
Simulation and optimization of trajectories in a congested network

Gunnar Flötteröd* and Kai Nagel**

Abstract— The subject of this article is twofold. Firstly it
describes how a dynamic macroscopic network loading model
can be used to simulate the movement of arbitrarily complex
individual particles (agents) through a network without loss of
the macroscopic model’s differentiability. Based on this result
the problem of minimizing a given functional of the macroscopic
model’s states by adjustment of individual agents’ trajectories
is considered. A solution procedure is proposed, which is based
on subsequent linearizations of the overall system dynamics and
time variant best path calculations.

I. INTRODUCTION

This is the second of three articles providing the theoretical
framework for a novel methodology of traffic state estimation
based on multi-agent simulations. The overall goal of this
work is to provide an algorithm that estimates agents’ route
and activity location choice from anonymous traffic measure-
ments such as flows or densities. We expect this approach
to usefully link flexible but less formalized approaches for
agent-based demand generation and microsimulation [2] with
mathematically well understood state estimation methodolo-
gies from control engineering [13], [16].

As a basic building block of our system, we presented in a
first article an approximately differentiable first order traffic
flow model, which allows for dynamic loading of traffic onto
a network of arbitrary topology. Traffic flow was assumed to
be anonymous insofar as route choice was represented only
by exogenously provided splitting fractions at intersections
[8].

In this article, we show how this model can be applied
to load individual agents with arbitrarily complex behavioral
algorithms onto the network and still preserve its advanta-
geous analytical properties. Considering a general functional
of the network’s states to be given, we then propose a method
for iterative minimization of this functional in terms of a
Nash game between all agents, which basically founds on
repeated linearizations of the overall system. The individual
optimization problem every single agent faces in this game
is efficiently solved by a time variant best path algorithm.

The fact that the considered functional is not specified in
terms of a real world application makes this work somewhat
theoretical. In a third article we will use it to express
the Bayesian a posteriori probability of an agent’s route
and activity location choice given an a priori behavioral
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assumption and additional anonymous traffic measurements
[9].

Our current work is involved with estimation of agent
behavior. Physical aspects such as traffic densities or ve-
locities are not subject to direct estimation, but rather result
from travelers’ behavioral patterns. In this regard, we hope
to complement other approaches concentrating on physical
properties and less on behavioral issues [1], [13], [16].

The remainder of this article is organized as follows.
Section II-A provides some necessary background on the
macroscopic model introduced in [8]. In section II-B, it is
shown how individual particles can be moved through this
model, while section II-C explains how individual particle
behavior can be reproduced on average by this model.
Section II-D provides the overall simulation algorithm and
closes the modeling and simulation part of this article. In
section III, it is shown how the proposed model can be
applied for approximate solution of a control problem in
terms of individual particles’ route choice. In the conclusion,
an outlook on an upcoming large-scale real world application
is given.

II. MODELING AND SIMULATION

A. Review of the traffic flow model

First order traffic flow models are based on a minimal
set of assumptions. Beyond a continuity equation, the spec-
ification of a speed-density relationship already suffices to
simulate traffic on a straight road. At intersections, the
simulation problem is under-determined unless additional
constraints are introduced. In our approach, which extends
Daganzo’s cell-transmission model [5], [6], exogenously
provided turning proportions and cell inflow priorities ensure
a unique solution. The model is discretized in time and space,
where spacial segments are referred to as cells. The resulting
simulation scheme can be understood as an application of the
Godunov method as it was noted already in [12].

The only traffic flow parameters of relevance to this article
are the number of vehicles xi(k) on cell i during discrete
time step k, the number ∆xin

i (k) and ∆xout
i (k) of vehicles

entering and leaving the cell at k, the time step length T
and the time variant turning proportions βij(k) between cell
i and its succeeding cells j ∈ S(i). Only for notational
simplicity it is assumed that there is a constant amount
of traffic moving across the network, although the method
works without changes if this simplification does not hold.

Traffic states (vehicle counts) are updated in every simu-
lation time step by

xi(k + 1) = xi(k) + ∆xin
i (k) − ∆xout

i (k). (1)



Cell i’s outflow ∆xout
i (k) is a function of (a) the states of

all downstream cells of i, (b) all upstream cells’ states of
these downstream cells, and (c) all parameters influencing
flow transmission between these cells. In the context of
this article, only turning proportion parameters βij(k) are
considered. A sufficiently precise formalization of this is
given by

∆xout
i (k) = ∆xout

i [x(k), β(k), k] (2)

where x(k) = (xi(k)) and β(k) = (βij(k)) comprise all
states and turning proportions. Cell i’s inflow then follows
from its predecessor P(i)’s outflows according to

∆xin
i (k) =

∑

l∈P(i)

βli(k)∆xout
l (k). (3)

As the linearization of such a model was first demonstrated
in [8] and continuously extended since then, the entire
model as given by (1), (2), and (3) can assumed to be
approximately differentiable with respect to both, states and
turning proportions.

