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This paper provides an introduction to multi-agent traffic simulation. It includes some
description of where we are with respect to the implementation of a real-world Berlin
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of the special situation of Berlin after the re-unification, are considerably larger than in
previous scenarios that we have treated.
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1. Introduction

In recent years, microscopic traffic simulations have become an increasingly active

field of research in transport science. “Micro” refers to the fact that all elements of

the transport system, like roads, crossings, vehicles, and – most importantly – travel-

ers (referred to as “agents”) are resolved. This modeling approach is in contrast with

the more aggregate models implemented in current transport planning software and

used by transportation planners. While those programs have seen several decades of

development and practical use, agent-based microscopic simulation systems are still

relatively new and are mostly used in small and medium scale scientific scenarios

rather than in real world applications. But new technologies, such as robust and

fast object-oriented programming languages and high performance computing clus-

ters make the applications increasingly realistic and increasingly large scale. This

paper addresses the issue of applying such a model to a real world scenario of large

dimensions.
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2. The model

2.1. Physical vs. mental level

There are several ways from which a microscopic approach can be derived. One

way is the attempt, often used in physics, to start from “first principles”. First

principles implies to start from individual particles, and indeed the possibility to

do fast molecular dynamics [1] and fast cellular automata simulations [2] on the

microscopic level was one of the driving forces for large scale microscopic traffic

simulations [3].

When going down this path, one notices eventually two things:

• Building a microscopic simulation of vehicular traffic (or, for that matter,

of pedestrians) needs some diligence and care, but is essentially possible.

In terms of size: Even large urban systems rarely have more than 107 in-

habitants, and rarely more than about 20% of those are simultaneously on

the road. This makes for considerably smaller numbers of particles than in

many physics applications, and moves the microscopic simulation of com-

plete cities/regions into the realm of the computationally feasible.

In terms of underlying dynamics: Despite considerable discussion about dif-

ferent traffic states and possible phase transitions [4; 5; 6], the absolutely

most important elements of the dynamics are, in fact, rather constrained:

There is mass conservation (especially if vehicles are tracked from parking

to parking; see below); vehicles move on a quasi one-dimensional geometry

(roads) most of the time; there are quite severe restrictions on accelera-

tion and braking capabilities; and there are quite severe excluded volume

restrictions (not more than about 150 vehicles fit on a kilometer of single-

lane roadway when traffic is stopped). A consequence of this is that a rather

simple theory of traffic – that of kinematic waves [7] – describes traffic rather

well, by just using the equation of continuity plus an equation of state (re-

lating velocity to density, the so-called “fundamental diagram”) [8]. Any

microscopic model that obeys the corresponding microscopic principles –

mass conservation and velocity related to the distance to the car ahead –

will reach a similar level of realism [9]. More complicated aspects, such as

capacity drop [10], phase transitions (see above), or “synchronized traffic”

[11], matter for the management of individual road segments, but they do

not matter so much for where we currently are with simulations of large

scale urban systems.

• The other thing that one notices is that the behavior of the “particles”

(vehicles, pedestrians) is quite heavily influenced by behavioral aspects,

i.e. by “what goes on in people’s heads”. This is, however, not so much the

realm of physics, since one is not interested in, say, how 106 neurons together

eventually make a decision, but instead in models that generate realistic

human decisions within very short computing time. For typical computing
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situations, a lane changing decision may not take more than 10µsec of CPU

time, and a decision about a daily plan may not take more than a second of

CPU time. That is, one is interested in models that describe the outcome of

human decision-making reasonably well, without “looking at the neurons”.

The mental world:

− limits on accel/brake
− excluded volume
− veh−veh interaction
− veh−system interaction
− ped−veh interaction
− etc.
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The physical world:

Fig. 1. Physical vs. mental level

Accordingly, it is useful to differentiate between the physical layer and the

mental layer of a multi-agent simulation (MASim), see Fig.1. The physical layer

essentially contains everything that can be observed. The mental layer essentially

contains everything that goes on in people’s heads.

