
OPUS: AN OPEN PLATFORM FOR URBAN SIMULATION

Paul WADDELL
Director

Center for Urban Simulation and
Policy Analysis

University of Washington
Box 353055

Seattle, Washington 98195
USA

Tel: +206 221 4161
Fax: +206 685 9044

E-mail: pwaddell@u.washington.edu

Hana ŠEVČÍKOVÁ
Researcher

Center for Urban Simulation and
Policy Analysis

University of Washington
Box 353055

Seattle, Washington 98195
USA

Tel: +206 221 4161
Fax: +206 685 9044

E-mail: hanas@stat.washington.edu

David SOCHA

Software Manager
Center for Urban Simulation and

Policy Analysis
University of Washington

Box 353055
Seattle, Washington 98195

USA
Tel: +206 221 4161
Fax: +206 685 9044

E-mail: socha@cs.washington.edu

Eric MILLER
Professor

Department of Civil Engineering
University of Toronto

35 St. George St.
Toronto, Ontario, M5S 1A4

Canada
E-mail: miller@civ.utoronto.ca

Kai Nagel
Professor

Institut für Land- und Seeverkehr
Fachgebiet Verkehrssystemplanung
und Verkehrstelematik, Sekr. SG 12

Salzufer 17-19, D-10587 Berlin
Germany

E-mail: nagel@vsp.tu-berlin.de

Abstract: Several research teams working on integrated land use,
transportation and environmental modelling have begun an international
collaboration to develop an Open Platform for Urban Simulation (OPUS). The
initiative is creating an Open Source platform that simulates land use, activity-
based travel demand, and dynamic traffic assignment, and that can be
extended by users and adapted to alternative modelling applications. This
paper summarizes the objectives and design of OPUS, and describes a
framework for extending the system through packages contributed by the user
community.

Keywords: microsimulation, open source, land use, activity-based travel,
network assignment

 1

OPUS: AN OPEN PLATFORM FOR URBAN SIMULATION

1 INTRODUCTION
Research in transportation modelling and planning has made significant
advances over the past decade along four axes of innovation, within a
unifying theme of modelling land use and transportation choices at the
individual level.

The first of these axes is in integrated land use and transportation modelling,
motivated by the need to assess major transportation investments and their
effects on urban development and on the environment. Over the past
decade, several research projects have been developing new platforms for
integrated land use and transportation modelling, including ALBATROSS
(Arenze and Timmermans, 2000), ILUTE (Miller and Salvini, 2003), and
UrbanSim (Waddell, 2002; Waddell et al. 2003).

The second axis of innovation is in the development of activity-based travel
modelling, motivated by shortcomings in the design of traditional four-step
travel models and the need to improve the behavioural realism of travel
demand models. Within this body of work, several activity-based travel
demand model systems have been developed, including CEMDAP (Bhat et al.
2003), and FAMOS (Pendyala et al, 2004).

The third axis of innovation is in dynamic traffic assignment models, using
both mesosopic and microscopic approaches to better reflect dynamic traffic
conditions. Recently developed dynamic assignment platforms exemplifying
these innovations include MATSIM (MATSIM, 2005) and METROPOLIS (de
Palma et al., 1997).

Finally, the fourth axis of innovation is in the development of increasingly
sophisticated discrete choice models and the tools with which to estimate
them with. Advances in choice modelling include numerous generalizations of
the multinomial logit model and the development of simulation-assisted
estimation methods (Train,2003), and the generalization of discrete choice
models to incorporate more explicitly the generation of the choice set, the
integration of revealed and stated-preference information, and the use of
latent constructs in choice model formulation. New software packages such
as Biogeme (Bierlaire et al., 2004) that implement these advances and make
them accessible to modelers have been emerging, and commercial
econometric software have been rapidly incorporating these methods.

Given the rapid pace of innovation in these four areas, it is no surprise that
few standards have emerged. Due to a combination of absence of common
standards and architectures for efficient interoperation, creating complete
systems for use in research and planning applications by coupling models
together is often a very difficult and inefficient process. Yet researchers and
users of these models need to do precisely this in order to pursue their
respective research and planning agendas. Some of the inefficiency is due to
the need to couple models ‘loosely, by inefficient data exchange methods.
Other inefficiencies arise due to incompatibilities of software languages, data

 2

formats, or to proprietary restrictions on access to the internal data structures
and algorithms of coupled components.

