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Abstract— This article describes a behavioral model of com-
bined route and activity location choice. The model can be
simulated by a combination of a time variant best path
algorithm and dynamic programming, yielding a behavioral
pattern that minimizes a traveler’s perceived cost. Further-
more, the model is extended in a Bayesian manner, providing
behavioral probabilities not only based on subjective costs,
but also allowing for the incorporation of anonymous traffic
measurements and the formulation of a traffic state estimation
problem.

I. INTRODUCTION

This is the last of three articles providing the theoretical
framework for a novel methodology of traffic state estimation
based on multi-agent simulations. The overall goal of this
work is to provide an algorithm that estimates agents’ route
and activity location choice [1] from anonymous traffic
measurements such as flows or densities.

In a first article we presented a linearizable first order
order traffic flow model which allowed for dynamic loading
of traffic onto a network of arbitrary topology. Traffic flow
was assumed to be anonymous insofar as route choice was
represented only by exogenously provided splitting fractions
at intersections [6].

In a second article we showed how this model could be
applied to load individual agents with arbitrarily complex
internal behavioral algorithms onto the network without loss
of the model’s analytical properties. We proposed a method
for approximate minimization of a general functional of the
network’s macroscopic states through a Nash game between
all agents. The individual optimization problem every agent
faced in this game was a linearized version of the full
problem, which could efficiently be solved by a time variant
best path algorithm [7].

This article finally presents the state estimation application
of these earlier works. It models an agent’s route and activity
location choice as a cost minimization problem. After shortly
visiting the modeling of an agent’s contribution to a set
of anonymous traffic measurements, we formulate the state
estimation problem as a Bayesian estimator combining a
priori behavioral knowledge with traffic observations to yield
the most likely a posteriori route and activity location choice
for every agent.
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We consider the major contribution of this and the previous
articles to be the proposal of an approach that links control
engineering’s formal state estimation methodology to the
flexible agent-based representation of individual mobility
behavior.

The remainder of this article is organized as follows. In
section II, we model combined route and activity location
choice in terms of an optimization problem, for which a
solution algorithm is given in section III. In section IV
we provide a link between an agent’s individual behavior
and general observations of the traffic system in terms of
anonymous measurements. Section V then combines the
behavioral model with that of anonymous measurements,
yielding a formal description of the combined route and
activity location choice estimation problem, for which a
solution algorithm is available. In the article’s conclusion,
an outlook on an upcoming real-world application of the
proposed methodology is given.

II. A MODEL OF DAILY PLANS

Every agent µ has an individual plan for a given day, which
is comprised as follows: The complete day is segmented into
nµ + 1 temporal stages. Every such stage 0 ≤ a ≤ nµ is
provided with a set Lµ

a of one or more locations (network
links) and a discrete start time step kµ

a with 0 = k
µ
0 < k

µ
1 <

. . . < k
µ
nµ . Formally, stage a is nothing but a fixed temporal

interval [kµ
a , k

µ
a+1) during which µ wants to be at one of the

locations in Lµ
a . It can be interpreted as an activity such as

“work”, “leisure” or “shopping”, while its location set can
be understood as the activity locations where the individual
expects facilities for execution of the according activity, e.g.
different malls for a shopping activity. An example of such
an activity plan is given in Figure 1. Note that the underlying
network in which the example locations are situated is not
not drawn, but only the logical multi-stage structure.

In this article, we do not consider departure time choice,
although it is an important direction of research [4]. This
decision is due to computational considerations given in the
next section.

Every plan is anchored at its individual’s unique home
location l

µ
0 = l

µ
home, where it starts and ends: Lµ

0 = Lµ
nµ =

{lµhome}. Individual µ values the choice of location l ∈ Lµ
a

for activity a by Rµ
a(i); the cost of choosing this location is

Cµ
a (l) = −Rµ

a(l).
A route starting at link i and time step k0 to link j is

denoted by U(i, j, k0). It is convenient to represent it by

U(i, j, k0) = {u(k)}k≥k0
= {(uij(k))}k≥k0

(1)



Fig. 1. Example of a plan with location choice

A four stage plan starting and ending at the agent’s home
location h. Stage 1 of the plan (“work” activity) can be
conducted either at home (home working at location h) or
at the office (work place location w). For stage 2 (“leisure”
activity) there are are three possible locations, a pub (p),
a cinema (c) and, again the home location. Note that the
individual can choose to stay home the entire day.

where uij(k) is 1 if this route implies a turning move from
link i to link j in time step k and zero otherwise. Here and
in the following we only consider feasible routes in the sense
that turning decisions are only made if the previous route led
to a location where this turning move is physically possible.