B. Particle movement

The macroscopic flow model is based on a speed-density
relationship. For every cell, this can be transformed into a
relationship between speed and vehicle count given by

vi(k) = vi[xi(k), k]. (4)

Velocity vi(k) prevails on cell i during time step k’s entire
duration T .

We now consider a set M of particles (a “population” of
travelers, agents, or vehicles) floating through the system.
Since we ignore traffic entering or leaving the system, M
is of constant size. Particles have no “mass” insofar as they
do not contribute to the macroscopic occupancy on a cell. It
is assumed that at the time of a particle’s entrance into the
network, an appropriate amount of macroscopic flow has also
been dismissed into the system, resulting in a mass balance
between particles and total macroscopic occupancy.

During every time step, each particle µ moves according
to the velocity on its current cell as given by (4). Here,
movement is regarded as continuous in time: When µ crosses
an intersection during a single move of duration T , it can
freely choose its next cell and continue with the velocity
encountered there until its time step ends. An example of
this procedure is given in Figure 1.

C. Particle route choice

Having stated the influence of macroscopic dynamics onto
individual particles, we now consider the opposite problem of
synchronizing the macroscopic traffic flow with the particles’
behavior. For this purpose, we introduce additional states
xij(k) representing the accumulated number of vehicles
having moved from cell i to cell j ∈ S(i) until the beginning
of time step k. In order to specify these states’ dynamics, we
also define a control vector u(k) = (uij(k)) with component
uij(k) being equal to the number of particles having moved

Fig. 1. Particle movement across an intersection

In this example, particle µ comes from the left and makes a
right-turn into the downwards road segment. The time step
duration is T = 10s. The particle needs 4, 3s to reach the
end of link 1 at v1 = 50km/h. During the remaining 5, 7s,
it advances another 31, 7m on link 2 at v2 = 20km/h.

from cell i to cell j ∈ S(i) in time step k. This allows to
give an additional state equation

xij(k + 1) = xij(k) + uij(k) (5)

for every turning relation ij. The control vectors’ compo-
nents uij(k) are additively comprised of all particles’ turning
behavior, which is stated by

uij(k) =
∑

µ∈M

uµ
ij(k), (6)

where uµ
ij(k) ∈ {0, 1} is 1 if particle µ proceeds from cell

i to cell j during k and 0 otherwise.
In order to connect these quantities to the traffic flow

model, we assume that the turning decisions of particles
leaving any cell i follow a multinomial distribution with
unknown choice probabilities. A raw maximum likelihood
estimator of these probabilities is then used to calculate the
model’s turning proportions via

βij(k) =
xij(k)

∑

l xil(k)
. (7)

We are aware of more sophisticated calculation schemes
[11], but even this straightforward formula makes the point
perfectly clear. By substitution of these turning proportions
into (2) and (3), we can split the macroscopic traffic flow
according to the individual particles’ behavior.

Recapitulating, we express the macroscopic system dy-
namics by a general state equation

x(k + 1) = f [x(k),u(k), k], (8)

where x(k) comprises both, vehicle and turning counter
states, u(k)’s influence on the system is given by (5) and (7)
and function f subsumes the previously given state update
equations (1) and (5). Note that f stays differentiable with
respect to both, x and u.



Fig. 2. Interaction between agents and mobility simulation

Interaction between (microscopic) agents and macroscopic
mobility simulation. Note that both components can be
independently chosen from broad classes of models, which
is possible because of the very narrow interface in between.

D. Practical simulation of the overall model

The calculation scheme given so far assumes time-
invariant turning probabilities. A straightforward approach to
introduce time variance is to define an additional forgetting
parameter w ∈ [0, 1] in a modified turning counter update
equation

xij(k + 1) = wxij(k) + uij(k). (9)

In the absence of newly observed particle movements,
this causes an exponential forgetting of previously learned
counts. It will have to be verified experimentally if other
update schemes perform better. One possible problem with
(9) is the danger of deadlock: If a jam on one of an inter-
section’s outgoing cells causes all ingoing cells’ velocities
to drop, it might take a long time until new particles reach
this intersection and provide fresh turning counts reflecting
drivers’ avoidance of the unavailable outgoing cell.

