Effects of Co-Evolution in a Complex Traffic Network
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ABSTRACT

One way to cope with the increasing demand in transporta-
tion networks is to integrate standard solutions with more
intelligent measures. This paper discusses the effects of inte-
grating co-evolving decision-making regarding route choices
(by drivers) and control measures (by traffic lights) We use
microscopic modeling and simulation, in opposition to the
classical network analysis. General questions here are whether
co-evolution pays off, and, if so, what kind of evolutionary
approach shall be used. This is challenging for networks
other than the two-route one due to the complexity of route-
choice behavior, as well as control strategies by the traffic
lights. Moreover, the more agents, the less effective learn-
ing strategies are, when the integration among them depicts
complex interelationships. The approach was tested in dif-
ferent scenarios.

1. INTRODUCTION

Urban mobility is one of the key topics in modern soci-
eties. Especially in medium to big cities, the urban space
has to be adapted to cope with the increasing needs of the
commuters. In transportation engineering the expression
of the transport needs is called demand. This demand (in
terms of people, volume, etc.) is commonly used to quan-
tify transport supply. This is the expression of the capacity
of transportation infrastructures and modes. Supply is ex-
pressed in terms of infrastructures (capacity), services (fre-
quency), and networks. The increasing demand of transport
needs we observe nowadays has to be accommodated either
with increasing supply (e.g. road capacity), or with a better
use of the existing infrastructure. Since an expansion of the
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capacity is not always socially attainable or feasible, trans-
portation and traffic engineering now seek to optimize the
management of both the supply and the demand using con-
cepts and techniques from intelligent transportation systems
(ITS). These refer to the application of modern technologies
to the operation and control of transportation systems [12].

JFrom the side of supply, several measures have been
adopted in the last years, such as congestion charging in
urban areas and others. jFrom the point of view of the de-
mand, it is now commonly recognized that the human actor
has to be brought into the loop. With the amount of in-
formation that we have nowadays, it is almost impossible
to disregard the influence of real-time information systems
over the decision-making process of the individuals.

Hence, within the project “Large Scale Agent-based Traf-
fic Simulation for Predicting Traffic Conditions”, our long
term goal is to tackle a complex problem like traffic from
the point of view of information science. This project is the
result of an accumulated experience with microscopic models
modeling tools for traffic and transportation management.
These range from traffic signal optimization [2], binary route
choice and effect of information on commuters [5], to micro-
scopic modeling of physical movement [8]. An important
milestone in the project is to propose a methodology to in-
tegrate complex behavioral models of human travelers react-
ing to traffic patterns and control measures of these traffic
patterns, focusing on distributed and decentralized meth-
ods. Classically, this is done via network analysis. There, it
is assumed that individual road users seek to optimize their
individual costs regarding the trips they make by selecting
the “best” route. This is the basis of the well known traffic
network analysis based on Wardrop’s equilibrium principle
[16]. This method predicts a long term average state of the
network. However, assuming steady state network supply
and demand conditions from day-to-day, this equilibrium
based method cannot, in most cases, cope with the dynam-
ics of the modern transportation systems. Moreover, it is
definitely not adequate for answering questions related to
what happens in the network within a given day, as the
variability in the demand and the available capacity of the
network tend to be high.



In summary, as equilibria based concepts overlook this
variability, it seems obvious that it is not adequate to be
used in microscopic modeling and simulation. Therefore,
the general aim of this paper is to investigate what happens
when different actors adapt, each having its own goal. The
objective of local traffic control is obviously to find a control
scheme that minimizes queues in a spatially limited area
(e.g. around a traffic light). The objective of road users
is normally to minimizing their travel time — at least in
commuting situations. Finally, from the point of view of
the whole system, the goal is to assure reasonable travel
times for all user, which can be highly conflicting with some
individual utilities as in a social dilemma like nature. This
is a well-known issue. Tumer and Wolpert [14] for instance
shown that there is no general approach to deal with this
complex question of collectives.

