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Abstract. Despite the recent results on formalizing multiagent rein-
forcement learning using stochastic games, the exponential increase of
the space of joint actions prevents the use of this formalism in systems
of many agents. In fact, most of the literature concentrates on repeated
games with single state and few joint actions. However, many real-world
systems are comprised of a much higher number of agents. Also, these are
normally not homogeneous and interact in environments which are highly
dynamic. This paper discusses the implications of co-evolution between
two classes of agents in stochastic games using learning automata. These
agents interact in a urban traffic scenario where approaches based on the
standard stochastic games are prohibitive. The approach was tested in a
network with different traffic conditions.

1 Motivation and Introduction

Learning in systems with two or more agents has a long history in game-theory.
Thus, it seems natural to the reinforcement learning community to explore the
existing formalisms behind stochastic (Markov) games (SG) as an extension for
Markov Decision Processes (MDP’s). Despite the inspiring results achieved so
far, it is not clear what kind of question the multiagent system community is
addressing [12]. It seems that, at this stage, the focus is on what Shoham et al call
“the equilibrium” agenda, although SG is not the only approach possible here
[13]. In any case, everybody agrees that the problems posed by many agents in
multi-agent reinforcement learning (MARL) are inherently more complex than
those regarding single agent reinforcement learning (SARL). This complexity
has many consequences (note that by SARL we mean an environment with
only one agent). First, the approaches proposed for the case of general sum SG
require that several assumptions be made regarding the game structure (agents’
knowledge, self-play etc.). These assumptions constraint the convergence results



to common payoff games and other special cases such as zero-sum games, besides
focussing on two-agent stage games. Otherwise, an oracle is needed if one wants
to deal with the problem of equilibrium selection when two or more equilibria
exist. Second, despite the recent results on formalizing multiagent reinforcement
learning using stochastic games, these cannot be used for systems of more than
a few agents agents, if any flavor of joint-action is explicitly considered, unless
the exigence of visiting all pairs of state-action is relaxed, which has impacts
on the convergence. The problem with using a high number of agents happens
mainly due to the exponential increase in the space of joint actions. In fact,
most of the literature concentrates on repeated games with two-players and a
single state. Third, while the agents themselves must not be cooperative, we
may be interested in improving the system’s performance. This is a well-known
issue. Tumer and Wolpert [14] for instance have shown that there is no general
approach to deal with the complex question of collectives.

Up to now, these issues have prevented the use of MARL in real-world prob-
lems, unless simplifications are made, such as letting each agent learn individually

using single-agent based approaches (thus, SARL). As known, this approach is
not effective, since agents converge to sub-optimal states.

The aim of this paper is threefold. First, we tackle a many-agent system. Sec-
ond, we discuss the implications of co-evolution between two classes of agents.
Third, we want to pursue the adaptation road for MARL, as a trade-off between
the complexity of learning with convergence guarantees, and effectiveness. This
road is not the most efficient for systems with small number of agents which inter-
act in well-behaved environments, that means those where the non-determinism
does not arise only from the non coordinated actions of the agents. For these,
the MARL community has proposed nice and efficient solutions. Rather, our
approach targets real-world systems problems with the following characteristics:
they are comprised of a high number of agents; agents are normally not ho-
mogeneous, i.e., several types of agents having different learning or adaptation
algorithms co-exist (thus it is not the case of self-play); agents act and interact in
environments which are highly dynamic. In particular, this paper uses an urban
traffic scenario to illustrate the use and results of the approach proposed.

This is a relevant scenario because urban mobility is one of the key topics
in modern society. Our long term agenda is to propose a methodology to in-
tegrate behavioral models of human travelers reacting to traffic patterns and
control measures of these traffic patterns, focusing on distributed and decentral-
ized methods. Classically, this is done via network analysis.

