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UFRGS
Caixa Postal 15064

91.501-970 Porto Alegre, RS, Brazil
{bazzan,edenise}@inf.ufrgs.br

Franziska Klügl
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ABSTRACT
One way to cope with the increasing demand in transporta-
tion networks is to integrate standard solutions with more
intelligent measures. This paper discusses the effects of inte-
grating co-evolving decision-making regarding route choices
(by drivers) and control measures (by traffic lights) We use
microscopic modeling and simulation, in opposition to the
classical network analysis. General questions here are whether
co-evolution pays off, and, if so, what kind of evolutionary
approach shall be used. This is challenging for networks
other than the two-route one due to the complexity of route-
choice behavior, as well as control strategies by the traffic
lights. Moreover, the more agents, the less effective learn-
ing strategies are, especially when the integration among
them depicts complex interelationships. The approach was
tested in different scenarios using centralized and decentral-
ized methods.

1. INTRODUCTION
Urban mobility is one of the key topics in modern soci-

eties. Especially in medium to big cities, the urban space has
to be adapted to cope with the increasing needs of the com-
muters. In transportation engineering the expression of the
transport needs is called demand. This demand (in terms
volume of vehicles, pedestrians, freight, etc.) is commonly
used to quantify transport supply. This is the expression
of the capacity of transportation infrastructures and modes.
Supply is expressed in terms of infrastructures (capacity),
services (frequency), and networks. The increasing demand
of transport needs we observe nowadays has to be accom-
modated either with increasing supply (e.g. road capacity),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

or with a better use of the existing infrastructure. Since
an expansion of the capacity is not always socially or eco-
nomically attainable or feasible, transportation and traffic
engineering now seek to optimize the management of both
the supply and the demand using concepts and techniques
from intelligent transportation systems (ITS). These refer
to the application of modern technologies to the operation
and control of transportation systems [11].

From the side of supply, several measures have been adopted
in the last years, such as congestion charging in urban ar-
eas (London), restriction of traffic in the historical center
(Rome, Paris, Amsterdam), alternace of vehicles allowed to
circulate in a given day (São Paulo, Mexico City).

From the point of view of the demand, several attempts
exist not only to divert trips both spatially as well as tempo-
rally, but also to distribute the demand within the available
infrastructure. In this context, it is now commonly recog-
nized that the human actor has to be brought into the loop.
With the amount of information that we have nowadays, it
is almost impossible to disregard the influence of real-time
information systems over the decision-making process of the
individuals.

Hence, within the project “Large Scale Agent-based Traf-
fic Simulation for Predicting Traffic Conditions”, our long
term goal is to tackle a complex problem like traffic from
the point of view of information science. This project is
the result of an accumulated experience with microscopic
models modeling tools for traffic and transportation man-
agement. These range from traffic signal optimization [1],
binary route choice, and effect of information on commuters
[4], to microscopic modeling of physical movement [7].

An important milestone in the project is to propose a
methodology to integrate complex behavioral models of hu-
man travelers reacting to traffic patterns and control mea-
sures of these traffic patterns, focusing on distributed and
decentralized methods. Classically, this is done via network
analysis. There, it is assumed that individual road users
seek to optimize their individual costs regarding the trips
they make by selecting the “best” route. This is the basis of
the well known traffic network analysis based on Wardrop’s
equilibrium principle [15]. This method predicts a long term



average state of the network. However, assuming steady
state network supply and demand conditions from day-to-
day, this equilibrium based method cannot, in most cases,
cope with the dynamics of the modern transportation sys-
tems. Moreover, it is definitely not adequate for answering
questions related to what happens in the network within a
given day, as the variability in the demand and the available
capacity of the network tend to be high. Just think about
changing weather conditions from day-to-day and within a
single day!

In summary, as equilibria based concepts overlook this
variability, it seems obvious that it is not adequate to be
used in microscopic modeling and simulation. Therefore,
the general aim of this paper is to investigate what hap-
pens when different actors adapt, each having its own goal.
The objective of local traffic control is obviously to find a
control scheme that minimizes queues in a spatially limited
area (e.g. around a traffic light). The objective of drivers
is normally to minimize their travel time – at least in com-
muting situations. Finally, from the point of view of the
whole system, the goal is to assure reasonable travel times
for all user, which can be highly conflicting with some in-
dividual utilities (a social dilemma). This is a well-known
issue. Tumer and Wolpert [13] for instance shown that there
is no general approach to deal with this complex question of
collectives.

