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Abstract

An external strategy module for an iterative multi-agentnosimulation of traffic systems is
presented. This module callptanomatoptimizes the time allocation and route choice of ac-
tivity plans, which are the agent-based representatioragét demand. The module combines
broad search for alternative timing decisions with an o#tion procedure for a scoring func-
tion that evaluates activity plans. As part of the existiramiework MATSIM-T, regional traffic
systems of several 100°'000 agents can be simulated. Tharscg@mesented here is the Canton
of Zurich, the biggest metropolitan area of Switzerlandhv®50’000 agents. The comprehen-
sive optimization of activity plans leads to a system refexawithin an acceptable number
of 60 iterations. The quality of the time allocation optiaion is shown by departure time
distributions.
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1. Introduction

MATSIM-T is an iterative multi-agent framework for the mgesimulation traffic systems (MATSIM-T,
2006). It mainly consists on one side of a simulation of tedfhw and on the other side of dif-
ferent modules adapting travel demand to generalizedltcasts. They are called alternately

until the system reaches its stationary state, which cporess to user equilibrium in the case of
traffic systems. In MATSIM-T, travel demand is representgdhidividual agents that follow an
activity plan. Each activity plan is assigned a score. Tigaéi the score, the better is the plan.
Convergence to the stationary state is, among other measaotgnudged by the development

of the score aggregated over the whole agent population.

This paper is aboytlanomat a flexible module which adapts the activity plans to trawrakt
the agent experiences during the subsequent simulatiansfia¢ flow. Since changing gener-
alized costs of travel affect each aspect of travel demamehuld be desirable that this module
was as comprehensive, allowing for choice of activity dorat, departure times, activity lo-
cations, modes, and other desired attributes. In the imgaation presented herglanomat
optimizes activity durations, departure times and route®iling to a time-of-day dependent
appproximation of travel times.

The paper is structured as follows. Our concept of an agasedb microsimulation of traffic
systems is presented in section 2. Details on the new mgdaf®matare given in section
3. Section 4 describes input data, assumptions abouttgqb@rameters as well as algorithm
details. Results concerning choice of activity timing anstsgn performance are presented in
section 5. Finally, an outlook is given in the last section.

2. Micro simulation framework

In this section, the concepts required for understandiagldmomatunctionality are described
briefly. For a comprehensive and more detailed frameworkrgeasn, see Raney (2005).

2.1 The activity plan concept

The representation of an agent’s travel demand is an acpldin, an alternating sequence of
activitiesandtrips. As shown in the example in Figure 1, the framework uses XMétéoe and
exchange plans (W3C, 2006). The most important XML elememetshee following.

person Each person is identified by ard by which its socio-economic attributes can be found
in the synthetic population. A person can hold several plans

plan Each plan can be assignedsaor e according to a scoring function (see section 2.2).
The attributesel ect ed="yes" states that the plan was chosen for execution in the
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previous iteration of the traffic flow simulation.

activities Each activity<act > is characterized by a type, a hectare-based location ctue]i
a network link associated to that location, and its tempextnt defined by two of three
attributesst art _ti nme, end_t i me, anddur (activity duration). The start of the plan
is defined as the end time of the first activily;: 35: 04 in the case of the plan in Figure
1. In the example shown, first and last activity are the sartieigq(" h" , which means
home). The location coordinates refer to "Swiss Grid", thesSvgeodetic reference
system (Swisstopo, 2006).

legs Movements between activities are called legs. The atetbat a<l eg> include a mode, a
departure time and a duration. A leg can be characterizeddwtea, which is a sequence
of numbers of the network nodes that are passed.

Read the example plan as follows:

e Agent No. 22018 is at home until 7:35:04. Its home locatibhis at the coordinates
(703600;236900).

e The agent leaves its home to drive to wofllw'(). This trip takes 16 minutes and 31
seconds, using the route along the noti@80 1899 1897.

e The agent stays at work more than 8 hours, then leaves fosardeactivity {I"). The
trip from the work location on routé899 1848 1925 1924 1923 1922 1068
to the leisure location takes about 1 hour and 10 minutes.

e After leisure, the agent returns home after a trip=@4 minutes.

e Read the plan as a 24-hour wrap-around, so the end of the hdivityas also at 7:35:04
the next day.

e The plan has a score of 157€2

An activity plan can be interpreted in different ways: It d@neither sstrategyexpressing what
the agents wants/plans to do, odemand descriptiowhat an agent actually did in a certain
iteration. The character of a plan is even more general:eSimany attributes are not required,
it is essentially avorking filein the demand generation process. The formal requirements f
an XML file are specified in a DTD (Document Type Definition) filehe various DTDs used
in MASTIM can be found at MATSIM-T (2006).

