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ABSTRACT 

There is considerable disagreement to which extent different versions of the kinematic wave 
model (KWM) can explain/predict certain effects of traffic flow dynamics.  In this paper, first 
the traditional KWM, with a strictly convex fundamental diagram (FD), is explored.  It is 
found that, after careful examination, such a model can explain most but not all observations 
of traffic flow dynamics.  KWMs with piecewise linear segments are closer to the 
observations, but do still leave open questions, most notably the spontaneous emergence of 
jams.  KWMs with concave segments are less well investigated in this context, but do not 
seem to offer a significantly better alternative. 
An important conclusion of our study is that many existing data sets are not well enough 
documented to be of help to answer critical questions.  For example, there seems to be only 
one empirical observation of spontaneous traffic breakdown, and it is neither published nor 
widely disseminated.  Similarly, there are very few investigations that include the spatial 
dimension, without which many questions cannot be answered.   
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1.  INTRODUCTION 

The objectives of this work are to: 
• critically summarize the predictive capabilities and predictions of the 
classical kinematic-wave model (KWM) of Lighthill and Whitham (1955) and 
Richards (1956), where by “classical” is intended the case of a strictly convex 
fundamental diagram (traffic stream model); 
• critically summarize the extant data that seem to represent phenomena that 
respectively are and are not reproduced by those predictions, especially with a 
view toward identifying those disagreements between observed phenomena 
and the classical KWM that seem most firmly established; 
• briefly discuss prospect for reproducing some of the phenomena deemed 
most inconsistent with the classical KWM via use of a fundamental diagram 
(FD) that is not strictly convex. 

 
It is important to note that whether an allegedly observed phenomenon is ``firmly established'' 
is decidedly a subjective judgment.  An element of firmness certainly is reproduction by 
multiple independent observers; however, that is not sufficient, because it is possible for 
multiple observers to build upon the same mistaken assumption or technique.  It is therefore 
possible for two reasonable people to disagree as to whether existence of an alleged 
phenomenon has been firmly established, and indeed the two authors themselves do not 
completely agree in all instances.  Our approach in cases where either of us has doubts is 
simply to summarize, as objectively as we can manage, both sides of the issue. 
 
Somewhat dually, on the theoretical side of agreement there arise issues associated with 
interpretation of the predictive variables produced by a theory.  This issue certainly arises for 
continuum models, of which any version of the KWM is an instance, because such models 
have continuous functions (e.g., mean speed) as their predictive variables, whereas any 
particular instance of traffic flow manifestly consists of discrete vehicles having a specific 
location at any given instance of time.  Tying theoretical continuum results to observations is 
perhaps particularly difficult because much of the extant data is obtained by aggregating over 
time at somewhat sparsely spaced detectors, yet there seems a relative paucity of studies of 
the effect of either aggregation interval or detector spacing. 
 
The contents of this work are as follows.  In Section 2 we summarize the predictions of the 
classical KWM, and associated issues, especially those involving computational employment 
of the KWM.  Section 3 contains a discussion of instances of agreement of those predictions 
with observations (qualitative features, cumulative flows), along with a critique of such 
observations, including especially areas where further observational studies seem warranted. 
Section 4 is devoted to a critical discussion of alleged observations that seem to disagree with 
the classical KWM, or in some instances with any version of the KWM.  The specific alleged 
discrepancies discussed there include (Subsection 4.1) unstable flow and related phenomena 
(spontaneous breakdown, the two-capacity phenomenon), (Subsection 4.2) what we term 
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empirically jammed flow (particularly “wide jams”), and (Subsection 4.3) internal structure in 
congested flow.   
 
Section 5 is devoted to a brief discussion of the prospects for variants (e.g., nonconvex FDs) 
of the KWM to reproduce some observations that seem inconsistent with the classical KWM.    
Our concluding Section 6 contains conclusions and recommendations for further related work.   

2.  THE CLASSICAL KWM 

The classical KWM for traffic consists of the equation of continuity, 
 
 ( , ) ( , ) 0,t xx t q x tρ∂ + ∂ =  
 
plus the assumption that flow (q=q(x,t)) can be written as a function (fundamental diagram, 
FD) of density (ρ=ρ(x,t)) and possibly explicitly of longitudinal position (x) and time (t),say  
 
 ( , ) ( ( , ), ,q x t Q x t x tρ= ).  
 
Here Q is strictly convex in ρ, i.e. 2 ( , , ) 0Q x tρ ρ∂ > , and vanishes at ρ=0 and at some jam density 
ρ=ρjam (see Fig. 1).  
 
 

Figure 1 - A strictly convex FD, as typically conceptualized in regard to the KWM. 
 
In the special case that the FD is spatially homogeneous (independent of x), it follows that 
density is a solution of the nonlinear first-order conservation law  
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 ( , ) ( , ) ( , ) 0.t xx t Q t x tρρ ρ ρ∂ + ∂ ∂ =  (1) 
 
In practice the FD commonly is assumed to be piecewise constant in x, so that Eq. (1) holds 
except at points of discontinuity.  (See Sec. 2 for further brief discussion of the effect of such 
points.)  The FD further is commonly assumed stationary (i.e., not to depend explicitly upon 
time), although nonstationary effects could be included (e.g., to model the effect of sudden 
changes in weather). 
 
In the homogeneous stationary case the conservation law Eq. (1) implies that density is 
constant along the “characteristic curves” in the (t,x)-plane that are defined by the ordinary 
differential equations 
 
 ( , ) : ( ( , )).dx c x t Q x t

dt ρ ρ= = ∂  (2) 

 
Because density is constant along a characteristic, these curves are in fact lines in the (t,x)-
plane, with slope equal to the (constant) wave velocity c=c(ρ) along that line. 
 
Let us momentarily consider, for simplicity, an infinitely long one-dimensional system with 
initial data given at t=0, say ρ (x,0)= ρ0(x).  If through (t,x), with t>0, there passed exactly 
one characteristic intersecting the x-axis (i.e., t=0), then the density at that point would be 
uniquely determined as that initially specified at that point of intersection with the initial line.  
Although there exist situations in which this stipulation holds, in general there are two ways 
in which it can fail. 
 
First consider a situation (e.g., near the end of a rush period) in which the density is increasing 
as one moves downstream (increasing x) along the initial line.  Because of the strict convexity 
the wave speed is (algebraically) decreasing along that interval, and therefore any two 
characteristics emanating from points along this interval will eventually intersect.  At such a 
point the ``constant density along characteristics'' specification of the preceding paragraph 
therefore fails to specify a unique value of the density. 
 
This ambiguity is traditionally resolved via a shock wave, which is to  say a curve x=xs(t) in 
the (t,x)-plane that is the locus of the initial points of intersection of characteristics, and along 
which the density (and hence flow) are permitted to be discontinuous.  The shock condition 
  
 ( ( )) ( ( ))

:
( ) ( )

s u d

u d

dx Q t Q tq
dt t t

ρ ρ
ρ ρ ρ

−∆
= =
∆ −

 (3) 

 
then follows from conservation of vehicles.  Here ρu(t)= ρ(xs(t)-,t) (ρd(t)= ρ(xs(t)+,t)) is the 
density immediately upstream (downstream) of the shock wave at time t.  If one then applies 
the “constant density along characteristics” specification only so long as the characteristic 



 
 

Insert your chapter title on righthand pages  5 
 
 

does not cross a shock, then the solution again is uniquely specified everywhere.  In 
particular, now Eq. (3) is an ordinary differential equation that serves to determine the 
trajectory of the shock wave. 
 
