Implementing Activity-Based Models: Acceler-
ating the Replanning Process of Agents Using
an Evolution Strategy

David Charypar, IVT, ETH Zurich
Kay W. Axhausen, IVT, ETH Zurich
Kai Nagel, VSP, TU Berlin

Conference paper
Session 5 Simulating behaviors of individuals, house-
holds, and organizations

The Expanding Sphere of Travel Behaviour
Research

11" International Conference on Travel Behaviour Research
Kyoto, 16-20 August 2006

|mplementing Activity-Based Models. Accelerating the Re-
planning Process of Agents Using an Evolution Strategy

David Charypar

IVT

ETH Zurich

Switzerland

Phone: +41 44 633 35 62

Fax: +41 44 633 10 57

E-mail: charypar@ivt.baug.ethz.ch

Kay W. Axhausen
IVT

ETH Zurich
Switzerland

Kai Nagel
VSP

TU Berlin
Germany

Abstract

We present recent advances in accelerating our agent-sasethtion of travel demand by
improving various modules of the simulation system. Fitst, optimization algorithm used in
the replanning module is replaced by an evolution stratkegihas shown to perform well on a
variety of optimization problems including noisy and dis¢al search spaces. The replanning
module is then extended by an accurate way of estimatingdependent travel times. This
makes it possible for the replanning module to produce bpléms more quickly. Second, the
percentage of computational agents that replan their dayseéstigated and a percentage that
decreases with the iteration number is found to improvegbming speed significantly. On top
of these changes a new, fast event-driven microsimulafitcnraic flow is incorporated into the
model to make the execution of the overall system less timsuwwming.

Keywords

Daily plan optimization, agent-based travel behavior $ation, evolution strategy

Preferred citation style

Charypar, David, Axhausen, Kay W., and Nagel, Kai (2006) lengenting Activity-Based
Models: Accelerating the Replanning Process of Agents ¢Jaim Evolution Strategy, paper
presented at the 11th International Conference on TraviehBeur Research, Kyoto, August
2006.

1. Introduction

In transport planning, the commonly used aggregated mbdgkslimitations in their predictive
force as the aggregation process always entails a lack tHicenformation about the traffic
that is predicted. Usually only aggregated values likel toédfic volume on a link or average
travel times are computed. (Some of these problems can essddl by using time dependent
traffic assignment or disaggregated models.) Consequényinteresting to find a transport
planning method that is able to predict all aspects of traifituding important information as
distribution of trip purposes of the cars that cause the estign on a road or the distribution of
income of the people driving on a road during rush hours apdrsgely for off-peak times (or
at any second of the day).

Thinking about what such a model could be, we make the foligwabservation: The fully de-
tailed travel demand—including all desirable informatatout the users of a network—derives
naturally from the daily plans of all people traveling in tteidy area. As a consequence, one
way to answer transport planning questions is to find theygdéns for all people interacting
in an area.

In order to provide a tool to produce the requested daily plaa are in the development of
the multi-agent travel simulation toolkit (MATSIM-T) whicis a agent-based microsimulation
system of daily demand. The basic idea is to create a syatbapiulation of agents that live in
a virtual word that reflects data as the road network, landdase etc. The agents have daily
activity plans that they use to describe how they act in thii&i world. Each agent has the
desire to perform optimally according to a utility functitmat defines what a useful day is.
Each agent can change its daily decisions to get a highealbwétity. This can be interpreted
as learning. When the agents end up in a situation where saide to improve his plan they
are in a user equilibrium and the learning loop ends. Assgtfiat a user equilibrium is a state
of the system that we are looking for we get a set of daily ptafrell agents that represent a
typical state of the world.

Such a learning system can be used for various predictiks:t&or instance, it is possible to
obtain the distribution of activity chains of people beingiee city center during lunch. Also, the
utility of activities can be judged that cause the traffic ertain links. Furthermore, using such
a system, road pricing policies can be simulated and thigicteftan be accurately quantified.

While our current simulation system has proved to work (seénstance Balmeet all (2006))
there is still a substantial computational effort involwedimulating the learning of daily plans
for all virtual persons involved in a scenario. This is esgcthe case when looking at large
scale scenarios with 1 million persons or more.

In this paper we show how the speed of the overall learnintesysan be increased by im-
proving the performance of individual modules such as tp&arsming module (responsible for
creating new plans for each agent) and the traffic microstrar.