2.2 Scoring

The quality of an activity plan is measured by a score. Theesponding scoring function was
introduced first by Charypar and Nagel (2005), and is witthsligodifications also used in our
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Figure 1: Example activity plan

<person id="22018">
<pl an score="157. 72" sel ected="yes"
<act type="h" x100="703600" y100=
<l eg nun¥"0" node="car" dep_tine=
<rout e>1900 1899 1897</route>
</l eg>

<act type="w' x100="702500" y100="
<l eg nun="1" node="car" dep_tinme="

<rout e>1899 1848 1925 1924 1923
</l eg>

<act type="I" x100="681450" y100="
<l eg nun¥"2" node="car" dep_tinme=""

<route>1067 1136 1137 1921 1922

>
"236900" |ink="5757"
"07:35:04" trav_tine="00:16: 31">

236400" |ink="5749" dur="08:12:05" />
16: 03: 40" trav_tine="01:10:22">

1922 1068</rout e>

246550" |ink="2140" dur="01:20:00" />

trav_time="00: 34: 35" >
1923 1924 1925 1848 1899</rout e>

end_time="07: 35: 04"

/>

</l eg>
<act type="h"

</ pl an>

</ per son>

x100="703600" y100="236900" I|ink="5757" />

current work on traffic micro simulation. This subsectioegents the basic parts of the utility
function, while subsection 2.3 demonstrates its use in tloeonsimulation framework. Since

here is given a compressed description, the interesteeéreackferred to the original paper by
Charypar and Nagel.

The score of an activity plabi,,;.,, is given by the sum of the utilities of all performed actiggi
i, and the travel disutilities for trips necessary to get frmme activity location to the other:

Uplan = Z?:l Uact (typeu StCLTti, durz) + Z?:Q Utmw(loci—la lOCi)

The utility of an activity: is the sum of four terms, each of which is modeling a certapeets
of the utility function.

Uact,i = Udur,i + Uwait,i + Ulate.ar,i + Uearly.dp,i + Ushort‘dur,i

Ua.r; denotes the utility of executing an activity for a certairration, U,,.;;; denotes the
(dis)utility of waiting for an activity to start (for instaxe waiting for a shop to open)j e or i
andU.qy.qp,; denote penalties for coming too late or leaving too early aletivity respectively,
andUsnore.auri 1S @ penalty if an activity is performed for too a short time.

U;rav denotes the (dis)utility of traveling from the location atiaity i — 1 to the location of the
current activity:.

There is no penalty fanotperforming an activity that might have been planned. Onlygrened
activities contribute to the plan score.



Utility of performing an activity

All terms in the activity utility function except/;,,. are modeled to be linear in time needed for
that activity aspect. The time performing an activity istamsd to have a logarithmic impact
on activity utility to reflect diminishing marginal utility

501“7" A ln(%) (tO S tdur)
Ugur = 0 (O < Hgur < to) , With
6neg.dur ' |tdur| (tdur < O)

to = t* - exp 10/t

ta.r denotes the actual activity duratiott. is the so calledperating pointof the activity, the
duration at which the marginal utility equals,.. So, the value of* can be interpreted as the
typical duration of an activity, while its effect in the agty plan context is the following: The
t* yield the ratios of the durations of different activitiesaquilibrium.

to Is the activity duration at which the logarithmic curve hesnull. It is chosen proportional
to the operating point, and is influenced by the priopityf the activity. Usual values fgr are
1,2,3..., with 1 being the highest priority. The higher th@gty, the smaller will bet,. In
busy plans, high-priority activities tend to stay in therplahile low-priority activities will be
dropped when for instance traffic conditions worsen. In timeent state of our work on activity
generation, we use fixed, revealed activity chains, andigctiropping is not allowed. All
activities have the same priorigy= 1. This is why this issue is not described in more detail
here.

The utility of performing an activity with a positive durati cannot be negative. Due to the
interpretation of an activity plan as 24 hour-wrap roundtha first iterations of the micro
simulation framework negative durations can occur. Theypgmalized linearly withB,c . qu; -
This reflects a very undesired plan where it took the agenerti@n 24 hours to fulfil its plan.