In the alternative case that the initial density is decreasing as one moves downstream no 
corresponding difficulty arises; the characteristics diverge (“fan out'”) with increasing time, 
but one and only one characteristic passes through each point (t,x), t>0.  However, in the 
limiting case in which at some location x0 there is a jump discontinuity in the initial density, 
with the downstream density smaller (e.g., at a traffic signal that has just turned green), there 
arises a situation in which there are points (t,x), t>0, through which no characteristic passes.  
In such a case one mathematical (weak) solution is a shock, with densities downstream 
(upstream), up to the downstream (upstream) characteristic passing through (t,x)=(0,x0), equal 
to ρ(x0+,0) (ρ(x0-,0)), and trajectory otherwise determined by Eq. (3), just as in the preceding 
paragraph.  However a second solution that fills the gap between the upstream characteristic 
through (t,x)=(0, x0) and the downstream characteristic through the same point is given by the 
similarity solution 
 

 1 0( , ) ,
x x

x t c
t

ρ − −⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (4) 

 
where c-1 is the functional inverse (i.e. the inverse function) of the wave velocity, which exists 
because of the strict convexity of Q. 
 
In the case of such initial discontinuities one can in fact create infinitely many (weak) 
solutions by piecing together segments of this similarity solution with pieces of the preceding 
shock solution.  However it is generally deemed that the similarity solution is that best 
representing the true state of traffic.  The simplest mathematical argument supporting that 
choice is “stability”:  if one considers a sequence of initial densities having linear segments 
about x=x0 that converge to the discontinuous initial density, and otherwise are equal to that 
initial density, then the corresponding (now uniquely determined, as previously) solutions 
resemble and converge to the similarity solution.  That is, the similarity solution is self-
healing, in that small perturbations from it return to it, whereas (in the present case) small 
perturbations of the shock solutions diverge from that shock solution. 
 
The simplest argument supporting the choice of similarity and involving driver behavior is 
that any shock segment represents drivers traveling more slowly than they safely could, 
according to the prevailing FD.  The choice of the similarity solution also relates 
mathematically to the so-called “entropy condition,” which in turn also has ties to driver 
behavior.  In its application to the classical KWM the entropy condition essentially asserts 
(Ansorge, 1990) that drivers accelerate as soon as safely possible and wait as long as safely 
possible to decelerate, where safety is denominated by adherence to the given FD.  But the 
entropy condition is relevant mostly because it can be given a quantitative formulation (e.g., 
Leveque, 1992) that can be applied to computational approximations.  This is extremely 
important, because early within the computational development of traffic flow theory some 
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investigators mistakenly concluded that the classical KWM was fundamentally flawed 
because they inappropriately employed simple and reasonable computational approximations 
that fail to satisfy the entropy condition, and therefore converge, for an initial discontinuity as 
discussed in the preceding two paragraphs, to the unstable shock solution, rather than to the 
stable similarity solution; cf. Ross (1988), Newell (1989), Ross (1989).  In fact this mistaken 
conclusion seems to have provided much of the impetus for development of so-called higher-
order methods (Payne, 1971), some of which have recently been shown (Aw and Rascle, 
2000)  to be fatally flawed, in the sense that they can develop negative (i.e., upstream!)  flows, 
even though all flows are initially downstream (and all initial densities nonnegative and less 
than jam density). 
 
The STRADA code (Buisson, 1997), which has been widely applied in France, is based on 
computational solution of classical KWMs via the Godunov method (Lebacque, 1996), which 
has a discretization error that is first order in both space and time.  Computational methods 
having higher-order computational approximations exist (Bale et al, (2002), but seem not to 
have been explored in traffic flow, perhaps because lower-order methods in fact have some 
advantages for the real-time demands of traffic control.  Of course it is necessary, for any 
computational implementation, to consider a system of only some finite length, and therefore 
to incorporate appropriate boundary conditions.  See Lebacque (to appear) for a discussion of 
boundary conditions, and Nelson and Kumar (2004) for the extension of these to interfaces 
(jump discontinuities of the FD in x) and point constrictions (removable singularities, in x, of 
the FD).  In these cases consideration of only the similarity (i.e., stable) solution, for 
downward jumps in density as one moves downstream, is again conventionally adopted to 
obtain uniqueness.  

3.  EMPIRICAL AGREEMENT WITH THE CLASSICAL KWM 

In this section we review empirical results that are predominantly considered to reflect 
agreement between observations and predictions from the classical KWM.  The next section 
is then devoted to a discussion of empirical observations that are conversely generally 
considered to reflect disagreement between observational data and the KWM.  In many 
instances there are widely held but contrary opinions regarding these matters, in the sense that 
procedures for both the analysis and interpretation of data and the mapping of continuum 
predictions onto discrete data are decidedly subject to differences of opinion.  To that extent 
the classification of a particular allegedly observed phenomenon as reflecting agreement or 
disagreement with the KWM is somewhat arbitrary. 
 
Qualitative consistency between observations and the predictions of the KWM, particularly 
the shock waves and acceleration waves delineated in the preceding section, comprise perhaps 
the most widely accepted type of agreement.  This agreement is not easily or widely 
documented, perhaps precisely because it is so widely accepted.  For example, much of the 
technology underlying the Highway Capacity Manual, which is a semi-official U.S. standard 
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for the analysis and design of roadway facilities, is based on supply-demand analysis, which 
is the steady-state version of the KWM.  The situation is also complicated by the fact that 
many of the empirical studies that might provide verification have been reported in the 
context of the literature devoted to a particular type of facility (e.g., freeway or signalized 
intersection), as opposed to the traffic modeling literature, and therefore not necessarily 
considered in the light of consistency between data and the KWM. 

3.1 Shock waves 

Shock waves have been primarily observed in the context of freeway bottlenecks, which is to 
say freeway sections at which the capacity (maximum) flow in the FD of Fig. 1 is lower than 
immediately upstream.  This is presumably because (inductive-loop) data from such locations 
are widely available, and because an understanding of the manner in which congestion at such 
locations forms and behaves is widely considered important to mitigation of the undesirable 
increase in travel times that is associated with congestion.  According to the classical KWM, 
whenever the demand (flow) just upstream of the bottleneck entrance exceeds the capacity of 
the bottleneck, a shock wave will form at the entrance the bottleneck and propagate upstream, 
leaving behind (i.e., bounded upstream by the moving shock discontinuity and downstream by 
the fixed bottleneck entrance) a “queue” of vehicles in which flow is equal to bottleneck 
capacity.  However, in that queue the density will be the higher of the two densities 
corresponding to that flow on the FD, and therefore mean vehicle speed (= flow divided by 
density) will be (typically much) lower than that either upstream of the shock wave or 
downstream of the bottleneck entrance.  Further, the speed of the shock should be predictable 
from the shock condition (3). 
 
Agreements between these KWM predictions and observations have been documented, 
perhaps most notably in a series of data-oriented papers (Cassidy and Mauch, 2001; Windover 
and Cassidy, 2001) and companion modeling-oriented work (Newell, 2002) emanating from 
the transportation group at the University of California at Berkeley; see also Banks (1999).  
This collective body of work even argues somewhat persuasively that a “zeroth order” 
(Newell, 2002) theory of highway traffic, which relies on an entirely triangular FD, is still 
able to predict accurately the most important effects of highway traffic, especially cumulative 
flows. 
 