2.2. The physical level

As just said, there is a variety of techniques available for the simulation of the

physical level. These techniques include molecular dynamics [12], techniques based

on differential equations [e.g. 13], coupled maps [14; 15; 16], cellular automata [17],

methods where individual vehicles are moved with velocities based on link densities

[18; 19], methods where individual vehicles are moved based on fluid-dynamical

equations [20], and queue models [21]. Some packages based on these different

techniques are SUMO [using coupled maps and more recently a queue model; 22],

DYNASMART, DYNAMIT, METROPOLIS [all using a combination of velocities

based on link densities and a queuing approach; 23; 24; 25], TRANSIMS, OLSIM

[both using a cellular automata approach; 26; 27], or our own package MATSIM

[using a queuing approach and more recently also vehicle movement based on fluid-

dynamics; 28]. Since these are not the main focus of this paper, it shall suffice to

have given these references.
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2.3. The mental layer

As mentioned above, the mental layer models and simulates the human decision

processes. Those include:

• accelerating, braking, lane changing

• turning decisions at intersections; route choice

• time choices (when to depart?)

• mode choices (which mode of transport to use?)

• location choices (where to do an activity?)

• activity pattern choice (which activities should be done at a given day, and

in what sequence?)

This is an approximately hierarchical list, in the sense that decisions further down

the list are made less often, and in consequence decisions further up the list depend

on those further down the list. For example, in order to compute a route from home

to work, one first needs to know where home and work are located.

Although the above hierarchy can be justified by empirical observation [e.g. 29],

there is also considerable inverse causality between the levels. For example, location

choice (for example for a shopping location) depends on the available modes of

transport.

With respect to model implementation, the following seems to establish itself in

the community:

• Driving behavior, such as accelerating, braking, or lane changing, is in-

cluded into the physical layer. That is, it is not assumed to be part of any

strategy, but rather assumed to be purely reactive.

• Routes are typically generated using some kind of shortest (or fastest) path

algorithm. This is most probably due to the fact that a shortest/fastest

path in a traffic graph is relatively cheap to compute by using the Dijkstra

algorithm [30]; it is, in fact, difficult to devise heuristics that are faster than

that exact algorithm. If several route alternatives are available, selection

between them is often done using a so-called multinomial logit or probit

model [31]. Some care needs to be taken to correctly deal with correlations

between alternatives [32]: Assume three route alternatives, where two of

them differ in just one link, and the third is very different. The intuitive split

between those would be roughly 25% : 25% : 50%, while plain multinomial

logit returns 33.3% : 33.3% : 33.3%. This is known as “independence from

irrelevant alternatives (IIA-property)” [see, e.g., 31].

• The choices of times, modes, locations, and activity patterns are often done

in one model, called activity-based demand generation (ABDG). There are

two major strains of models: those based on econometrics/utility maxi-

mization, and those based on rules. Most real-world implementations are a

combination of those two approaches [e.g. 33; 34; 35; 36; 37; 38].
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The above assumes that the population and where it lives is given. That is, the

(synthetic) population can be seen as a fixed boundary condition of such simulations.

Synthetic populations are generated from demographic data [e.g. 39]. Some models,

normally separate from traffic models, also consider the evolution of a population

over time (including aging, birth, and death), and include residential choice into

those models [e.g. 40; 41; 42].

In our work, we call the output of the mental layer plans, which can look like:

<person id=="123" gender ="male" income ="50k">
<plan score ="456">

<act type="home" link="234" endTime ="08:05 " />
<leg mode="car" expectedTravelTime="00:55" />

<route > 25 35 46 63 </ route >
</leg >
<act type="work" link="345" duration ="09:00" />
...

That is, a plan is a full description of the agents’ intentions. The above agent intends

to leave home at 8:05, take a pre-specified route to work with an expected travel

time of 55 min, work for 9 hours, etc. Although in much of our work, plans are

fully specified, conceptually they do not need to be so: It is quite reasonable to

assume that some elements (e.g. the time to leave work) is decided depending on

circumstances (e.g. how much work there is), and other elements are modified on

short notice (e.g. the route, in order to circumvent some exceptional congestion).