Penalties

The penalty terms of the utility function are penalized éifg according to Vickrey’s model of
departure time choice (e.g. Arn@tal., 1993):

Utrav (ttrav) = ﬁtrcw ' ttrava

Uwait<twait) - Bwait : twaz’ti

O (tstart S tlatest.a?“)

(wheret,,,; is the starting time of the activity ang,..;... the latest possible starting time of
that activity),

U, o 5late.a7" : (tstart - tlatest.ar) (tstart > tlatest.ar)
late.ar (tstarb tlatest.ar) -



U tod (t p ¢ licst.d ) — 66a7‘ly.dp : (tearliest.dp - tend) (tend < tearliest.dp)
early.dp\lend, Learliest.dp 0 (tend > tearliest‘dp)

(wheret,, is the ending time of the activity and,,,, 4, the earliest possible ending time of
that activity), and

_ 5short.dur : (tshortest.dur - (tend - tstart)) (tend < tstart)
Ushort.dur (tstarty tend) - 0 (t 4 >t . t)
end — Ustar

(Wheret ,o,te5t.4ur 1S the shortest desired duration for that activity).

Summary of parameters

The parameters of the utility function have the followindues:

5du7" = 6€/h1
6151‘0,11 = _6€/h1
ﬁwait - O€/h1

Biate.ar = —18€/N,
Bearty.dp = 0€IN,
Bshort.dur = 0€IN,
Breg.dur = —18€IN.

The parameters for the penalty terms are chosen to refleceldmgons in Vickrey's model of
departure time choice:

5wait : ﬁtr(w : ﬁlate.ar =1:2:3
This relation is not obvious on first sight when looking at pagameter values:

Bwait : ﬂtrav : 6late.ar =0:—-6:—-18

Considering the opportunity costs bt performing an activity while waiting or traveling, one
has to subtracty,,. from (,.;;: andg;,..... So, the effective parameter values are the following:

ﬁwait,eff : ﬁtrav,eff : ﬁlate.ar,eff =—6:—-12: 18,

which means the Vickrey type model is yielded. These valuesldferent from the ones used
in Charypar and Nagel (2005), who already discussed the afsygportunity costs.

Figure 2 demonstrates the utility calculation using thenga activity plan shown in Figure 1.



Figure 2: Utility plot of example activity plan
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The graphl,..,, represents the plan score depending on time of day as tmswyala canceled at that certain time
of day. One clearly sees positive utility of activity perfmaince (log-shape graphs), the various penalties (linear
graphs starting on the x-zero axis) as well as the overafl ptare yielded at 24:00.

The very low score value between 8:00 and 10:00 can be explais follows: On one hand, only the home activity
and a small part of the work activity including the (penatighome-work trip were performed. On the other hand,
the penalties for early departut&,, .4, and short activity performandgé;,.,+. 4. are very high.

The activity parameters used here are listed in Table 2,wikipart of the scenario description in section 4.

For explanatory reasons, in this figueg.,iy.ap = Bshort.dur = —6€/h, instead oDE/.
Based on Balmer (2005, p.15 ff.)




2.3 Simulation

The task of a simulation is to find the stationary state of fsesn modeled. In the case of our
transport system model, the stationary state is the stageandn agent cannot improve its score
by altering the plan. This is analogous to what is called Negghilibrium in game theoretic
models or user equilibrium, the term for Nash equlibriumdigseaggregate traffic assignment
models (Orttuzar and Willumsen, 2001).

As pointed out, an iterative approach is used to solve thismiaation problem. where travel
times as a representative for generalized travel costsharedntral feedback element. The
overall simulation system consists of the following steggmipare Raney, 2005, p.77 et seqq.):

1. Initialize: A first set of plans has to be generated, assuming initias¢staft the network
as well as the plan attributes. For example, the agent maghae free speed travel time
for its preliminary set of legs and a random start time of tlenp For each agent, one
plan is generated which will be marked as "selected”, indigaiti has chosen that plan
for execution in the traffic flow simulation.

2. Simulate:The simulation of traffic flow executes the plans, that is it e’ agent objects
through a model of the traffic network when trips are planr@atrently, a queue-based,
time-sliced model of traffic flow is used (Cetin, 2005). Thepuitof the simulation is
the so called events file which keeps detailed informaticualkvhich agent "did" what
during the simulated day.