To this aim, it is assumed that individual road users seek to optimize their
individual costs regarding the trips they make by selecting the “best” route.
This is the basis of the well known traffic network analysis based on Wardrop’s
equilibrium principle [18]. There are many variants of the Wardrop equilibrium,
such as the dynamic user equilibrium, or the so-called stochastic user equilibrium
(which is, in effect, a deterministic distribution of traffic streams across alter-
natives). It is even possible to apply the dynamic user equilibrium in a truly
stochastic situation, where the traffic situation changes from day to day. In that



situation, however, the definition of the game is such that the players can at best
play strategies that optimize average reward. Although it is clearly possible to
simulate situations where either drivers or traffic lights or both are within-day
adaptive to vairable traffic, few if any investigations exist that attempt to clarify
the overall system effects of such adaptiveness.

In summary, as equilibrium-based concepts generally overlook the within-day
variability regarding demand and capacity, it seems obvious that they are not
adequate to be used in microscopic, decentralized approaches. However, the price
to be payed when one moves from the former to the latter is an increase in com-
plexity which prevents the use of the approaches based on stochastic games as
currently proposed, and demands simplifications and a change in the paradigm,
from long-term learning to fast adaptation. This shift is further justified by the
fact that convergence to an equilibrium is not the main issue. Rather, we are
interested in the design of efficient or at least effective agents for this kind of en-
vironments. Here, as more than one class of agent co-exist and co-evolve, general
questions are whether co-evolution pays off, and, if so, what kind of evolution-
ary approach should be used, thus sheding light in two issues recently raised by
Shoham and colleagues, namely the “AI agenda” for multiagent reinforcement
learning and the learning–teaching aspects of this problem.

In the next two sections we review approaches to SG, and briefly introduce
some concepts about traffic assignment, simulation, and control. Section 4 dis-
cusses the approach, while the scenario and the results appear in sections 5 and 6
respectively. The last section presents the concluding remarks.

2 Learning in Multiagent Systems

Most of the research on MARL so far is based on a static, single state stage
game (i.e. a repeated game) with common payoff (payoff is the same for agent
and opponent) as in [6]. The zero-sum case is based on [8] and attempts at
generalizations to general-sum SG appeared in [7], among many others (as a
comprehensive description is not possible here, we refer the reader to [12] and
references therein).

Some works have similar motivation to ours: In [16] the authors tackle a par-
ticular kind of game (coordination game) by means of an exploration technique
based on learning automata and reduction of the action space. The approach in
[17] deals with multiple opponents but they assume that the full game structure
and payoffs are known to all agents. Besides, the algorithm is based on joint
strategy for all the self-play agents (those who learn using the same algorithm)
so that the action space is exponential in the number of self-play agents. Specif-
ically for traffic, a simple stage game is discussed in [2]. In that setting, since
the goal is to coordinate neighbor traffic lights so that they synchronize their
green phases, it makes sense to model the interaction as a coordination game.
For the general case (no a priori coordination), there is no formulation for sce-
narios with more than a few agents. Camponogara and Kraus [5] have studied



a simple scenario with only two intersections, using stochastic game-theory and
reinforcement learning.

Shoham and colleagues single out some problems due to focussing on what
they call the “Bellman heritage”. Two issues are important from our perspective:
The first is the focus on convergence to equilibrium regarding the stage game:
“If the process (of playing a game) does not converge to equilibrium play, should
we be disturbed?” Also, most of the research so far has been focussing on the
play to which agents converge, not on the payoff agents obtain. The second issue
is that “In a multi-agent setting, one cannot separate learning from teaching”
because agent i’s action selections both arise from information about agent j’s
past behavior and impacts j’s future actions’ selections. Unless i and j are com-
pletely unaware of the presence of each other, both can teach and learn how to
play in mutual benefit. Therefore it is suggested that a more neutral term would
be multi-agent adaptation (rather than learning). This is an important point
because it agrees with a view that some issues in traffic (mainly related to short
time control) are more a quest of adaptation than of optimization. Since the lat-
ter is hard to achieve, it is often the case that this cannot be done in real-time. A
further point in favor of adaptation is that most of the work on MARL has been
assuming static environments. In this kind of environment it may make sense to
evaluate the MARL algorithms by the criteria proposed in [4]: convergence to a
stationary policy, and convergence to a best response if the opponent converges
to a stationary policy. Although other criteria are being proposed (in fact the
discussion is just starting; see [17] for other criteria), it certainly makes little
sense to evaluate a learning or adaptation algorithm by such criteria when the
environment is itself dynamic, as it is the case of the traffic scenario discussed
here.

