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Abstract

Activity-based models in Transportation Science focus on the description of hu-
man trips and activities. We address the modeling of the spatial decision for so-called
secondary activities: given both home and work locations, where do individuals per-
form activities such as shopping and leisure? The simulation of these decisions using
random utility models requires a full enumeration of the possible outcomes. For large
data sets, it becomes computationally unfeasible because of the combinatorial com-
plexity. To overcome this limitation, we propose a model where agents have limited,
accurate information about a small subset of the overall spatial environment. Agents
are inter-connected by a social network through which they can exchange informa-
tion. This approach has several advantages compared to the explicit simulation of
a standard random utilit model: a) it computes plausible choice sets in reasonable
computing times b) it can be easily extended to integrate further empirical evidence
about travel behavior and c) it provides a useful framework to study the propaga-
tion of any newly available information. The paper emphasizes the computational
efficiency of the approach for real-world examples.
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1 General context

Activity-based models in Transportation Science focus on the description of the organi-
zation of human activities in time and space. This organization determines the demand
for travel, that is the amount of users that the various transportation systems need to
accommodate. It is assumed that the demand for travel is derived from the demand for
performing activities at specific locations. Obviously, individuals constantly perform some
trade-off between enjoying activities that have a high reward value (for instance working
at a company in the downtown area) and the time and budget it takes to get to the specific
location of these activities. Various operational models such as URBANSIM [10] are avail-
able to describe this trade-off for the choice of the home and work locations. It is essentially
assumed that users perform a trade-off between rents, travel costs and wages. However,
empirical evidence [2] have shown that a significant amount of traffic is generated for other
purposes than commuting, often referred to as secondary activities: shopping, leisure, going
to social events, etc.

2 Problem statement

Our work intends to model the specific process of the location choice of secondary activities
in the case of high resolution data sets. The methodological constraints are that the
modeling should be behaviorally sound, compatible with micro-economics foundations and
computationally feasible. The temporal dimension (i.e. the scheduling of the activities) is
ignored for the time being. We assume that the order of the activities called a plan is given
(i.e. getting out from home, going to work, working for eight hours, going for shopping
at lunch time, etc.). The physical environment is described by two large data sets that
typically originate from Geographical Information Systems (GIS): a) the land-use data
and b) the transportation system data. The land usage is a raster-type description that
includes the information about the nature of each parcel of the studied area (e.g. housing
density, number of shops, type of area: rural, commercial, industrial). The transportation
system is a vector-type description of the various transportation modes available (e.g. car,
rail, bus) as a network with nodes and links. Nowadays, these data are available at a
very high resolution: typical land-use cells are 100 meter square and road networks are
described down to 10 meter road sections. The long-term goal of our research is to model
entire metropolitan areas microscopically by simulating the individual decision of millions
of citizens. Therefore, the problem at hand can be stated as follows: how to simulate the
selection of the activity locations of A = 106 citizens in a grid that has C = 105 cells.
Note that the travel times from cell to cell have to be given by external traffic models.
Multi-agents traffic assignment models such as those developed by the authors [8, 5] are
now able to predict travel time patterns for large-scale data sets. Therefore, this issue will
not be considered here. The generation of travel demand for these models is addressed
here.
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3 Micro-Economics foundation

The standard practice in Transportation Science to approach such problems is to use
random utility models (RUM) borrowed from the discrete choice theory of Micro-Economics
[3, 6]. These models assume that individuals are maximizing their own utility. For instance,
the utility to go shopping at a mall located in cell i for a simple plan (i.e. home - shopping
- work) is given by

Ui = Ri − Chi − Ciw + µεi = Vi + µεi,

where Ri is the reward associated to shopping at that particular facility that depends on
the availability of goods, their prices, etc.; Cih is the travel cost to travel from home to cell
i; Ciw is the travel cost to travel from cell i to work; µ is a scale factor and εi is a random
variable that is specific to the individual. The latter random utility part captures all the
hidden preferences of a specific user for location i that are not accessible to the modeler.
By contrast, Vi is called the deterministic part of the utility. Under the assumption that
εi are i.i.d. extreme value distribution of type I, it can be shown that the probability to
choose to go shopping at cell k is given by:

P (k) = P (Ui < Uk∀i 6= k) =
exp(−Vk/µ)∑C
i=1 exp(−Vi/µ)

Since a probability greater than zero is assigned to each potential intermediary stop on
a cell, this formulation requires a full enumeration of the possibilities on the spatial grid.
For trips that count S intermediary stops, the complexity is O(ACS) which is not feasible
in realistic cases. Initially, RUMs were intended for the description of choices between a
small set of alternatives distinguishable by humans (e.g. car brands). Their application
to a discretized continuum (i.e. urban space) remains behaviorally questionable. Still, we
believe it is fundamental to keep some compatibility with RUMs because of the literature
that has been devoted to developing empirical techniques (e.g. surveys) to calibrate the
parameters of those models.