Note however that cumulative flows are integral quantities, in the sense that at any location x 
they are the time integral of the differential flow q(x,t), and while integral quantities are 
inherently easier to both measure and predict than the corresponding differential quantity, 
they may also be of inherently less interest; e.g., it appears that numerical differentiation, with 
the associated inherent loss of accuracy, will be required in order to obtain speeds and hence 
travel times from cumulative flows.  Of course the KWM characterization of a deceleration 
region as a “shock wave” of zero thickness is a manifest idealization; nonetheless the actual 
structure of such transition zones upstream of queues has only recently been investigated 
empirically, by Muñoz and Daganzo (2003), who provide detailed instances of shocks that are 
about 1 km wide, corresponding to a relatively gradual deceleration of about 1/3 m/sec2.  
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Obviously this imposes some spatial (and presumably temporal) limitation on the scale of 
validity of the KWM, but these workers further argue that even with such a wide shock the 
KWM can predict many relevant quantities quite accurately.  As an example they cite vehicle 
positions to within 160 m, or about five vehicle spacings; however this bears further 
elaboration, because neither the KWM not any other continuum model predicts vehicle 
spacing per se. 

3.2. Acceleration waves 

The focus in validation of the KWM has tended toward shock waves, perhaps because of the 
ready availability of data from “point” (e.g., inductive-loop) detectors on freeways, and the 
practical interest in congestion (and means for its alleviation) on freeways.  On the other hand 
there seems to be a relative paucity of observational data capable of exemplifying the 
companion KWM prediction of acceleration waves.  This is presumably because freeway 
detectors tend to be located upstream of potential bottlenecks, and therefore not in position to 
acquire data representative of the “queue discharge” that is the manifestation of acceleration 
waves downstream of a bottleneck.  On the other hand acceleration waves are extremely 
important to the behavior of traffic at signalized intersections; we believe the literature related 
to such intersections is an important source of potential data relative to validation of the 
KWM that has been too much neglected. 
 
A full realization of the potential use of such data would require spatially extensive 
measurements of flow during a green cycle, both upstream and downstream of the signal.  
With more widespread use of camera-controlled signals, such data seems destined to become 
more widely available.  Even now there is some data available, in the form of measurements 
of the “saturation flow' at a signal during the green phase; this parameter is extremely 
important to the performance of signalized intersections, and has been extensively discussed 
in the literature on signalized intersections.  The prediction of the KWM is that (unopposed) 
queue discharges at such an intersection will be equal to the minimum of the capacity 
(maximum) flows immediately upstream of the intersection, at the intersection itself, or 
immediately downstream of the intersection, but in any event that it will remain constant 
during the green phase of the signal.  In regard to this prediction, Lin, Tseng and Su (2004) 
state that  

“actual queue discharge patterns, however, often do not display an 
identifiable steady maximum rate.”   

On the other hand, the variations in observed flow at the intersection that are reported by 
these workers are only of the order of 10-15% (see also Bonneson, 1991).  Thus here the 
KWM seems to be categorically neither a success nor a failure, but rather the appropriate 
view is dependent upon the level of accuracy required for the application at hand.  We note 
that Lebacque (2002) has considered replacing the entropy condition for the KWM by what 
he terms as a “bounded acceleration” condition, precisely because of doubts about sufficiency 
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of the accuracy of the entropy solutions for modeling ramp metering.  It should, however, also 
be noted that a KWM with a strictly convex FD does not even predict a constant flow rate out 
of the traffic light; at best, it predicts maximum flow exactly at the position of the light. 

3.3. Boundary-induced Breakdown 

Section 2 mentions the FD as a hypothetical representation of flow as a function of density.  
Let us call the FD so related to the KWM theory KWM-FD.  One can also measure flows and 
densities in the field, leading to an empirical FD.  Classically such observations lead to 
empirical FDs that resemble the KWM-FD well in the lower-density free-flow regime, but at 
higher densities display a tail extrapolating the free-flow data lying above a “cloud” of widely 
scattered data points (Drake, Schofer and May, 1967,  Koshi, Iwasaki and Ohkura, 1981; 
Kerner, 2002, esp. Figs. 14 and 16); cf. Fig. 2 for a typical instance of such an “inverted-
lambda” empirical FD.  Often it is better to plot density ρ, flow q and velocity v as functions 
of time, as in Fig. 3.  These time-series data tend to show that a typical transition is from the 
free-flow regime to a regime where flow is only somewhat diminished but densities are much 
higher, meaning much lower velocities (Mika, Keer and Yuan, 1969; Kerner and Rehborn, 
1996a; Kerner, 1998, 1999a); such a transition often is termed “breakdown.” 
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Figure 2 - Empirical fundamental diagram, as recorded on the German freeway A 43.  Source: 

Nagel, Wagner, and Woesler, 2003. 
 
 
Daganzo, Cassidy and Bertini (1999) note that a bottleneck downstream of a measurement 
location can easily generate such a plot, in the following way:  

• The system starts with low flow at low densities.  
• Both flow and density keep increasing, along the “free flow” branch of the 
fundamental diagram.  
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• This flow can be larger than what can flow through the bottleneck.  Then, a 
queue begins to form upstream of the bottleneck, but that does not immediately 
influence the measurement.  
• Eventually, the queue will reach the measurement location.  At that point in 
time, data points will move to a much higher density, while the flow value will 
now drop to bottleneck capacity.   

This is exactly what the KWM predicts, in that there is a transition from free flow to 
congested flow that accompanies a shock wave propagating upstream.  Thus this must be 
marked as a success of the classical KWM. 
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Figure 3 - Time series of the three fundamental variables of traffic flow.  The data have 
been recorded on the German freeway A1 near an intersection with German freeway A59,  

in June 1996.  Source: Nagel, Wagner, and Woesler, 2003. 
 
Unfortunately, there is too much flow-density data in the literature where the associated 
geometrical constraints are not well enough documented.  Such data is relatively useless for 
many of the points raised in the current scientific discussion.  At the same time alternative 
descriptions, such as that involving three phases, free flow, congested or synchronized and 
jammed “synchronized flow,” do not yet seem to have evolved to the point that they can 
provide quantitative predictions even capable of being tested.  (But see Schönhof and 
Helbing, submitted.) 
 
This KWM interpretation of empirical observations of breakdown has recently given rise to 
questions regarding the data analysis techniques traditionally employed for empirical FDs.  
Specifically, the empirical FD is obtained from averaging, for example over fixed time 
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intervals.  If one assumes that the KWM describes traffic, then these averages can extend over 
several regimes.  This means that linear combinations of points on the KWM-FD can become 
points of the empirical FD.  For a convex KWM-FD this means that points within the KWM-
FD can become an empirical data point. 
 
Cassidy and Bertini (1999) pursue this line of reasoning in some detail.  They also describe 
how averages can be restricted to time intervals of (nearly) stationary traffic, ensuring that the 
empirical data points lie on a possibly existing KWM-FD as much as possible.  Unfortunately, 
these results are not conclusive as regards the possibility of obtaining a KWM-FD via filtering 
empirical data for stationarity, because data so filtered are sparse both near capacity flow and 
in the congested flow regime.  On the other hand, such sparsity is exactly what would be 
predicted by the KWM, in the region upstream of a bottleneck, which is where data 
customarily are taken (and indeed where the KWM predicts data must be taken, in order to 
observe any congested data).  That is, the KWM predicts that once flow at an observation 
point upstream of a bottleneck exceeds the capacity of that bottleneck, it will do so for only a 
limited time, after which the queue formed at the bottleneck will spill back to the observation 
point and flow at that point subsequently will be equal to the bottleneck capacity (i.e., will 
correspond to a single density-flow point).  Indeed, the chief inconsistency between the 
filtered near-stationary data and the KWM seems to be the existence of multiple data points in 
the congested regime (cf. Fig. 11 of Cassidy and Bertini, 1999).  We believe much remains to 
be done in the area of data analysis related to empirical FDs. 