Several research teams spanning these four innovation areas have launched
an international collaboration to develop an Open Platform for Urban
Simulation (Opus). The broad vision for the effort is to develop a robust,
modular and extensible open source framework and process for developing
and using model components and integrated model systems, and to facilitate
increased collaboration among developers and users in the evolution of the
platform and its applications. This paper provides the first description of this
initiative, its key design elements, its current development status, and plans
for its further development.

The remainder of the paper is organized as follows. Section 2 describes the
objectives guiding the design of Opus, and the initial design and
implementation of the Opus architecture. Section 3 addresses issues related
to the specification and implementation of models in the Opus framework.
Section 4 concludes with an assessment of the current status and future
research and development priorities, and an invitation to participate in the
development of Opus.

2 Opus Design
Opus is motivated by lessons learned from urban simulation projects, in
particular from the ILUTE, UrbanSim and MATSIM projects, and by a desire to
collaborate on a single platform so that projects can more easily leverage
each other's work and focus on experimenting with and applying models,
instead of spending their resources creating and maintaining model
infrastructures.

A similar project that provides inspiration for the Opus project is the R project
(www.r-project.org). R (Ihaka and Gentleman 1996) is an Open Source
software system that supports the statistical computing community. It
provides a language, basic system shell, and many core and user-contributed
packages to estimate, analyze and visualize an extremely broad range of
statistical models. Much of the cause for the rapidly growing success of this
system, and its extensive and actively-contributing user community, is due to
the excellent design of its core architecture and language. It provides a very
small core, a minimal interactive shell that can be bypassed completely if a
user wants to run a batch script, and a set of well-tested and documented
core packages. Equally importantly, it provides a very standard and easy way
to share user-contributed components. Much of the Opus architecture is
based upon the R architecture.

In addition, the success of the R project motivated our driving vision for Opus:

To realize the transformative potential for the land use, transportation
and environmental modelling and planning communities from
collaboratively developing a shared platform that is well-designed for the
relevant tasks, easy to use, easy to extend, and easy to share models,
data, and results.

 3

The design of the core Opus architecture draws heavily on the experience of
the UrbanSim project in software engineering and management of complex
open source software development projects, and in the usability of these
systems by stakeholders ranging from software developers, to modelers, to
end-users.

The high-level design goals for Opus are to create a system that is very:

• Productive – to transform what users can do

• Flexible – to support experimentation

• Fast and scalable – to support production runs

• Straightforward – so users will create many more Opus packages

• Sharable – to benefit from others’ work

In other words, to fulfil our vision we need to design a system whose parts
have a particular set of qualities, some of which may seem a bit at odds. The
Opus system must (in no particular order):

• Have a low cost for developing new models. It should be easy for
modelers around the world to code, test, document, package, and
distribute new models. And it should be easy for modelers to
download, use, read, understand, and extend packages created by
others.

• Make it easy to engage in experimentation and prototyping, and then to
move efficiently to production mode and have models that run very
quickly.

• Have an interactive command-line interface so that it is easy to explore
the code, do quick experiments, inspect data, etc.

• Be flexible so that it is easy to experiment with different combinations
of parts, algorithms, data, and visualizations.

• Make it easy to inspect intermediate data, in order to aid the often
complex diagnosis of problems found in large-scale production runs.

• Be extensible so that users can modify the behaviour of existing
models without modifying the parts being extended, or build new
models from existing parts, or replace existing parts with others that
provide the same services in a different way.

• Be easy to integrate with other systems that provide complementary
facilities, such as estimation, data visualization, data storage, GIS, etc.

• Be scriptable so that it is straight forward to move from experimentation
or development into the mode of running batches of simulations.

• Run on a variety of operating systems, with a variety of data stores
(e.g. databases).

• Handle data sets that are significantly larger than available main
memory.

 4

• Make it easy to take advantage of parallel processing, since much of
the advances in chip processing power will come in the form of having
multiple ‘cores’ on a single chip.