3. Scoring: The agent database reads the events file and sends eactoahenagent iden-
tified within it. Each agent uses its events to calculate twe score of its selected plan —
the one it most recently sent to the traffic flow simulationwi#an scores are calculated
as described in section 2.2, and are averaged with old pErescScore averaging is a
simple mechanism to permit agents to learn about their gdarfermance over time. The
agent averages scores according to:

Sp=(l—a)-S,+a-S, (1)

wheresS,, is the stored score for plan S;, is the newly calculated score, and= [0, 1] is
a blending factor. In the setup described here, a blendittgrfaf o = 0.1 is used.

4. Plan pruning: The agent database may limit the number of plans agents oam ist
memory. New plans are accumulated until the maximum numbgr,, is reached. Any
agent having a number of plafs> N4, in its memory deletes the” — N,.,,5) plans
with the lowest score in this step. Note that in the step Valhg this one, an agent may
obtain a new plan. When this happens to an agent that has wali&agl;, it temporarily
keepsN,i.ns + 1 plans in memory until the new plan has been scored. Thenigrstép,
it deletes the first plan (even if it is the newest one). Thus agent will have only,,;q,s
to choose from when selecting from old plans.



5. Replanning: A subset of the agents is chosen for plan modification/new gknera-
tion by so-calledcexternal strategy modules’hese modules, of whichlanomatis one,
can capture one or more travel behavior attributes. In tiheentisetup, planomat is the
only strategy module because it captures all the travehbehaspects varied during the
iterations. A random 10% of all agents are chosen to obtainptens by planomat.

6. Returnto step 2 until the system has reached a relaxed state whltbeninterpreted
as the result of the simulation. The state of the system Iedcatlaxed (or stationary)
if there is no significant improvement in the average scorthefplans selected by the
agents for simulation in the last iteration.



3. Methods of planomat

Our idea for the external strategy module calpanomatis to have a module that generates
plans which are optimal in the sense of the scoring functestdbed before. This is completely
different to previous implementations of rescheduling oed where

e activity plan attributes were altered randomly (e.g. ghgftactivity durations / departure
times+30min), or

e optimization was performed for only a fraction of the tralsehavior attributes that are
varied in the iteration process (e.g. route optimizatiothaut the opportunity to alter the
departure time).

Here, we propose a comprehensive rescheduler that suggéistsl plans considering the traf-
fic conditions the agent experienced in the last iteratiotheftraffic flow simulation. In this
section, first a method for travel time approximation is preed. It is followed by a descrip-
tion of the implementation of the genetic algorithm we caotiguse to solve the optimization
problem.

3.1 Travel time information

As pointed out, travel time is the only aspect of generalizadel costs in the proposed scoring
function. The agent needs a time-of-day dependent appatikimof travel times in order to
react on traffic conditions varying throughout the day.

Our current approach to this is a very basic one: For eaclthteipgent has planned the location
coordinates resp. the associated network links are giverthE agent it was wishful to exactly
know what travel times are yielded at every point in time orrgveasible route to decide
which is the best activity timing/routing decision. The éadaility of such detailed information
is not only unrealistic, but also infeasible to compute iefustime. Furthermore, such a level of
exactness would only make sense if a particular agent wasitii@ne performing a replanning.
In this case the state of the network would be the same in thdqus and the next iteration.
But since 10% of all agents will obtain new plans, this assionpwill most likely not hold.

In order to approximate the travel time for a given OD-pak, ebtain the shortest path and the
associated travel time of each trip in certian time integvdf an agent requests a travel time
information for scheduled departure time, a linear int&afon between the two nodes in front
of resp. after the departure time is returned. Currently weellsas node interval. So, if an
agent plans a trip from A to B at 11:36 AM, it will be returnecetlinear interpolation of the
shortest travel time information between 11:00 AM and 1A8Q Since we currently simulate
daily activity plans, information at 12:00 PM will be set teetvalue at 0:00 (see Figure 3).



Figure 3: Approximation of OD travel time
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The 1h-wise routing is done using a time-of-day dependejitsa shortest path algorithm
(Raney, 2005, p. 38 et seq.). So, for an agent which had thpepglanned3 - 24 = 72
routings would have to be performed. This number is condtacause every following travel
time lookup is no more than a linear interpolation. Concegnire interval size, a fraction of 1h
would possibly increase the quality of the plan, but alsoakably increase the computational
effort. An even better method was one that samples morel tiiave information at times of
day where many changes in trends are expectable (e.g. atgimening of a peak period), and
less where the trend is constant (e.g. close to free spees tirae in night hours).