4.  EMPIRICAL DISAGREEMENT WITH THE CLASSICAL KWM 

In this section we review empirical results that are predominantly considered to reflect 
disagreement between observations and predictions from the classical KWM.  As in the 
preceding section, “agreement” and “disagreement” often are a matter of degree, and to that 
extent it is somewhat subjective as to whether one considers the KWM consistent or 
inconsistent with particular observations.  Further, the disposition of an individual or group 
toward perceiving consistency or inconsistency between the KWM and a particular set of 
observations often is remarkably reflective of the degree of comfort and familiarity with the 
KWM or with some alternative theory.  We make a significant effort to factor out such 
inherent bias, but perfection in that direction is remarkably elusive. 

4.1 Unstable flow, spontaneous breakdown and the two-capacity phenomenon 

For the classical strictly convex KWM-FD, as exemplified in Fig. 1, one typically conceives 
of two flow regimes, a free flow and congested flow, separated roughly by the density value 
ρmax at which the flow achieves its maximum value, q=qmax=Q(ρmax).  These two regimes are 
thus qualitatively distinguished by the sign of the associated wave speed, c=Q', which is to 
say by the direction of propagation along the roadway of small perturbations in (e.g.) the 
density.  Unfortunately, this clean separation into qualitatively different regimes does not 
empirically appear so distinctly (cf. Fig. 2). 
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Basically, empirical FDs are linear for small densities, but become more complicated for 
higher densities, presumably because interactions become vehicles become increasingly more 
important as densities increase.  However, in addition to the empirical free-flow regime, one 
sees underneath its higher-density extension (“tail”), and overlapping it for some range of 
densities (Hall and Agyemang-Duah, 1991; Kerner and Rehborn, 1996a), a regime consisting 
of widely scattered data points.  In the preceding section we have already offered one 
hypothesis that might somewhat reconcile such data with the KWM-FD, but if one takes such 
data at face value - as has been done throughout much of the history of traffic flow theory - 
then it certainly seems doubtful they can be represented adequately by any single continuous 
function.  This observation is classical in traffic flow theory, and is behind (e.g.)  the well-
known “two-regime” theory (Ceder, 1967), in which flow is represented as a discontinuous 
function of density. 
 
The interpretation of this regime is considerably controversial, and even the terms one 
chooses to employ in referring to it can evoke some conscious or subconscious bias toward 
one or another interpretation, and perhaps associated theory.  In a perhaps tedious effort to 
avoid any such bias, we shall henceforth employ the following terminology: 

• By empirical congested flow we shall intend any data clearly not falling 
within the empirical free flow regime, as defined above.   
• By empirically uncorrelated flow we shall intend any data set within which 
there is considerable scatter in the density-flow plane, as illustrated in Figure 
2.  (Thus empirically uncorrelated flow is a subclass of empirical congested 
flow.)   
• By empirical jammed flow we shall intend yet another subclass of empirical 
congested flow that has been hypothesized by some investigators, as 
discussed in more detail in the following subsection. 

In using these terms the word “empirical” and its derivatives will be omitted whenever the 
context makes it clear that observational data is the topic of discussion. 
 
The traditional acceptance at face value of these density-flow measurements in the 
(empirically) congested regime in and of itself raises serious doubts regarding the validity of 
the KWM.  This alone has been persuasive to many, and has considerably fueled both 
substantial skepticism directed toward the KWM, and a search for alternative data 
interpretations and associated explanatory theories.  On the other hand, the successes of the 
KWM discussed in the preceding section have made others considerably reluctant to accept 
any suggestion that this theory has no validity, even at higher densities. 
 
In the preceding section we have already indicated a recently suggested possibility for 
reconciling kinematic-wave theory with empirically uncorrelated flow.  The fundamental 
hypothesis underlying that possibility is that breakdown is exclusively what nonlinear 
dynamicists would term a “boundary-driven phenomenon,” which is to say that it derives 
from shocks propagating upstream from a bottleneck, as summarized from Daganzo, Cassidy 



 
 

Insert your chapter title on righthand pages  13 
 
 

and Bertini (1999) in the preceding section.  In our opinion such bottleneck-driven 
breakdowns certainly can and do occur, and empirical reports should include sufficient 
information to permit determination of the extent to which boundary effects contribute to data 
reflecting breakdown.  This is a nontrivial challenge, because it requires spatially distributed 
data, or at least a very careful description of the roadway downstream of the point of 
observation.  An extreme version of this suggestion is that empirical results should not be 
published at all, unless the data on which they are based are made publicly available, so that 
alternative hypotheses can also be tested against those data. 
 
Nonetheless, when one takes into all account the possibility of bottleneck-driven breakdown, 
there remain observed phenomena that are difficult to explain absent spontaneous 
(“emergent”) breakdown.  The objective of this subsection is to summarize the observational 
data supporting such spontaneous breakdown. 
 
More generally, bottleneck-driven breakdown is an instance of boundary-driven phenomenon, 
which in turn is instance of an “external” phenomenon that stems from circumstances outside 
the system being modeled, while spontaneous breakdown is conceived as an emergent 
phenomenon that arises from phenomena internal to the system being modeled.  However, to 
a very large extent this distinction is subjective, in that it depends upon what one is willing to 
assume is known a priori (i.e., an external variable), as opposed to being a quantity that the 
model is required to predict (i.e., an internal variable).  As a very concrete instance of this 
dichotomy, the presence of a slow truck in the right lane certainly can be a significant factor 
in determining traffic flow.  But should this presence be regarded as an external factor, and 
therefore known a priori, or as a stochastic fluctuation whose potential existence must be 
represented among the statistical distribution giving rise to the mean values that a continuum 
model should provide? 
 
In fact there exist circumstances under which either of these views is reasonable, depending 
upon the purpose of the model, and therefore what one is willing to assume is known a priori.  
For example, if the objective of the model is to better understand the effect of a slow truck 
(e.g., Daganzo and Laval, 2005), then it is perfectly appropriate to take the presence (and 
characteristics) of such a truck as an known external variable.  However, if the purpose is to 
predict mean traffic behavior where it cannot be (continuously) measured - and otherwise 
there is ultimately little reason to attempt predictions - then the presence or absence, 
characteristics, and effect of such a truck must be regarded as an stochastic internal variable to 
be appropriately reflected in the model predictions. 
 
The simplest way to determine internal effects for a model of traffic flow is to implement it on 
a homogeneous closed loop, which completely eliminates external (boundary) effects.  Such 
“ring roads” are rare in practice, but Sugiyama et al. (to appear) report a remarkable 
experiment conducted on a test circuit.  Briefly, they experimentally show that under 
appropriate circumstances (as suggested by simulations based on the microscopic “optimal 
velocity model” of Bando et al., 1994), spatially homogeneous flow is unstable for 
sufficiently high densities, but rather tends “spontaneously” to transition, after a few minutes, 
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to “jammed flow.”  In this context the characteristic of jammed flow is a single jam, 
propagating opposite to the direction of traffic flow, within which vehicles come to a stop, or 
very nearly so.  Quantitative details of the observed speed-headway distribution over the 
entire jam flow are not reported, but supporting simulations suggest they comprise a 
characteristic (“universal”) limit cycle (“hysteresis loop”). 
 
