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Abstract

Q-learning is a method from artificial intelligence to solve the reinforcement learning problem (RLP), de-
fined as follows: An agent is faced with a set of states, S. For each state there is a set of actions, As, which
the agent can take. At each state, the agent receives a reward. The task is to select actions such that the
reward is maximized.

Activity generation is for demand generation in the context of transportation simulation. For each
member of a synthetic population, a daily activity plan needs to be found, stating a sequence of activities
(e.g. home - work - shop - home), including locations and times. Activities at different locations generate
demand for transportation.

Activity generation can be modeled as RLP with the states given by the triple (type of activity,
starting time of activity, time already spent at activity). The possible actions are either to stay at a given
activity, or to move to another activity. Rewards are given as “utility per time slice”, which corresponds to
a coarse version of marginal utility. Q-learning has the property that, by repeating similar experiences over
and over again, the agent looks forward in time, i.e. the agent can also go on paths through state space where
high rewards are only given at the end. This paper presents computational results with such an algorithm for
daily activity planning.

Keywords: Activity Planning – Q-Learning – Activity Generation – Within Day Re-learning – Multi Agent
Travel Simulation
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1 Introduction

The larger context of the work presented in this paper is the attempt to build an integrated multi-agent
simulation model for transportation planning, “multi-agent” meaning that each traveler in the simulation is
individually resolved. Multi-agent simulations can be employed on many levels, from housing choice down
to driving behavior. Our own initial goal is to replace the four-step process by a multi-agent simulation. This
implies the following modules and methods:

• The process starts by generating a synthetic population from census data (e.g. (1)).

• Next, for each synthetic person of the synthetic population a plan is generated. Plans consist of
activity patterns, activity locations, activity times, mode choice, route, etc. (e.g. (2, 3, 4)).

• Up to here, the computations of the agents are essentially independent, apart from possible small-scale
coordination problems such as household coordination or ride sharing. In contrast, in the mobility
simulation, all agents’ plans are simultaneously executed and the results of interaction are computed
(e.g. (5, 6)). One important interaction result is congestion. – Note that most traffic micro-simulations
do not truly execute agent plans at the route level, but rather keep the travelers’ destinations and have
the routing done by the network.

• As is well known, the causal relation between the modules goes into both directions. For example, if
many agents chose activities at many different and far apart locations, then this will cause congestion.
This congestion will cause them to select activities which necessitate less travel. The typical way
to solve this problem is to use iterations between the modules (e.g. (7, 8, 9)). This can be either
interpreted as relaxation or as human learning.

For this approach, many collaborating modules need to be designed, implemented, and tested. An
important part of those modules concerns activity generation: For each synthetic individual, a sequence of
activities is generated, including activity location and activity times. Activity-based demand generation is
a very active field of research; see, e.g., the proceedings of two recent conferences (10, 11). The mainstay
of activity-based demand generation are random utility models (RUMs) (12, 13, 3, 4). RUMs, however,
arguably have the disadvantage that (a) they are behaviorally not very realistic, (b) only heuristic approaches
exist for reducing the “choice set” when faced with a very large number of options, (c) they need to be
re-computed when a traveler is thrown “off” its optimal dayplan. In consequence, alternatives are also
investigated, such as behaviorally or rule-based approaches (e.g. (14, 15)).

This paper investigates if a certain approach from Machine Learning, called Q-learning, is applica-
ble to activity generation. The two main questions to answer at this state are: (a) Are the results plausible?
(b) Can they be obtained within reasonable computer time? A more expansive research only makes sense if
both questions can be answered in the affirmative.

This paper concentrates on a module to generate the time allocation part of activity plans, i.e. when
activities should begin, how long they should last, and when they should end. The method should, however,
also be capable to do location choice, or activity pattern selection. Some discussion of this, and related
methods that could be explored, can be found in Sec. 6.