2.4. Adaptation and learning; day-to-day vs. within-day replanning

If one runs the sequential process of synthetic population generation, activity-based

demand generation, and routing, the resulting plans are often not useful since they

will not execute as expected. A typical obstacle is congestion, which is a consequence

of too many plans attempting to use a certain element of the infrastructure at the

same time. Congestion will make certain choices sub-optimal, in the sense that an

agent could find a better solution by modifying its plan.

There are two principal ways to model replanning:

• Option 1, called day-to-day replanning. The physical level simulates a

day, then the plans of the agents are adapted, the physical level simulations

a new day based on the new plans, etc. In pseudo-code:

for ( day = 1 ; day <= lastDay ; day ++ ) {
for ( time = 0 ; time <endOfDay ; time ++ ) {

advance_physical_layer_by_one_time_step () ;
}
for ( agent in agents ) {

agent.replan () ;
}

}

Most of the syntax is hopefully clear; for ( agent in agents ) means

that the loop goes through all agents; agent.replan() means that the

specific agent is now asked to potentially replan.
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In this version, agents pre-plan their complete day before they leave home

in the morning, and they can only re-consider their plan just before they

start the next morning. Agents can therefore not react to unforeseen cir-

cumstances.

• Option 2, called within-day replanning. The physical level simulates a

short time period, then all agents can re-plan, the physical level simulates

another short time period, etc. In pseudo-code:

for ( day = 1 ; day <= lastDay ; day ++ ) {
for ( time = 0 ; time <endOfDay ; time ++ ) {

advance_physical_layer_by_a_one_time_step () ;
for ( agent in agents ) {

agent.replan () ;
}

}
}

More intelligent/efficient implementations of this can be considered, such

as agent replanning being triggered by certain conditions during the update

of the physical layer.

In this version, agents can replan while they are on the way, thus being able

to react to unforeseen circumstances. Important examples of unforeseen

circumstances are fluctuations from one day to the next, or exceptional

events, such as accidents.

The two options face different levels of implementation difficulties:

• Option 2 is easier to implement by a single programmer or by a tightly

integrated programming team where all members of the team have agreed

to use the same data structures (e.g. for the agents).

• Option 1 is easier to implement if there is pre-existing, non-integrated code,

or if the programming team is not tightly integrated.

In consequence, within-day replanning is often implemented by single-person

projects [43; 25; 22; 44] or by projects that can define and enforce their program-

ming standards, while day-to-day replanning is often the result of a multi-person

or multi-team project [24; 26; 42].

A direct consequence is that projects with within-day replanning are often some-

what limited in scope, since it is difficult to combine pre-existing work. Since, on

the other hand, within-day replanning is an important aspect of reality, it seems

critical to overcome that obstacle.

2.5. Scores and “events”

For most applications, replanning only makes sense if the agent attempts to obtain

a “better” plan by replanning. This implies that one needs to be able to compare

plans. We assume that the plan is scored by submitting it to the physical layer,

and scoring the outcome. That is, the plan is seen as the description of the strategy
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of the agent. The strategy is then interpreted and executed by the physical layer.

If the strategy contains infeasible elements (e.g. a route that is not connected), it

will fail completely. Even if the strategy is feasible, it may not be very good, since,

for example, assumptions about travel times may be optimistic. The physical layer

provides output in terms of events, which structurally look as follows:

<event time="08:05 " agentID ="123 " eventType ="leavingAct " act="home" />
<event time="10:00 " agentID ="123 " eventType ="arrivingAtAct" act="work" />
<event time="19:00 " agentID ="123 " eventType ="leavingAct " act="work" />

This refers to the agent as described earlier by the example plan. The agent leaves

home as intended, but needs one more hour than intended to get to work. Con-

sequentially, she will leave work one hour later than intended, since the duration

of work is fixed by the plan. The scoring will be based on the longer duration of

travel, and the later work start/work end times. If, as a result, she gets late to an

appointment later, that will cause further score reduction. If the morning travel

delay occurs regularly, she will learn, say, to depart earlier.

Scoring functions can be arbitrary, although in practice, it is currently easiest

to remain close to the utility functions used in economics. There is some research

into how to assign utilities to full daily plans [45].