This remarkable result certainly suggests that spontaneous breakdown can occur in traffic 
flow.  However, in and of itself it signifies neither failure of the KWM nor nonexistence of a 
KWM-FD, in the sense that flows and densities averaged over the characteristic limit cycles 
could still comprise a perfectly well defined function in the density-flow plane.  This 
possibility is exemplified by the simple cellular automata model CA-184a of Nelson 
(submitted), which produces results similar to the empirical FD of Fig. 2, in simulations of 
traffic stream observations upstream of a bottleneck, but that nonetheless fall - for densities 
up to jam density - upon a perfectly well-defined KWM-FD in the density flow plane, with 
multiple underlying limit cycles, when density and flow data are obtained by averaging over 
an entire ring road.  However, at a minimum the results of Sugiyama et al. (to appear) suggest 
existence of a lower limit on the spatial and temporal scales for validity of the KWM; 
existence of some such scale limitations is to be expected for any continuum model; cf. Lesort 
et al. (to appear) for further discussion of scale issues in traffic flow.  In addition, Nagel  and 
Jost (2003) argue that if the spontaneous breakdown is related to a true (thermodynamical) 
phase transition, then the jam features will coarsen until they are visible on all spatial scales, 
even the largest.  The mechanism for coarsening is that jams coagulate until there is 
eventually only one large jam left in the system.  However, they cannot answer if their 
modeling results apply to real-world traffic or not. 
 
Observations of what we term as “two-capacity flow” have been persistently reported in the 
literature.  This alleged phenomenon is relevant here because it also is strongly suggestive of 
spontaneous breakdown, and certainly is inconsistent with the classical KWM.  Here by two-
capacity flow we mean observations and related analyses that suggest bottlenecks can operate 
at two distinct maximum flows, typically a higher value prior to and early in the formation of 
a queue upstream of the bottleneck and a somewhat lower value subsequent to development 
of such a queue.  This contradicts the classical KWM, because the (entropy solution of the) 
latter predicts flow at an enqueued bottleneck will be a constant, specifically the capacity in 
the bottleneck (Nelson and Kumar, 2004). 
 
Observations of two-capacity flow have been reported, among others, by Edie and  
Foote (1960), by Agyemang-Duah and Hall (1991) and by Cassidy and Bertini (1999), while 
other studies (e.g., Persaud and Hurdle, 1991) have reported lack of conclusive evidence 
supporting a reduction in flow coincident with formation of a queue.  From an empirical 
perspective, Banks (1991; cf. also Banks, 1990 and Banks, 1991a) indicates that  

“the hypothesis that flow decreases when it breaks down is confirmed, 
provided the hypothesis applies to individual lanes,”  
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but  

“when averaged across all lanes there was no significant change,” and 
concludes that alleged two-capacity flow “is unlikely to provide a basis for 
metering … .”   

Note that if one fully subscribes to the KWM, then there is no rational basis for ramp 
metering, absent some societal decision to favor mainline traffic over that entering freeways. 
 
When differences between the levels of flow at a bottleneck, before and after queue 
formation, are reported, their magnitude tends to be only about 5-10%.  Given that relatively 
small alleged difference, it is difficult to know whether the different conclusions reached in 
different studies are attributable to differences in methodologies for obtaining and analyzing 
data, or to actual differences in traffic behavior at distinct sites, or possibly some combination 
of these factors.  This inherent difficulty in determining existence of the two-capacity 
phenomenon has been discussed in particularly cogent fashion by Persaud and Hurdle (1991).  
One can certainly question whether we have yet advanced significantly beyond the status 
observed by Wattleworth (1963):   

“The question of whether or not the flow downstream of a freeway 
bottleneck decreases when congestion sets in is currently the subject of 
much discussion in engineering circles.  Research findings support both the 
yes and no answers to this question.  Several studies ...  suggested that 
perhaps the question did not have a simple yes or no answer.”  

Yet, on balance we tend to agree with Cassidy and Bertini (1999)  

“the average rate vehicles discharge from a queue can be ...  lower than the 
flow measured prior to the queue's formation.”  

See Elefteriadou, Roess and McShane (1994), and Lorenz and Elefteriadou (2001) for a 
suggestion that the time of occurrence of this type of breakdown can usefully be viewed as 
stochastic in nature. 

4.2 Empirical jammed flow 

Some workers perceive an additional subclass of empirical congested flow, which is the 
empirical jammed flow already mentioned above.  The characteristic signature of empirical 
jammed flow is so-called “wide jams,'” which are described by Knospe et al. (2002) as 
follows:   

“Wide (moving) jams are regions with a very high density and negligible 
average velocity and flow.  The width of these structures is much larger 
than its fronts at the upstream and downstream ends where the speed of the 
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vehicle changes sharply.  … wide jams can propagate undisturbed through 
either free flow or synchronized traffic without impact on these states, 
which thus allows their co-existence.”  

(See the following subsection for more on “synchronized flow.”) 
 
The predominant evidence for wide jams is time-series data such as that shown in Fig. 23 of 
Knospe et al. (2002); i.e., data from a stationary (loop) detector that shows at early times 
relatively large flows and speeds with small densities, followed by an intermediate period of 
small flows and speeds and high densities, finally followed by yet a third time period 
qualitatively resembling the first.  The hypothesis commonly invoked is that such data 
represent a structure (“wide jam”) traveling upstream, within which vehicles are closely 
spaced, and in which both upstream and downstream fronts remain sharply defined as the 
structure propagates.  If this interpretation is correct, then it provides a severe challenge to the 
classical KWM, because (see Section 2) that model predicts that an initially sharp front 
between a high-density upstream region and a low-density downstream region (such as the 
downstream front of the hypothesized wide jam) will dissipate (spread) into an acceleration 
fan (similarity solution). 
 
However, absent additional data from other spatial points there is an interpretation of these 
data that reflects a boundary-driven phenomenon, and is consistent with the classical KWM.  
Once more, consider a detector located upstream of a bottleneck, with initial flow and 
downstream demand both below bottleneck capacity, then increasing to a value above 
bottleneck capacity, and finally decreasing to a value again below bottleneck capacity.  As 
already discussed in the preceding section, the KWM then predicts flow at the bottleneck will 
be the lagged value of input demand, until the tail of the queue generated at the bottleneck by 
the excess of demand over bottleneck capacity arrives at the detector, in the form of a shock 
wave.  Thereafter flow at the detector will remain at the bottleneck capacity, with density 
equal to the corresponding point on the congested branch of the FD, and the tail of the queue 
will continue to move upstream as a shock wave, all until such time as the upstream demand 
falls below the bottleneck capacity.  Once that decreased demand reaches the tail of the queue 
the tail will remain a shock wave, and thus be a stable structure within the confines of the 
classical KWM, but now it will propagate downstream. It will eventually reach the detector, 
where it will be registered as a sharp transition from a high-density low-flow/speed regime to 
low-density high-flow/speed.  As seen at the hypothesized single detector the traffic pattern 
will thus be exactly the observed signature of an alleged wide jam, as described in the 
preceding paragraph. 
 