• Provide an easy mechanism for sharing packages, so that people can
leverage each others work.

• Provide a mechanism for communities of people to collaborate on the
creation and use of model systems specific to their interests.

The following sub-sections describe some of the key motivations for these
goals and strategies for attaining them.

2.1 Python as the Base Language
One of the most important parts in the system is the choice of programming
language on which to build Opus. This language must allow us to build a
system with the above characteristics.

After considering several different languages (C/C++, C#, Java, Perl, Python,
R, Ruby) we choose Python for the language in which to implement Opus.
Python provides a mature object-oriented language with automatic garbage
collection. Python’s support for reflection (the ability of a program to query
what classes exist and what methods each of these classes has) makes it
much easier to create extensible and flexible systems. Its support for lambda
functions provides powerful and flexible ways to extend functionality at run-
time.

Python has a concise and clean syntax that results in programs that generally
are 1/5 as long as comparable Java programs. In addition, Python has an
extensive set of excellent open-source libraries. Many of these libraries are
coded in C/C++ and are thus are very efficient. Numarray, for instance, is an
open-source Python library containing a wide variety of useful and extremely
fast array functions, which we use throughout Opus to provide high
performance for large data sets. There are also several mechanisms for
‘wrapping’ other existing packages and thus making them available to Python
code.

Python is an interpretive language, which makes it easy to do small
experiments from Python’s interactive command line. For instance, we often
write a simple test of a numarray function to confirm that our understanding of
the documentation is correct. It is much easier to try things out in Python,
than in Java or C++, for instance.

At the same time, Python has excellent support for scripting and running
batch jobs, since it is easy to do a lot with a few lines of Python, and Python
‘plays well’ with many other languages. The run-request management system
created by the UrbanSim project, for instance, uses Python to service run-
requests logged to a database. For each run request, the system invokes a
combination of Python, Java, and emme/2 models to simulate for a 30 year
simulation that takes several days of compute time (mostly in the emme/2
assignment step). We have found that Python fulfills this role much better
than Perl or Java.

 5

Python’s ability to work well for quick experiments, access high-performance
libraries, and script other applications means that modelers need only learn
one language for these tasks.

Opus extends the abstractions available in Python with domain-specific
abstractions useful for urban modelers, as described below.

2.2 Opus Architecture
Figure 1 shows the basic Opus architecture. Much of this is now implemented
and running. As described above, this basic architecture is modelled on the R
architecture. However, instead of building our own interpreted language, as R
did, Opus code is simply Python code that follows some standards. This
allows us to leverage the development activities in the dynamic and growing
Python community, and avoid creating our own mechanisms for the many
things that are already done well there.

The standards that define Opus relate to how to package functionality, and
how to construct new functionality by assembling or modifying existing
functionality.

The basic unit of distribution for Opus functionality is an Opus package, which
is a Python package that conforms to a few specific rules. Each Opus
package provides a particular type of functionality, and is contained in a
directory of the same name as the Opus package. This directory contains a
set of required directories and files (e.g., docs, examples, tests) that form
explicit guidelines of good usage. The tests directory, for instance, must
contain a Python file, all_tests.py, that runs all of the automated tests shipped
with this Opus package. As long as these rules are adhered to, the author of
the Opus package may add other directories and files as suits their needs.

Python code in Opus can refer to the contents of another Opus package via
the fully-qualified Python name for that module, e.g.
opus.urbansim.households, Using fully qualified names eliminates name
collisions, so that two different user-defined Opus packages can both include
a class of the same name without causing confusion in the system.

Figure 1 shows Opus packages containing Python classes. This figure
focuses on the two Opus packages required for UrbanSim models:

• core – this package is the heart of Opus. It contains the underlying
abstractions for the basic building blocks of a modelling system. These
include models, variables, datasets, coefficients, specifications, and
data stores. Each dotted circle connects an abstraction shown in a
rounded-cornered box, such as ‘model’, with the family of classes that
are specialized versions of that abstraction.

• urbansim – this package contains versions of the core abstractions that
are specialized for running the set of models required for UrbanSim.
Figure 1 shows just a few of the actual classes defined in urbansim.

All of the classes shown in the core and urbansim packages exist today.