3 Towards Agent-based Traffic Assignment, Simulation,

and Control

Transportation engineering has seen a boom regarding methodologies for micro-
scopic, agent-based modeling. On the side of demand forecasting, the arguably
most used computational method is the so-called 4-step-process consisting of
the four steps: trip generation, destination choice, mode choice, and route as-
signment. The 4-step-process has several drawbacks. For a discussion of these
issues see [1]. Agent-based approaches promise to fill this gap as they allow to
simulate individual decision-making. However, until now agent-based simulations
with high-level agents on the scale required for traffic simulation of real-world
networks have not been developed. Some steps towards that goal is to use con-
cepts of microeconomics to approach decision-making and how drivers adapt
to the previous experiences. Basically, simple binary scenarios have been used,
based on approaches with minority-game flavors. However, when the coordi-
nation emerges out of individual self-interest, sometimes a user equilibrium is
achieved, but in general no system optimum.



From the side of control, a popular method is to use traffic lights. Several
signal plans are normally required for an intersection to deal with changes in
traffic volume. Thus, there must be a mechanism to select one of these plans.
Readers can find a review in [2].

Besides the works already mentioned in the previous section, the following
also tackle optimization of traffic lights via reinforcement learning: In [10] a set
of techniques were tried in order to improve the learning ability of the agents
in a simple scenario with few agents. [19] describes the use of reinforcement
learning by the traffic light controllers in order to minimize the overall waiting
time of vehicles in a small grid. The ideas and some of the results presented in
that paper are important. However, strong assumptions hinder its use in the real
world. First, the kind of communication and knowledge (or, more appropriate,
communication for knowledge formation) has a high cost; traffic light controllers
are suppose to know vehicles destination in order to compute expected waiting
times for each. Besides, there is no account of the experience collected by the
drivers based on their local perceptions only. Finally, drivers being autonomous,
it is not reasonable to expect that all will use the best policy computed, given
the value function, which for this sake, was computed by the traffic light and
not by the driver itself.

Regarding integration of traffic assignment and control, there are a number
of works which represent different views of this issue. In [15], a two-level, three-
player game is discussed. The control part involves two players, namely two
road authorities, while the population of drivers is seen as the third player.
Complete information is assumed, which means that all players (including the
population of drivers) have to be aware of the movements of others. Moreover,
it is questionable whether the same mechanism can be used in more complex
scenarios, as claimed. The reason for this is the fact that when the network is
composed of tens of links, the number of routes increases and so the complexity
of the route choice, given that now it is not trivial to compute the network and
user equilibria.

Liu and colleagues [9] describe a modeling approach which integrates mi-
crosimulation of individual trip-makers’ decisions and individual vehicle move-
ments across the network. Their focus is on the description of the methodology
which incorporates both demand and supply dynamics, so that the applications
are only briefly described and not many options for the operation and control of
traffic lights are reported. One scenario described deals with a simple network
with four possible routes and two control policies.

Ben-Akiva and co-workers have investigated in some detail the issue of so-
called self-consistent anticipatory route guidance [3]. In this, a loop “traffic con-
trol – driver reaction – network loading” is defined. The loop is closed by the
traffic control being reactive to the result of the network loading. The resulting
problem is defined as a fixed point problem: A solution is found if the traffic
control, via driver reaction and network loading, generates the same traffic pat-
tern that was the basis for the traffic control. The approach, however, focuses
on information as control input, not traffic signals.



Papageorgiou and co-workers look into the problem with a control-theoretic
approach [11]. In that language, human behavior and network loading are com-
bined into the dynamical update of the system, and the goal is to search for a
control input that optimizes some aspect of the output from the system. How-
ever, human behavior is by necessity of the mathematical formulation very much
reduced, and no results about the emergent properties from system-wide signal
control seem to be known.

4 Multiagent Adaptation in Stochastic Games

The generalization of a MDP for n agents is a SG, represented by the tuple
(N, S, A, R, T ) where:

N = 1..., i..., n is the set of agents
S is the discrete state space (set of n-agent stage games)
A = ×Ai is the discrete action space (set of joint actions)
R is the reward function (R determines the payoff for agent i as ri : S × A1 ×

. . . × An → ℜ)
T is the transition probability map (set of probability distributions over the

state space S).