Thus the question of whether the data supporting existence of wide jams are consistent with 
the classical KWM comes down to the question of whether the second observed sharp front is 
moving upstream or downstream.  This seems difficult, if not impossible, to answer without 
data from more than one spatial location.  At this time the totality of the data of the type 
described above that has been reported in the literature in support of the wide-jam hypothesis 
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seems to be Kerner and Rehborn (1996a, 1996b), Knospe et al. (2002) and Schönhof and 
Helbing (submitted).  Of these three works, only in Figures 3(a)-(c) of Kerner and Rehborn 
(1996a) and Figure 2 of Kerner and Rehborn (1996b) does one find data from detectors at 
distinct positions along the roadway.  These data definitely support existence of wide jams.  
Certainly it would be desirable if they were replicated by other investigators.  Nonetheless, in 
the following sections we conditionally accept the hypothesis of existence of wide jams, and 
hence empirical jammed flow, and explore the potential for various models to reproduce that 
phenomenon. 
 
Some empirical properties of wide jams that have been reported (Kerner and Rehborn, 1996a, 
1997) include the following: 

1. Traffic jams, once created, are fairly stable and can move without major changes in 
their form for several hours against the flow of traffic.   

2. The flow out of a jam is a stable, reproducible quantity, and maximally possible flows 
can be up to 50% larger. 

4.3 Further internal structure in empirically uncorrelated flow 

The “wide jams” characteristic of the empirical jammed flow discussed in the preceding 
subsection constitute one instance of internal structure in empirically uncongested flow.    
However, other types of internal structure have been reported.  In fact, “stop-and-go” flow 
under congested conditions is anecdotally familiar to virtually all drivers.  Notwithstanding 
that this phenomenon was initially studied scientifically nearly forty years past (Edie and 
Baverez, 1967), there remains a relative paucity of related quantitatively reliable scientific 
data.  This very possibly is because such data require short-term and short-distance temporally 
and spatially distributed data, which necessarily will be subject to a high degree of stochastic 
uncertainty (stemming from, e.g., variations between individual drivers).  Nonetheless there 
are persistent reports of “something else” (e.g., Kerner, Klenov and Wolf, 2002), and there is 
considerable discussion (Daganzo, Cassidy and Bertini, 1999) as to whether these 
observations are or are not entirely explainable by KWM theory.  This subsection is devoted 
to a brief review of these issues. 
 
Much of the discussion focuses on what Kerner and collaborators (Kerner and Rehborn, 
1996b, 1997) term as “synchronized flow.”  One of the barriers to an objective discussion of 
synchronized flow is the lack of consensus as to its characteristic signature(s).  An 
approximately common (i.e., “synchronized”) speed across multiple lanes, and the existence 
of embedded very narrow (compared to the wide jams of the preceding subsection) jams are 
two signatures that have been mentioned by workers who have considered the matter.  Yet 
another barrier is lack of public availability of much of the data on which many of the alleged 
observations of synchronized flow are based, and the consequent inability of the community 
at large to reproduce the underlying data analysis, or suggest alternate analyses.  Even among 
those who are disposed favorably toward existence of synchronized flow there is not 
agreement on the question of whether the associated strong scatter of the data has a dynamical 
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origin, for example stemming from an on-ramp, or a statistical origin, such as being caused by 
a mixture of cars and trucks that display different driving characteristics.   
 
Sugiyama et al. (to appear) provide simulation results, based on the optimal-velocity model 
(Bando et al., 1995) that suggest a hypothesis regarding possible internal structure of 
congested flow.  Briefly, their simulations reveal the following structure upstream of a 
bottleneck:  immediately upstream a region of “laminar flow,” within which vehicles are 
spaced rather regularly, followed by a region within which the flow consists of very narrow 
“jams,” finally followed by a region even further downstream within which wide jams appear.  
These workers hypothesize the laminar region is an inherently metastable region, the region 
of wide jams is inherently stable, and the region of narrow jams is a connecting unstable 
region (as dictated by Hopf bifurcation) that is somehow stabilized by presence of the 
bottleneck.  Note that the latter interpretation also is consistent with considerable difficulty in 
observing the narrow jams, which in turn would be somewhat consistent with difficulties in 
observing synchronized flow, if one hypothesized an identification between synchronized 
flow and narrow jams, as do Sugiyama and Nakayama (2003). 
 
The above description, in particular that narrow jams coagulate to form wide jams, is also 
consistent with work by Jost and Nagel (2003).  Jost and Nagel do not investigate bottlenecks, 
use a closed homogeneous system, i.e. a homogeneous loop.  Once of their initial conditions 
is a completely homogeneous distribution of cars, i.e. all vehicles with the same space 
headway, as given by the density.  Also in that system, one obtains, for certain densities, 
initially “laminar flow,”, then “narrow jams,” and then wide jams.  As pointed out earlier, the 
wide jams will further coagulate until there is only one jam left in the system, and that 
statement holds for arbitrarily large systems.  Further simulations of our own show that the 
same code, after the introduction of a bottleneck, displays the same behavior as the model of 
Sugiyama et al. (to appear). An interpretation is that, either by a bottleneck or by having a 
closed system, traffic can be “pinched” at a certain (average) density, at which the system 
displays the above-described behavior.  However, even here it must be said that there are very 
few empirical observations that include the spatial picture, and at least one of them (Windover 
and Cassidy, 2001) displays little or no coarsening with increasing distance from the 
bottleneck. 
 
The principal point of interest here is the extent to which structure internal to empirically 
congested flow disagrees with the KWM.  Within the community of those interested in 
modeling traffic flow a commonly encountered, if implicit, assumption is that the KWM, and 
presumably other continuum models, predict (e.g.) actual vehicular speed, and therefore is 
contradicted by any local variation in empirical vehicular speeds.  While such a “first-in first-
out” interpretation of continuum models might be useful for certain applications of continuum 
models, it is not inherent to continuum models per se.  That is, continuum models of traffic 
flow make predictions regarding density, mean speed and flow, all of which are continuum 
quantities that can be interpreted as mean values over some underlying distribution of 
vehicular speeds.  But continuum models themselves are silent on the form of the associated 
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speed distributions, and indeed even regarding the very nature of these distributions (i.e., over 
time and space, in a particular instance, or over an “ensemble” of instances').  From this 
perspective structure within empirically congested flow perhaps provides information (e.g., 
the appropriate nature of the associated speed distribution) beyond that available from the 
KWM itself, but that information is not necessarily in contradiction to the KWM.  See Nelson 
(submitted) for an example of a simple model of traffic flow that has such an internal 
structure within its congested regime, but nonetheless can be modeled reasonably well via the 
KWM, with an appropriately constituted FD.  However, once more also note that in some 
models the structures can coarsen beyond any arbitrarily large but fixed length scale.   

5.  NONCLASSICAL KINEMATIC-WAVE MODELS 

Because a strictly convex FD will not lead to wide jams, but such jams have been observed in 
the field (Subsection 4.2), it is necessary to explore other forms of Q(ρ).  This section is 
devoted to such considerations.  Specifically, in subsection 5.1 we briefly review known 
results for FDs containing linear segments.  Subsections 5.2-5.4 are devoted to considerations 
related to a FD having a concave “tail” at higher densities, and satisfying other conditions 
described in more detail in Subsection 5.2.  More precisely, in Subsection 5.2 we construct 
the Riemann solutions for such a FD, Subsection 5.3 is devoted to possible use of these 
Riemann solutions to construct wide jams, and Subsection 5.4 is a brief discussion of possible 
driver behavior underlying some of the novel aspects of solutions of the KWM for FDs 
containing a concave segment.   