3.2 Optimization

For several reasons, the decision was made to use a GengtcitAin (GA) to find good
solutions in the sense of the utility function:

Flexibility In the current setup of the module, a better time allocatoud be much easier
calculated. GAs are not the best choice to solve continumatdgms like this, they were
designed to rather solve combinatorial problems. A gradiased optimization proce-
dure or an Evolutionary Strategy would probably be muchefaahd/or produce better
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results. Experiments are undertaken with the CovarianceiMatiaptation-Evolution
Strategy (CMA-ES), a stochastic population based optinamatigorithm for continuous
space problems (Hansen and Ostermeier, 2001). Howevep#iés to extengblanomat
to a comprehensive replanning module incorporating furtt@mbinatorial dimensions
of travel behavior such as activity location choice, modeiod and the choice of the
activity pattern. This is why we stick to the GA here.

Experience The GA method proved to be successful in various experinfentgctivity plan
generation for individual agents or households (Charypdmagel, 2005; Meistest al.,
2005; Schneider, 2003). This paper is about the attemptegrate this approach into a
multi-agent simulation system.

The implementation details of the GA operators in the plaaioane as follows, while Table 1
gives an overview of the values chosen for the various GAmaters. All these parameters
have to be chosen according to the nature of the problem toleeds This is often done on a
gut level, so is in this case.

Generation of initial population For each agent, the selected plan is read in and the travel
time information trajectory is generated as described atice 3.1. The start time of the
plan, that is the end time of the first (home) activity, is omnifily selected between 00:00
and 12:00 PM. The same is done for the duration of each actAdt other attributes are
kept constant as they came from the input plan (as describéde current state of the
work planomat only optimizes time allocation). For eachrdagepsize plan alternatives
are generated.

Recombination and mutation The crossover operator recombines two existing plans teva ne
one by randomly choosing start time and activity durationgfone of the parents. The
mutation operator alters each time information in a centange parameterized with the
mutation probabilityp,,,.:

e A new start time is chosen by adding an amosniniformly selected from range
S € [Pmut - —12h, Pt - 12h). Values that come before 00:00 (midnight) are reset to
that time.

e An activity duration is multiplied with a factod = e* with X being uniformly
selected from the rang® € [—p,ue/2, Prmut/2]-

Preparation for scoring After both the creation and the recombination/mutationrafpens,
the new plan is stretched/compressed to a duration of 24shiiouse comparable to its
competitors in the GA population. Furthermore, the andétepl travel times are calculated
using the piecewise linear interpolation described before

Scoring, selection and outputEvery time a new activity plan was created by the GA, it is
evaluated with the scoring function. Since the number aiplzeld in the GA population
at one time is constant, good plans are kept while bad onedrapped. After a certain
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Table 1: GA parameters

Variable  Description Value
popsize  Constant population size. 50
Ngen When a fixed stop criterion is used: The optimzation is cah- 000
celed aftem,, individuals were generated by the crossover/-
mutation operations.
Estop When the adaptive stop criterion is used: If the average Btnds O
doesn’t increase more that,,% after ng,, newly inserted
plans, the optimization is canceled.
Nestop S€E€¢,10p 50
Dmut Probability that one element of an activity will mutate acto Initial: 0. 30,
ing to its respective mutation operator. exponentially
decreasing to
0. 07
Tonut Each time a new indivdual was inserted into the population,
Pmut IS @adapted. The higher,,.;, the quickemp,,.,; decreases.
mindiff Minimum fitness difference between two individuals. If a ne@. 10

plan with almost the same score is generated, it will be dedpp
in favor of the one that is already present.

number of recombination/mutation operations, the opttian is canceled. This may
either happen after a fixed number of iteratiens,, or if the average fitness of the pop-
ulation doesn’t increase more than a thresholg within a number of newly plans that
had a high enough score to be inserted in the GA populatioe. sEkup presented here
uses the latter, adaptive stop criterion.

The best plan currently in the population is chosen as thatsgeew strategy to be
evaluated in the next iteration of the traffic flow simulatioBefore returning the plan
to the agent database, it is routed a last time using the rraireectly (instead of the
approximation with the linear interpolation). This is daneorder to provide the agent
the actual route of whose travel time we assume that it iscotifferent from what the
approximation suggested.
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4. Canton Zurich Scenario

The scenario setup includes a regional definition of theystuda, the demand generation pro-
cess, the specification of the traffic network and a list oliagstions about activity-related
behavior as well as temporal constraints.