2.6. Co-evolution, dynamical systems, and evolutionary game

theory

Day-to-day learning can be described in terms of an evolutionary game. If, over the

iterations, all agents end up with plans that they cannot unilaterally improve, then

the system is at a Nash equilibrium. The plans can be seen as “strategies”; the

execution of the plans in the physical level can be seen as “scoring the strategies”

or “computing the fitness function”. The concept even holds when the simulation

of the physical level is stochastic; then “score” needs to be replaced by “expected

score”.

The day-to-day evolution of the system can be seen as a time-discrete dynamical

system where many agents co-evolve. For such systems, some theory is available [46],

although there is a gap between theoretically tractable systems in the traffic context

and full-blown multi-agent simulations. For such theoretically tractable systems, one

can show: If, in every iteration (day), a small fraction of the agents switches to what

would have been the best expected plan in previous iterations (“best reply”), and

if that system moves to a fixed point, than that fixed point is a Nash Equilibrium.

There are, however, at least two caveats: (1) The implementation of “best expected

score” is not easy to make operational because a simulation is computationally

rather expensive, and averaging over several such simulations is even worse. (2) As

is well known, dynamical systems do not need to converge to fixed points. They can

instead converge to cycles, or to chaotic attractors [47].
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3. Set-up of the Berlin simulations

Although the scenario focuses on the city of Berlin, in order to simulate average

traffic conditions we have to model and simulate Berlin’s surrounding as well but

with a lower level of detail. All together the study region covers an area of 150 km x

250 km and has a population of about 6 million inhabitants. Network and demand

are derived from data used and produced by the aggregated macroscopic model that

Berlin’s planning department is working with. In contrast to this official transport

model used for mid and long term forecasts, in our simulations all travelers are

resolved as agents generating trips while following their day plans. The following

sub-sections describe the set-up of the Berlin scenario.

3.1. Boundary conditions: The network

As mentioned earlier, Berlin’s planning department provided us with a road network

of their transport model. This network has been used as part of the forecast model

for the year 2015. Since we aim to model and simulate Berlin’s current traffic of

an average workday, we had to adapt the network manually in order to exclude

modifications planned to be realized until 2015 (e.g. expansion of the inner city

highway southward). The final network consists of almost 30,000 links connecting

more than 10,000 nodes, described by their coordinates. For our simulation we

need, for each link, the attributes free flow speed, length, number of lanes and flow

capacity. The network does indeed contain these attributes, but the usefulness of

the data is variable. For example, the number of lanes in uniformly set to one,

presumably because the number of lanes does not matter for traditional assignment

models. Link capacity is interpreted very differently by the aggregated model used

by the planning department of Berlin and our multi-agent simulation. While in our

simulation, capacity is understood as maximum outflow of a link in a given time

period, the aggregated model does not treat a link’s capacity as hard constraint. In

traffic assignment suitable functions are used to relate capacity and flow with the

resulting cost in terms of travel times. Thus, we had to adapt these capacity values

that were the basis for a 24 hours static assignment. In a first step, we adjusted the

24 hours capacity values in order to derive 1-hour values based on the assumption

that daily traffic basically occurs in a 12-hours period. In a second step, we converted

the resulting theoretical 1-hour values into maximum values of outflow of a link in

1 hour to be used in our multi-agent simulation.

Free flow travel time is calculated as link length divided by the free flow speed

of the link. Additionally, the storage of a link is constrained. The storage of a link

is calculated as length times the number of lanes divided by the space a vehicle

occupies in a jam (7.5 m). Because of the incorrect number of lanes (uniformly

one, which is much too small for the wide roads of Berlin), the space capacity

needed correction as well. For the time being, we assume a storage of 3-lane roads

everywhere – note that this affects only the storage (maximum number of vehicles

on link), not the flow capacity.
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In order to speed up the Berlin scenario, the demand and the network capacities

(both flow and storage) were scaled down to 10% of the actual values.

3.2. Initial conditions: Initial plans from an activity-based demand

generation program

Initial plans have their source in an activity-based demand generation (ABDG)

model [also known as Berliner Personenverkehrs-Modell; 48; 49; 50]. It has been

used to calculate three daily (= 24-hour) OD-matrices used as input data for the

static assignment used by Berlin’s planning department, differentiated between per-

sonal travel, freight travel, and through traffic. However, the model is in fact a dis-

aggregated activity- and behavior-oriented traffic demand generation model. The

demand of 72 person groups with similar demographic attributes and homogeneous

behaviors is calculated based on expectancies. The model was modified to output

activity chains to be used to produce initial agents’ plans for our multi-agent sim-

ulation [51].