For individual µ, the cost of traversing U(i, j, k0) is

Cµ[U(i, j, k0)] =
∑

k≥k0

∑

ij

uij(k)cµ
ij(k), (2)

which is additive in the nonnegative turning movement costs
c
µ
ij(k) as perceived by µ. Link traversal costs can easily be

incorporated by adding them to the turning move cost of
entering the according link. The minimal cost path for µ be-
tween i and j when starting at k0 is denoted by U

µ
opt(i, j, k0)

and its cost by C
µ
opt(i, j, k0) = Cµ[Uµ

opt(i, j, k0)].
During execution of their daily plans, individuals are

aware of the dependencies between trip segments connecting
activity locations and therefore aim at minimizing the total
cost (including the negative cost of choosing these locations)
of their round trip whenever making a decision. Since any
individual’s sequence of possible activity locations is known
and finite, dynamic programming can be employed to solve
this decision problem, as it will be shown in the next section.

III. SIMULATION OF DAILY ROUND TRIPS

In order to describe the combined route and activity
location choice problem as a multi-stage decision process, a
residual cost V µ

a (j) is introduced. It is defined as the minimal
cost to be experienced when starting activity a at location
j ∈ Lµ

a and continuing in an optimal manner:

V µ
a (j) = −Rµ

a(j) + min
l∈L

µ

a+1

{Cµ
opt(j, l, k

µ
a+1) + V

µ
a+1(l)} (3)

for a < nµ, while R
µ
0 (lµhome) and V

µ
nµ(lµhome) can be

arbitrarily set to 0. For µ being located on any link i at
time step k and striving for activity a, the task of optimally
completing its round trip can now be stated as the problem

Fig. 2. Calculation of a single decision stage

This figure shows a best path tree representing the optimal
transition from figure 1’s “work” activity to its “leisure”
activity. The tree’s root is an imaginary destination node d,
which is directly connected to all possible activity locations
h, c, and p of the “leisure” stage. Bold lines on the
underlying grid network represent best paths towards d. The
figure allows to identify the optimal (route and) next activity
location choice for every node of the network: If the agent
is currently at the office, going to the cinema is the most
attractive next step, while a home-worker would effectively
stay home (note the shortcut from h to d). The pub p is only
attractive if the agent already is in its very proximity.

of finding a next activity location lµa ∈ Lµ
a with minimal cost

C
µ
opt(i, l

µ
a , k) + V µ

a (lµa ), being given by

lµa = arg min
j∈L

µ

a

{
C

µ
opt(i, j; k) + V µ

a (j)
}

. (4)

This can be achieved by calculation of a single best path from
i to an imaginary destination d which directly succeeds all
locations j ∈ Lµ

a by means of likewise imaginary connecting
links of cost V µ

a (j). This yields the best next activity location
(which is the last real link on the obtained path) as well as
the best path itself.1

In the same manner, an optimal round trip can be obtained
by one sweep through all activity stages: l

µ
nµ = l

µ
home is fix.

Running backwards through stages a = nµ−1, . . . , 0 allows
to calculate for every activity location j of current stage a

the optimal next activity location (4) and its residual cost (3).
Having reached a = 0, the optimal round trip can then be
obtained by moving forwards through all stages and choosing
the optimal next location as annotated during the previous
backwards sweep. This procedure is nothing but standard
dynamic programming as described e.g. in [10].

The calculation of an entire round trip requires nµ best
path tree calculations, each one connecting all activity lo-
cations of a given stage to the single extra node behind all
activity locations of the next stage as it is shown in figure 2.

This calculation scheme can efficiently be applied for
simulation of within-day replanning: Consider an individual

1Note that the optimal path does not change if a positive cost is equally
added to all imaginary links. Raising these links’ costs to a nonnegative level
allows us to meet all requirements for application of (a dynamic version of)
Dijkstra’s best path algorithm [5].