 6

Figure 1 Opus Core, Internal and External Packages

 7

Figure 1 also shows some other examples of desired Opus packages. For
instance, we intend to integrate as an Opus package a land cover model
created through collaboration between the Center for Urban Simulation and
Policy Analysis (CUSPA) and the Urban Ecology Lab (UEL) at the University
of Washington.

Along the bottom of Figure 1 are a set of non-Opus packages that we could
envision becoming part of Opus, either by simply installing them, if they are
Python packages, or by writing Python wrappers to provide an interface to
them. Not only would these provide access for other Opus packages, it would
allow these packages to interact with the rich and growing set of Python
packages produced by the Python community. Not included in Figure 1 is
Opus’s underlying ‘kernel’. The kernel is a minimal set of core functions to
manage Opus packages. It includes the ability to download a package from a
URL, to install a package, to uninstall a package, to run a package’s tests, to
create a new package, and to create a compressed file from which a package
can be installed.

2.3 Integrated Model Estimation and Application
Model application software in the land use and transportation domain has
generally been written to apply a model, provided a set of inputs that include
the initial data and the model coefficients. The process of generating model
coefficients is generally handled by a separate process, generally using
commercial econometric software. Unfortunately, there are many problems
that this process does not assist users in addressing, or which the process
may actually exacerbate. There are several potential sources of inconsistency
that can cause significant problems in operational use, and in the experience
of the authors this is one of the most common sources of problems in
modelling applications.

First, if estimation and application software applications are separate, model
specifications must be made redundantly – once in the estimation software
and once in the application software. This raises the risk of application errors,
some of which may not be perceived immediately by the user. Second,
separate application and estimation software requires that an elaborate
process be created to undertake the steps of creating an estimation data set
that can be used by the estimation software, again giving rise to potential for
errors. Third, there are many circumstances in which model estimation is
done in an iterative fashion, due to experimentation with the model
specification, updates to data, or other reasons. As a result of these
concerns, a design objective for Opus is the close integration of model
estimation and application, and the use of a single repository for model
specifications. This is addressed in the Opus design by designating a single
repository for model specification, by incorporating parameter estimation as
an explicit step in implementing a model, and by providing well-integrated
packages to estimate model parameters.

2.4 Database Management, GIS and Visualization
The extensive use of spatial data as the common element within and between
models, and the need for spatial computations and visualization, make clear

 8

that the Opus platform requires access to these functions. Some of these are
handled internally by efficient array processing and image processing
capabilities of the Python Numeric library. But database management and
GIS functionality will be accessed by coupling with existing Open Source
database servers such as MySQL (www.mysql.org) and Postgres
(www.postgresql.org), and GIS libraries such as SAGA (www.saga-gis.org)
and OpenEV (openev.sourceforge.net). Interfaces to commercial DBMS and
GIS systems will be provided mainly by user contributed packages.

2.5 Documentation, Examples and Tests
Documentation, examples and tests are three important ways to help users
understand what a package can do, and how to use the package. Every
Opus package must have a docs directory for documentation, an examples
directory for executable examples of how to use the functionality, a data
directory containing example datasets, and a tests directory containing unit-
and acceptance-tests. Documentation is expected to exist in both Adobe
portable document format (pdf) and web-based format (html, xml), and to
include code documentation automatically created from code comments, such
as done by pydoc. The pdf format makes it easy to print the document, and
can produce more readable documents. Web-based documentation can be
easier to navigate, and are particularly useful for automatically extracted code
documentation.

Following the R lead, we plan to implement techniques to ensure that any
code in the documentation works, and that any results of code as shown in
the documentation are what the code actually does generate. A common way
to do this is via literate programming that extracts and runs the code from the
documentation and inserts the results of the code where appropriate.

2.6 Open Source License
The choice of a license is an crucial one for any software project, as it dictates
the legal framework for the management of intellectual property embedded in
the code. Opus will be released under the GNU General Public License
(GPL). GPL is a standard license used for Open Source software. It allows
users to obtain the source code as well as executables, to make modifications
as desired, and to redistribute the original or modified code, provided that the
distributed code also carries the same license as the original. It is a license
that is intended to protect software from being converted to a proprietary
license that would make the source code unavailable to users and
developers.