The rest of this paper is structured as follows: In sedfione2de@scribe the overall design of

our agent-based microsimulation of daily demand, in sadd@ave introduce and explain the
measures taken to speed up this simulation system, in s&ti@ present the test scenario that
we use to compare the original and the improved system, iosdg we discuss our results,
and we conclude and give an outlook to future work in sedflon 6

2. The Microsimulation Toolkit

The goal of themulti agenttravel smulationtoolkit (MATSIM-T) is to simulate and predict
the daily travel demand of a whole region with one millionabitants or more. The basic idea
of MATSIM-T is that by representing each person in such aagerby an individual agent and
simulating the daily behavior of such a person the travelaters generated as a byproduct.

Technically speaking, MATSIM-T divides into several coptieal and computational modules.
A simulationagent holds several attributes like age, car ownership, homeegddind suchlike.
Additionally he holds adaily plan that represents his activity decisions throughout the day.
This information includes an activity pattern with actyiypes (like home-shop-leisure-home),
timing information, i.e. when each activity starts and wiiteends, the locations assigned to
these activities, and the routes to travel on the trip from loeation to another.

When agents decide to change their daily plan, they calighl@nning module to modify their
plan. The replanning module tries to improve the agent’a.pl® do so, the utility of a plan is
judged using aitility function and the task is formulated as a maximization problem. THigyuti
function we use was presented.in Charypar and Nagel (2008efines the utility of a daily
plan to be the sum of individual utilities of each activityepent in the plan. This utility of an
activity consists of a positive term for the duration thag #ctivity is carried out and negative
terms for travel costs and penalties for coming late, legt@o early, etc. Using the idea of
penalties, environmental constrains like shop openingshoan be handled as well.

Throughout a scenario run, the agents and their plans adarhelemory in the so calleagent
database. The interactions between agents happen in the atrtaad microsimulation where
the daily plans of all agents are executed. In the microsatran, the agents travel from one
location to another as intended in their daily plans. As &géave to use the same network,
the links in the network become loaded, possibly creatinggestion and increasing the travel
times on the heavily loaded links. The agents then have tpertymity to change their daily
plans to reflect the new situation. The process is iterateldiaam system relaxes to a point of
rest that may be interpreted as a user equilibrium.

As the data format for in- and output to and from our simulaggstem we use XML. Network,
land use, and population data as well as the agent’s daihs@ee communicated and stored
in the XML format. A very important part of our microsimulati toolkit is the initial demand
modeling meta-module that comprises a great unified wayaafing input data in many differ-
ent formats, fuse them in a consistent way and store themlgaay defined format to make it
available to our dynamic simulation system. For informatout this part of MATSIM-T see

Balmeret al! (2006)

In this paper we mainly modify three parts of the whole sirtialasystem. First, the replanning
module is modified to use a different, more sophisticatedropation algorithm for the search

for the optimal daily plan for a given agent under the comstsagiven by the world and the

agent. To exploit the capabilities of this new optimizer,eavnaccurate estimation of time of
day dependent travel times is included in the replanningutectd allow the quality of generated
plans to increase. Second, the percentage of the poputaabdmactually computes new plans
is investigated and optimized for maximal performance ef dhrerall system. Third, a new
event-driven microsimulation of traffic flow is implemented

3. Speeding up MATSIM-T

In this section we present the approaches taken to speed TS NAT.

An important part of our work is to reduce the time needed torsimulation toolkit to converge
to a point of rest at which all the agents are executing a gdéy that they cannot improve
significantly themselves. To reduce this time there are gleoaf approaches that one can
take. On way is to reduce the number of iterations of the wikgktem that are needed to
find a relaxed state. This can be done for instance by impgothe replanning module to
produce better plans for the share of agents that are raptanAnother way one can go is
to find the optimal percentage of agents selected for repignin a particular iteration. A
completely different approach to improve the overall perfance of the system is to reduce
the time needed to process a single iteration. This can be dgroptimizing the individual
modules. On overview of the improvements that were donenduhe work described in this
paper can be seen in Figuie 1.