µ, which so far followed a pre-calculated route towards
its next activity location lµa . Assume that µ now faces a
significant deviation between the observed traffic situation
and its historically learned one (on which its precomputed
route is based). It appears reasonable, that µ spontaneously
replans at least its current decision stage, while keeping
its evaluation of subsequent activity locations fixed. This is
equivalent to direct application of (4) in order to obtain a
new route (and maybe a new activity location) reflecting the
current situation. The only required computation for such
a single-stage decision is the calculation of one best path
through one of the next temporal stages’ locations towards
the imaginary destination node behind it, as previously
explained.

Realistic modeling of departure time choice would require
additional state information representing the duration an
agent has already been conducting an activity [4]. Since we
already have to search an entire time variant traffic network
in order to model spontaneous route adjustment, we will
avoid this state space increase and keep departure time fixed
until we have computationally investigated our approach on
larger scenarios.

Since we have shown that activity location choice can be
subsumed in a slightly modified route choice problem, the
following discussion will only treat the according best path
problem without explicitly mentioning location choice.

IV. OBSERVATION OF TRAVELERS VIA ANONYMOUS

MEASUREMENTS

If an individual travels along a route, it influences the
overall traffic situation. This results in a dependency of
traffic measurements upon this individual’s behavior. We can
identify three ways in which a traveler influences anonymous
measurements of the overall traffic situation:

1) Via direct observation. For example, a traveler’s vehi-
cle can directly induce an electrical flow in an inductive
loop or be directly visible within a picture taken by a
traffic surveillance camera [8].

2) Via traffic dynamics. Measurements can be indirectly
influenced via the physical properties of traffic flow:
In dense traffic, a vehicle does not only contribute to
the amount of traffic at its own location, but also at
locations further upstream, since it hinders vehicles
located there from proceeding downstream. Similarly,
at intersections two completely different turning moves
might influence each other [9].

3) Via other drivers’ behavior. Drivers react to changes
in the situation by rearrangement of their routes and
destinations. Since every traveler is observed by others,
he or she might contribute to the reason (perhaps
via a general interaction as described in 2.) for the
replanning of other travelers.

More formally, we assume that at every time step k a
vector y(k) of anonymous traffic measurements (such as
flows from inductive loops, velocities from floating cars,
turning counts or densities from cameras) is available. Due
to various sources of error, these measurements follow a

(differentiable) probability density function g(y | x(k)),
which is parameterized by the traffic system’s state vector
x(k). We further assume that the overall traffic system’s
dynamics and the influence of a single individual µ’s route
choice on it are represented by the following state equation:2

x(k + 1) = f [x(k),uµ(k), k], (5)

which we require to be (at least approximately) differentiable
with respect to all elements of x(k) and uµ(k).3

In the next section, we will use the notion of a measure-
ment y(k)’s conditional probability P(y(k) | x(k)), which
we understand as the probability that y(k) lies within a
certain region Z 3 y(k) being sufficiently small to allow
for the following first order approximation:

P(y(k) | x(k)) =

∫

Z

g(z | x(k))dz

≈ g(y(k) | x(k)) ·

∫

Z

dz (6)

The following discussion will not require a further specifi-
cation of Z; it suffices to state that

∫

Z
dz is independent of

y(k).
By (5) and (6), the probability P(Y | U

µ) of a measure-
ment sequence Y = {y(k)}k can now be related to the route
U

µ = {u(k)}k of an individual µ:

P(Y | U
µ) = P(Y | X , Uµ)

=
∏

k

P(y(k) | x(k))

s.t. x(k + 1) = f [x(k),uµ(k), k] (7)

V. INTEGRATION OF SIMULATION AND ESTIMATION

In section III, an algorithm for calculation of individual
round trips has been presented, while in the last section
such a round trip has been formally related to general
traffic measurements. Here, these two aspects are combined,
allowing to calculate an individual’s most likely a posteriori
trip given an a priori activity plan and a set of anonymous
traffic measurements in a Bayesian setting.

It is assumed that individual µ is located on link i at time
step k and faces a as its next activity. Without consideration
of measurements, the individual’s a priori path and location
choice can be simulated as explained in section III. (In the
following, indices i, k, and a will be dropped wherever
possible.)