The overall simulation of a single time step can now be
conducted in three stages:

1) Calculation of turning proportions from turning counts
according to (7);

2) Calculation of traffic flows and update of cell occu-
pancies as specified by (1), (2), and (3);

3) Movement of particles according to cell velocities
as given by (4) and synchronous update of turning
counters according to (6) and (5) or (9).

This approach allows us to move arbitrarily complex agents
through an analytically tractable traffic flow model, as it is
depicted in Figure 2.

We expect this simulation scheme to perform well even in
larger scenarios for two reasons:

(1) The model does not require a realistic number of
particles. If, for example, only a 10 percent sample of
the complete population is loaded onto the network, the
macroscopic equivalent of 10 vehicles is inserted into the
system together with every particle. The chosen number of

particles must be large enough to properly represent the
actual population’s properties in terms of sufficiently low
variance of the resulting macroscopic turning parameters,
but otherwise can be minimized for fast computational
performance.

(2) The macroscopic mobility simulation only moves non-
destination oriented flow. No care has to be taken e.g. of par-
tial densities, as it would be the case if route and destination
choice were represented macroscopically as well.1

III. OPTIMIZATION

If the model presented so far was only used for straight-
forward network loading, its usefulness might be put into
question, since microscopic traffic simulation is possible
with far simpler models [15]. The special contribution of
this model is its ability to both move individual particles
through the network and to allow for analytical analysis. In
this section, we will show how to exploit this property for
optimization of particle trajectories.

A. General problem statement

Assume a functional J for evaluation of the network’s
states during time steps 1 . . .K to be given by

J =

K
∑

k=1

φ[x(k), k], (10)

where φ maps the network state vector onto a finite, real-
valued number. Further assume a linear functional

Jµ =

K−1
∑

k=0

∑

ij

cµ
ij(k)uµ

ij(k) (11)

to be given for every particle µ, where

cµ
ij(k) > 0 (12)

represents µ’s positive and finite cost of moving from i to j
in time step k. In the following, we will develop an algorithm
for approximate minimization of the combined functional

J +
∑

µ∈M

Jµ = min! (13)

by appropriate choice of all agents’ individual control vari-
ables u

µ(k) = (uµ
ij(k)), k = 0 . . .K − 1. These turning

decisions clearly are constrained, since any particle’s route
depends on its initial location, on the network structure, and
on the time variant velocities on the network links. Still, we
state this restriction only verbally, since compliance with it
will be enforced by the chosen solution algorithm anyways.

1An additional speedup is achieved by variation of cell sizes. By choosing
larger cells for longer roads, we do not only reduce the total number of cells:
Since larger cells are also updated at a lower frequency, agents being on
such cells are accordingly moved less often. Still, a strict inspection of this
calculation scheme in terms of first order traffic flow theory has not yet
been undertaken.



B. A single trajectory

In this section, we consider a linearized version of the full
problem, where only one agent µ’s trajectory is subject to
optimization. Since Jµ is already linear, the task remains to
linearize J : Calculation of J’s reduced gradient with respect
to all u

µ(k), k = 0 . . .K − 1 is possible via a two-pass
calculation [14].2 Firstly, costates λ(k) are calculated by
solving the following difference equation backwards through
time:3

λ(k) =















∂φ[k]

∂x(k)
+

(

∂f [k]

∂x(k)

)T

λ(k + 1) k < K

∂φ[K]

∂x(K)
k = K.

(14)

In a second step, sensitivities with respect to control variables
can be obtained via

∂J

∂uµ(k)
=

∂J

∂u(k)
=

(

∂f [k]

∂u(k)

)T

λ(k + 1) (15)

for 0 ≤ k < K. Note that because of (6) this result is iden-
tical for all agents. Dropping constant terms, a linearization
of J can be given by means of (15):

J̄ =

K−1
∑

k=0

∑

ij

∂J

∂uij(k)
uµ

ij(k). (16)

From this, we obtain a linearized functional

J̄µ =

K−1
∑

k=0

∑

ij

(

∂J

∂uij(k)
+ cµ

ij(k)

)

uµ
ij(k) (17)

for every agent µ.
Since J̄µ is a sum of time variant costs

dµ
ij(k) =

∂J

∂uij(k)
+ cµ

ij(k) (18)

attached to the chosen turning moves ij, the application of
a time variant best path algorithm on a modified network
suggests itself as a solution procedure to this problem, where
the original network’s links comprise the new nodes and
every possible turning movement in the original network is
represented by a new link ij with time variant cost given by
dµ

ij(k). Unfortunately, it cannot be guaranteed that all dµ
ij(k)

are nonnegative, which can cause loops of negative cost to
occur in the modified network, rendering the application of
standard best path algorithms impossible. While this problem
certainly is an interesting topic of mathematical research, we
confine ourselves to assuming that cij(k) is sufficiently large,
so that the use of

d̃µ
ij(k) = max{0, dµ

ij(k)} (19)

2The reduced gradient regards for the dynamic constraints given by state
equation (8). See [10] for another traffic related application of this method.