This paper starts with a review of Q-learning (Sec. 2), followed by a section on how to apply this
to activity generation (Sec. 3). The method is first tested on an unrealistic but somewhat challenging “test”
example, and then with a somewhat more realistic case (Sec. 5). The paper is concluded by a discussion
(Sec. 6) and a summary (Sec. 7).
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2 Q-Learning

In artificial intelligence, Q-learning is a well know algorithm that solves the reinforcement learning problem.
The reinforcement learning problem (RLP) can be stated as follows: Given a set S of states s, transitions
between states s → s′, and rewards R(s → s′) associated with each transition. At each state, the agent can
select between different actions a ∈ A(s), which influence the transition probabilities between states. The
task of the agent is to select actions a(s) such that some expected discounted reward,

E

(

∑

t

βtRt

)

, (1)

is maximized. β < 1 is the discount factor, and Rt is the reward being obtained at each time step t.
Rewards can be high, low or even negative. They may come with a delay, in the sense that some

transition may not lead to immediate high reward, but possibly to a high later reward which cannot be
reached by any other sequence of transitions.

β models the effect of how far the agent looks into the future. A β close to one means that rewards
in the far future carry large weight; a small β means the opposite.

Q-learning (e.g. 16, pp. 598–624) is a method to solve the RLP. In Q-learning an agent learns action-
values giving the expected utility of taking a certain action in a given state. These action-values are also
called Q-values. In each state the agent has several options for actions it could execute. For each state-
action-pair (s, a), the agent stores an individual Q-value Q(s, a) that is used for the decision process. The
Q-value for a given state-action-pair corresponds to the expected cumulative reward, Eq. (1), that can be
collected by taking the action.

Q-values are defined the following way:

Q∞(s, a) = R(s, a) + β max
a′

Q∞(s′, a′), (2)

where R(s, a) is the reward for taking action a in state s and s′ is the state that is the result of executing
action a in state s. If the transition after taking a is probabilistic (i.e. several different s ′ can result), then
some suitable average needs to be taken. β is again the discount parameter, in the range [0..1[. In words that
is the Q∞(s, a) equals the reward given for the state action pair (s, a) plus β times the maximal expected
cumulative reward in the resulting state s′.

If an agent always takes the action a′ ∈ A(s′) which maximizes Q(s′, a′), then Q∞(s, a) is exactly
the (expected) reward

∑

t βtRt when starting in state s. When deviating from that “path”, the reward will
be reduced. This shows that always taking the action with the highest Q value solves the RLP.

Note that for low discount parameters, Q∞ depends almost entirely on the current state action pair,
resulting in a very “greedy” search for the optimal solution. In contrast, large discount values correspond
to very long time horizons which means that the agent can look ahead and make its decisions on more
global reflections. Some further insight is gained by assuming, for the moment, constant rewards R(s, a) ≡
R̄ (∀s, a). In that situation, all Q∞ need to be the same, and therefore Q̃∞ = R̄ + β Q̃∞ and thus

Q̃∞ =
1

1 − β
R̄ . (3)

By this argument, one sees that the final Q-values are proportional to the average reward, and the propor-
tionality factor is 1/(1 − β). For β . 1, the factor is very large, and for β → 1, it goes to infinity.

So far, we have only described the steady state of Q-learning, that is the final solution after learning.
However, the steady state is not initially know an therefore it is crucial to have a look at the actual learning
process. The algorithm that we use in order to approximate the steady state (the actual Q-learning algorithm)
is the following:
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1. Initialize the Q-values.

2. Select a random starting state s which has at least one possible action to select from.

3. Select one of the possible actions. This action will get you to the next state s ′.

4. Update the Q-value of the state action pair (s, a) according to the update rule (4) below.

5. Let s = s′ and continue with step 3 if the new state has a least one possible action. If it has none go
to step 2.

The update rule is given by

Qt+1(s, a) = (1 − α)Qt(s, a) + α [R(s, a) + β max
a′

Qt(s
′, a′)], (4)

where Qt(s, a) is the Q-value at the current time-step and Qt+1(s, a) is the updated value. α is the learning
rate and is a parameter of the algorithm.