Specifically, this paper investigates which strategy is bet-
ter for drivers (e.g. adaptation or greedy actions). Also,
what is better for traffic lights? Act greedily or just carry
on a “well-designed” signal plan? After which volume of
traffic does decentralized control of traffic lights starts to
pay off? Does isolated, single-agent reinforcement learning
make sense in traffic scenarios? What happens when drivers
adapt concurrently? These are hot topics not only in traffic
research, but also from a more general multiagent point of
view as it refers to co-evolution.

The challenge of the present paper is to tackle more real-
istic scenarios, i.e. depart from binary route choice. To the
best of our knowledge, the question on what happens when
drivers and traffic lights adapt in a complex route scenario
(e.g. a grid) has not been tackled so far.

In the next section we review these and other related is-
sues. In Section 3 we describe the approach and the scenario.
Section 4 discusses the results, while Section 5 presents the
concluding remarks.

2. BACKGROUND: SUPPLY AND DEMAND
IN TRAFFIC ENGINEERING

Learning and adaptation is an important issue in multia-
gent systems. Here we concentrate on pieces of related work
which either deal with traffic scenarios directly or report
close scenarios.

2.1 Management of Traffic Demand
Given its complexity, the area of traffic simulation and

control has been tackled by many branches of applied and
pure sciences. Therefore, several tools exist which target
the problem isolately. Simulation tools in particular are
quite old (1970s) and stable. On the side of demand fore-
casting, the arguably most used computational method is
the so-called 4-step-process [10]. It consists of: trip genera-
tion, destination choice, mode choice, and route assignment.

Route assignment includes route choice and a very basic traf-
fic flow simulation, often, but not always, leading to a Nash
Equilibrium. Over the years, the 4-step-process has been
improved in many ways, most notably by (i) combining the
first three steps into a single, traveler-oriented framework
(activity-based demand generation (ABDG)) and by (ii) re-
placing traditional route assignment by so-called dynamic
traffic assignment (DTA), where the traffic flow simulation
is much more realistic. Still, in the typical implementations,
all traveler information gets lost in the connection between
ABDG and DTA, making realistic agent-based modeling at
the DTA-level difficult. An important distinction exists be-
tween day-to-day replanning and within-day (on-the-fly) re-
planning. Only the latter allows simulated travelers to re-
act to ITS measures, although some level of ITS functional-
ity can be successfully emulated with day-to-day replanning
only.

Another related problem is the estimation of the state of
the whole traffic network from partial sensor data. Although
many schemes exist for incident detection, there are few de-
ployments of large scale traffic state estimation. One excep-
tion is www.autobahn.nrw.de. It uses a traffic microsimula-
tion to extrapolate between sensor locations, and intelligent
methods combining the current state with historical data in
order to make short-term predictions. However, the particles
(vehicles) are very simple: They do not know their destina-
tions, let alone the remainder of their daily plan. This was a
necessary simplification to make the approach work, but it
is necessary to overcome this simplification since the effects
of the travelers’ decisions are difficult if not impossible to
estimate without these aspects.

What is missing it a true agent-based integration of these
and other approaches. However, until now agent-based sim-
ulations with high-level agents on the scale required for traf-
fic simulation of real-world networks have not been devel-
oped.

2.2 Real-Time Optimization of Traffic Lights
Signalized intersections are controlled by signal-timing plans

(we use signal plan for short) which are implemented at traf-
fic lights. A signal plan is a unique set of timing parameters
comprising the cycle length L (the length of time for the
complete sequence of the phase changes), and the split (the
division of the cycle length among the various movements
or phases). The criterion for obtaining the optimum signal
timing at a single intersection is that it should lead to the
minimum overall delay at the intersection. Several plans are
normally required for an intersection to deal with changes
in traffic volume, or, in an traffic-responsive system, that at
least one plan exist and can be changed on the fly.