4.1 Study area: Canton Zurich

The case study used for testing thlanomatis a simulation of the Canton Zurich, the biggest
metropolitan area in Switzerland. The demand generationgss, as well as the framework
used for it, is described in detail in Balmetral. (2006).

First, a synthetic population of the Canton Zurich is geregtatising data from the Swiss Na-
tional Population Census. lItis a list f1'200'000 agents with individual attributes like age
or sex, and a hectare-based home location (Frick and Axhal884). Each agent is assigned
an activity chain based on the Swiss Microcensus on traved\ier (Rieser, 2004). These ac-
tivities are distributed in space by several location ceemmdules (Marchal and Nagel, 2006).
The network model used for the assignment with a microsctgftic flow simulation is the
Swiss National Traffic Network model (Vrtiet al., 2003).

4.2 Activity parameters and constraints

The scoring function requires several parameters, eitttesity or location specific.

Each activity is characterized by a typical duratina mimimum durationt . sest.q. and
desired start/end timeg, s ar, tearticst.dp- While the typical duration is a mandatory parameter
to the utility function, the minimum duration and desirend¢i windows are optional. Table 2 is
a list of parameter values used in this scenario.

Furthermore, there exist temporal constraints for the @@t of activities, represented here
by opening hours. An agent will fail to perform an activitytside these opening hours, and
will have to wait instead. In this case, it doesn’t gain angrecr even loses some in case of
BGuwair < 0. The temporal constraints are an attribute of a specifiditiadin this setup, they are
the same all over the modelled region because more detatacatbout opening hours was not
available yet. This is why they appear activity-specific ablE 3.

For analysis, the activity chain types are summarized intodroups:

education-dominated chain typesheeh, heh
leisure-dominated chain typeshl h, hl | h, hl sl h

shop-dominated chain typeshsh, hssh
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Table 2: Activity parameter values

ACthlty type abbreViation t* [h] tshortest.dur [h] tlatest.ar tearliest.dp

home h 12 8 — —
work w 8 6 9:00 —
workl wl 4 2  9:00 —
work?2 W2 4 2 — _
work3 W3 8 6 — _
education e 6 4 9:00 —
educationl el 3 1 9:00 —
education2 e2 3 1 — _
education3 e3 6 4 — _
shop S 2 1 — —
leisure I 2 1 — _

All activities have the same priority = 1.

The different work and education activity types can be erplad as follows. If an activity chain includes twwork
or educationactivities, it is assumed that their typical activity dimatis half the complete-activity duration and
will be renamedvorkl andwork2 resp. educationlandeducation2 An example would béd- wl- | - w2- h. If

a work or education activity is not the first an the activityah it is renamedvork3 or education3without the
desired start time at 9:00, but all other attributes equalerample of that would ble- s- w3- h

Table 3: Opening hours as temporal constraints

Activity type opening time closing time
home f) — —
work (w, wl, w2, w3) 7:00 18: 00
education ¢, el, e2,e3) 7:00 18: 00
shop 6) 8: 00 20: 00
leisure () 6: 00 24: 00
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work-dominated chain types hwh, hwl wh, hwswh, hwwh
other chain types hel h, hesh, hl eh, hl sh, hl wh, hsl h, hswh, hweh, hwl h, hwsh
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5. Results

5.1 A world without congestion

In order to test the optimization capability of the GA, thamd of all 550'000 agents were

generated assuming free speed travel time in the network.rd@$ult might be interpreted as
"a world without congestion", as the plans will be completelgependent of traffic conditions

changing throughout the day. They are only determined byg®ats’ preferences which are
formulated in the utility function as well as environmertahstraints (e.g. opening times). The
result is shown in Figure 4, and to be read like the following:

e Peak periods can be seen for the work- and education-gctlain types. They are
the result of the trade-off between the latest start timas®imain activity (9:00 in this
case), and the extension of the time "spent" at home accotdlitige specification of the
utility function. The variance of the departure times isyoiétermined by the distribution
of trip distances between the home and the work resp. educattivity. There are
additional, smaller peaks in the time around noon (12:00 AMiese are departures to
additonal activities besides the main work activity, e gagents with activity chain type
h-wl- | - w2- h.

e The departure time distributions of activity chain typesehhare dominated by shop or
leisure activities have quite a uniform shape. They are oohstrained by the respective
opening/closing times, about which assumptions were nadable 3. For example, all
shop activities in the shop-dominated activity chain typapdy are located between 8:00
and 20:00. Since travel times are the same all the day, tliy ldhdscape within these
opening time windows is "flat". Each of the graphs has two flatlievWhile the lower
one represents agents with only one out-of-home activity. (e | - h), the higher one
are the departures of the agents with additional activiges. h- s- s- h).