Specifically, this paper investigates which strategy is bet-
ter for drivers (e.g. adaptation or greedy actions). Also,
what is better for traffic lights? Act greedily or just carry
on a “well-designed” signal plan? After which volume of
traffic does decentralized control of traffic lights starts to
pay off? Does single-agent or isolated reinforcement learn-
ing make sense in traffic scenarios? What happens when
drivers adapt concurrently? These are hot topics not only
in traffic research, but also from a more general agent point
of view as it refers to co-evolution.

The challenge of the present paper is to tackle more real-
istic scenarios, i.e. depart from binary route choice. To the
best of our knowledge, the question on what happens when
drivers and traffic lights adapt in a complex route scenario
(e.g. a grid) has not been tackled so far.

In the next section we review these and other related is-
sues. In Section 3 we describe the approach and the scenario.
Section 4 discusses the results, while Section 5 presents the
concluding remarks.

2. BACKGROUND: SUPPLY AND DEMAND
IN TRANSPORTATION ENGINEERING

Learning and adaptation is an important issue in multia-
gent systems. Here we concentrate on pieces of related work
which either deal with traffic scenarios directly or report
close scenarios.

2.1 Management of Traffic Demand

Given its complexity, the area of traffic simulation and
control has been tackled by many branches of applied and
pure sciences. Therefore, several tools exist which target the
problem isolatedly. Simulation tools in particular are quite
old (1970s) and stable. On the side of demand forecast-
ing, the arguably most used computational method is the
so-called 4-step-process [11]. It consists of the four steps:
trip generation, destination choice, mode choice, and route
assignment. Route assignment includes route choice and
a very basic traffic flow simulation, often, but not always,
leading to a Nash Equilibrium. However several drawbacks
exist. For a discussion of these issues see [1].

2.2 Real-Time Optimization of Traffic Lights

Signalized intersections are controlled by signal-timing plans

(we use signal plan for short) which are implemented at traf-
fic lights. A signal plan is a unique set of timing parameters
comprising the cycle length L (the length of time for the

complete sequence of the phase changes), and the split (the
division of the cycle length among the various movements
or phases). The criterion for obtaining the optimum signal
timing at a single intersection is that it should lead to the
minimum overall delay at the intersection. Several plans are
normally required for an intersection to deal with changes
in traffic volume, or, in an traffic-responsive system, that at
least one plan exist and can be changed on the fly.

In [2], a MAS based approach is described in which each
traffic light is modeled as an agent, each having a set of
pre-defined signal plans to coordinate with neighbors. Dif-
ferent signal plans can be selected in order to coordinate in
a given traffic direction. This approach uses techniques of
evolutionary game theory. However, payoff matrices (or at
least the utilities and preferences of the agents) are required,
i.e. these figures have to be explicitly formalized.

In [10] groups were considered and a technique from dis-
tributed constraint optimization was used, namely coopera-
tive mediation. However, this mediation was not decentral-
ized: group mediators communicate their decisions to the
mediated agents in their groups and these agents just carry
out the tasks. Camponogara and Kraus [3] have studied a
simple scenario with only two intersections, using stochas-
tic game-theory and reinforcement learning. Their results
with this approach were better than a best-effort (greedy),
a random policy, and also better than Q-learning. Also, in
[9] a set of techniques were tried in order to improve the
learning ability of the agents in a simple scenario. Finally,
a reservation-based system [4] is also reported but it is only
slightly related here because it does not include traffic lights.

2.3 The Need for Integration
2.3.1 Learning based approach

In [17], the main focus is not exactly that interaction.
Rather, the paper describes the use of reinforcement learn-
ing by the traffic light controllers (agents) in order to min-
imize the overall waiting time of vehicles in a small grid.
Agents learn a value function which estimates the expected
waiting times of single vehicles given different settings of
traffic lights.