3.1 Producing Better Plans

The first approach to make our simulation system faster isadyce better plans during the
replanning process. Again, there were two tracks invegdyaFirst, we tried to improve the

optimization algorithm used in the replanning module, selcove made the replanning module
aware of the true time of day dependent travel times in theort

3.1.1 A Better Optimizer for the Replanning Module: CMA-ES

So far, the optimization algorithm used in the replanninglme of MATSIM-T was a specially

made genetic algorithm (GA)(ske Meisgtall (2005)). Although it's performance was gener-
ally sufficient to solve the optimization problem at hand vgswane that a more sophisticated
algorithm would yield better replanned daily plans or astgarovide them with less computa-

goal: reach final
state more quickly

produce better
plans in replanning

use optimal
replanning fraction

- make replanning
u:etik;;aitzt:rr module aware of
p real travel times

include travel time
ShbES estimation (router)

new state

Figure 1: Steps that were implemented to speed up the MAT 8aikit

make modules
faster

use event-driven
u-simulation

use variable pgyan

tional effort. We chose to use the covariance matrix adeypt&volution strategy (CMA-ES) as
described in_ Hansen and Kein (2004) to replace our current GA

Evolution strategies belong to the field of evolutionary paation. In general, they represent
stochastic population based optimization algorithms famtimuous space problems that use
recombination and mutation operators to produce new catelgblutions.

The particular evolution strategy used in this paper hasitedesirable properties which make
it attractive for us to use:

¢ Invariance of order preserving mappings of the objectiviefion

¢ Invariance to linear mappings of the search space

¢ Ability to work well on noisy landscapes with steps and risige

e Has been shown to work well as a global optimizer on many dedomulti-modal test
functions

3.1.2 Description of CMA-ES

The covariance matrix adaptation evolution strategy (CE3)-is an iterative stochastic pop-
ulation based optimization algorithm. It holds a populatad candidate solutions where each
candidate solution is a point in-dimensional vector spacen is referred to as problem di-
mension lying in the range of 3 to 6 in our case. CMA-ES alsoesta sampling distribution

4

T T T A T T T A T T T,
IR N B IR N B IR N B
I e et T (T I e e I N B —
1 T 1 T M Voo —
N7 WP S I Y W S B AR -
o\ \ L o\ \ ® \
\ N “ o \ N — \
\ \\. .\o ° = \ \\. .\O ° 1 \ \\ J—
\ \\ 0\\ o /] \ \\ 0\\ o / 7 \ \\ \\ -
AN ¢ e - AN ® ~_® - AN o ~ —
AN S 7 AN S 7] AN ~ T

(8) The search space is sampledb) The objective function (iso- (c) The sampling distribution is
according to the current sampling lines are shown as dashed lines) isadapted according to the distribu-
distribution. (blue circle) evaluated on the sampling pointstion of the selected samples. (red
and the best sampling points areellipse)
selected. (red dots)

Figure 2: The adaptation of the sampling distribution in CI28

(consisting of a center point and a covariance matrix) thatodified during the optimization
process. In every generation a new population of samplimgge generated, the best candi-
dates are selected and they are used to modify the samp#$itrgpdtion accordingly. Running
CMA-ES consists of the following steps:

1. Initialize the center of the sampling distribution (tlsisrresponds to the starting point)
and the global step size. Initialize the covariance matriart identity matrix.

2. Sample the objective function using N sampling point®etiag to the current sampling
distribution (consisting of center, covariance matrix gtabal step size). N is a parameter
of the algorithm and was set to default values according tasea and Kefr (2004).

3. Evaluate the objective function on all sampling points.
4. Based on these evaluations, select the better half oathelshg points.

5. Modify the sampling distribution according to the distriion found in the selected sam-
ples.

6. Return to step 2 and iterate until a desired stoppingrmitas met

For an illustration of the adaptation process of the CMA-lage see Figuié 2.

3.1.3 Real Travel Times in Replanning

In the state of MATSIM-T we were using until now the replarimodule was only in charge
of finding a good time allocation for the activities given iretactivity pattern. The travel times

5

were thereby assumed to be constant and equal to the realetdseavel times of the corre-
sponding plan executed in the last iteration. This simiplsssumption would of course often
prove to be wrong resulting in daily plans performing sigrafitly worse during the execution
of a microsimulation run than it was anticipated by the resithing module. Strictly speaking,
the replanning module was not able to deliver the optimah fié& a given agent as the infor-
mation on the dynamic state of the road network was simplyanatlable to it. In order to
find the real optimal daily plan for an agent the replanningloie needed the help of the agent
database. This database was holding a couple of daily p&aregent in memory, selecting the
plan actually executed during a run according to their resge utility in the last executions.
By replacing bad performing daily plans with new plans theraglatabase would make sure
that the whole system would slowly move to better-perfogmegimes. For more details on the
state of MATSIM-T as we were using it so far, please refer tadyva’2005) and Balmest al.
(2006).