Another drawback of RUMs is that they provide only a static representation that does
not take into account the temporal dimension of the decision process. RUMs do not
model explicitly the choice process but only its outcome. Our goal is to come up with
a model that reflects the underlying learning process and that will eventually include the
dynamics of the building of the choice set. Capturing this aspect is potentially important to
study, for instance, the evolution of travel demand given some modification in the land-use
patterns. Moreover, the environment itself should be time-dependent. Travel times and
travel impedances to move in the network are subject to within-day and daily variability.
The feedback of the travel conditions on travel choices and conversely is also often missing
from static RUM-based analysis. To overcome these limitations, we propose a four phase
multi-agent simulation model that includes a dynamic learning process and that can, in
principle, be coupled with a dynamic mobility simulator. Agents travel, explore, learn and
socialize.
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4 Multi-agent based approach

We propose a multi-agent based simulation where each agent (i.e. each simulated
citizen) has only limited, accurate information about N cells (N � C) called the
“memory” of the agent. The intuition is that real humans have limited cognitive abilities
and can only consider a small amount of options at the same time. The organization of
these options in the mind and the human representation of space is probably far different
from “pixels”. Nevertheless, we keep that trivial representation for now, as it can be
replaced later by a more sophisticated one, for instance that of [1].

We assume that agents are inter-connected by a social network through which they can
exchange information about their respective subsets. Each agent is socially connected to
K acquaintances or “kins”. The intuitive benefit of the social network is that agents
are very heterogenous yet facing similar choices. Therefore, a decision which is optimal for
an agent might be close to optimal for one of his acquaintances. We show below that the
diffusion of the knowledge of optimal strategies through the social network can, indeed,
exploit that hidden redundancy.

The simulation is iterative and each round has four stages: evaluation, socialization, ex-
change and exploration.

Evaluation each agent performs the location choice of the intermediary stops based on his
own private information. The choice can be deterministic (the best cells are selected
from the memory of the agent) or probabilistic (a RUM is applied to the small set
corresponding to the memory of the agent). The computing load for building and
storing the travel plans is O(ANS). At this point, the plans are fed in a dynamic
traffic model (such as MATSIM [8] or METROPOLIS [5]). The traffic simulator
computes the delays incurred due to traffic congestion, which are then used in the
next round of evaluation.

Socialization social connections are created and deleted dynamically. The deletion mech-
anism is a simple exponential decay. The creation mechanism is a spatial reinforce-
ment reminiscent of pheromones in ant colonies optimization [4].

Exchange for each of its social connections, an agent has the opportunity to exchange
a piece of information. A cell is picked randomly from the agent’s memory and the
other agent is informed about it. The exchange is bi-directional and the outcome
of the exchange is described by the learning mechanism below. More sophisticated
exchange strategies could be taken into account.

Exploration agents have the possibility to explore cells in the neighborhood of those that
they visit. This stage is mainly intended to recover potential information loss in the
other stages, thus relieving the implementation from checking that any cell was lost
from the global knowledge of all the agents. Obviously O(A) operations are required.
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5 Learning mechanism