3Costates can be interpreted as sensitivities of J with respect to sys-
tem states: Denote J(k,K) =

PK
c=k φ[c]. Since the system is causal,

∂J
∂xi(k)

=
∂J(k,K)
∂xi(k)

=
∂φ[k]

∂xi(k)
+

∂J(k+1,K)
∂xi(k)

results. The dependency
between different time steps is fully given by state equation (8), so we can
use the chain rule: ∂J(k+1,K)

∂xi(k)
=

P

j
∂J(k+1,K)
∂xj(k+1)

∂fj [k]

∂xi(k)
. Substitution of

λi(k) = ∂J(k,K)
∂xi(k)

then yields (14).

instead of dµ
ij(k) provides an acceptable approximation of

the exact problem.4

A dynamic best path search based on Dijkstra’s well-
known algorithm [7] efficiently provides an optimal solution
to this problem in terms of a coherent path that obeys
all constraints imposed by the congested network as stated
above.

From a single particle’s point of view the traffic situation
is linear in good approximation, since control variables
uµ

ij ∈ {0, 1} are small compared to actual turning counts in
a congested network; but even in this case we only reach
an approximate minimum of Jµ’s linearization (17). The
nonlinear problem is discussed in the next section.

C. Many trajectories

We now consider the problem of minimizing (13) by syn-
chronous modifications of many agents’ trajectories. Clearly,
the increased number of degrees of freedom has the potential
for a better overall solution, still this setup results in certain
problems also encountered in dynamic route guidance: If
many drivers are independently of each other informed of
a low travel time route, they might all switch towards this
route, causing a jam and very high travel times times [3].
Similarly, the individual linearization (17) of the overall
functional does not allow for a coordination of different
particles’ route optimizations.

Our proposed algorithm resembles the fixed point solution
approaches to self consistent route guidance in the sense that
it iteratively updates only a subset of all particle trajectories.
One iteration of the algorithm is given below:

1) Load all particles onto the network;
2) evaluate target functional J and stop if desired;
3) differentiate target functional via (14) and (15);
4) choose a subset M′ ⊂ M;
5) calculate a new trajectory u

µ for every µ ∈ M′ that
approximately minimizes J̄µ by dynamic best path
algorithm;

6) continue with 1.

This algorithm becomes identical to a popular traffic assign-
ment heuristic that solves the equilibrium problem in terms
of a fixed point iteration [4], if J = 0 and Jµ represents µ’s
perceived travel cost.5 Since traffic assignment based on this
method has become common practice, we expect the method
to also work well for our purposes.

D. Behavioral modeling vs. optimization

One might suspect a contradiction in our methodology:
Firstly, we stated that agents’ route choice is the result of an
arbitrary behavioral model. Now, we calculate agents’ routes
by explicit optimization, invalidating any behavioral aspect.
These two apparently different premises can be consolidated,

4The application described in [9] suggests that this approximation is
reasonable.

5In the context of a subsequent article, such a network loading algorithm
naturally results as the degenerated case of a state estimation problem if the
number of observations approaches zero [9].



if the individual functionals Jµ properly reflect the relevant
aspects of agent behavior.

This is the subject of a subsequent article [9], providing
a behavioral model that is flexible but still tractable in this
optimization context. There, we also formulate a complete
state estimation problem in terms of the optimization prob-
lem discussed here.

IV. SUMMARY AND OUTLOOK

This article builds upon the availability of a dynamic,
macroscopic traffic flow model that can at least approxi-
mately be differentiated. It demonstrates how such a model
can be used to simulate the movement of complex individual
particles through a network without loss of the macroscopic
model’s differentiability.

Based on this result the problem of minimizing a given
functional of the macroscopic model’s states by adjustment
of individual agents’ trajectories is considered. A solu-
tion procedure is proposed, which is based on subsequent
linearizations of the overall system dynamics and makes
efficient use of a well known best path algorithm.

Since we are interested in state estimation, the question
remains of how to choose an appropriate target functional
in the context of such an application. This problem will be
discussed in another article, which provides details on the
combined modeling of agents’ route and activity location
choice as well as the formulation of a complete Bayesian
estimator.

The overall system will be tested with real world data
collected Berlin during the upcoming soccer world cham-
pionship, which will take place in June 2006. Since this
opportunity occurred at short notice, it disarranged our
original plan of first testing the system on smaller, synthetic
problems before considering real world scenarios, as we
envisaged when writing an earlier publication.
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