The use of Open Source licensing is seen as a necessary precondition to the
development of a collaborative software development effort such as
envisioned for Opus. It ensures that the incentives for information sharing are
positive and symmetrical for all participants, which is crucial to encourage
contributions by users and collaborating developers. By contrast, a software
project using a proprietary license has incentives not to release information
that might compromise the secrecy of intellectual property that preserves
competitive advantage.

 9

There are now many Open Source licenses available (see
www.opensource.org), some of which allow derived work to be
commercialized. Some software projects use a dual licensing scheme,
releasing one version of the software under a GPL licence, and another
(functionally identical) version of the software under a commercial licence,
which allows also distributing software as a commercial application. Opus
developers have opted to retain the GPL license approach as it is a pure
Open Source license, and does not generate asymmetries in the incentives
for information sharing. Any packages contributed to OPUS by other groups
must be licensed under a GPL-compatible license – we encourage them to be
licensed under GPL itself, or less desirably, under LGPL (the library version of
GPL).

2.7 Test, Build and Release Processes
Any software project involving more than one developer requires some
infrastructure to coordinate development activities, and infrastructure is
needed to test software in order to reduce the likelihood of software bugs, and
a release process is needed to manage the packaging of the system for
access by users. For each module written in Opus, unit tests are written that
validate the functioning of the module. A testing program has also been
implemented that runs all the tests in all the modules within Opus as a single
batch process.

For the initial release process, a testing program is being used to involve a
small number of developers and users in testing the code and documentation.
Once this process is completed, a full initial release will be put on the project
web site: www.opus-project.org. The current expectation is that this initial
release will occur in the third quarter of 2005.

After the initial system release, two release schedules will be used to provide
Opus users access to system updates. A stable release will be posted on the
web on a periodic basis, approximately twice per year. This will contain major
updates in core packages and updates to new versions of component
systems such as Python. Since some of the component libraries include C or
C++ code that must be compiled on a specific operating system, binary
versions of these will be made available for Windows and Linux, and these
can be compiled from sources if desired. The stable release installation file
will be posted on the project web site: www.opus-project.org. The installation
file will be in the form of a compressed file that a user would download to a
local computer, uncompress, and install the Opus system as described in
section 3.3, by running the standard setup.py module.

In addition to the periodic stable releases, nightly releases of the system will
be generated once the testing process has completed without errors on all
modules. A module may be added to the Opus kernel to automatically check
for nightly updates and retrieve and install them, if a user wishes to use this
feature. Otherwise, the installation process will be the same for nightly
releases as for stable releases.

The Opus project currently uses the Concurrent Versioning System (CVS) for
maintaining a shared repository for the code as it is developed by multiple

 10

developers (though this mechanism may be changed to use Subversion in the
future). Write access to the repository is maintained by a core group of
developers who control the quality of the code in the system, and this group
can evolve over time as others begin actively participating in the further
development of the system. A repository will also be set up for users who wish
to contribute packages for use in Opus, with write access.

3 Developing Models in Opus
Models can be implemented in the Opus framework using a variety of
approaches, since one of the goals of Opus is to support flexibility, and the
range of modelling approaches needed to implement models across the broad
scope of land use, travel and environment is quite diverse. Two approaches
that will be widely used to implement models in Opus are Discrete Choice
Models that draw on the Random Utility Maximizing approach, and Rule-
based Models such as those used in the Albatross activity-based travel model
(Arentze and Timmermans, 2000), and the MATSIM microscopic traffic
assignment model (MATSIM, 2005).

Opus is also being designed to specifically support Microsimulation at the
level of the agent making choices. While it will be possible to also construct
aggregate models in Opus, most of the effort in developing Opus will be to
ensure the effective implementation of microsimulation models. We also want
to support implementation of aggregate models, however, in order to allow
flexible model systems to be developed, and to facilitate the careful
comparison of alternative modelling approaches. One important question that
has not been well addressed in the research and applied literature in urban
models is how models with differing levels of aggregation of agents, entities
and behaviour compare in terms of their results. Providing support for such
comparisons is an important direction for future work on OPUS.