The proper selection of α is crucial in many applications. Watkins and Dayan (17) showed that
the Q-learning algorithm converges to the steady state if α converges to zero with certain mathematical
properties. However, these conditions are only important if the reward function is noisy. For completely
deterministic rewards one can use αi = 1.

In each state the agent basically can choose from two kinds of behavior: Either it can explore the
state space or it can exploit the information already present in the Q-values. By choosing to exploit, the
agent usually gets to states that are close to the best solution so far. By this it can refine its knowledge about
that solution and collect relatively high rewards. On the other hand, by choosing to explore the agent visits
states that are farther apart from the currently best solution. By doing so, it is possible that it finds a new,
better solution than the one already known.

We use a parameter – the exploration rate pexplore– to set the behavior of our Q-learning algorithm.
In every step, with a probability of 1 − pexplore the agent exploits the information stored in the Q-values,
with probability pexplore the agent chooses a random action in order to explore the state space.

Now assume that the agent has learned some Q values for this situation, either Q∞ according to
Eq. (2) or some other values. Assume that now exploration is switched off (i.e. pexplore = 0), that is,
at every state s the agent selects the action a which maximizes Q(s, a). Can one say anything about the
long-term behavior in this situation?

In fact, this describes a discrete dynamical system. Let us also assume that the number of state
action pairs is finite. Since this is now a deterministic system, the trajectory needs to go to an attractor,
which is either a fixed point or a cycle.1

3 Q learning for daily activities of humans

How can the problem of daily activity planning be encoded so that it becomes a RLP? For this, assume that
the day is segmented into a number of time slices, t = 1..T ; this paper will investigate time slices of 15, 30,
and 60 min. Possible states at each time slice are possible activities, e.g. “Home”, “Work”, “Shop”, etc. At
each time slice, the agent needs to decide if it stays at the current activity, or moves on to a different one. If
the sequence of the activities is fixed, then this is a binary choice between “stay” and “switch”; otherwise, it
gets a bit more complicated.

1Since the system is discrete and finite, the trajectory eventually needs to come back to a state where it was before. Since the
system is deterministic, from then on it will do exactly the same as in the previous cycle.
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To make the model realistic, a state needs to consist of the activity itself, the current time-of-day,
as well as the duration that the agent has already spent at that activity. Activity type and current time only
are not sufficient: Being at work at 3pm but having arrived at 8am is different from being at work at 3pm
but having arrived at 11am. These rewards are easiest defined in terms of reward tables for each activity,
which, for each each arrival time and each duration, give the reward for staying one more time slice. If the
reward is taken as utility, then the reward tables are the same as a discretized marginal utility, multiplied by
the duration of a time slice.

The time structure is assumed to be periodic, that is, at t = T the agent is connected to t = 1, and
over the transition it can stay or switch as it can do with any time increment.

Now assume once more that the agent has learned some Q values and now does exploitation only,
i.e. it always choses the action a which maximizes Q(s, a) at any state s. Because of the time structure,
the system cannot go to a fixed point, and so under normal circumstances it will describe a cycle through
24-hour state space. If the RLP was completely solved, then that path maximizes the score (utility) per
24 hours.2 If the RLP was not completely solved, i.e. some of the Q values do not correspond to the steady
state values, then the agent will nevertheless find a cycle, albeit possibly not the optimal one.

Note that those cycles can also be multiples of 24 hours. For example, an agent can have one full
day where it gets up early and goes to bed late, alternated with a less full day where it gets up later and goes
to bed earlier.

An interesting side-effect of the structure of Q-learning is that the result of the computation is not
only the optimal “cycle” through state space, but also the optimal “paths” if the agent is pushed away from
the optimal cycle. For example, if a transfer between activities takes considerably longer than expected, the
Q values at the arrival state will still point the way to the best continuation of the plan.