2.3.2 Gametheoretic approach

In [15], a two-level, three-player game is discussed which
integrates traffic control and traffic assignment, i.e. both the
control of traffic lights and the route choices by drivers are
considered. Complete information is assumed, which means
that all players (including the population of drivers) have to
be aware of the movements of others. Although the paper
reports interesting conclusions regarding e.g. the utility of
cooperation among the players, this is probably valid only in
that simple scenario. Besides, the assumptions that drivers
always follow their shortest routes are difficult to justify in
a real-world application.

In the present paper, we want to depart from both the
two-route scenario and the assumption that traffic manage-
ment centers are in charge of the control of traffic lights.
Rather, we follow a trend of decentralization, in which each
traffic light is able to sense its environment and react accord-
ingly and autonomously, without having its actions com-
puted by a central manager as it is the case in [15]. More-
over, the two-route scenario is a very didactic one and serves
the purpose of the main aim of [15]. However, it is ques-



tionable whether the same mechanism can be used in more
complex scenarios, as claimed. The reason for this is the
fact that when the network is composed of tens of links,
the number of routes increases and so the complexity of the
route choice, given that now it is not trivial to compute the
network and user equilibria.

2.3.3 Methodologies

Liu and colleagues [7] describe a modeling approach which
integrates microsimulation of individual trip-makers’ deci-
sions and individual vehicle movements across the network.
Moreover, in [7] the focus is on the description of the method-
ology which incorporate both demand and supply dynamics,
so that the applications are only briefly described and not
many options for the operation and control of traffic lights
are reported. One scenario described deals with a simple
network with four possible routes and two control policies.
One can roughly be described as greedy, while the other is
fixed signal plan based. In summary, in the present paper
we do not explore the methodological issues as in [7] but,
rather, investigate in more details, particular issues of the
integration and interaction between actors from the supply
and demand sides.

3. CO-EVOLUTIONINANITS FRAMEWORK

We have developed a framework using the agent-based
simulation environment SeSAm [6] for testing the effects of
adaption of different elements of the supply and demand.
The testbed consists of sub-modules for modeling and gener-
ation of the network and the agents, modeling of traffic lights
and signal plans, learning and adaptation mechanisms, gen-
eration of the library of routes, the route choice algorithm,
etc. The movement of vehicles is queue-based.

In the present paper we tackle the feedback loop between
supply and demand by means of studying scenarios in which
drivers adapt (as in [5]) and traffic lights use learning mech-
anisms (e.g. in [2, 10, 9]).

The scenario we use to exemplify the approach is a typical
commuting scenario where drivers repeatedly select a route
to go from an origin to a destination. It is not so simple as
a two-route (binary decision) scenario. Rather, it captures
desirable properties of real scenarios regarding the aim of
this study, namely the co-evolution among drivers and traffic
lights.

To model the supply, we use a grid with 36 nodes con-
nected using one-way links, as in Figure 1. All links are
one-way and drivers can turn in each crossing. This kind of
scenario is realistic and, in fact, from the point of view of
route choice and equilibrium computation, it is also a very
complex one as the number of possible routes is high.

Contrarily to simple two-route scenarios, in the grid it
is possible to set arbitrary origins and destinations. Each
driver has one particular origin (O) and destination (D) with
a quite high number of optional route between them. To
render the scenario more realistic, neither the distribution
of O-D combinations, nor the capacity of links is homoge-
neous. On average, 60% of the road users have the same
destination, namely the link labelled as E4E5, associated
with node E4. Other links have 1.7% probability of being
a destination. Origins are nearly equally distributed in the
grid, with three exceptions: links B5B4, E1D1, and C2B2
have, approximately, probabilities 3, 4, and 5% of being an
origin respectively. The remaining links have each a prob-

4
i i
=
BRI oofioong
(3] tofioong
nflennn

Figure 1: Grid 6x6 showing the main destina-
tion (E4E5), the three main origins (B5B4, E1D1,
C2B2), and the “main street”.

ability of 1.5%. Regarding capacity, all links can hold up
to 15 vehicles, except those located in the so called “main
street” which can hold up to 45. This main street is formed
by the links B3 to E3, E4, and E5.