5.1  FDs with linear segments 

Lin and Lo (2003) noted that once we allow strictly linear pieces in Q(ρ), then some sort of 
stability of both fronts can be achieved as long as both the density within the jam and the 
surrounding densities are within the same linear segment.  This is because the slope of Q(ρ) 
denotes the phase velocity of the wave features, and if all densities in the range of interest are 
within the same linear segment, then their wave features move with the same velocity.  Thus 
at least some of the elements of wide jams seemingly can be reproduced within the context of 
the simple triangular FD suggested by Newell (2002). 
 
At either the upstream or downstream front of such a wide jam the phase speeds on either side 
of the front are equal to the speed of the front itself; i.e., in the (x,t)-plane the characteristics 
are parallel to the trajectory of the front.  Such a discontinuity is known as a “contact 
discontinuity.”  A contact discontinuity is only weakly stable, in the sense that if the initial 
densities are slightly “smeared,” where “slight” means they still remain in the aforementioned 
linear segment of the FD, then the ensuing density profile retains this smeared form, rather 
than reorganizing into a sharp front (i.e., displaying “self healing”).  At this time, there seems 
to be no general agreement if this type of  “weak” jam stability is sufficient to explain what is 
observed. 
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5.2  An FD with a concave tail 

This leaves the case of a FD Q(ρ) with piecewise concave regions.  This situation is 
understood in the mathematical literature (e.g., Liu, 1981; Li, 2003), but the detailed 
implications for the KWM – particularly possible interpretations regarding the driver behavior 
underlying any novel aspects of the corresponding solutions - do not seem to have been 
worked out.  Here we restrict ourselves, for the sake of illustration, to an FD that is strictly 
convex on say the density interval 0≤ρ<ρinf, strictly concave but nonetheless with ( ) 0Qρ ρ∂ <  
on ρinf <ρ≤ρjam (so that ρinf is an inflection point, 2

inf( ) 0Qρ ρ∂ = ), and further ρmax<ρinf (see 
Fig. 4).  Note that these assumptions imply mean vehicular speed, v(ρ)=Q(ρ)/ρ, is a 
decreasing function of ρ.   
 
We note parenthetically this there is little experimental evidence for (or against) such an FD, 
which is perhaps why the details have not been previously worked out.  However, the 
homogeneous solutions of the optimal-velocity model (Bando et al., 1995) give rise to such 
an FD, as shown in Fig. 4.  Of course it remains to determine how this relates to the jammed 
flow solutions that appear to be the stable form of the solutions of the optimal-velocity model 
under somewhat congested conditions.  The hallmark parametric values in Fig. 4 agree 
reasonably well with those generally accepted within the North American transportation 
community, although both the value of maximum flow (qmax ≈ 2772 vehicles per hour per 
lane) and the density at which this flow occurs (ρmax ≈ 28.95 vehicles per kilometer) seem a 
bit high. 
 
In this subsection our objective is to work out the Riemann solutions for such an FD, which is 
to say the solutions of the KWM on an open (infinitely long) section of roadway, with given 
spatially homogenous initial values on either side of some initial discontinuity.  If both the 
upstream and downstream initial densities lie in the convex region (i.e., are ≤ ρinf), then there 
is no difference from the classical situation previously discussed.  However, if the upstream 
and downstream densities are both initially in the strictly concave region (i.e., are ≥ ρinf), then 
matters change somewhat.  In the first instance, suppose ρu<ρd, where ρu (ρd) denotes the 
initial upstream (downstream) density.  In the classical case this would correspond to a 
situation in which characteristics intersect at the initial discontinuity, and therefore a shock 
wave forms there, corresponding to a region within which incoming vehicles decelerate.  Now 
however the characteristics initially diverge at the discontinuity, which leads to an entropy 
solution having the form of Eq. (4), where now the inverse function c-1 must be interpreted as 
the inverse function of the wave speed for densities restricted to the concave region.  The 
initial discontinuity therefore develops into a region within which the characteristics “fan 
out,” so that the densities more-or-less (more later, less initially) gradually increase from the 
initial upstream value to the initial downstream value, as one moves from upstream to 
downstream.  However, mean vehicular speeds decrease across such a region, so that in this 
case the entropy solution of the Riemann problem perhaps should be termed a deceleration 
wave (or deceleration fan). 
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Figure 4 – The fundamental diagram corresponding to the homogeneous solution of the 
optimal-velocity model.  Parametric values for the optimal-velocity model were selected 

following Sugiyama et al. (to appear).  Other indicated parameters and associated graphics 
intended to support illustration of the wide jam of Subsection 5.3. 

 
Similarly, if the initial upstream density is greater than that initially downstream, then the 
characteristics initially intersect at the discontinuity.  As in the corresponding classical case a 
shock wave therefore forms, and moves according to the shock condition (3) (and therefore 
necessarily upstream, in the case presently considered).  However, in contrast to the case of a 
classical shock wave, vehicle speeds increase as one moves across the shock.  That is, the 
entropy solution in this case is an acceleration shock, in contrast to the classical case of a 
deceleration shock.  
 
It remains to describe the Riemann solutions for the case that one of the initial densities is in 
the concave region and the other in the convex region.  The general principle underlying this 
construction is that any discontinuity, say connecting regions of respective immediately 
upstream and downstream densities ρu  and ρd, and therefore propagating at speed specified by 
the shock condition (3), must satisfy the entropy condition (Li, 2003), i.e. that the inequality  
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must hold for any density ρ lying between ρu  and ρd. 
 
In the first case, suppose the initial upstream density is the smaller of the two initial densities, 
then it must lie in the free flow regime, and therefore necessarily the convex region (i.e., ρu ≤ 
ρmax ≤ ρinf), and the initial downstream density, ρd, must lie in the concave region.  Let ρ*(ρd) 
be the density corresponding to the (unique) point in the convex region where the tangent line 
to the FD at the point (ρd,Q(ρd)) intersects the FD.  In the subcase that ρu ≤ ρ*(ρd) the 
Riemann solution simply consists of an upstream region of density ρu and a downstream 
region of density ρd, connected by a shock propagating as specified by the shock condition.  
This is a deceleration shock, more-or-less as in the classical case, because vehicular speeds 
are slower downstream than upstream of the shock. 
 
In the subcase that ρ*(ρd) < ρu  (< ρinf) the entropy solution consists of four regions, from 
upstream to downstream as follows: 

i) A far upstream region of density ρu. 
ii) A discontinuity connecting the far upstream region of density ρu to an immediately 

downstream density ρt(ρu), where the latter is the density associated to the unique point 
in the concave region where the secant line from (ρu,Q(ρu)) is tangent to (i.e., touches) 
the FD.  Again the mean vehicular speed decreases across this discontinuity, and it is a 
true shock (incident characteristics) as seen from immediately upstream, but now it is a 
contact discontinuity (parallel characteristics) as seen from immediately downstream.  
This deceleration discontinuity propagates according to the shock condition (3), of 
course with ρd  replaced by  ρt(ρu).  The deceleration discontinuity corresponding to a 
specific situation to be described in the following subsection is indicated in Fig. 4.   

iii) A deceleration wave, as described above, but now connecting the region of density 
ρt(ρu) that is immediately downstream of the deceleration discontinuity just described to 
a far downstream region of density ρd.  (Note that necessarily ρt(ρu) ≤ ρd.) The density 
within this deceleration wave is again given by (4), with c the wave speed restricted to 
the concave region. 

iv) The far downstream region of density ρd just described. 
 