4 The “test” Example

4.1 Description

For testing purposes, the following task was designed: Given an activity pattern of four activities – “Home”,
“Work”, “Shop” and “Leisure” – we want to solve the time allocation problem, i.e. find starting and ending
times for these 4 activities such that the resulting overall utility is maximal. The overall utility is thereby
defined as the sum of the utilities of the individual activities.

We define the utility function of the activity “Home” to be independent of the starting time. It is a
step function of the duration with the step being at seven hours. The utility of being at home for less than 7
hours is defined as being zero, the utility of staying at home for seven hours or longer is 7.

The activities “Shop” and “Leisure” both use the same utility function. It is of the same type as the
one of “Home” but the step is at 2 instead of 7 hours. Also the height of the step is set to 2 instead of 7.

The utility function of activity “Work” – other than the ones above – is starting time dependent.
Only if the agent starts working at 8:00 in the morning and stays there for at least 9 hours it will get a utility
of 9. If it starts earlier or later or if it stays for a shorter time the utility of “work” will be 0.

We have intentionally designed the utility functions above in a way that it is difficult to find the
optimal solution. In order to do so, the agent has to look very far in the future as the rewards for correct
behavior are not given until the end of an activity. Integrating activity “Work” into the daily plan is even
more difficult as not only the duration of the activity has to be long enough but also the starting time has to
be chosen correctly. If the agent decides to start working only 15 minutes earlier – or later – it will lose all
the reward given in case of work starting at 8:00.

2That statement is correct only for β → 1. For smaller β, the situation is similar, but not exactly the same.
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These reward tables describe a “difficult” case for the search algorithm, since there is no indidication
at all that a certain path will lead to a good reward later. However, these reward tables do not model reality.
More plausible reward tables for activities generally are smoother and give rewards already at earlier times
of activity execution.

In order to keep the number of states finite, the maximum duration of any activity is restricted to
12 hours. Depending on the resolution this is equivalent to setting the maximal number of consecutive states
spent in the same activity to 12, 24 or 48 respectively.

Finally, we have to specify how we derive the reward tables from the utility functions. This can
be done by calculating the discretized version of the marginal utility function. This is equal to the differ-
ences between utility values at consecutive positions in the utility function of a particular activity. These
consecutive positions are placed according to the time resolution chosen.

To account for the fact that an agent usually has to travel from one location to another between
activities we define a constant travel time between different activities. We choose it to be 60 minutes. The
utility of travel is set to be zero. One might argue that the utility of travel should be negative. However, as
all our activities have positive utilities per time it is already desirable to minimize travel times.

As mentioned earlier, there are basically 3 parameters playing a role for Q-learning: The discount
parameter β, the learning rate α and the exploration rate pexplore.

The first problem we would like to solve is to find a reasonable value for the discount parameter β.
In principle we would like to choose a value close to one for this parameter as we are interested in finding
the day plan which maximizes the cumulative reward or utility. For the utility of a plan it does not matter
when a certain reward is earned only that it is earned. As a result the discount parameter that corresponds
best to the problem is β = 1. Unfortunately, this leads to diverging Q-values.

On the other hand, for efficiency, low discount parameters are best as they reduce interdependency
of the Q-values and therefore lead to higher learning speeds. But, low discount parameters inherently prefer
short activities. This can be to an extent that long activities (such as “Work”) are left out completely while
short activities (such as “Shop”) are repeated over and over again.