The memory of an agent is represented on Figure 4: the two first buffers contain the
information about locations that are either close to home or close to work (e.g. a small
circular area). The third buffer called “elite” buffer (of size E) corresponds to locations
that have high score values and the last buffer contains “vague” information about cells
that have poor score values. The scores corresponding to the elite buffer are also kept in
the agent’s memory. When an agent informs another agent during the exchange stage, a
cell is picked randomly from the total memory of the informer. At that point, the informed
agent evaluates how this new cell information can potentially improve his/her plan score.
This is done by comparing the poorest score of the elite buffer to the scores of all the
potential plans with at least one stop at the new cell. This revision implies to replace
each intermediary stop of the potential plans by the new cell: O(SN (S−1)) operations are
needed. If the score is better than the worst solution of the elite buffer, the new cell is
promoted to that buffer and it is sorted: O(ln E) operations are needed. If the cell does
not improve one of the elite plans, the cell information replaces a cell randomly selected
from the vague buffer. This has two consequences: Firstly, agents keep information that is
not relevant to themselves but that might be to others in the future, hence they adopt a
cooperative behavior that is not supervised. Secondly, the information in the vague buffer
can be erased and lost forever. The information about cells with very low utility is more
likely to be lost from the collective memory. The exploration phase allows still to recover
them. So far, the computation load of a single round is O(A(ln E + SN (S−1))) which is
feasible for reasonable assumptions (S ≤ 3, N < 50, E < 50). However, the number of
iterations is still to be determined. Note that the learning speed of the overall process
depends on the greediness of the exchange which is a function of the ratio between the
sizes of the elite and the vague buffers.

6 Social network dynamics

Social links disappear following an exponential decay law at the end of each iteration.
Initially, the social network is a random graph of degree K and each social connection
has the same decay time. When two agents perform activities at the same location, two
situations can occur: 1) if there is a social connection between them, the strength of the
connection is reinforced and its decay time increases 2) if not, a new social connection is
created. This task requires O(AK) operations for the enumeration of the social links and
O(C) operations to browse the cells for detecting interactions between agents. However, the
detection of the existence of a social link between two given agents would require O(AK)
operations for each cell to browse the connections. An alternative solution would be to store
the connections of a given agent in a hash table. Both solutions are costly in memory or
computation time. For these reasons, we adopt a slightly different implementation which is
equivalent statistically. Every connection has the same decay time but multiple redundant
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connections can exist between two given agents. When an agent visits a particular cell
from his own elite buffer, the cell/agent pair is stored until a second agent visits the cell.
A new social connection is then created between the two visitors. After one iteration, we
end up with a larger number of connections than at the beginning. All of them are of
equal strength but with potential redundancy (a given pair of agents can appear several
times). Identifying the redundancy would be costly. Instead, we keep the total connection
strength constant in the system by deleting connections randomly so that the total number
of connections is constant.

7 Implementation issues

The code of the simulation has been written in Java. Input and output files use the XML
file format which is well suited to variable length content such as the description of the
individual plans with multiple stops. The goal being to simulate 106 agents on a single
CPU, some performance concerns have to be taken into account.

Cells each grid cell is stored as an individual object. With 105 cells, it is not crucial to
store the cell attributes as plain arrays. This allows to keep cell characteristics private
and to have cell references. Since cells have to be often compared during the learning
process to determine if a new cell is already known to an agent, it is far more efficient
to use the identity operator == than the default Java equals() method which is the
equivalence operator. This is valid as long as the cells are not dynamically allocated
or cloned once the simulation starts. Cells have to keep references to agents that
visit them (see the socialization stage). The average number of visits per cell is
small (O(SA/C)) so that we could allow for the overhead of a dynamic container
(e.g. vector). However, in the simple pairwise interaction described above, only the
information about the last visitor is needed. Therefore, it is sufficient to maintain a
hash table of visited cells and visitors.

Agents it is tempting to have a dynamic container steadily increasing in size for the
agent memory. However, that would completely ruin the performances and is not
compatible with our assumption that only a limited number of simultaneous options
can be memorized. Each cell is referenced on average by O(AN/C) agents so that
the initial coverage is sufficient to ensure that there is not any information missing
about the environment.

Random numbers a typical bottleneck of this kind of simulation is the computation of
random numbers. A priori, O(AK) random numbers have to be computed for each
single iteration of the information exchange stage. This quickly becomes prohibitive
and can be avoided by using two integer random seeds at the beginning of the ex-
change stage. One is used to pick a cell from the informer agent, the other to replace
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a cell in the memory of the informed agent. These two pointers can be simply incre-
mented from one social link to the other since there is no correlation between social
links and they are accessed in a a priori random order.

Update sequence The original ordering of the agents is that of the XML source and could
be biased. Agents are processed sequentially during the evaluation phase: each agent
uses one of his elite plans and marks the visited cells. Therefore, the probability
to create a social connection between agents decreases with their distance in the
list. To avoid this potential bias, the list of agents is randomized at the beginning.
Social connections are also stored initially in a random list since they are processed
sequentially during the learning phase. New social connections are created at the
end of the list. The decay process rearranges them randomly.