There are some time allocations which are likely suboptifBGahsidering the work-dominated
activity chain types, some agents leave work after 18:00chvis the closing time of the work
facilities. After that time, no agent should attempt to peri the work activity because no
utility can be derived from time spent waiting. At the moméris unclear if this shows a limit

of the optimization or, unexpectedly, is really an optimiale allocation.

5.2 Complete scenario simulation

The iterative simulation of traffic flow and strategy optiation by planomat were tested with
four different setups of the agent database. Agent memoeg Sif V., = 1 andNp,,s = 3
were combined with score averaging switched on and off (@mection 2/3). The agent
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Figure 4: Departure time distribution by activity chain ¢yg-ree speed travel time;550'000
agents
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database used to serve as the learning framework selebénbetst strategies, when exter-
nal strategy modules were only optimizing one particulavet behavior attribute resp. ran-
domly altering them. Setups witN,,,s = 1 are simulated to test whether the strategy gen-
eration/learning can be performed in a (computer memdigi@ft) external strategy module
rather than in the (heavily computer memory-demandinghegatabase. Setups without score
averaging are intended to explore the need of successivetpging provisional solutions of a
stochastic optimization procedure like the MATSIM-T misiulation framework.

For test reasons, the traffic of only a 1% sample of the whodetggopulation is simulated. In
order be able to still produce some congestion and semgitif/timing decisions to experienced
travel times, the network capacity was reduced to a simiéantiion as the agent population.

The results of these experiments are presented in Figure $hows the development of the
average score of the most recently simulated plans acresgtble agent population. Its steady-
state density is used to determine when the system convergesaser equilibrium, where no
agent can unilaterally improve its score. The four uppeplgsaeach representing a different
setup of the agent database, show a tendency towards agméiue which is reached afte60
iterations.

Variation of N,.,s In general, setups witv,,,,,, = 1 converge to the same average score
level as setups witlv,,,,, = 3, while convergence speed is slightly higher. This can be
explained like the following: The planomat always genesgiians optimized for travel
times yielded in the previous iteration, assuming this tand space-dependent landscape
unchanged in the next iteration. Of course, this is not tise sance not only one agent but
10% of the entire population are provided the generationreva strategy. But as closer
this assumption is to what will happen in the next iterattbe,better applies the predicted
best strategy, and the better the system will perform. Hewewith V..., > 1, for some
agents a random plan is chosen for the next simulation diarddw. This leads to an
additional change in the time-space travel time landscapemed by the planomat in the
previous cycle of strategy generation, and therefore aevaradiction. WithV,,;,,s = 1,
each agent whose plan is not optimized by planomat will beiksitad with the same plan
as before, as assumed by planomat.

Variation of score averaging As Figure 5 shows, setups with score averaging convergeslow
but yield a higher steady state as the ones without scoragivey. In the first iterations,
the plans’ scores rapidly increase because there is stitat gotential for improvement
by finding better routes and/or peak spreading. This efleedampened by the score aver-
aging technique which explains the slower convergence.réd&ason why a higher steady
state is reached is not yet understood and has to be investigd possible explanation
is that the result is the same as in the setup without scomragivg, but the displayed
averaged scores are misleading because they do not repiteserue scores yielded in
the traffic flow simualtion.

Figure 5.2 presents the departure time distribution oftten 100, with the agent database
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Figure 5: Convergence of average scores
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Figure 6: Departure time distribution by activity chain &ypiteration 100~12’000 agents
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setupN,.,s=1, N0 score averaging used. The main differences compas@étée speed travel
time world are:

Peak spreading of work trips The peak periods of the work-activity dominated chains have
widened, which is a result of an increased level of congesirothe network links around
work facilities in the region of desired arrival/departtirees. Also, the two local maxima
at 11:00 AM and 1:30 PM from Figure 4 have merged into one, mpeak with maximum
at 12:00 AM.