The control is done via decentralized traffic lights. These
are located in each node. Each has a signal plan which, by
default, divides the cycle time 50-50% between the 2 phases.
The actions of the traffic lights are to run the default plan or
to priorize one phase. The strategies are: i) always keep the
default signal plan; ii) greedy (run green time for the phase
with the higher occupancy); iii) use single agent Q-learning.

Regarding the demand, the main actor is the driver. The
simulation can generate any number of them, each knowing
about a given number of routes. Normally the simulations
were done with drivers knowing one to five routes. These
were generated via an algorithm that computes the shortest
path (one route) and the shortest path via arbitrary detours
(the other four). Drivers can use three strategies: i) select
a route randomly (each time it departs); ii) select a route
greedily (always pick the one with best average travel time so
far); iii) select a route in an adaptive way meaning that the
average travel times so far are used to compute a probability
to select the route to use.

4. RESULTS AND DISCUSSION

In order to evaluate the experiments, travel time (drivers)
and occupation (links) were measured. Due to lack of space
we discuss here only the mean travel time over the last 5
trips (henceforward attl5t) and not all configurations. All
experiments were repeated 20 times. The parameters used
were: time out for the simulation (¢ou¢) equal to 300 when
the number of drivers is 400 or 500, 400 when it is 600, and
500 when there are 700 drivers; percentage of drivers who
adapt is either 100 or zero (in this case all act greedily) but
any combination can be used; percentage of traffic lights
which act greedily is either zero or 100; a link is considered
jammed if its occupancy is over 50%; cycle length for signal
plans is 40 secs. For the Q-learning there is an experimen-
tation phase of 10 X toy¢, the learning rate is a« = 0.1 and
the discount rate is A = 0.9.

In Table 1 we summarize the attl5t under different con-
ditions and for different number of drivers. These are ex-
plained next.



Type of Simulation Average Travel Time
Last 5 Trips
greedy drvs / fixed TLs 100
adapting drvs / fixed TLs 149
greedy drvs / greedy TLs 106
adapting drvs / greedy TLs 143

| greedy drvs / Qlearning TLs || 233 |

Table 1: Average Travel Time Last 5 Trips for 400
Drivers, under Different Conditions

4.1 Different Strategies by Drivers and Traffic-
Lights

For all scenarios described in this subsection, 400 drivers
were used.

Greedy or adaptive drivers; fixed traffic lights. In
the case of adapting drivers, the attl5t is 149 time units,
while this is 100 if drivers act greedily. The higher travel
time is the price paid by the experimentation which the
drivers continue to do, even though the optimal policy was
achieved long before (remember that the attl5t is computed
only over the last 5 trips). The greedy action is of course
much better after the optimal policy was learned. In sum-
mary, greedy actions by the drivers work because they tend
to select the routes with the shortest path and this normally
distributes drivers more evenly than longer routes.

Greedy or adaptive drivers; greedy traffic lights.
When traffic lights also act greedily we can see that this
does not automatically improve the outcome: the attl5t is
106. This happens because the degree of freedom of traffic
lights’ actions is low, as actions are highly constrained. For
instance, acting greedily can be highly sub-optimal when for
instance traffic light A serves direction D; (thus keeping D2
with red light), when the downstream flow of D; is already
jammed. In this case, the light might indeed give green for
vehicles on D1 but these cannot move due to the downstream
jam. Worse, jam may appear on the previously un-jammed
D> too due to the small share of green time. This explains
why acting greedily at traffic lights is not necessarily a good
policy.

Q-learning traffic lights. We have expected Q-learning
to perform bad because it is already known that it does not
have a good performance in noisy and non-stationary traffic
scenarios [13]. In order to test this, we have implemented a
Q-learning mechanism in the traffic lights. Available actions
are: to open the phase serving either one direction (e.g. D1),
or the other (D3). The states are the combination of states

in both approaching links, i.e. {D1_jammed, D1_not_jammed} X

{D2_jammed, D2 _not_jammed}. The low performance of
Q-learning in traffic scenarios is due basically to the fact
that the environment is non-stationary, not due to the poor
discretization of states. Convergence is never achieved and
so traffic lights keep experimenting.

