Multiagent-based simulation of individual traffic in Berlin

CUPUM 2005

Arnd Vogel, Kai Nagel

University of Technology, Berlin
Outline

- Introduction
- Multiagent-based simulations of traffic using MATSim
- Study region and available data
- Model setup
- Problems
- Conclusion
Introduction

- Multiagent-based simulation promise to become sophisticated tools for transportation planning
- Shift towards practical planning tool requires that existing data & knowledge can be used
- Project to evaluate implementation of a simulation model for Berlin based on existing data
- Preparatory work for a project funded by the VREF, investigating environmental effects of Urban Road Pricing Comparing Multi-agent based approach and classical approach based on VISUM
Study focus

- Evaluate direct usage of available data
- Evaluate sharing of data between VISUM and MATSim
- Computational tractability
- Performance data

→ Report on initial model set up
→ No meaningful results so far, but problems and areas of future work identified
Multiagent-based simulations of traffic

- Steps of 4-step-process → person-based procedures
- Agents keep several versions of plans for one day
- Dynamic / “physical” traffic flow simulation
 - Simulate delays and congestions
 - MATSim → parallel Queue-model
- Scoring of plans
- Modification and selection of plans
- Iterative learning model
MATSim model structure

- Synthetic population
 - OD-matrices
 - land use

- Generation / modification
 - decisions
 - selection
 - scoring

- Mobility simulation
 - flows
 - timelines
 - travel times

- microgeographical census data
- activity patterns
- road network

- Generation / modification
 - plans
 - events

- Iterations / learning
Multiagent-based simulations of traffic

- Plans (in XML) look like this

```xml
<person id="241" income="50000">
  <plan score="123">
    <act type="h" end_time="07:00" x100="7150"
         y100="2790" link="5834"/>
    <leg mode="car" dept_time="07:00" trav_time="00:25">
      <route>1932 1933 1934 1947</route>
    </leg>
    <act type="w" dur="09:00" x100="0650"
         y100="3980" link="5844"/>
    <leg mode="car" dept_time="16:25" trav_time="00:14">
      <route>1934 1933</route>
    </leg>
    <act type="h" x100="7150" y100="2790" link="5834"/>
  </plan>
</person>
```

- Plans are „executed“ by the mobility simulation
Multiagent-based simulations of traffic

- Scoring
 - Performance in Mobility Simulation
 - Penalties for being late at work etc.

- Simple modifications to plans
 - Routes → based on actual travel times
 - Departure times → e.g. depart 5 min later
 - Locations etc.

- Selection of plan for next iteration by Discrete Choice Model (→ some random)
The study region Berlin-Brandenburg

- Berlin and surrounding (Brandenburg)
 - 6 Mio inhabitants (Berlin 3.5 Mio, Brandenburg 2.5 Mio)
 - 150 km x 250 km

- Suburbanisation only began in late 1990ies

- Relatively low level of car ownership in Berlin,
 Modal Split of 40% car

- Congestion is not a real problem at the moment
 (but pollution/dust is a matter of concern)
The study region Berlin-Brandenburg
Transportation planning in Berlin

- Urban Planning Department
- Proprietary demand model
 (1020 traffic analysis zones, 885 Berlin, 135 Brandenburg)
- Based on trip frequencies and travel distances derived from household survey
- Assignment done with VISUM
- Only local traffic counts eg. before construction
Available data

- OD-matrices (different modes) only for 24h
- Basic census / land use data for 885 Berlin zones
- Road network for 1998 and for 2010 (planned)

Not (yet) available

- Time-dependent OD-matrices
- Data from household survey
 (household structure, employment, car availability)
- Network-wide traffic counts
Demand generation

- Goal is to generate initial plan for each person

```xml
<person id="241" income="50000">
  <plan score="123">
    <act type="h" end_time="07:00" x100="7150" y100="2790" link="5834"/>
    <leg mode="car" dept_time="07:00" trav_time="00:25">
      <route>1932 1933 1934 1947</route>
    </leg>
    <act type="w" dura="09:00" x100="0650" y100="5980" link="5844"/>
    <leg mode="car" dept_time="16:25" trav_time="00:14">
      <route>1934 1933</route>
    </leg>
  </act>
</person>
```

- Different (increasingly complex) approaches
 1. Directly convert the OD-matrix into trips
 2. Create a synthetic population from census data and do primary activity location choice using OD-matrix
 3. Create a synthetic population with “true” location choice
Model set up (so far)

- Using simplest approach for demand generation (OD-matrix)
- Assuming all trips to be *home-work-home* and to start (initially) e.g. at 7am
- 8hrs work, must start between 7am and 9am
- Modify routes and departure times in iterations,
- 5% sample for faster testing (~150,000 agents) [with reduced network capacities]
Implications of the model set up

→ Using the OD-matrix lets return trips become “additional” agents

→ No relationship to real traffic, but ok (and easily feasible) for initial testing of the network
Variation of departure times

Iteration 150
Problems during implementation

- Network errors and subtle codification
 - Links of length 0 coding one ways
 - Very low capacities

- Just result in high usage of capacity in VISUM

- Especially in conjunction with “artificial” demand:
 Real problem for Queue model of MATSim Mobility Sim.
 - Short links are completely “blocked”
 (but are favored in initial routes…)
 - Persons travel longer than 24h (which breaks scoring function…)

- “reduced capacity” trick may amplify problem / not work
Effects of Network errors

Simulated period (hours)

Usage of capacity

- 0 - 25%
- 25 - 100%
- 100% - 33.3%
Tracktability and Performance

- On a 2.2 GHZ, 2 GB machine, one iteration takes approx. 25 minutes
- Simulating 150,000 agents uses approx. 1 GB
- Mobility can handle larger scenarios without significant performance mobility in parallel mode (already implemented)
- In order to handle full Berlin scenario (> 3 Mio. agents), agent database must run in parallel mode (implementation in progress)
Conclusion & future work

- Applying MATSim to an unknown, real world database can raise serious problems…

- Performance on modern Single CPU PC is already good for running medium sized scenarios

Outlook on future work:

- Better approaches for demand generation 😊

- Work on software robustness

- Full parallel implementation needed for large scenarios
Thank You for Your attention…