Although using the agent data base for some aspects of ttarépg process has proved to be
robust, it also takes very long for the whole system to caywéo a reasonable state. As a way
around that problem, it seems natural to provide the rephgnmodule with all information
necessary to produce the optimal daily plans also in theweddt of the microsimulation.

To do so, we include a time of day dependent routing moduléenréplanning module. For
every new candidate plan that is produced while the reptemiodule runs for a specific agent,
the real travel time in the loaded road network is calculéeeach of the trips based on their
respective departure time.

By including an estimation of the real travel times in thela@ping module the help of the
agent database is no longer required to find good daily plamnsur agents. Consequently, the
number of plans held in the agent database can be reduced.to on

3.2 Using the Optimal Replanning share

During a run of our simulation system, in every iteration gai@ percentage of the population
of agents is selected at random to produce new daily plans.rdst of the agents (usually the
larger part by far) reuse plans that they came up with in aiee&eration. This is important to
avoid oscillating effects in the behavior of the agents ashemaseen in the following Example:

Assume that in every iteration every agent has the oppdyttmdesign a new plan
for himself. Assume in addition that the network is very lied and that it
consists only of two roads (A and B) leading from origin to toiestion. Let
A be slightly shorter than B. In the first iteration, the Ageiaio not yet see
yet any load on the network and consequently assume tha#xaathe better
alternative to reach the destination. As all agents plaspeddently all come
up with the same solution and as a result road A will be vengested during
the first run of the microsimulation.

In the second iteration, all agents will perform a replagnifhis time, the load
on road A is visible to them. However, road B is still complgtempty and
now this alternative is the much better choice. Therefdre,agents decide to
use road B in the next microsimulation run. This time, as gérds come to
the same conclusion again, road B will be totally blockedlevhbad A stays
unnoticed and empty.

In the third iteration, we will face basically the same sitoa as in iteration one,
leading to a cycle that will never end.

To avoid oscillating solutions the best approach probabdylal be to use only a very low

replanning percentage. Although this is effective in p@dg a smooth replanning behavior,
this leads to a poor learning speed of the overall system. vangd expect that the system
would learn more quickly—especially at the beginning—# tleplanning percentage would be
held at a reasonable high value.

The question is which percentage to choose. What value isghmal trade-off between a
stable solution without oscillations and a quick convengeto the point of rest?

Learning Performance

164 .

162

8 i
£ 160
w,
2
E 158 |
>
3
©
(]
g 156 |
[
>
[
154 |
p_replan =0.02 --------
' p_replan = 0.05
| p_replan =0.10 --------
152 || !

p_replan = 0.20 b
p_replan = 0.35

p_replan =0.50 -
p= 2.(I)/(iters+2) —

150

40 60 80 100
iteration

Figure 3: Test runs performed to find the optimal replannimgre. The system was iterated
using various parameters settings for,..,, the replanning probability of an agent in each
iteration. The tests were performed for fixed values in thgea% —50% and with a decreasing
Preplan = min(35%, n%), wheren is the iteration number.

To answer this question we ran a couple of test runs of ouesystith different parameter
settings for the replanning percentage in the range &%m- 50%. The results can be seen in

7

Figurel3. In good agreement with the reflections above wetgg@treplanning fraction &%
produce a chaotic behavior of the simulation system. Belognalue one can see that higher
values lead to a faster learning process and lower valudgddass noise in the solution. For a
constant replanning percentagé; and10% seem to be reasonable values.

Judging from the shape of the convergence plots for const@hnning probabilities in Fig-

ure[3, we decided to use a decreasing replanning probataliget the best of both worlds: a
quick learning process at early iterations and low noiselaghly sophisticated results at the
end. After some empirical testing we found that varying teglanning percentage according
to following formula produced a significant improve in thadeing performance of the system:

. 2.0
DPreplan = mln(35%7 n+ 2)

wherep,.,an IS the replanning probability and is the number of iteration. The comparison
of the learning performances with constant and the variagk&nning probabilities shows that
the latter can boost the overall performance of the systemfagtor of three or more.