Activity chains are grouped by the 72 person groups. Each activity chain con-

tains information about the start location, up to four activities, and the frequency

of occurrence of the activity chain. Activities are described by their type, location,

and the transportation mode used to reach that location. The home location is start

and end location of each activity chain (round trips). Information on location refers

to traffic analysis zones (TAZ), since these represent sources and sinks of traffic

streams in the macroscopic model. Before transforming activity chains into agents’

plans, location information and data has to be disaggregated. Additionally, activity

chains lack time information. For initial plans, all activities are assigned a random

activity duration within a type-dependent range.

As a result, over 7 million “virtual” agents are generated from the round-trips

in the ABDG data. Each of these agents has a plan corresponding to an activity

chain generated by the Kutter model. Unfortunately, the number of these agents

does not correspond to the number of real persons in the area, since persons who

make more than one round trip per day are registered as separate “virtual” agents.

This is due to the fact that the Kutter model treats round trips, not persons. That

is, activity chains with intermediate home stops are treated as completely separate

round trips, resulting in separate agents.

We then decreased the number of agents in our simulation to the agents using

the car for transportation. As already mentioned, to speed up the Berlin scenario

we also scaled network capacities as well as demand down to 10%, which gives a

total of about 205,000 car travelers with complete day plans in our simulation.

3.3. Mental layer: “planomat” and router

As already described, an agent’s plan is a description of its intentions, but it might

not be executed as expected because of congestion effects. At the end of an iteration,

a score is calculated for each plan, corresponding to how successful an agent was
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performing its plan (see Sec.3.5). A certain percentage of agents can adapt their

plans, before the next simulation of the physical layer starts.

Two strategy modules enable this day-to-day replanning. The first module is

the router. Given locations, departure times and activity durations, an agent tries

to find a better route in terms of minimum travel costs based on the previous

iteration. The router is based on Dijkstra’s shortest-path algorithm, and shortness

is measured by travel costs in terms of travel times on the links of a route. Travel

times depend on how congested the links are, and so they change throughout the

day. The second strategy module is the so-called planomat [52]. Using this module,

departure times or activity durations can be altered in order to optimize the score

of the plan. Also, altering the activity sequencing and activity dropping are possible

modifications but are not implemented yet.

3.4. Physical layer: Queue simulation

The physical layer is simulated using a queuing approach [21]. The agents’ plans are

executed, and according to the plans they are moved on the network. As output of

the simulation, events are produced allowing to calculate travel time, speed, etc. In

general, an agent is moved to the next link when it was on that link for at least the

free flow travel time, according to the maximum outflow, and when there is space

on the next lane. The mentioned networks attributes remain fixed, as mentioned

above. More information about the queue simulation can be found in [53].

3.5. Scoring

Scoring a plan is a precondition so that agents learn. Different plans can be com-

pared and an agent can pick the one with the highest value. A higher score implies

that the agent makes better use of its day. A scoring function needs to be defined,

which evaluates complete day plans. As scoring function, the traditional utility

function based on the Vickrey bottleneck model is used [54], but modified to be

consistent with complete day plans. Scoring is based on events information from

the physical layer. Performing an activity is rewarded, travel times and late arrival

are punished. The overall equation is:

Uplan =
∑

i

Uact,i +
∑

i

Utrav,i +
∑

i

Ulate,i . (1)

We assume the utility of performing an activity as increasing logarithmically:

Uact,i(x) = max[0, α · ln(
x

t0
)] , (2)

where x is the duration that one spends at the activity. We take α = βdur ·t
∗, where

βdur is uniformly the same for all activities and only t∗ varies between activity

types. With this formulation, t∗ can be interpreted as a “typical” duration, and

βdur as the marginal utility at that typical duration:

∂Uact,i

∂x

∣

∣

∣

x=t∗
= βdur · t

∗

·

1

t∗
= βdur . (3)
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t0 can be seen as a minimum duration of an activity, but is better interpreted as

a priority: All other things being equal, activities with large t0 are less likely to be

dropped than activities with small t0. For details, see [55].