4.2 Scenarios With More Drivers

For more than 400 drives we only investigate the cases of
greedy drivers / fixed traffic lights versus the case in which
both drivers and traffic lights act greedily in order to test
whether or not increasing volume of traffic (due to increasing
number of drivers in the network) would cause greedy traffic
lights to perform better. This is expected to be the case since

Average Travel Time Last 5 Trips
Type of Simulation Nb. of Drivers
400 | 500 | 600 | 700

greedy drvs / fix TLs 100 | 136 | 227 | 411

greedy drvs / greedy TLs || 106 | 139 | 215 | 380

Table 2: Average Travel Time Last 5 Trips for Dif-
ferent Number of Drivers, under Different Condi-
tions

once the number of drivers increase, greedy actions alone
do not bring much gain; some kind of control in the traffic
lights is expect to be helpful. In fact, 400, 500, 600 and 700
drivers mean an average occupancy of ~ 40%, 47%, 59%,
and 72% per link. In Table 2 the attl5t for these numbers
of drivers are shown. The case for 400 drivers was discussed
above. With more than 500 drivers, the attl5t is lower when
traffic lights also act greedily. In the case of 700 drivers,
the improvement in travel time (411 vs. 380) is about 8%.
Thus, the greedy traffic lights are successful in keeping the
occupancy of links lower resulting in reduced travel times.

4.3 Overall Discussion

In the experiments presented we could see that differ-
ent strategies by the drivers, as well by the traffic lights
have distinct results, in different settings. We give here the
main conclusions. For the network depicted, increasing the
links capacity from 15 to 20 would lead to much less jam
(this was tested but is not shown here due lack of space).
However, increasing network capacity is not always possi-
ble so that other measures must be taken. Diverting people
and/or given them information both have limited perfor-
mances. Thus the idea is to better use the control infras-
tructure. Therefore we have explored the capability of the
traffic lights to cope with the increasing demand.

Regarding travel time, it was shown that the strategies
implemented in the traffic lights pay off in several cases, es-
pecially when the demand increases. We have also measured
the number of drivers who arrive before time to,:. Just to
give a flavor of the figures, bad performance (around 75%
arrived) was seen only when the drivers adapt probabilis-
tically. This of course is a consequence of the high travel
times (see Table 1). The general trend is that when the
traffic lights also play a role, the performance increases, by
all metrics used.

About the use of Q-learning, as said, single-agent learning
is far from optimum here due to the non-stationarity nature
of the scenario. This is true especially for those links located
close to the main destination and the main street as they
tend to be part of each driver’s trip so that the pattern of
volume of vehicles changes dramatically. A possible solu-
tion is to use collaborative traffic lights. In this case, traffic
light A would at least ask/sense traffic light B downstream
whether or not it shall act greedily. This however leads to a
cascade of dependence among the traffic lights. In the worst
case everybody has to consider everybody’s state. Even if
this is done in a centralized way (which is far from desir-
able), the number of state-action pairs prevents the use of
multiagent Q-learning in its standard formulation.

5. CONCLUSION

Several studies and approaches exist for modeling travel-



ers’ decision-making. In commuting scenarios in particular,
the issue of how they adapt in order to maximize their util-
ities is one of those approaches. However, there is hardly
any attempt to study what happens when both the driver
and the traffic light use some evolutionary mechanism in
the same scenario or environment, especially if no central
control exist. Then, the co-evolution happens in a decentral-
ized fashion, in which case some form of auto-organization or
chaotic situations may arise. This is an important issue be-
cause, although ITS have reached a high technical standard,
the reaction of drivers to these systems is fairly unknown.
In the present paper we have investigated this loop. The
results show an improvement regarding travel time and oc-
cupancy (thus, both the demand and supply side) when all
actors co-evolve - especially in large-scale situations e.g. in-
volving many drivers. This was compared with situations
in which either only drivers or only traffic lights evolve, in
different scenarios.
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