3.3 Making iterations faster

Probably the most simple approach to improve the performahour agent-based system is to
speed up the execution of the individual modules. If we redhe amount of time needed for
the execution of one iteration, obviously, the time neededonverge to the user equilibrium

will reduce as well. We have adopted this approach and wookethe acceleration of the

microsimulation of traffic flow that so far represented thestntime consuming part of the

overall simulation system.

3.3.1 The Time-Step-Based Microsimulation of Traffic Flow

For the microsimulation of traffic flow we use queue-basedigaamics on the links. The basic
assumption is that especially in urban traffic networks iéleavior of the cars on the roads is
mostly dictated by limitations in capacity where intergaas are. Cars drive a link all the way
down until they reach the end of the queue of cars waitinga@sscthe next intersection. From
that moment on the car has to wait until all the cars in front gét “served” by the intersection.
If a car becomes the first in the queue in every time-step (lysur@e second) of the simulation
it is decided if there is room for it to cross the intersectom to enqueue at the next link (this
is only possible if the spill back on the next link is not sagthat it already filled up the whole
link) and if the capacity constraints on this link allow it keave the link (only a certain rate
of cars is allowed to leave a link). If both criteria are met ttar can leave this link and enter
the following link; the next car on this link becomes first inegie. It turns out that using this
dynamics we do not need precise information about the posif each car on the link. It is
sufficient to remember the order in which the cars enteretinkend at what time they would
reach its end if they could travel at free speed. This kind mirosimulation is very efficient

and can be easily run in parallel. For a more detailed lookatricrosimulation of traffic flow
as we were using it so far see C=ztin (2005).

3.3.2 The New Event-Driven Microsimulation of Traffic Flow

The microsimulation used until now has two computationslies: First, links that are almost
empty still need too much computing time, as even if thereisar waiting at the front of the
queue the link has to be checked in every time-step. Secomnapletely congested links also
absorb a fair amount of computing time as the simulation bahéeck in every time-step if it
is possible for the first car in the row to cross the intersectiBy looking at how to improve
the speed of the present implementation of the traffic migrokation, one idea is to try to put
the computing time where the action is: Simulate only whea#it is currently happening, i.e.
where cars enter and leave links. Consequently, empty &nkiscars waiting on a link should
not need any computing time at all. Completely congestddsIshould need almost as little
computing time as empty links as the cars do not move on sokb.lOne way to achieve these
requirements is to use an event-driven microsimulatiomulnapproach, we use timers that are
set by the agents for the time that they plan to enter or |davbriks. These times are estimated
by collaboration of the agent and the involved links.

A detailed discussion of the algorithms and concepts usedimew microsimulation are be-
yond the scope of this paper but we would like to describe amgse situation and how com-
puting time is saved in our approach. Assume a car C travelmngnk A and wanting to enter
link B. Let link B be completely congested and therefore, wkige agent reaches the end of
link A, it cannot enter link B directly. Insteadriegisters his desire to enter with link B. As long
as no car leaves link B nothing is going to happen and consgigugo more computing time
is needed to handle the situation. But, as soon as—for arspmeaot described here—a car
leaves link B this creates a cascade of events. A gegwis created at the front of link B. This
gap travels backward through the link at a fixed speed. As aemrence of the fixed speed,
link B is able to predict when the gap is going to reach theygoint of link B. As car C is still
registered with link B, this predicted time is communicaiedar C. Following this, the car C is
going to create a timer for this time and when it expires cas going to leave link A and enter
link B. Note that computing time was only used for (1) regisig to link B, (2) computing the
gap arrival time, (3) registering a timer, (4) leaving link &) entering link B. Apart from step
(2), there is no overhead due to the fact that the link is cstegk or that there are many cars
interacting on the links.

It is difficult to compare our old microsimulation with thewevent-driven approach as the
computing time depends on the scenario simulated as wetlo@ufirst test show that for 24

hours simulations of scenarios with about 1 million tripsgeén roughly a factor of ten in terms
of computing time.