In [1], a MAS based approach is described in which each
traffic light is modeled as an agent, each having a set of
pre-defined signal plans to coordinate with neighbors. Dif-
ferent signal plans can be selected in order to coordinate
in a given traffic direction. This approach uses techniques
of evolutionary game theory. However, payoff matrices (or
at least the utilities and preferences of the agents) are re-
quired, i.e. these figures have to be explicitly formalized by
the designer of the system.

In [9] groups were considered and a technique from dis-
tributed constraint optimization was used, namely coopera-
tive mediation. However, this mediation was not decentral-
ized: group mediators communicate their decisions to the



mediated agents in their groups and these agents just carry
out the tasks.

Camponogara and Kraus [2] have studied a simple sce-
nario with only two intersections, using stochastic game-
theory and reinforcement learning. Their results with this
approach were better than a best-effort (greedy), a random
policy, and also better than Q-learning.

Also, in [8] a set of techniques were tried in order to im-
prove the learning ability of the agents in a simple scenario.

Finally, a reservation-based system [3] is also reported but
it is only slightly related here because it does not include
conventional traffic lights.

2.3 The Need for Integration
Up to now, few attempts exist to integrate supply and

demand in a single model. We review three of them here.

2.3.1 Learning based approach
The paper by [16] describes the use of reinforcement learn-

ing by the traffic light controllers (agents) in order to min-
imize the overall waiting time of vehicles in a small grid.
Agents learn a value function which estimates the expected
waiting times of single vehicles given different settings of
traffic lights. One interesting issue tackled in this research
is that a kind of co-learning is considered: the value func-
tions are learned not only by the traffic lights, but also by
the vehicles which can thus compute policies to select op-
timal routes to the respective destinations. The ideas and
some of the results presented in that paper are important.
However, strong assumptions turn difficult its use in the
real world. First, the kind of communication and knowledge
(or, more appropriate, communication for knowledge forma-
tion) has a high cost. Traffic light controllers are supposed
to know vehicles destination in order to compute expected
waiting times for each. Given the current technology, this
is a strong assumption. Second, it seems that traffic lights
can shift from red to green and opposite at each time step
of the simulation. Third, there is no account of experience
made by the drivers based on their local experiences only.
What about if they just react to the (few) past experiences
after the route is completed and the driver takes it again
the next day (typical commuting scenario)? Finally, drivers
being autonomous, it is not obvious to expect that all will
use the best policy computed by the traffic light and not by
themselves. Thus, in the present paper, we depart from the
assumptions regarding communication and knowledge the
actors have to have about each other.

2.3.2 Game theoretic approach
In [14] a two-level, three-player game is discussed which

integrates traffic control and traffic assignment, i.e. both the
control of traffic lights and the route choices by drivers are
considered. Complete information is assumed, which means
that all players (including the population of drivers) have to
be aware of the movements of others. Although the paper
reports interesting conclusions regarding e.g. the utility of
cooperation among the players, this is probably valid only in
that simple scenario. Besides, the assumptions that drivers
always follow their shortest routes are difficult to justify in
a real-world application.

In the present paper, we want to depart from both the
two-route scenario and the assumption that traffic manage-
ment centers are in charge of the control of traffic lights.
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Figure 1: Schema of the Co-Evolution in an ITS
Framework

Rather, we follow a trend of decentralization, in which each
traffic light is able to sense its environment and react accord-
ingly and autonomously, without having its actions com-
puted by a central manager as it is the case in [14]. More-
over, the two-route scenario is a very didactic one and serves
the purpose of the main aim of [14]. However, it is ques-
tionable whether the same mechanism can be used in more
complex scenarios, as claimed. The reason for this is the
fact that when the network is composed of tens of links,
the number of routes increases and so the complexity of the
route choice, given that now it is not trivial to compute the
network and user equilibria.

2.3.3 Methodologies
Liu and colleagues [6] describe a modeling approach which

integrates microsimulation of individual trip-makers’ deci-
sions and individual vehicle movements across the network.
Moreover, in [6] the focus is on the description of the method-
ology which incorporate both demand and supply dynamics,
so that the applications are only briefly described and not
many options for the operation and control of traffic lights
are reported. One scenario described deals with a simple
network with four possible routes and two control policies.
One can roughly be described as greedy, while the other is
fixed signal plan based. In the present paper we do not
explore the methodological issues as in [6] but, rather, in-
vestigate in more details particular issues of the integration
and interaction between actors from the supply and demand
sides.