Off-peak concentration of shop/leisure trips Activity chain types that are dominated by ac-
tivities without a desired time window tend to be allocatedff-peak regions. For exam-
ple, consider the maxima of departures in leisure-doméhakains before the morning
peak period around 6:00 AM, after that period around 9:30 Akl after the evening
peak period from 7:00 to 12:00 PM. Also, the major share ofttigs in the shop-
dominated chains is shifted to the region between the pea&dse This shift is not
as obvious as for the leisure activities because shop @sigre constrained to opening
time windows close to the peak periods anyway.
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6. Discussion and outlook

6.1 Computing issues

All figures presented here apply toSun Fire X4100 Extra Largenachine, AMD Opteron 2
Model 275 (Dual Core), 1 MB L2 Cache, 8 GB RAM, Debian Etch with ¢a2.3. The entire
simulation system was run using a single Dual Core processor.

The overall runtime for one iteration of the 550'000 agemsmario is~x2000 seconds. Suffi-
cient convergence could be shown after 60 iterations, wigshlts in an overall runtime of one
and a half days. This is a massive improvement compared toefoversions of MATSIM-T,
mainly due to the reduction of required iterations from savbundreds to around 60. The
following description presents the share of runtime of eselment of the simulation system,
and discusses approaches to runtime improvements.

Traffic flow simulation The synchronous, queue-based simulation of traffic flonsd@k® s to
simulate 24h plans of 550’000 agents, which is a Real Time RRii&R) of 100. Recent
experiments with an event-based version of the queue metekpect an RTR of about
300.

Planomat The planomat module yields a replanning performance of éntsgs. Of the run-
time of ca. 730 s, a fifth is required to read the events pratdiuethe traffic flow
simulation. By far the biggest share of runtime takes theimgubf the planned trips
for travel time approximation by linear interpolation debked in Section 3.1. So the
replanning performance depends highly on the choice ofrdwelttime information in-
terval (currently 1h). Furthermore, the use of smartermjttion algorithms such as
Evolution Strategies might help to reduce the required remobgenerations during one
optimization.

Event file /O The agent database requires 400 seconds, or 20% of oveméitheuto read
events in order to score the simulated plans. The main reiasthre property of low
performance of I/0O based on text files.

Plans I/O About 9% or 120 s are required for exchanging plan infornmatietween the agent
database and the planomat. Our current efforts on systegration include the abolish-
ment of file-based plans exchange during the iterations (Bedtral., 2006).

Computer memory requirements are no limiting factor to gemnce, since optimization is
done agent by agent. The temporary caching of the eventsmnatmn of 10% of all agents
takes several dozens of megabytes which nowadays doesatea problem.

The technical improvements described get a high prioritysaering our vision to include more
aspects of travel behavior into MATSIM-T.
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6.2 Improvement of the location choice concept

One upcoming modeling goal is the improvement of the locathoice concept. The ba-
sic difference will be that location choice for secondaryiaites will be part of the replan-
ning process, instead of its currently limited role as a press to initial demand generation
(Marchal and Nagel, 2006).

Atfirst, we will improve the data basis. Up to now, the numbiameerall workplaces in a spatial
aggregate was assumed as predictor for the utility gainer@ thegardless of the activity type.
This is insufficient because the functional organizatiqudsl for urban areas is not considered
at all. We create an activity-fine set of facilities based anduse information available on
hectare-level for all Switzerland, called the Swiss Natidanterprise Census provided by the
Swiss Federal Statistical Office (BfS, 2001). Opening timedaeivs will be no more activity-
specific, but location-specific. Data about opening timdksve to be imputed/revealed.
Furthermore, the synthetic facilities will have an activépecific capacity which in the first run
will be proportional to the number of workplaces. An opengion is how to include location
capacity constraints into the agents’ decision making.

For each agent, a choice set of locations is generated. Herapproach based on revealed
activity spaces is chosen. Referdotivity spaceas a continuous spatial representation of the
locations visited by a person in a certain time range. We ug# activity space generation
algorithms developed in Vaz al. (2005). It is then task of thelanomatto find the best
location for each activity in the sense of the scoring funrcti The complexity of the search
space is thus extended with a non-scalar dimenaativity location Earlier GA experiments
show that this task is feasible, although it will take moredithan the comparably simple time
allocation problem (Charypar and Nagel, 2005; Meisteal., 2005).
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