Knowing all that, one has to find a compromise. Our preliminary tests showed that for time-slots
of 60 minutes a discount parameter of β = 0.96 works fine. As the resolution increases the length of the
activities in terms of number of states also increases and, as a consequence, the discount parameter β has
to be increased accordingly. In order to have comparable results at different time resolutions, we want the
discount per time t to be the same for all times t > 0 independent of the time resolution tres. This leads to

β
( t

tres1
)

res1
= β

( t

tres2
)

res2
(5)

and then

βres2
= β

(
tres2
tres1

)

res1
. (6)

For βres1
close to 1.0 and tres2

< tres1
, one can approximate this by

≈ 1 − (1 − βres1
)
tres2

tres1

. (7)

With βres1
= 0.96 and tres1

= 60min one obtains

βres2
= 1 −

0.04 tres2

60min
, (8)

where tres2
is the desired time resolution in minutes.

Since our reward tables are completely deterministic, we choose the learning rate α to be 1.0. This
leads to the highest possible convergence speed. However, depending on the value of the discount parameter,
the convergence can be slow.
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The initialization of the Q-values has a large effect on the learning speed and the quality of the
result. In general, initializations with high initial Q-values lead to more exploration of the state space as the
agent has to find out first for each state that it has actually a lower Q-value. Accordingly, low initializations
lead to less exploration. If the Q-values are initialized to low values, the agent finds one feasible solution
very soon and sticks with it very long. As some kind of a compromise, random initialization in a reasonable
range is very often used.

“High” and “low” are defined with respect to the final Q values Q∞(s, a): A high initial Q value is
larger than any final Q∞, a low initial Q value is smaller than any final Q∞. Some a priori estimates can be
obtained from Eq. (3): Q values are certainly high when they are above 1/(1−β)Rmax, where Rmax is the
largest reward in the system. Q values are certainly low when they are below 1/(1 − β)Rmin, where Rmin

is the smallest reward in the system. This also makes clear that “high” and “low” depend on the particular
value of β that was selected.

For our problem we used a “high” initialization with Q-values of 30. This value is chosen such that
it is higher than the highest Q-value in the steady state resulting in a complete exploration of the state space.

The last parameter that we have to deal with is the exploration rate pexplore. As exploration is
basically already taken care of by our initialization, we decided to use a rather low exploration probability
of pexplore = 0.01.

4.2 Results

The above scenario was tested with different resolutions. In the coarsest test we used a time resolution of 60
minutes with a discount parameter β of 0.96. In the subsequent tests the resolution was increased by factors
of two resulting in 30, and 15 minutes respectively, with corresponding β values of 0.98 and 0.99 according
to Eq. (8).

From the design of the utility functions for the four activities “Work”, “Shop”, “Leisure” and
“Home”, it follows that the optimal daily plan corresponds to the one shown in table 2(a). Note that the
time between activities is needed for traveling from one location to another.

We now compare the solutions found by the algorithm with the optimal solution shown in table
2(a). On top of that, we look at the learned Q-values and appraise the ability of the solution to recover from
disturbances. Only if fast and plausible ways of recovering are observed we assume that the algorithm has
converged to a good solution.

In table 2(b) we show computational results obtained by our tests. It can be seen that doubling the
resolution leads to an increase in the number of iterations needed to converge by a factor of 10. The table
gives the minimal number of iterations needed in order to converge with a probability higher than 50%. We
considered the algorithm as having converged if both the optimal daily plan corresponded to the one shown
in table 2(a) and the agent was able to recover from disturbances in a reasonable matter. The running times
were measured on a Mobile Pentium 4 with 2.4 GHz. Our programs were implemented using Java.

One might worry about reliability of the algorithm. As was already mentioned, table 2(b) says only
something about then number of iterations needed in order to converge with a probability of at least 50%.
What if we need a system that converges in at least 99% of the cases? It might be necessary to increase
the number of iterations to 10 times the indicated value or even more. Fortunately, it does not seem to be
this way. In fact, we never observed a failure to converge if the algorithm was run for twice the number of
iterations stated in the table.
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5 A “more realistic” example

5.1 Description

The data used for our “test” example are not very realistic. The “test” example was explicitly designed to
be difficult to solve. In a certain sense it represents the worst case of a distribution of rewards as a reward
for a particular activity is always given only at the end of the activity. So, in order to find a good daily plan
the agent has to look very far in the future.