The utilities of traveling and of being late are both seen as disutilities which are

linear in time:

Utrav,i(x) = βtrav · x (4)

(where x is the time spent traveling) and

Ulate,i(x) = βlate · x (5)

(where x is the time an agent arrives late at an activity). βtrav is set to −6Eu/h,

and βlate is set to −18Eu/h.

In principle, arriving early or leaving early could also be punished. There is,

however, no immediate need to punish early arrival, since waiting times are already

indirectly punished by foregoing the reward that could be accumulated by doing

an activity instead (opportunity cost). In consequence, the effective (dis)utility of

waiting is already −6Eu/h.

Similarly, that opportunity cost has to be added to the time spent traveling,

arriving at an effective (dis)utility of traveling of −12Eu/h.

No opportunity cost needs to be added to late arrivals, because the late arrival

time is already spent somewhere else. In consequence, the effective (dis)utility of

arriving late remains at −18Eu/h.

These effective values are the standard values of the Vickrey model [54].

It would make sense to consider an additional punishment (negative reward) for

leaving an activity early. This would describe, for example, the effect when there

are, on a specific day, better things to do than to continue to work, but some kind

of contract (e.g. shop opening hours) forces the agent to remain at work.

If a new plan is built, an agent will execute it in the next iteration in order to

obtain a score. In general every plan is scored after being executed. A formerly good

plan can be scored at lower values if conditions change, e.g. congestion effects.

3.6. Details of the learning algorithm

The simulation starts with initial plans. Executing all agents’ plans simultaneously

gives the agents’ interactions in the network. By allowing the agents to re-adjust,

they can learn from the previous iteration (feedback learning). The iterations will

go on until the system does not show any further development. In other words,

agents adapt to their environment and learn how to improve their plans over many

iterations. In the simulation all agents learn at the same time, since their plans

are executed simultaneously. This also means, that an agent’s environment changes

due to the effect of the other agents in the system. Thus a plan’s score has to be

updated.

An agent database keeps track of agents and their decisions, allowing them

to chose a strategy based on their past actions. An agent can compare plans of
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its repertoire by the score they got in previous iterations. In the course of the

simulation, the agents learn to build good plans in order to realize their intentions

and to use the transportation system efficiently. Agents add plans (their strategies)

to their repertoire by making use of the behavioral modules. A new plan will be

used immediately in order to assign a score to make it comparable to the plans

already existing in the repertoire. It can be expected that the average plan score

will increase during the simulation until reaching a level were the agents have found

their individually best strategies.

The agents have three different possibilities to replan: route replanning, time

replanning, choosing an already existing plan. As already mentioned, only a certain

share of agents replan. The replanning probability is not fixed. The simulation

starts with 30% of agents replanning; each of the replan options is adopted by 10%

of the agents. This is a relatively high share of agents changing their behavior and

by that changing the environment for the other agents as well. But this rather

high replanning probability provides a quick learning process; the agents build a

repertoire of plan alternatives. Later in simulation, the replanning probability is

lowered to a value of 15% (5% for each replan option). This gives better average

scores because of reduced fluctuations (see Fig.2 and related text).

4. Preliminary results

Fig. 2. Average score as a function of the iteration number

The average score gives an overview of the iterations’ progress (Fig.2). As ex-

pected, the average score is very low at the stage of initial plans, meaning the agents,

in average, have not yet found good solutions for themselves. But the agents learn

how to improve their situation by using different routes or changing their timing.
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The higher replanning probability in the beginning allows a large share of agents to

learn. When the average score does not show further improvements but oscillates,

the replanning probability was set to half of the original value. At iteration 60 the

reconfiguration was set, which can be also seen in the figure by improving scores

around iteration 60. Also with the lower replanning probability fluctuations occur,

but this can be also observed in real traffic.