As said, many attempts to use SG for MARL are grounded on all or some of
these assumptions: players know the stochastic game they are playing (or at least
its structure); players have information about others’ actions and/or rewards;
joint actions are observable. Especially the latter is a strong assumption which
not only has consequences on the communication load, but also implies that the
size of Q-learning tables is exponential in the number of agents.

Instead of assuming that joint actions are observable and that rewards are
known by all agents, we propose a learning automata (LA) based approach to
stochastic games. A similar approach appears in [16] but the authors deal with
multi-stage, common payoff games defined in normal form. In common payoff
games, the rewards received by two agents are correlated. Thus, it is possible
to verify whether and when there is a convergence to the social optimum. The
authors use exploration techniques associated with the learning automata.

A learning automata formalizes stochastic systems and aims at guiding the
action selection at any given time t in terms of the last action selected and the
environment response (the reward rt). This response is used to update the ac-
tions probabilities. A well known update scheme is the linear reward-inaction
scheme (LR−I), which increases the probability of an action if it results in a suc-
cess (otherwise the probability remains the same). A learning automata consists
of a vector of probabilities pi,t = (pi,t

1 , pi,t
2 , . . . , pi,t

m ) over the set of m actions

ai,t
1 , . . . , ai,t

m . At each time t, pi,t is used by agent i to select an action ai,t.
The LR−I scheme is defined as following:

pi,t+1 = pi,t + α(1 − pi,t)
∀j 6=i : pj,t+1 = pj,t(1 − α)

(1)



where α ∈ [0, 1].
In dynamic and/or unknown environments, as it is the case of the domain

here, one drawback of the learning automata update scheme LR−I is that it
may discard actions, i.e. one action may never be used again. Thus we use a
responsive LA which has the property that all probabilities associated with the
actions are positive because the responsive update scheme never discards actions
(∀ja

i
j > 0). This is important if the environment changes. The responsive LA

modifies the LR−I scheme so that no action has probability less than αmin.
In the next section, we discuss some changes in the basic SG/LA framework

in order to deal with the particularities of our scenario.

5 Learning Automata Based Stochastic Game:

application in an urban traffic scenario

The traffic scenario targets a game with two classes of agents: drivers and traffic
lights. Notice that, due to the number of learning agents, scenarios of this size
are seldom tackled by the RL community. The goal of all agents is to select
actions which maximizes individual rewards. Although each one knows the set
of available actions and are able to perceive their rewards, there is no commu-
nication among them so that non-local rewards or no joint actions are explicitly
observed. However, actions selected by the agents do have an effect on each
other. Moreover, the two classes of agents have two different types of actions,
different learning paces, and the adaptation algorithms tailored for the specific
purposes of each class of agents.
A driver’s action is to select a route to minimize travel time. Each driver d
has a choice of up to mr routes, that means, this is the maximum number but
some drivers may be aware of a smaller number md. The choice of action is
probabilistic. We use two different schemes to set these probabilities:

– “random drivers”: The probabilities of selecting the md routes are con-
stant over time and identical between options: pj

d = 1/md.
– “LA drivers”: The update of these probabilities is done each time a route

is completed (we call this a trip), using the responsive LR−I scheme (Eq. 1)
substituting α for αd.

The traffic lights have a “north-south/south-north” phase and an “east-west/west-

east” phase, with fractions of time f
l
tl and f↔

tl = 1−f
l
tl. At the end of each phase,

the following is done:

– If the phase was “successful” (i.e. traffic volume improves (locally) in this
direction), then that phase is expanded according to a scheme based on Eq. 1
substituting α for αt:

f i,t+1

tl = f i,t
tl + αt (1 − f i,t

tl )

Each time one phase is expanded, the other phases are implicitly shortened.
Thus implicitly, the actions of the traffic lights are to priorize one of the two
traffic directions.



– If the phase was not “successful”, then nothing changes.