Looking far into the future is equivalent to discount values β close to one, and large discount value
make it harder to converge. Therefore out “test” example was well suited to test the algorithm. However,
real life is different. Real activities already give rewards at earlier times. For example, being at home pays
off already very early which corresponds to a reward table for the activity “Home” that has some positive
rewards for each hour that it is executed. Therefore, we introduce new reward tables for all of the four
activities:

• Activity “Home” (Fig. 1(a)): The reward for spending one hour at home is independent of the time
that was already spent there. The reward only depends on the time of day, assuming that being at
home during the night (sleeping) pays off more than being at during the day. See figure

• Activity “Work” (Fig. 1(b)): Work pays off most from 8:00 until 18:00. If the agent performs work
outside this time window the rewards per time slice get gradually reduced. The agent gets a bonus for
staying at work for more than 9 hours. However, the reward is reduced if 10 or more hours are spent
at work. Working between 21:00 and 7:00 does not give any reward at all.

• Activity “Shop” (Fig. 1(c)): We assume that shops are open from 8:00 until 19:00. Therefore, shop-
ping gives only rewards during the day. Maximal shopping time is set to 45 minutes. If an agent shops
for a longer time, it does not get any reward for the additional time.

• Activity “Leisure” (Fig. 1(d)): We define leisure similar to activity “Home”. The reward for having
one time slice of leisure is maximal from 19:00 until 24:00 and independent of the time already spent
in this activity. It is minimal, although not zero, from 5:30 until 13:00. There is a smooth transition in
between.

Also the travel times between activities were changed, see Tab. 2(c). This was done in order to
become comparable with earlier work in our group (18).

As with the “test” example, the algorithm was tested with the new reward tables and travel times
with time resolutions of 60, 30 and 15 minutes. All Q-learning parameters were set to the same values as in
the “test” example.

In search of a planning algorithm which is as fast as possible we also tried to use a low initialization
approach. As mentioned earlier, Q-learning with low initialization quickly finds feasible solutions at the
expense of slower convergence to the optimal solution. So if one is looking for reasonably good results and
does not depend on optimal solutions this might be preferable.

With low initialization, we have to make sure that exploration is taken care of by other means. We
therefore use higher exploration rates in this case as is also indicated in Tab. 2(f). Depending on the time
resolution we use a exploration rate pexplore of 0.4, 0.2 or 0.1 respectively.

5.2 Results

First we ran the Q-learning algorithm multiple times for a long time in order to reliably find a good daily
plan for the given reward tables. This was done for each resolution independently. The resulting solutions
are shown in Tab. 2(d). Further on, we will refer to these solutions as the optimal solutions.
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Similar to the “test” example, we test the algorithm for time resolutions of 60, 30 and 15 minutes
respectively and identify the number of iterations needed in order to converge to the best solution with a
probability greater than 50%. This we do both for the high initialization approach and the low initializa-
tion approach. See table 2(e) for results using the high initialization and table 2(f) for results of the low
initialization approach.

The number of iterations necessary to converge for the real world example with high initialization
and the “test” example are almost the same. This makes sense as the high initialization results in a complete
exploration of the state space. As the state space is of the same size in both cases, it is to be expected that
the number of iterations needed to explore it is roughly the same. Only at the highest time resolution there
is an observable difference: The real world example converges to the best solution already after 2 million
iterations compared to 5 million iterations for the “test” example.

Compared to the high initialization tests, with low initialization daily activity plans can be generated
much earlier. It seems that usable plans together with reasonable disturbance recovery are produced already
after approximately 10% of the time needed using the high initialization approach. However, these plans
are not exactly the best daily plans identified by using the explorative initialization. Here, the engineer has
the freedom to choose the method which better suits his needs: If speed is more limiting than quality of the
solution than she will probably choose the low initialization, otherwise, if the best possible quality is needed
high initialization may be the choice.