8 Results

The simulation is tested on a real-world example for the Zurich region for which we have
available a high resolution transportation network and a land-use raster (see Figure 5).
The area covers approximately a 50x50 kilometer square area where about one million
inhabitants are living. The land-use utility values Ri are generated based on census data.
Random plans with 1 or 2 intermediary stops are generated for 106 agents that are dis-
tributed on the area according to job and housing densities. The home to work pairs are
computed using an external model written by one of the authors (see [7] for the compu-
tation of the rent values presented in Figure 5). The initial social network that connects
them is a random graph. Obviously, this is not realistic but we intend to evaluate only the
computational feasibility in this preliminary work.

Figure 1 presents the evolution of the sum of the scores of all the agents during the iterative
process. It can be seen that the process converges in a few dozens of iterations but that
the choices are not optimal since the utility does not reach the maximum value obtained
with a full enumeration of the alternatives. This is due to the fact that some information
is lost in the process. It can be recovered slowly through the exploration. However, some
information can still be lost forever because the exploration mechanism is local: the agents
cannot jump to explore a totally new area. This limitation could be easily removed. Still,
the value of the plateau is high enough (more than 90% of the maximum utility) to ensure
that plausible strategies have been selected. It remains to be studied how much this is
compatible with empirical evidence. Note that the size of the memory of the agent only
slightly affects the convergence properties.

Figure 2 illustrates a typical spatial adaptation process for a single agent with a two-stop
plan: home-work-leisure-shopping-home. On the first iteration, leisure (L1) and shopping
(S1) are performed at the home place because the agent ignores good locations to perform
these activities. In the second iteration, he learns that the location L2 − S2 is a good
location for one of the two activities, hence making the extra trip distance worth it. On
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the third iteration, the agent discovers that the area around S3 has a high utility for
shopping. During the fourth and fifth iterations, the agent keeps shopping close to that
area and only optimizes the leisure location (L3→ L4→ L5).

Figure 3 shows the evolution of the distribution of social connections in the system. The
initial condition is a random graph of degree K = 20. On the first iteration, the distribution
is roughly a N(20, 1) distribution. Progressively, the distributions shift to the left. In
the end, we have a self-sustained distribution that can be approximated by a N(13, 4)
distribution. Therefore, most agents maintain between 9 and 17 connections. Note that
redundant connections between a given pair of agents are not identified and are therefore
counted multiple times. The decrease (from 20 to 13) in the average number of social
connections indicates that the spatial interaction is not sufficient, in this case, to sustain
20 connections on average. This is dependent on the properties of the land-use data such
as the concentration of high-utility areas. It also depends on the total number of agents
in the system. (The area under the curve is equal to the total number of connections and
thus constant.)

All the experiments were done on a computer equipped with a Intel Pentium 4 clocked at
2.5Ghz. The typical simulation performance for 100 iterations of a system with 106 agents
is below one hour of CPU time. This is for plans that have only one or two intermediary
stops. In terms of memory requirement, about 400 Mbytes of RAM are needed. Obviously,
the simulation of larger systems and more sophisticated plans with more than two stops
will require to distribute the workload on several computers. In particular, we would like to
extend the framework to integrate other travel decisions such as the timing of the different
trips.

9 Conclusions and perspectives

Many aspects still need to be addressed to improve the realism of the model. In partic-
ular, we plan to validate the model using the results of a recent survey [9] conducted in
Germany and Switzerland. The goal was to study the factors that influence leisure trips.
Respondents were asked to give the location and the frequency of the visits to their five
closest friends or relatives. Empirical results suggest that the purpose of an important
share of leisure trips is to visit social connections and that the number of known locations
is small. These data should, in principle, allow to validate the model and to compare the
spatial distribution of social connections with that of our model. This preliminary work
has shown that a multi-agent based approach to the location of secondary activities is
technically feasible and behaviorally plausible for high resolution data sets. The fact that
agents cooperate in even some simplistic way yields an important gain in term of compu-
tation workload. This has to be compared with the standard practice in Transportation
Science where it is typically assumed that users are in the situation of a non-cooperative
Nash equilibrium.
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