It is important to notice that, roughly, while the traffic lights adapt in a time
frame of minutes, the drivers update once a trip (day). Therefore, in Eq. 1, α
must have different values (thus αt and αd).

Formally, the SG defined in the previous section has the following particular
setting:

– N = D ∪ T (set of agents is the union of the set of drivers and set of traffic
light agents)

– each agent i has only a local, individual perception of the whole environment
so that the state space is actually the cartesian product over the individual
state sets (×Si)

– the action space is the cartesian product over all actions of the drivers and
the traffic lights

With these figures, it is obvious that, if we use a dynamic programming based
approach which considers all states and actions, each agent needs to maintain
tables which are exponential in the number of agents: |S1|×. . .×|Sk|×|A1|×. . .×
|Ak|. Let us assume a very simple mapping of states, namely that all traffic light
agents can map the local states to either jammed or not jammed, i.e. |Si| = 2 for
i = 1, . . . , |T |, and that drivers cannot perceive more than one state. Thus, the
cartesian product over the states has a size 2|T | × 1|D|. As the traffic lights have
two actions (two signal plans) and the drivers have at most five actions (five
routes to choose from), the size of Q tables is 2|T | × 2|T | × 5|D|. Already the last
term makes this approach computationally intractable as the number of drivers
tends to grow to the hundreds at least, not to speak about the communication
demand. Therefore, the learning automata approach proposed here is able to deal
with these figures as it does not consider the joint actions and states. Instead,
the LR−I scheme defined in the previous section is used, which considers only
the individual set of actions for each agent.

We have implemented the simulation in the agent-based simulation environ-
ment SeSAm. The movement of vehicles is queue-based.

To exemplify the approach, we use a typical commuting scenario where
drivers repeatedly select a route to go from an origin to a destination in a
grid-like network. We use a grid to avoid a simple scenario such as a two-route
(binary decision) as in [15]. The grid is reasonably more complex and captures
desirable properties real scenarios have regarding the aim of this study, namely
the co-evolution among drivers and traffic lights. Next we detail the particular
scenario used.

We use a grid where the 36 nodes are tagged from A1 to F6, as in Figure 1. All
links are one-way and drivers can turn in each crossing. This kind of scenario is a
realistic one and, in fact, from the point of view of route choice and equilibrium
computation, it is very complex as the number of possible routes between two
nodes is high.

Moreover, contrarily to simple two-route scenarios, in the grid one it is pos-
sible to set arbitrary origins and destinations. Each driver has one particular
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Fig. 1. Grid 6x6 showing the main destination (E4E5), the three main origins (B5B4,
E1D1, C2B2), and the “main street”.

origin and destination. To render the scenario more realistic, there is one main
destination: on average, 60% of the road users have the link labelled as E4E5,
associated with node E4, as destination (see Figure 1). Other links have, each,
1.7% probability of being a destination. Origins are nearly equally distributed in
the grid, with three exceptions: links B5B4, E1D1, and C2B2 have approximately
5% probability of being an origin. The remaining links have each a probability
of 1.5%. This was done to model residential neighborhoods. Regarding capacity,
all links can hold up to 15 vehicles, except those located in the so called “main
street” which can hold up to 45. This main street is formed by the links B3 to
E3, E4, and E5 (thicker links in Figure 1).

6 Results and Discussion

6.1 Metrics and Parameters

In order to evaluate the experiments, four quantities were measured: the number
of drivers who have arrived at their destinations up to the time out tout for each
particular trip; the mean travel time over all drivers for a given trip, as well
as the mean of the average of the travel time over all possible routes, over all
drivers. Plots for these two are not shown here due to lack of space. Rather, we
show the mean travel time over only the last Tt = 5 trips to give a reference of
the travel time at the end of the experiments. All experiments were repeated 50
times.

The other parameters used were: |T | = 36; mr = 5 (maximum number of
known routes, generated via an algorithm that computes the shortest path (one
route) and the shortest path via arbitrary detours (four others)). We have run
simulations with |D| = 400 and |D| = 700 drivers. In these cases tout = 300 and
tout = 500 respectively.

