see bold graph of Figure 4b), while departure from home stays 
the same (see dotted graph of Figure 4b).  
Switching on time  re-planning changes also the dotted graph (see Figure 4c). The two peaks of 
the arrival (bold) graph are at 7:08 AM and 8:52 AM, which is the border of the time window 
we defined for these scenarios. The reason for that is the fact that agents, which are too late or 
too early at work try to “squeeze” into this time window. Once they are inside the time window 
they will more or less stay at this plan if they succeeded. Since an “optimal” plan for an agent is 
still to have short travel times, more and more agents try to arrive earlier in the defined time 
window. That is why the left peak is higher than the right one.
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Figure 4: Arrival and departure histograms when the initial plans have “plausible” departure 
times. 
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(a) arrival and departure histograms (5 min time bins) of iteration 0 with “plausible” initial 
activity times 
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(b) arrival and departure histograms (5 min 
time bins) of iteration 260 with time  re-
planning switched off 

(c) arrival and departure histograms (5 min 
time bins) of iteration 200 with time  re-
planning switched on 

 
Finally, we look at the traffic count data. Figure 5 shows the relations of the two setups and the 
real data given by the already mentioned 12 links. As expected, the two results do not differ 
very much, and they are comparable to reality (see also Raney et al., 2003). Also the 
quantitative measures of bias and errors are similar (Table 1). The mean absolute bias is 

fieldsim qq − , the mean absolute error is fieldsim qq − , the mean relative bias is 

( ) fieldfieldsim qqq − , and the mean relative error is fieldfieldsim qqq − , where .  means that 

the values are averaged over all links where field results are available. 
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Table 1: Bias and Error of routes-only-initial-times-extern and times-routes-initial-times-
extern compared to field data at 7-8 AM 

 initial-times-extern 
Mean / Bias routes-only 7-8 AM times-routes 7-8 AM 

Mean Abs. Bias: +331.403 +306.320 
Mean Rel. Bias: +19,6 % +25.3 % 
Mean Abs. Error: 533.553 503.768 
Mean Rel. Error: 37.5 % 35.4 % 

 
 
Figure 5: Initial plans with externally defined departure times: comparison to traffic count 
data 
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4.3. Initial Plans with Departure Time at 6 AM for all Agents 
 
The previous section demonstrated that the results both with respect to the time structure and 
with respect to validation do not (at least) become worse when time  re-planning is switched on. 
However, the initial condition was still based on the externally given time structure. The 
experiments in this section will test in how far a realistic time structure can be generated even 
when starting from a clearly implausible initial condition. For this purpose, all initial plans will 
be modified so that all agents initially depart at 6 AM. Apart from that, the initial plans are the 
same as before. 
Figure 6 shows again the average of travel times for both setups. We see that this time, the 
routes-only setup decreases travel time more slowly than before because it is harder to avoid 
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congestion when all agents start traveling at the same time. Of course, at the end the average 
travel time will be higher. With time  re-planning switched on, average travel times decrease 
rather quickly, because agents are now allowed to change their departure time, too. 
 
Figure 6: Average travel times of routes-only-initial-times-all6am and times-routes-initial-
times-all6am 
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(a) average travel times per iteration for 
routes-only-initial-times-all6am setup 

(b) average travel times per iteration for 
times-routes-initial-times-all6am setup 

 
Also average scores without time  re-planning (Figure 7a) show only little improvement. Only 
optimizing routes  does not help very much because a major part of the agents will then arrive at 
work too early which does not increase scores ( Figure 8b).  
When the time re-planning module is also switched on, agents are now able to have short travel 
times and still arrive at work within the given time window. Figure 7b shows that the average 
score slowly increases to the same level as in Figure 3b. 
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Figure 7: Average scores of routes-only-initial-times-all6am and times-routes-initial-times-
all6am 

 50

 60

 70

 80

 90

 100

 110

 0  50  100  150  200  250  300  350

S
co

re
 (

E
ur

o)
 A

ve
ra

ge

Iteration

Scores
 50

 60

 70

 80

 90

 100

 110

 0  50  100  150  200  250  300  350

S
co

re
 (

E
ur

o)
 A

ve
ra

ge

Iteration

Scores

(a) average scores per iteration for routes-
only-initial-times-all6am setup 

(b) average scores per iteration for times-
routes-initial-times-all6am setup 

 
The histograms (Figure 8) also show those facts. There are many more people who arrive 
between 6 and 7 AM in the routes-only setup (Figure 8b) than in the times-routes setup 
(Figure 8c). The peak of the departure time (dotted) graph of Figure 8c moved toward the same 
time as shown in Figure 4c of the previous section.
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Figure 8: Arrival and departure histograms when in the initial plans everybody departs at 
6 AM. 
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(a) arrival and departure histograms (5 min time bins) of iteration 0 with initial departure 
time 6 AM 
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time bins) of iteration 100 with time  re-
planning switched off 

(c) arrival and departure histograms (5 min 
time bins) of iteration 350 with time  re-
planning switched on 