The representation of Agents within Opus will enumerate standard agents and
their relationships. One example of such a configuration is shown in Figure 2.
Some models will not need access to all of these agents and entities, but we
hope to achieve some standardization in the way that certain agents and
choices are represented, to allow greater flexibility in coupling model
components. Note that there is some tension between standardization and
flexibility in model design and implementation, but there is a case to make for
adopting standard representations for certain agents, entities, and model
results so that a range of different models can be developed and make
common assumptions about these representations. One good example of
this is in the specification of information passed from models predicting the
activity-schedule of individual persons, to the model assigning the trips and
tours in a person’s activity schedule to the transport network. Information to
support this interface must include a person identifier which maps to a
household identifier, and a structured representation of the planned activity
schedule and locations in a form that allows the assignment model to
implement the plans on a network.

Two software approaches can be used to implement models in the Opus
system. One is to code new models in Python, using and extending the core

 11

Opus classes already implemented. The second is to create an interface for a
model component that is written in some other language. If a model
component is implemented in C or C++, the standard approach to developing
an interface to Opus would be to use a tool like the Simple Wrapper Interface
Generator (SWIG) to create Python bindings to the main functions and
classes in the C or C++ code. This approach provides an efficient
implementation, and allows components in these languages to interact with
Opus data objects in memory, without requiring the data to be written to
external files or databases. If the implementation language is Java, then the
interface of model components with Opus will be through exchange of data
through external files such as XML, ASCII, or a database like MySQL.

We illustrate the process of implementing models in Opus using a simple
household location choice model. We begin with a set of 10 household
agents, and a set of 9 locations with characteristics cost and capacity,
respectively. These could be assigned at the command prompt, or loaded
from a database or an ASCII file, and we skip this loading step here for clarity.

Suppose you wish to simulate a process of agents choosing locations using
discrete choice model theory. As a first example, suppose your only predictor
is the location attribute cost with a (hypothetical) coefficient value of -0.01
indicating a negative effect of cost on the choice preferences. Then you can
create a coefficient object, a specification object and a choice model object,
respectively:

>>> from opus.core.coefficients import Coefficients
>>> coefficients = Coefficients(names=("costcoef",), values=(-0.01,))
>>> from opus.core.equation_specification import EquationSpecification
>>> specification = EquationSpecification(variables=("cost",), \
 coefficients=("costcoef",))
>>> from opus.urbansim.household_location_choice_model_creator import \
 HouseholdLocationChoiceModelCreator
>>> hlcm = HouseholdLocationChoiceModelCreator().get_model(\
 sample_locations=False, \
 compute_capacity_flag=False, \
 debuglevel=1)

The argument sample_locations in the choice model creator specifies if
locations should be sampled for each agent or not. In the latter case, all
locations are considered as a possible alternative for each agent. The
argument compute_capacity_flag specifies if the procedure should take
capacity of locations into account. The argument debuglevel controls the
amount of outputs during the computation. The default value is 0 which
produces no output.

We can run the household location choice model by

>>> hlcm.run(specification, coefficients, locations, agents)
Starting HLCM run ...
HLCM done. Time: 0.0214459896088 s

The results of the HLCM run determine locations that agents have chosen,
and the model modifies values of the attribute 'location' of the agent set.

 12

Person

Person-ID
Household-ID
Age
Gender
Education
EmploymentStatus
Job-ID
Occupation
Wages
License

Household

Household-ID
Building-ID
Income
Size
Type
Tenure
Vehicles

Building

Building-ID
Parcel-ID
Type
Size
Units
Value
Age
Condition
Tenure

Job

Job-ID
Business-ID
Occupation
Wage
Hours
Status

Business

Business-ID
Building-ID
Sector
Size

Parcel

Parcel-ID
Shape-ID
X-Centroid
Y-Centroid
Area
LandUse
LandCover
Slope
Wetland
Floodplain
StreamBuffer
Ownership
LandUsePlan
Zoning
City-ID
County-ID
Zone-ID
Link-ID