3. CO-EVOLUTION IN AN ITS
FRAMEWORK

Figure 1 shows an scheme of the our approach, based on
the interaction among supply, demand, and an ITS module.
The latter is related to strategic decisions and is composed of
a simulation sub-module, as well as sub-modules to imple-
ment optimization of control (e.g. traffic lights), manage-
ment of operation, traffic assignment (static or dynamic),
and an information system (ATIS).

We have developed a framework using the agent-based
simulation environment SeSAm [5] for testing the effects of
adaption of different elements of the supply and demand.
The testbed consists of sub-modules for modeling and gener-
ation of the network and the agents, modeling of traffic lights
and signal plans, learning and adaptation mechanisms, gen-
eration of the library of routes, the route choice algorithm,
etc. The movement of vehicles is queue-based.

In the present paper we tackle the feedback loop between
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Figure 2: Grid 6x6 showing the main destina-
tion (E4E5), the three main origins (B5B4, E1D1,
C2B2), and the “main street” (darker line).

supply and demand by means of studying scenarios in which
drivers adapt (as in [4]) and traffic lights use learning mech-
anisms (e.g. in [1, 8]).

The scenario we use to exemplify the approach is a typical
commuting scenario where drivers repeatedly select a route
to go from an origin to a destination. It is not so simple as
a two-route (binary decision) scenario. Rather, it captures
desirable properties of real scenarios regarding the aim of
this study, namely the co-evolution among drivers and traffic
lights.

To model the supply, we use a grid with 36 nodes con-
nected using one-way links, depicted in Figure 2 (values de-
picted at each link will be discussed later). All links are
one-way and drivers can turn in each crossing. This kind of
scenario is realistic and, in fact, from the point of view of
route choice and equilibrium computation, it is also a very
complex one as the number of possible routes is high.

Contrarily to simple two-route scenarios, in the grid it
is possible to set arbitrary origins and destinations. Each
driver has one particular origin (O) and destination (D) with
a quite high number of optional route between them. To
render the scenario more realistic, neither the distribution of
O-D combinations, nor the capacity of links is homogeneous.
On average, 60% of the road users have the same destination,
namely the link labelled as E4E5. Other links have 1.7%
probability of being a destination. Origins are nearly equally
distributed in the grid, with three exceptions: links B5B4,
E1D1, and C2B2 have, approximately, probabilities 3, 4, and
5% of being an origin respectively. The remaining links have
each a probability of 1.5%. Regarding capacity, all links can
hold up to 15 vehicles, except those located in the so called
“main street” which can hold up to 45. This main street is
formed by the links B3 to E3, E4, and E5.

The control is done via decentralized traffic lights. These
are located in each node. Each has a signal plan which, by
default, divides the cycle time 50-50% between the 2 phases.
The actions of the traffic lights are to run the default plan or
to priorize one phase. The strategies are: i) always keep the
default signal plan; ii) greedy (run green time for the phase
with the higher occupancy); iii) use single agent Q-learning.

Regarding the demand, the main actor is the driver. The
simulation can generate any number of them, each knowing
a given number of routes. Normally the simulations were
done with drivers knowing one to five routes. These were
generated via an algorithm that computes the shortest path
(one route) and the shortest path via arbitrary detours (the

other four). Drivers can use three strategies to select a route
(before it departs): i) randomly; ii) greedily (always pick the
one with best average travel time so far); iii) probabilistic
way meaning that the average travel times so far are used
to compute a probability to select the route to use.

4. RESULTS AND DISCUSSION

4.1 Metrics and Parameters
In order to evaluate the experiments, travel time (drivers)

and occupation (links) were measured. Due to lack of space
we discuss here only the mean travel time over the last 5
trips (henceforward attl5t) or travel time in a single trip.
All experiments were repeated 20 times. The parameters
used were: time out for the simulation (tout) equal to 300
when the number of drivers is 400 or 500, 400 when there are
600 drivers, and 500 when there are 700 drivers; percentage
of drivers who adapt is either 100 or zero (in this case all
act greedily) but any combination can be used; percentage of
traffic lights which act greedily is either zero or 100; a link
is considered jammed if its occupancy is over 50%; cycle
length for signal plans is 40 secs. For the Q-learning there
is an experimentation phase of 10 × tout, the learning rate
is α = 0.1 and the discount rate is λ = 0.9.