4. Test Scenario

For all our testing we use a scenario of the canton of Zuritie gopulation of agents was taken
from|Frick and Axhausen (2004) but the number of agents wasced from 550 808 to 12 225
using a sampling process. This was done to make quick testpossible even on single CPU
main stream desktop computers. The network capacities mdteed accordingly to produce
a fair amount of congestion in the network and make the lagrtask more demanding. We
believe that this setup shows similar characteristics a$ulhsize scenario. However, we want
to test and show the performance of our simulation systemherfull-sized problem in the
future as well.

The network we use has approximately 20k links and coversféliwitzerland. While it is
possible for the agents to travel the whole network (e.g. genticould theoretically decide
to drive from one location in the canton of Zurich to anothmation in Zurich via Geneva,
300 kilometers away from Zurich) the part of the network tisaised most of the time only
comprises roughly 4000 links. In Figuké 4 you can see the owtwn the city of Zurich,
Switzerland.

Figure 4: Extract from a scenario run. Shown: the city of ZyiSwitzerland. The colorful
dots are cars driving through the network. Green, yellow, i@d cars travel at free, half, and
low speed, respectively.

During initial demand modeling, the activity chains as vaslthe locations for these activities
are generated according to micro census data, a commutex,aad land use data. For details
please refer to_ Balmegt al! (2006). The resulting initial demand for the learning lodpar
agent-based system is shown in Figllre 5. Note that it shome sibservable properties of
normal urban traffic like a morning and an evening rush houthwei the plans are very undif-
ferentiated and certain properties are quite far fromtyealich as the evening peek that starts
already at 14:00.

10

Network Load by Trip Purpose (Initial Demand Planned)

0.06 T T T T T 1 T
work or education to shop or leisure
shop or leisure to work or education
shop or leisure --------
' education
0.05 work E
all - -
> : |
£ 004 ; R
g
g
@
|5
o 003 F | . 1
I N
= VY
c [|
= i \ : [|
| I |
| \ | [
J \ ‘ i
| ‘ | \
001 | | | h
| | | X
| | | e
] | | \
| DA s'
0 I A el A L e Wy Y 1 1
6 8 10 12 14 16 18 20 22
time of day [h]

Figure 5: The network load according to the initial dailyndaof the agents before iteration 0.
Note that the demand cannot be executed in this way. The pfahe agents assume an empty
road network and corresponding travel times. The real di@tleads to a very congested
network and therefore to a big discrepancy between the pthdaily plans and the executed
ones.

The average number of trips that is carried out by each agén2# and the average trip length
in number of links traveled is 6.94 after convergence to tex equilibrium.

5. Results

We compare the learning performance of our agent-basedaiomusystem after incorporating
the changes described in this paper to the state before. $o,dwe make a comparison based
on the average utility of the executed daily plans of the tgjas well as a comparison of the
load profiles of the network during the day.

5.1 Comparison of Learning Performance Based on Average Ui I-
ity of Plans

To measure how well the agents in our simulation have leaim@eérform their activities and
to adapt to the system under load we use the average utiliheofplans as they were executed

11

in the microsimulation module. In the following plots highealues usually mean a better
adaptation to the problem at hand. However, higher averalges do not always depict a better
overall performance. One has to keep in mind that we are hapkir a user equilibrium while
the average score would be at a maximum in the system optirthase two not necessarily
being the same. Unfortunately, it is not easily possiblertd tut if the agents are in a (stable)
user equilibrium. For this reason we nevertheless use #rage score to judge the performance
of our simulation system.

Learning Performance Old vs. Modified System
165 T T T T

160 1

155 1

150 1

average daily utility [EUR]

145 _

old learning system
Iearnling system after mogifications

140 L L
0 20 40 60 80 100

iteration

Figure 6: The simulation system after modifications leatistantially faster than in the orig-
inal state. Also a higher maximum average utility is reached

In Figure[® a comparison of our simulation system before drgnges and the current state
can be seen. The system in the new state learns substafditly than the original system.
The modified system reaches the stable plateau close to tkienoma after approximately 20
iterations. The original system shows a local maximum auaf0 iterations but continues to
rise after iteration 100 and reaches a similar averageayudifter approximately 900 iterations
(not shown). If we take iteration 70 as final result of the rad setup this means that our new
system is a factor of 3.5 faster in terms of iterations.