 
Comparing the results with real word data shows a high discrepancy between the two setups. In 
the routes-only setup almost everybody starts too early. So it underestimates the throughput 
between 7 and 8 AM (Figure 9a). In the times-routes setup (Figure 9b), agents slowly move to 
more appropriate departure times which—at the end—will converge to similar results as 
obtained before. Of course, the calculation of the bias and the error (Table 2) now produces 
completely different results for the routes-only setup.
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Table 2: Bias and Error of routes-only-initial-times-all6AM and times-routes-initial-times-
all6AM compared to field data at 7-8 AM

 initial-times-all6am 
Mean / Bias routes-only 7-8 AM times-routes 7-8 AM 

Mean Abs. Bias: -344.764 +99.236 
Mean Rel. Bias: -31.3 % +12.4 % 
Mean Abs. Error: 644.107 520.256 
Mean Rel. Error: 43.8 % 36.1 % 

 
 

Figure 9: Departure time 6 AM plans: comparison to traffic count data 
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5. COMPUTATIONAL ISSUES 
 
NOTE: Traffic Flow Simulation performance results are indeed discussed elsewhere, and are in 
consequence removed from the paper.  The other performance results vary too much from 
scenario to scenario in order to discuss them in some generality in one paper; I would therefore 
prefer to leave them in.  We have significantly reduced the amount of space this consumes.  
 
Performance: One iteration takes in the average about 102 minutes. The average duration of 
sub-steps of an iteration is listed below: 
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• about 18 sec for the departure time allocation module 
• about 23 min for the router module, of which about 19 min is spent reading the events 
• about 39 min for the traffic flow simulation module, including file input and output (also see 

Cetin and Nagel, 2003) 
• about 11 min for sorting events 
• about 16 min for reading events and processing them into scores 
• about 105 sec for writing the new plans 
• the remaining time (about 12 min) is used for other I/O processes/bottlenecks, 

communication and data preparations 
These times allow the calculation of 15 to 20 iterations per day. 
 
Disk Usage: A complete data set generated by one iteration produces about 280 MB of data 
(when compressed). These will be kept for the first and the last 5 iterations and also for every 
10th iteration. For each of the other iterations only about 40 MB are kept. 
 
Memory Usage: Since we are simulating about 260,000 Agents which keep at most 5 different 
plans and each of them needs about 700 Bytes of memory plus some overhead, we end up with 
a requirement of about 1 GB of memory. The router module also needs about 200 MB of 
memory, which is feasible. Higher resolution networks will need more memory which might 
become a problem in the future. 
 
 
6. FUTURE WORK 
 
At present we only model the “primary” activities  “home” and “work”. We are working on 
adding “secondary” activities, such as shopping and leisure to the system. This requires the 
addition of two more modules: the activity pattern generator and the activity location generator. 
Another module we are interested in adding is a Population generation module, which would 
disaggregate demographic data to obtain individual households and individual household 
members, with certain characteristics, such as a street address, car ownership or household 
income (Beckman et al., 1996; Frick, 2004). The population would not match reality, but would 
result in the same statistics. These modules should also be implemented as “plug-ins”. We are 
also investigating other travel modes such as public transport or pedestrian mode. 
 
Another issue of interest is the possibility that agents could also learn during the day. They 
could re-route while they are stuck in congestion, drop an activity because they are already too 
late, and so on. This “within day  re-planning” (e.g., Axhausen, 1990; Cascetta and Cantarella, 
1991) should help to improve their strategies faster than only “day-by-day  re-planning”, and 
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the interaction with other entities (like traffic lights, changing traffic signs and other ITS 
entities) can be added to the traffic flow simulation. Within-day learning is more realistic since 
some types of decisions are made on time scales much shorter than a day (Doherty and 
Axhausen, 1998). However, within-day  re-planning is at odds with the parallel computing 
approach to the traffic flow simulation (Nagel and Marchal, 2003), which is the reason why it is 
currently not used in our project. 
 
Simulation speedup can also be improved by elimination of performance bottlenecks. At the 
moment the agent database keeps track of all agents of the simulation. Since recalculating an 
agents' strategies is completely independent to other agents, it would be useful to introduce 
parallelism into this. These “multiple agent databases” should then be controlled by a separate 
module, which keeps track of the feedback. This leads us to a clear separation of “agent 
databases” and “feedback”.  
The activity time allocation module itself could be improved, too. It should recognize when 
agents are too early or too late, so the adaptation to a more realistic departure time should be 
done with fewer iterations. 
 
High resolution networks are another issue, especially if there is more precise information 
available about locations. The main goal will be that each agent has its home location at a street 
with a house number, possibly a ramp to its garage, a private pedestrian path to the next tram 
station, and so on. Last but not least, high resolution scenarios are indeed a computational 
challenge.  
 
Quite in general, more precise traffic count data is required. There is some effort to extract 
information of the raw data of the Kanton Zurich, which gives more precise information about 
local traffic situations. 
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