Similarly, but briefly, if the initial upstream density is the larger of the two initial densities, 
then the unique entropy solution is as follows.  Let ρt(ρu) be defined exactly as above, but 
note now that ρt(ρu) lies in the convex region, and the secant line defining it lies entirely (on 
or) above the FD.  If ρd ≥ ρt(ρu) then the solution is an acceleration shock, precisely as in the 
case that both initial densities lie in the concave region.  If ρd < ρt(ρu), then the four-region 
solution consists of a far upstream region of density ρu, followed by an acceleration 
discontinuity connecting that region to a downstream density ρt(ρu), followed by an 
acceleration wave connecting upstream density ρt(ρu) to a far downstream region of density 
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ρd.  The discontinuity travels again at speed given by the shock condition (3), with ρd replaced 
by ρt(ρu), and the density profile in the acceleration wave is again given by (4), but now with 
c the wave speed in the convex region.  Note that the acceleration discontinuity is a shock 
(contact discontinuity) as seen from immediately upstream (downstream).  The acceleration 
discontinuity corresponding to a specific situation to be described in the following subsection 
is indicated in Fig. 4 

5.3  Wide jams from an FD with concave tail? 

Consider a FD as in Fig. 4, and associated initial conditions consisting of a density ρhigh lying 
in the associated concave region over some section of roadway, say x0≤x≤ x1, and density ρlow 

lying in the convex region otherwise.  In Fig. 4 ρhigh is illustrated as 130 vehicles per 
kilometer, and ρlow as 12 vehicles per kilometer.  For these values for the initial conditions, 
and the optimal-velocity FD of Fig. 4, ρt(ρlow) ≈ 90 vehicles per kilometer and  ρt(ρhigh) ≈ 30 
vehicles per kilometer are respectively the densities corresponding to the points at which the 
secant lines to the points on the FD corresponding to respectively the low density and high 
density initial values just touch the FD. 
 
According to the Riemann solutions of the preceding subsection these initial conditions will 
tend to evolve toward a structure within which, in order from upstream to downstream, the 
upstream front consists of a deceleration discontinuity followed by a deceleration wave, while 
the downstream front consists of an acceleration discontinuity followed by an acceleration 
wave.  The two discontinuities are defined by the two secant lines mentioned in the preceding 
paragraph, and are illustrated diagrammatically in Fig. 4.  The acceleration (deceleration) 
wave is the portion of the FD lying between the acceleration (deceleration) discontinuity and 
the density ρlow (ρhigh).    
 
The question of relevance here is whether it is possible for such a structure to evolve into a 
stable structure that has the elements of the wide jams discussed above, as opposed to 
dissipating into the background density ρlow. Although we do not have a mathematical proof, 
it appears that the answer is “no.”  The essence of what seems to happen is that the upstream 
face of the downstream front of this pulse eventually catches and “absorbs” the entire 
upstream front.  Alternatively, the downstream face of the upstream front will eventually 
reduce the pulse density to at most ρinf .  At this point, all of the pulse lies in the convex region 
of the FD and will therefore behave (and dissolve) as discussed earlier.  Space does not permit 
further discussion of this matter here. 

5.4  Possible driver behaviour associated with acceleration shocks and deceleration 
waves 

In Section 2 we justified the entropy condition for classical FDs as stemming from the 
tendency of drivers to accelerate as soon as safely possible as soon as safely possible, thereby 
creating acceleration waves, and to wait as long as safely possible to decelerate, thereby 
creating deceleration shocks.  Is there a similar explanation for the appearance of the dual 
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deceleration waves and acceleration shocks in a region of concavity for an FD?  The details of 
any such explanation necessarily are intertwined with the observed or supposed driver 
behavior that leads to this concavity.  However one possible generic explanation is that such a 
concave region represents driver behavior within a regime that drivers are on high alert, and 
therefore relatively quick to brake and slow to accelerate. 
 

 
Figure 5 – Elements of the traffic-flow structure that evolves from an initial square pulse in 

density.  (The solid lines are density profiles.) 

6.  CONCLUSIONS 

This paper was written with the intent to first reach a firm basis of agreement between the two 
authors, and then to continue from there with the description and analysis of simulations that 
describe some of the more subtle effects of traffic flow, such as structure formation in queues.  
Somewhat surprisingly, just reaching the firm basis has exhausted the limits given for this 
paper.  This seems to be caused by the following: (1) Both authors have their own intuitions 
about the dynamics of traffic flow.  (2) Both authors agree that the other author’s intuition is 
valid, although considerable explanation and thoughtfulness was necessary in order to have 
that agreement based on true mutual understanding.  (3) Both authors’ intuitions are 
consistent with the data sets that they were aware of; indeed, only very few data sets are able 
to answer at least some of the critical questions.  The perhaps most significant example is the 
breakdown experiment of Sugiyama et al. (to appear), which, although it has been reported in 
2001, has neither been published not been widely disseminated.  Nevertheless, it is the only 
unequivocal example of spontaneous breakdown that we are aware of.  Similar statements 
hold for the availability of data that is both temporal and spatial. 
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The maybe most important results of our effort are the following: 

• The kinematic wave model (KWM) explains and predicts many if not most 
effects of real world traffic dynamics.  As pointed out, e.g., by Daganzo, 
Cassidy, and Bertini (1999), much of the single detector data supposedly in 
support of spontaneous breakdown can also be explained by queue dynamics 
in conjunction with a geometrical constraint. 
• On the other hand, there are some data sets that are, in both authors’ views, 
very difficult to reconcile with the traditional KWM.  This holds certainly for 
KWMs with strictly convex fundamental diagrams (FDs), which do not 
explain stable jams, spontaneous breakdown out of nothing, or structure 
formation in queues.   
• Also KWMs with piecewise linear segments do not seem to explain all of 
these effects, although the decision is not so clear-cut: Such models predict 
quasi-stable jams which could, although they are not “self-healing,” be 
consistent with the few instances of wide jams for which we were able to find 
unequivocal data.  Structure formation in queues could be argued as being 
beyond the spatial scale that KWMs claim to deal with, although a “true” 
phase transition interpretation of traffic flow would predict that these structures 
coagulate into larger and larger structures with increasing distance from the 
bottleneck.  Finally, there seems to be only one unequivocal observation of 
spontaneous breakdown.   
• Finally, KWMs with FDs with concave segments are less well understood, 
but do not seem to offer a better alternative. 
• As said before, more traffic data that includes the spatial aspect is needed in 
order to make further progress. 

 
Let us close noting that traffic flow is not alone as an instance of an area in which there is 
some divergence of opinion between traditional practitioners and those seeking to explore the 
possibility that some of the more intriguing aspects of the possible behavior of low-
dimensional dynamical systems can arise outside the laboratory.  In this respect we note the 
following quotation (Schreiber, 1999), regarding the difficulty of convincing identification of 
possibly interesting low-dimensional dynamical effects in inherently noisy systems: 

“The most direct link between chaos theory and the real world is the 
analysis of time series data in terms of nonlinear dynamics. Most of the 
fundamental properties of nonlinear dynamical systems have by now been 
observed in the laboratory.  However, the usefulness of chaos theory in 
cases where the system is not manifestly deterministic is much more 
controversial.  In particular, evidence for chaotic behaviour in field 
measurements has been claimed and disputed in many areas of science, 
including biology, physiology, and medicine; geo- and astrophysics, as 
well as the social sciences and finance.” 
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