Activity

Activity-ID
Type
StartTime
Duration
Link-ID

Link

Link-ID
StartNode-ID
EndNode-ID
Lanes
SpeedLimit

Node

Node-ID
X-Coordinate
Y-Coodrinate
TurnRestrictions

Route

Link-ID-1
Link-ID-2
...
Link-ID-N

Trip

Trip-ID
Person-ID
StartTime
Mode
Route-ID

Tour

Tour-ID
Person-ID
Trip-ID-1
Activity-ID-1
Trip-ID-2
Activity-ID-2
...
Trip-ID-N
Activity-ID-N

Zone

Zone-ID
Area

Schedule

Schedule-ID
Person-ID
Tour-ID-1
Tour-ID-2
...
Tour-ID-N

City

City-ID
Area

County

County-ID
Area

Figure 2 Example of Agent Entity-Relationships in an Opus Application

 13

In the above example, the discrete choice model consists of steps such as
computing utilities via the opus.core.linear_utilities class, computing
probabilities via the opus.core.mnl_probabilities class and computing choices
via the opus.core.random_choices class. These components can be easily
exchanged by other implementations.

4 Conclusions and Future Research
The authors of this paper have taken the first steps in designing and
implementing a shared collaborative system to meet specific needs within
their respective projects. This work has been done with the broader goal of
creating a system for collaboration among the research and user communities
involved in land use, transportation and environmental planning in urbanizing
regions throughout the world. The implementation of Opus was begun by the
UrbanSim project team in early 2005, and has already reached a point that a
full conversion of the UrbanSim system to Opus is almost complete as of mid-
2005, and is scheduled to be used for operational planning in updating the
Puget Sound region Vision 2020 plan in the coming year, providing an early
indicator of the productivity of development within the Opus platform.

Much remains to be done in the broad agenda outlined in this paper, and the
initial development team has identified priorities that will guide project
investments in Opus over the next year or so. A more detailed working list of
development priorities will be maintained on the Opus project web site
(www.opus-network.org) to help establish and support a vibrant Opus user
community that will engage actively in using and extending the system.

• Initial release. We plan to incrementally release versions of Opus, starting
with an initial release in the third quarter of 2005.

• Completing the UrbanSim transition to Opus. The UrbanSim conversion to
Opus will be completed by the initial release of Opus, and will be released
concurrently.

• Estimation and application. Integrated model estimation for a range of
discrete choice models will be supported by Opus packages, including one
coded natively in Opus, and a wrapper to the Biogeme system. This
would allow using a single model specification for estimation and
application, and avoid cumbersome and error-prone procedures currently
used to connect model estimation and application.

• Indicators. Model results can be voluminous and complex, and users often
need a range of indicators that select, manipulate, and summarize key
information used in the evaluation of outcomes or the diagnosis of the
model. Support will be incorporated into Opus for streamlining the process
of defining, implementing, selecting, using and visualizing indicators. A
preliminary framework is already implemented, that draws heavily on the
mechanism used to define variables.

• Uncertainty analysis. As in any other predictive process, urban simulation
involves uncertainty – in data, in model parameters, and in model
specifications. A failure to take uncertainty into account can lead to policy
decisions based on misunderstanding of the risks. Assessing uncertainty

 14

in land use and transportation models is an area where little research has
been done. One of our goals is to include a generic framework for
assessing and analyzing uncertainty into Opus. It will be based on the
Bayesian melding theory (Poole and Raftery 2000). The main
requirements for achieving our goal are a high modularity of the model
system and an extremely good performance, since the framework will
require many repeated simulation runs. The independent nature of these
runs makes the framework very suitable for parallel computing.

• Equity Analysis. Methods recently developed to analyze relative
distributions (Handcock and Janssen, 2002) will be used to analyze
distributional effects of policies in a rigorous way that allows making
inferences about equity. This will be developed into an Opus package.

• Opus community. For Opus to succeed, it needs a vibrant community of
users and developers. There are many aspects of making this work, such
as providing a central location for people to find and download Opus
packages, providing good documentation, and making it easy for users to
create and share packages with the community.

• User and Developer Meetings. In January, 2005 the first UrbanSim Users
Workshop was held in San Antonio, and has led to increased collaboration
among the UrbanSim users. We expect that regular user and developer
meetings will be needed to sustain and develop the broader Opus system.
Given the geographic dispersion of the user and developer community,
online methods will be needed to augment in-person meetings.