In order to picture the meaning of the resulting Q-values we show examples of how the agent would
recover from disturbances. We first look at what happens if the agent – for some reason – finds itself coming
home at 4:00 in the morning. Assuming the 15 minutes resolution case, it stays at home until 07:15 and
changes then to the next activity which is “work”. From then on the agent is back on his usual daily plan.
As an other example we want to have a look at what happens if the agent comes to work late. Let us assume
that it starts working at 10:00. Again, looking at the Q-values, the agent decides to stay at work for 8 hours
(instead of 9.5 hours on a normal day) until 18:00 and then change to the next activity which is “Shop”. Now
activity “Shop” starts 30 minutes later than in the optimal case namely at 18:15 instead of 17:45. The agent
now decides to spend 30 minutes shopping and to continue then with activity “Leisure”. Arriving at the next
activity at 19:00, the agent is still 30 minutes late compared to its optimal daily plan. Then, it spends 4 hours
and 45 minutes with leisure activities saving 30 minutes. Finally, the agent arrives at home at 0:15 catching
up to its usual daily plan.

The second example reveals what it means to do within day re-planning: The agent choses a graceful
way to get out of the undesired situation. In our case, this is done by gradually saving time where it hurts
the least. The agent does not try to catch up with its optimal plan at any cost.

6 Discussion and further work

It is interesting to know what kind of a problem Q-learning is trying to solve. There exist nQ−values =
nactivities · nactions · sizerewardtable Q-values that we are trying to find the steady state for. For the case
where the time resolution tres is 15 minutes, nQ−values = 4 · 2 · 24 · 4 · 12 · 4 = 36864. Therefore any
algorithm will need at least 36864 steps to find the proper Q-values.

But it is to be expected that due to high discount parameters, it will take longer to find the steady
state. In order to get a feeling for the problem, let us consider the following fact:

The 10% time horizon – the number of states a reward has to be away from the current state in
order to affect it by less than 10% – for a discount parameter of β = 0.99 is thorizon10%

= logβ 0.1 ≈ 229,
meaning that the states 229 steps (or more than 2 days) in the future from the current state still affect the
Q-value of the current state substantially.

If we assume that a fictitious algorithm would know all the optimal paths in the state space in ad-
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vance (i.e. it would know in each state which action maximizes the cumulative discounted reward) it would
need 229 state transitions to calculate the proper Q-value for that state. Since the rewards are transmit-
ted against the direction in which the algorithm proceeds, the algorithm needs to take the whole optimal
path/cycle 229 times in order to have the reward propagated backwards to below the 10% level. This argu-
ment indicates that an estimation of the number of necessary learning steps is nQ−values · thorizon10%

, which
is 36864 · 229 = 8.4 million steps in our case. This is, however, a worst case argument, which would, e.g.,
be fulfilled if all good paths/cycles in the system were completely parallel. In most cases, there will be more
interdependence of the Q-values. Also, we are not looking for exact Q-values, but only for good daily plans.
In our tests, the algorithm found good plans with only 2 million visits.

After understanding the structure of the problem a bit better, one can in fact envisage much faster
algorithms. As becomes clear from the above argument, the slowness of Q-learning lies in the fact that
rewards are transmitted against the direction of the algorithm. It turns out that this is in fact only necessary
when the expected reward of a state-action-pair is not known (16). Since in our case they are known, one can,
for example, use faster techniques from Dynamical Programming for the same problem (19). Alternatively,
one could probably even use a generalized shortest path algorithm (20) and simply have it originate at all
possible states at a given point in time.

Another problem with our implementation of Q-learning is the need for reward tables. These have a
large number of values to be defined (for tres = 15min there are 18432). The question is where to get these
from. One option is to use discretized utility functions.