5.2 Comparison Of Results Using Network Loads

We are interested in the behavior of the agents after legurrim particular we want to know
when they travel and for what purpose. To investigate thesstegpns we plot the time depen-
dent network load split up into several groups of travel psgs.

12

Network Load by Trip Purpose (Freespeed Demand)

0.07 T T T T T T T
work or education to shop or leisure
shop or leisure to work or education
shop or leisure --------
0.06 |- education _
work
all - -
0.05 —
2 : .
= N
2 N i
3 [bl
= 004 | o H E
%) ing o | |
c AV \
S o | l
IS4 i | | |
S 003} | | | E
c i | | |
S ‘ | ;
g | \ |
E] ‘ C "
0.02 | | k ‘ | \ .
| | |
i | c‘ \
| \ NS A ‘
001 - R | \‘ 7
| | v : |
| \
/ ,“ “\\ / ~ b B R L T
O il L 1 ~ 1 21 1 1/ 1 \ AN 1
6 8 10 12 14 16 18 20 22
time of day [h]

Figure 7: The demand as it is planned by the agents assung@agfreed travel times on all
links. The morning and evening peeks present are very mhinkote that shop and leisure
activities happen throughout the day and that they do netawt with the rush hours. As were
assuming free speed there is no need to avoid heavy trafficgdomorning. It is clear that this
demand cannot be executed in this way—the network wouldrbedotally overloaded.

In FigurelT we see a fictitious network load as it is plannedieyagents if they assume infinite
network capacities and free speed travel times accorditfjiyh values in this plot mean that
many agents are traveling at the same time. This plot can &é& as an indication of how

the agents would plan their days if there was a guarantee abngestion at any time. Note
the pointed morning and evening peeks and the relativelyitibution of shop and leisure

trips throughout the day. It is interesting to compare tlaeal” demand to the real executed
demand shown in Figuld 8 as it was found using our new leasystem after 20 iterations.

It can be seen that the morning and evening peeks are signijidaoader (the morning peek

starts earlier and the evening peak ends later) and thalgpeopshopping and leisure trips
systematically avoid these peek hours for their travel. fectude that our learning system is
able to reproduce a typical behavior of people in daily lifeey avoid peek hours for travel to
and from activities that are not bound to a specific time.

In Figure[® we show the same plot as above for the original,adhfied learning system after
70 iterations. The peak hours look very similar to Figure 8rminteraction effects between
shopping and leisure activities and the peak hours can lneifiée. This shows that the the
original system needs significantly more time to reach ageduality of solution. After further
investigation we found that in iteration 200 the old systérmay has developed the avoidance
effects partially, but that it takes roughly 400 iteratidre$ore a similar quality can be observed.

13

Network Load by Trip Purpose (Demand New System After 20 Iterations)

0.07 T T T T T 1 T
work or education to shop or leisure
shop or leisure to work or education
shop or leisure --------
0.06 |- ; education i
' work
all - -
I\ N
0.05 I~ I\ b
o)) I\ . o
£ il J |
B I \
> | / f
8 11 [
=004 I | | R
*2 1\ / |
] ') / |
o | / |
© | \ / |
S 003} | / \ E
c i | \ / |
§=] ‘ \
= !
E ‘ | . / \
T o002} ‘J \ RV A | \ .
‘ | R . . o
| n \
0.01 - . DA B
i \] : !
[\ /..
[\ ST / - \ L
0 A Il \ L 1 ey | e sl | L AN e | N
6 8 10 12 14 16 18 20 22

time of day [h]

Figure 8: Demand after 20 iterations of learning of our nawaation system. The agents have
learned to avoid the morning and evening peeks if possililes& peeks are still very dominant
but significantly broader than in the "free speed” demandeNow shopping and leisure trips
are carried out during off-peek hours to avoid congestedsoa

The new system therefore needs 20 times less iterationgth the final quality of solution
that the old system.

Going into the other direction, and looking at the resultietwork load after 10 iterations of the
new, modified learning system we found that while not beingrasise as after 20 iterations the
network load looks already very similar. Especially thealig®d drop of shop/leisure demand
can be clearly identified.