Fig. 3. Departure times distributions

Fig.3 shows the departure time distribution of two trip types: to or from work

or education, and all others. The top plot shows the initial (iteration 0) departure

times, based on heuristic expert knowledge, encoded in the initial conditions. The

bottom plot shows the departure times after one hundred iterations. One notices

the following effects:

• The initial rectangular shapes are replaced by more plausible smooth

shapes.

• Travelers have, in average, moved to earlier departure times, with a peak

before 7:00. We are, at this point, unable to judge if this is realistic.

• Those trips that are not coupled to office hours have moved to less congested

time windows. Notice, in particular, the “dip” of those departures around

16:00, clearly avoiding the rush period.
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Fig. 4. Daily flows of vehicles. Green: less than 10,000/day; yellow: around 20,000/day; red: more
than 30,000/day

Fig.4 shows daily flows of vehicles. Flows below 10,000/day are displayed in

green, flows of 20,000/day are displayed in yellow, flows above 30,000/day are dis-

played in red. Flows in between are displayed in interpolated colors. The figure

shows the result of iteration 100. Since the simulation uses only 10% of the popu-

lation, the numbers from the simulation were multiplied by 10 in order to have the

same scale as real world numbers. – One observes that the pattern in the south-

western sector is significantly different from the pattern in the north-eastern sector:

While in the south-western half there is considerable traffic on the peripheral free-

way, the patterns in the north-eastern sector are considerably more radial. This is

due to extended freeway construction in the western sector during the division of

the city, and the lack of such construction in the eastern sector.

It is, unfortunately, at this point difficult to say anything beyond the above. After

spending considerable effort cleaning up other issues, such as related to network data

or initial demand, our current issue are gridlocks as shown in Fig.5. The problem

here is that all links along the loop are full, and all vehicles that are at the respective

downstream ends of links want to enter the next link of the loop. In this situation, no

vehicle along the loop can move, which is why it is called gridlock. Such situations

can in principle occur along any closed loop of the network graph, but have a much

higher probability along short loops.

We have been aware of the gridlock issue for many years, and have conventionally

resolved it by the introduction of “lost vehicles”: Vehicles that could not move for a
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Fig. 5. Gridlock at Grosser Stern in Berlin

certain amount of time were taken out of the simulation. This approach, however,

does not seem to be sufficient for the Berlin simulations, and we are currently

investigating other solutions.

5. Discussion

Considerable work was necessary to adapt the network data to our purposes. Al-

though the data requirements of the queue model are not particularly difficult (apart

from the number of lanes, all information is the same as for traditional planning

models), it turns out that the queue model is more sensitive to data errors than the

conventional models. This is due to the hard limit on the capacity: In a conventional

static assignment model, short links with reduced capacities have very little effect,

whereas in the queue model, they cause large spillbacks. This effect occurs in all

dynamic models with hard capacity limits. Our hope is that some of these issues will

improve with the increasing availability of standardized commercially maintained

network data. For the time being, however, such data are useful for routing and

guidance, but do not possess reliable attributes (such as capacity) for traffic flow

simulations.

Our demand generation suffers from the fact that the base model generates

round trips, not daily plans. In consequence, a person who has, say, the activity

chain home-work-home-leisure-home will be divided into two “virtual” agents, one

with activity chain home-work-home and the other with activity chain home-leisure-

home. There is no reason why those two virtual agents should perform their trips in

a sequential order, so in general they will, wrongly, not do so. This issue is due to the

orientation of the demand generation towards daily travel, without consideration of

the time-of-day. It will probably be necessary to devise a completely new method
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of demand generation.

An additional problem is that our simulations currently lack commercial travel

and long-distance travel. Commercial travel, in particular, increases the overall de-

mand.

Quite in general, it is difficult to get temporally consistent data – the data that

we are currently using as input comes from many different years. In most places,

things do not change that quickly, and it is sufficient to have the road network data

and the traffic counts from the same year. Berlin, however, is a quickly-changing city

due to the re-unification, and in consequence, such differences matter considerably.

6. Summary and conclusion

This paper provided an introduction to multi-agent traffic simulation. It included

some description of where we are with respect to the implementation of a real-world

Berlin scenario. It turns out that the difficulties there, because of data availability

and because of the special situation of Berlin after the re-unification, are consider-

ably larger than in previous scenarios that we have treated.
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