4.2 Global Optimization
Before we present the results of the simulations in which

we use the co-evolution approach, i.e. agents learn in a de-
centralized way, we briefly discuss the results of simulations
performed without this approach, for the sake of calibration
and comparison. To this aim we use a centralized and heuris-
tic optimization method in order to compute the optimal
split of the cycle time between two traffic directions, in each
intersection. This was done using the DAVINCI (Developing
Agent-based simulations Via INtelligent CalIbration) Cali-
bration Toolkit for SeSAm, which is a general purpose cali-
bration and optimization tool. Although DAVINCI provides
several global black box search strategies, like evolutionary
strategies, simulated annealing or gradient based search, we
have used the former only (specifically, GA were used).

DAVINCI allows specific values of given parameters of the
simulation to be tested for optimality (the fitness). In our
specific case, we have used it to find the best split time
for each traffic light in the scenario depicted in Figure 2.
The optimization objective is to minimize the average travel
time over all drivers in a scenario with 400 drivers, where
all drivers have only one route (the shortest path). Several
combinations of splits are tested, in each intersection. At
each time DAVINCI evolves a population of strings based
on their fitness. For a cycle length of 40 s., several values
for the split were tried in each intersection: 5/35, 10/30,
15/25, 20/20, ..., 35/5. One can see that with 36 intersec-
tions the combination of trials is huge. Thus the heuristic
method must be used. At the end of the optimization, we
are interested in knowing which was the best split for each
intersection.

The resulting optimized splits, with a cycle time set to
40 s., can be seen in Figure 2: numbers depicted close to
the respective links indicate how much green time the link
receives. The optimization was made using GA with 100
generations, population size of 20 individuals and the con-
vergence criterion set to 0.01. Using these optimized splits,
the average travel time of drivers is 105. This value can



Type of Simulation Average Travel Time
Last 5 Trips

greedy drvs / fixed TLs 100
adapting drvs / fixed TLs 149

greedy drvs / greedy TLs 106
adapting drvs / greedy TLs 143

greedy drvs / Qlearning TLs 233

Table 1: Average Travel Time Last 5 Trips for 400
Drivers, under Different Conditions

be used to assess the utility of adapting drivers and traffic
lights in a decentralized way.

4.3 Drivers and Traffic-Lights Learning in a
Decentralized Way

In this section we discuss the simulations and results col-
lected when drivers and traffic lights co-evolve using different
strategies (explained next). As a measure of performance,
we use the attl5t defined previously. These are summarized
in Table 1. For all scenarios described in this subsection,
400 drivers were used.

Greedy or adaptive drivers; fixed traffic lights. In
the case of adapting drivers, the attl5t is 149 time units,
while this is 100 if drivers act greedily. The higher travel
time is the price paid by the experimentation which the
drivers continue to do, even though the optimal policy was
achieved long before (remember that the attl5t is computed
only over the last 5 trips). The greedy action is of course
much better after the optimal policy was learned. Notice
that this travel time is slightly better than the one found by
the heuristic optimization tool described before, which was
105. In summary, greedy actions by the drivers work because
they tend to select the routes with the shortest path and this
normally distributes drivers more evenly than longer routes.

Greedy or adaptive drivers; greedy traffic lights.
When traffic lights also act greedily we can see that this does
not automatically improve the outcome (in comparison with
the case in which traffic lights are fixed): the attl5t is 106.
This happens because the degree of freedom of traffic lights’
actions is low, as actions are highly constrained. For in-
stance, acting greedily can be highly sub-optimal when for
instance traffic light A serves direction D1 (thus keeping D2

with red light), when the downstream flow of D1 is already
jammed. In this case, the light might indeed provide green
for vehicles on D1 but these cannot move due to the down-
stream jam. Worse, jam may appear on the previously un-
jammed D2 too due to the small share of green time. This
explains why acting greedily at traffic lights is not necessar-
ily a good policy. The travel time of 106, when compared to
the travel time found by the centralized optimization tool
(105), is of course similar. This is not surprising because
the decentralized strategy does exactly the same as the cen-
tralized optimizer, namely drivers use their best route and
traffic lights optimize greedily.