This choice mechanism is now probabilistically relaxed.
The a priori probability that the individual actually chooses
a path U

µ is expressed in terms of a multinomial logit model

P(Uµ) =
e−βC(U

µ

)

∑

V e−βC(V)
(8)

where the normalizing denominator sums over all paths V

the individual can choose from. (Note that this choice set

2See [7] for a detailed description.
3Since general behavioral models cannot be represented analytically, our

own implementation of (5) ignores these effects in its linearization. This
results in a proper representation only of interactions 1. and 2. of the list
given above. See [7] for the algorithmic consequences of this simplification.



will not have to be explicitly generated.) We are aware of
this simple model’s drawbacks [2], [3], still we consider it
to be a good starting point because of its tractable analytical
form.

In the absence of further information (such as mea-
surements) the minimum cost path would have maximal
probability of being chosen. Thus, a probability maximizing
estimator of the individuals a priori route choice would yield
the same result as the cost minimization procedure given in
section III.

Now it is assumed that some measurements Y are avail-
able. The a posteriori probability P(Uµ | Y) that an
individual chose path U

µ after observation of Y can be
expressed via Bayes’ theorem:

P(Uµ | Y) =
P(Y | U

µ)P(Uµ)

P(Y)
. (9)

After taking the logarithm of this function, we substitute (7)
and (8):

lnP(Uµ | Y) =
∑

k

lnP(y(k) | x(k)) − βC(Uµ)

− ln
∑

V

e−βC(V) − lnP(Y)

︸ ︷︷ ︸

independent of U
µ

s.t. x(k + 1) = f [x(k),uµ(k), k]. (10)

Substituting (2) and (6) and dropping all terms independent
of U

µ = {uµ(k)}k, the most likely a posteriori route U
µ of

any individual µ can now be stated as the optimal solution
of the following control problem:

Jµ =
∑

k



φ[x(k)] + β
∑

ij

c
µ
ij(k)uµ

ij(k)



 = min!

s.t. φ[x(k)] = − ln g(y(k) | x(k)),

x(k + 1) = f [x(k),uµ(k), k]. (11)

Thus, the problem of estimating a population’s most likely
behavior in terms of route and activity location choice is
equivalent to the problem of solving problem (11) simulta-
neously for every agent µ in this population.

In another article [7] an algorithm is given which adjusts
agents’ trajectories through a network in order to minimize
exactly this type of functional, allowing for an (approximate)
solution of this estimation problem.

Note the special structure of Jµ: It is a sum of nonlinear
measurement functions and a linear combination of turning
movement costs. Since this functional can be considered to
be the same for broad classes of travelers (e.g. “informed”,
“uninformed”), an efficient numerical treatment becomes
possible.

Consistently, in the absence of measurements the a pos-
teriori probability only contains travel cost. In this case,
the estimator behaves identical to a pure simulation tool as
described in section III.

Functional (11) can be intuitively interpreted if mea-
surements are spatially independent: Then, function φ also

becomes a sum of probability logarithms for individual links.
This resembles the way one would adjust a traffic simulation
to available measurements without use of any mathematical
tools: If the simulation yields less traffic on a road than the
measurement indicates, the according link’s cost (travel time)
is artificially reduced, thus increasing its attractiveness for the
used route choice model, and another assignment is run.

VI. SUMMARY AND OUTLOOK

We presented a novel methodology of behavioral state
estimation for traffic systems modeled by a multi-agent
simulation. The following steps were undertaken in order
to obtain the results presented in this article:

1) Design of a differentiable, yet fast mobility simulator
for networks of arbitrary topology;

2) Movement of individual particles through this mobility
simulator without loss of its differentiability;

3) Representation of the overall system in state space
form;

4) Proposal of an algorithm that solves a general nonlin-
ear control problem for this dynamic system in terms
of agents’ trajectories through the network;

5) Representation of travelers’ route and activity location
choice in terms of an optimization problem;

6) Representation of the behavioral agent state estimation
problem in a Bayesian setting and its formulation as
a nonlinear control problem, which can be solved by
the algorithm noted in 4).

The overall system will be tested in Berlin with real world
data during the upcoming soccer world championship, which
will take place around June 2006.
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