14

Network Load by Trip Purpose (Demand Old System After 70 lterations)

0.07 T T T T T T T T
work or education to shop or leisure
shop or leisure to work or education
~ | shop or leisure --------
0.06 |- ; ’ education |
: work
f\i all - -
‘N /|
A i
0.05 | [[1
o |\ / |
£ [\ /|
T [\ / \
= |\ / |
=004 i | | R
2 | \ [|
S |
(7] | \
o |
& | \ [|
S 0.03 | \ P | i
c \ \ | \
) | | - [|
g | |
S | \ - | |
0.02 | i | ! | | -
| | LT - . | \
| ‘ ' o | \
| \ . e B \.
0.01 - \“ \ / “\ T
| R 4 \
/
/ \ NN g \ h
0 P 1 i | s p?) 1 \ 1 1
6 8 10 12 14 16 18 20 22

time of day [h]

Figure 9: Demand after 70 iterations of learning of the owilearning system. While the
morning and evening peaks have developed, shopping anddergs do no yet avoid the peak
hours.

15

6. Conclusion and Outlook

We have improved our agent-based iterative microsimutatiodaily travel demand by en-

hancing its replanning module in two ways: First, an optatizn algorithm that was shown

to perform well on relevant test problems (the covarianc&imadaptation evolution strategy
CMA-ES) was integrated. Second, the power of this optimas exploited to produce better
plans for the agents by including an accurate travel timienasion (a time-dependent routing
module) into the evaluation function for daily plans. Thiakas it possible that the replanning
module directly reacts to peak hours and their high costavilt These modification have the
positive effect that they significantly reduce memory neasishey eliminate the need for the
agent database (another module of our simulation systehgltbmultiple plans in memory.

We have tested our new agent-based model with a reduced¢estred with 12 225 agents and
have shown that these modifications yield an improvementasftar of 20 in terms of iterations
needed for the agents to adapt to the network under load.

On top of the other modifications, a new event-driven miecmsation of traffic flow was im-
plemented and integrated into the system to increase tleel si@xecution of a single iteration.
This improves the speed of execution of the microsimulatibimaffic flow—a subtask of one
full iteration—by a factor of 10.

The current replanning module is only able to create optiima allocations given a location
choice decision and an activity chain. In the future we wadiklel to remove this limitation and
enhance our replanning module to incorporate the wholanehg problem.

References

Balmer, M., K. W. Axhausen and K. Nagel (2006) An agent-basethand-modeling frame-
work for large scale micro-simulations, TRB 85th Annual Meeting Compendium of Papers
CD-ROM, Transportation Research Board, Washington, D.C.

Cetin, N. (2005) Large-scale parallel graph-based sinmraf Ph.D. Thesis, ETH Zurich,
Zurich.

Charypar, D. and K. Nagel (2005) Generating complete allatdivity plans with genetic al-
gorithms, Transportation, 32 (4) 369-397.

Frick, M. and K. W. Axhausen (2004) Generating syntheticydagoons using IPF and monte
carlo techniques: Some new resultsThe 4th Sviss Transport Research Conference (STRC),
Monte Verita, Asconeht t p: / / www. Strc. ch/ 2004. ht nmi |

Hansen, N. and S. Kern (2004) Evaluating the CMA evolutioategy on multimodal test
functions, inThe Eighth International Conference on Parallel Problem Solving from Nature.

16

http://www.strc.ch/2004.html

Meister, K., M. Balmer and K. W. Axhausen (2005) An improveglanning module for agent-
based micro simulations of travel behavid&rking Paper, 303, IVT, ETH Zurich, Zurich,
http://ww\. 1Vvt.ethz.ch/vpl/publications/reports/ab303. pdr.

Raney, B. (2005) Learning framework for large-scale magfent simulations, Ph.D. Thesis,
ETH Zurich, Zurich.

17

http://www.ivt.ethz.ch/vpl/publications/reports/ab303.pdf

	Introduction
	The Microsimulation Toolkit
	Speeding up MATSIM-T
	Producing Better Plans
	A Better Optimizer for the Replanning Module: CMA-ES
	Description of CMA-ES
	Real Travel Times in Replanning

	Using the Optimal Replanning share
	Making iterations faster
	The Time-Step-Based Microsimulation of Traffic Flow
	The New Event-Driven Microsimulation of Traffic Flow

	Test Scenario
	Results
	Comparison of Learning Performance Based on Average Utility of Plans
	Comparison Of Results Using Network Loads

	Conclusion and Outlook