Regarding the learning automata, we experimented several values of αd and
αt; here we show the results with the best values. Due to lack of space we



Traffic lights
400 Drivers 700 Drivers

Fixed LA Q-learn. Fixed LA Q-learn.
Drivers (αt = 0) (αt = 0.1) (αt = 0) (αt = 0.1)

random (αd = 0) 157 ± 11 161 ± 12 283 ± 4 457 ± 15 375 ± 65 480± 6
LA (αd = 0.4) 139 ± 7 148 ± 13 – 429 ± 30 423 ± 31 –

Table 1. Average Travel Time Last 5 Trips (attl5t) for 400 and 700 Drivers

only discuss the case where αd = 0.4 (drivers) and αt = 0.05 (traffic lights).
The fact that the frequency of learning of traffic lights is lower than that of
drivers requires αt < αd. For sake of comparison we have implemented a Q-
learning mechanism for the traffic lights which uses the following values for the
parameters: the learning rate is β = 0.1 and the discount rate is γ = 0.9.
Available actions are to open the phase serving either one direction or the
other. The states are the combination of states in both approaching links, i.e.
{D1 jammed, D1 not jammed}×{D2 jammed, D2 not jammed}. The reward
is one minus the average occupancy in the incoming links of a given node. Con-
trarily to the traffic lights, the drivers cannot assess the state of the network
(not even locally) from their individual travel times. Thus Q-learning was not
implemented for the drivers.

6.2 Overall Discussion

In Table 1 we summarize the average travel time over the last Tt = 5 trips
(henceforward attl5t) for different conditions, for 400 and 700 drivers. These
figures correspond to an overall occupancy of 38% and 78% of the network.

TLs Fixed / Random drivers. When αd = 0, drivers select a route with
equal probability; αt = 0 means that the traffic lights run a signal plan which
priorizes no direction. This is used here to benchmark the next variants.

TLs with LA / Random drivers. As expected, adaptive traffic lights have
no effect in under saturated networks (400 drivers); the attl5t is 161. The effect
of this adaptation is clear when there are 700 drivers (attl5t = 375).

Drivers with LA / Fixed TLs. While the traffic lights remain fix, drivers
can improve their performance by using the learning automata because they are
able to choose other routes, possibly with less drivers. Travel times (attl5t) drop
to 139 (400 drivers) and 429 (700 drivers).

LA both. This is a typical commuting scenario where the control tries to
adapt to the drivers and these to the control. Once a better control is achieved,
too many drivers try to exploit this fact and end up flocking to given links, with
a negative impact in the performance. The control however has not so much
room to act in oversaturated situations (remember that signal plan has to serve
all directions for at least a minimum green time), which occur in parts of the
network (e.g. links close to the main destination).



Q-learning traffic lights. The low performance of Q-learning in traffic
scenarios is due basically to the non-stationary environment and too many agents
learning simultaneously.

7 Conclusion

Many tools for management of traffic flow exist (e.g. control of traffic lights). It
is possible to combine these approaches with intelligent traffic assignment, e.g.
via information to the drivers. Important issues then are how drivers process
this information in order to make decision, and how they proceed in order to
adapt to their environments.

However, there are few attempts and no conclusive results concerning what
happens when both the driver and the traffic light use some adaptive mechanism
in the same scenario or environment, especially if no central control exist, i.e. the
co-evolution happens in a decentralized fashion, in which case some form of auto-
organization may arise. This is an important issue because, although intelligent
transportation systems have reached a high technical standard, the reaction of
drivers to these systems is fairly unknown. In general, the optimization measures
carried out in the network both affect and are affected by drivers’ reactions to
them. This leads to a feedback loop which has received little attention to date.

When one tries to approach this problem using traditional SG based MARL,
one gets stuck on the computational complexity. Therefore, in the present pa-
per we have investigated that loop by means of a multiagent adaptation using
learning automata. The results show an improvement regarding travel time when
agents adapt. This improvement is not very significant when all agents co-evolve,
especially in saturated networks, as expected, for the reasons already explained.
This was compared with situations in which either only drivers or only traffic
lights evolve, in different scenarios.

This work can be extended in two main directions. First, we plan to integrate
the tools developed by the authors independly for control and traffic assignment.
The second extension relates to the use of heuristics about the the network in
order to improve its performance.
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