As mentioned in the introduction, the problem of activity time selection is “to easy” for Q-learning,
since it can also be solved by numerical methods. However, the general method of expanding the day into
possible states along the time axis is amenable to more complicated formulations. For example, one could
allow for skipping activities (i.e. have direct transitions to the second-next activity), one could allow for
arbitrary activity sequences, and one could include a limited number of different possible locations for each
activity. We therefore believe that the general approach – to see daily activity planning as the question to
find good cycles through space-time – provides many interesting avenues for future research.

7 Summary

We used the Q-learning algorithm to generate flexible daily activity plans. This was done using reward
tables that give the utility per time slot for executing an activity for an additional time slot. This utility per
time slot is activity, time of day and starting time dependent resulting in complex utility landscapes. The
algorithm tries to find an optimal circular path in the activity state space that corresponds to a 24 hours daily
plan that can be executed repeatedly on consecutive days.

The solution found is not only an optimal daily plan but it also holds all information necessary to
react to unforeseen disturbances. If such a disturbance occurs, all the agent which uses the daily plan has to
do in order to react is to look up in a table the best actions to take in that case.

We applied our algorithm to an example with 4 activities “Work”, “Shop”, “Leisure” and “Home” in
order to generate daily plans of different resolutions. With a time granularity of 15 minutes the convergence
took no longer than 2 seconds, for 30 minutes temporal resolution the algorithm had to run for approximately
0.5 seconds to find the optimum.

Using this method in a multi agent travel simulation to plan the activities of up to 10 mill agents
seems feasible and the resulting within day re-planning capabilities promise computational alternatives to
“true” within-day replanning.
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FIGURE 1: Plot of the rewards per 15 minutes for different activities in the “more realistic” example.
Rewards depend on the starting time of an activity and the duration that it lasted so far. – (a) Home activity.
– (b) Work activity. – (c) Shop activity. – (d) Leisure activity.
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TABLE 1: (a) Optimal day plan for the “test” example. – (b) Computational performance with the “test”
example using “high” initialization. Shown are, for different time resolutions, the number of iterations and
the running time necessary to converge to the optimal solution, Tab. 2(b), with a probability substantially
higher than 50%. – (c) Travel times for the “more realistic” example. Those times are assumed to be con-
stant throughout the day. – (d) Computational performance with the “real world” example using “high”
initialization. We indicate the number of iterations needed to converge to the optimal solution with a proba-
bility substantially higher than 50%. – (e) Computational performance with the “real world” example using
“low” initialization. We indicate the number of iterations needed to converge to a reasonable solution with
a probability substantially higher than 50%. pexplore is the exploration rate.

work shop leisure home
08:00 – 17:00 18:00 – 20:00 21:00 – 23:00 00:00 – 07:00

(a)

Resolution tresolution Number of Iterations Running Time
60 minutes 50k 100ms
30 minutes 500k 546ms
15 minutes 5M 4.89s

(b)

ttravel for ...
From To ... tres = 15min ... tres = 30min ... tres = 60min

Home Work 45min 60min 60min
Work Shop 15min 30min 60min
Shop Leisure 15min 30min 60min

Leisure Home 30min 30min 60min
(c)

work shop leisure home
60 min 08:00 – 17:00 18:00 – 18:00 19:00 – 23:00 00:00 – 07:00

(skipped)

30 min 08:00 - 17:30 18:00 – 18:30 19:00 – 23:30 00:00 – 07:00

15 min 08:00 - 17:30 17:45 – 18:15 18:30 – 23:45 00:15 – 07:15
(d)

Resolution tresolution Number of Iterations Running Time
60 minutes 50k 143ms
30 minutes 500k 545ms
15 minutes 2M 1.98s

(e)

Resolution tresolution pexplore Number of Iterations Running Time
60 minutes 0.4 10k 78ms
30 minutes 0.2 50k 114ms
15 minutes 0.1 500k 559ms

(f)