• Activity-based travel models. Collaboration among several projects will be
coordinated to implement new activity-based travel models as Opus
packages.

• Land cover change model. CUSPA will convert a land cover change
model developed as a prototype into an Opus package, providing an
opportunity to incorporate feedback from land cover change on urban
choice processes.

• Web-based Stakeholder Interaction. CUSPA has been developing a web-
based system to facilitate the use of model results by modelers, policy
makers, and the public. One component will allow users to configure a
scenario by assembling pre-configured building blocks of transportation
system and land policies and submitting these scenarios for simulation
analysis. A second component will allow users to generate indicators from
land use and travel models, and to visualize the results in tables, charts
and maps. We plan to migrate these components into Opus packages.

• Visualization. Interfaces to a variety of components and libraries for
visualization of model inputs, processes and results have been
implemented for Opus, and more will be developed in the future. An
interface to R is implemented, allowing access to all of the R statistical
modelling and graphical analysis tools. Integrated charts and maps have
been also implemented using the Matplotlib Python package, and the
OpenEV GIS package. We plan to continue to extend the range of
visualizations built into Opus systems.

 15

ACKNOWLEDGEMENTS

This research was supported in part by the United States National Science
Foundation Grant number EIA-0121326.

REFERENCES

Arentze, T.A., and Timmermans, H.J.P. (2000). Conceptual Framework. In
T.A. Arentze & H.J.P. Timmermans (Eds.), ALBATROSS: A Learning Based
Transportation Oriented Simulation System (pp. 71-80). Eindhoven: European
Institute of Retailing and Services Studies.

Bhat, C., Sivaramakrishnan Srinivasan, Jessica Y. Guo, Activity-Based Travel
Demand Modeling for Metropolitan Areas in Texas: A Micro-Simulation
Framework for Forecasting, Center for Transportation Research, University of
Texas, FHWA/TX-03/4080-4, 2003.

Bierlaire, M., Bolduc, D. and Godbout, M.-H. (2004) An introduction to
BIOGEME (Version 1.0), URL:roso.epfl.ch/mbi/biogeme/doc/tutorial.pdf

de Palma A., F. Marchal and Y. Nesterov (1997), "METROPOLIS: A Modular
System for Dynamic Traffic Simulation", Transportation Research Record
1607, pp. 178-184.

Mark S. Handcock and Paul L. Janssen. Statistical inference for the relative
density. Sociological Methods & Research, 30(3):394–424, 2002.

Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and
graphics. Journal of Computational and Graphical Statistics, 5:299--314.

MATSIM (2005) www.matsim.org

Salvini, P.A. and E.J. Miller, "ILUTE: An Operational Prototype of a
Comprehensive Microsimulation Model of Urban Systems", Networks and
Spatial Economics, Vol. 5, 2005, pp. 217-234.

Opus (2005) www.opus-network.org

Pendyala, R., R. Kitamura and A. Kikuchi (2004). FAMOS: The Florida Activity
Mobility Simulator, Presented at the Conference on “Progress in Activity-
Based Analysis”, Vaeshartelt Castle, Maastricht, The Netherlands, May 28-31,
2004

Poole, D. and Raftery, A.E. (2000). Inference for deterministic simulation
models: The Bayesian melding approach. Journal of the American Statistical
Association, 95:1244-1255, 2000.

Train, K. (2003) Discrete Choice Methods with Simulation. Cambridge
University Press.

Waddell, P., A. Borning, M. Noth, N. Freier, M. Becke, G. Ulfarsson. (2003).
UrbanSim: A Simulation System for Land Use and Transportation. Networks
and Spatial Economics 3 (43-67).

Waddell, P. (2002). UrbanSim: Modeling Urban Development for Land Use,
Transportation and Environmental Planning. Journal of the American
Planning Association, Vol. 68, No. 3, (297-314).

 16

	INTRODUCTION
	Opus Design
	Python as the Base Language
	Opus Architecture
	Integrated Model Estimation and Application
	Database Management, GIS and Visualization
	Documentation, Examples and Tests
	Open Source License
	Test, Build and Release Processes

	Developing Models in Opus
	Conclusions and Future Research