Q-learning traffic lights. We have expected Q-learning
to perform bad because it is already known that it does not
have a good performance in noisy and non-stationary traffic
scenarios [12]. In order to test this, we have implemented a
Q-learning mechanism in the traffic lights. Available actions
are: to open the phase serving either one direction (e.g. D1),
or the other (D2). The states are the combination of states

Average Travel Time Last 5 Trips
Type of Simulation Nb. of Drivers

400 500 600 700

greedy drvs / fix TLs 100 136 227 411
greedy drvs / greedy TLs 106 139 215 380

Table 2: Average Travel Time Last 5 Trips for Dif-
ferent Number of Drivers, under Different Condi-
tions

in both approaching links, i.e. {D1 jammed, D1 not jammed}×
{D2 jammed,D2 not jammed}. The low performance of
Q-learning in traffic scenarios is due basically to the fact
that the environment is non-stationary, not due to the poor
discretization of states. Convergence is never achieved and
so traffic lights keep experimenting.

4.4 Scenarios With More Drivers
For more than 400 drives we only investigate the cases of

greedy drivers / fixed traffic lights versus the case in which
both drivers and traffic lights act greedily in order to test
whether or not increasing volume of traffic (due to increasing
number of drivers in the network) would cause greedy traffic
lights to perform better. This is expected to be the case
since once the number of drivers increases, greedy actions
alone do not bring much gain; some kind of control in the
traffic lights is expect to be helpful. In fact, 400, 500, 600
and 700 drivers mean an average occupancy of ≈ 40%, 47%,
59%, and 72% per link respectively. In Table 2 the attl5t

for these numbers of drivers are shown. The case for 400
drivers was discussed above. With more than 500 drivers,
the attl5t is lower when traffic lights also act greedily. In
the case of 700 drivers, the improvement in travel time (411
vs. 380) is about 8%. Thus, the greedy traffic lights are
successful in keeping the occupancy of links lower resulting
in reduced travel times.

4.5 Overall Discussion
In the experiments presented we could see that differ-

ent strategies by the drivers, as well by the traffic lights
have distinct results in different settings. We give here the
main conclusions. For the network depicted, increasing the
links capacity from 15 to 20 would lead to much less jam
(this was tested but is not shown here due lack of space).
However, increasing network capacity is not always possi-
ble so that other measures must be taken. Diverting people
and/or given them information both have limited perfor-
mances. Thus the idea is to better use the control infras-
tructure. Therefore we have explored the capability of the
traffic lights to cope with the increasing demand.

Regarding travel time, it was shown that the strategies
implemented in the traffic lights pay off in several cases, es-
pecially when the demand increases. We have also measured
the number of drivers who arrive before time tout. Just to
give a flavor of the figures, bad performance (around 75%
arrived) was seen only when the drivers adapt probabilis-
tically. This of course is a consequence of the high travel
times (see Table 1). The general trend is that when the
traffic lights also adapt or learn, the performance increases,
by all metrics used.

Regarding the use of Q-learning, as said, single-agent learn-
ing (i.e. each agent isolately using Q-learning) is far from



optimum here due to the non-stationarity nature of the sce-
nario. This is true especially for those links located close
to the main destination and the main street as they tend to
be part of each driver’s trip so that the pattern of volume
of vehicles changes dramatically. A possible solution is to
use collaborative traffic lights. In this case, traffic light A
would at least ask/sense traffic light B downstream whether
or not it shall act greedily. This however leads to a cascade
of dependence among the traffic lights. In the worst case
everybody has to consider everybody’s state. Even if this is
done in a centralized way (which is far from desirable), the
number of state-action pairs prevents the use of multiagent
Q-learning in its standard formulation.

5. CONCLUSION
Several studies and approaches exist for modeling travel-

ers’ decision-making. In commuting scenarios in particular,
probabilistic adaptation in order to maximize private util-
ities is one of those approaches. However, there is hardly
any attempt to study what happens when both the driver
and the traffic light use some evolutionary mechanism in
the same scenario or environment, especially if no central
control exist. Then, the co-evolution happens in a decentral-
ized fashion, in which case some forms of auto-organization
or chaotic situations may arise. This is an important issue
because, although ITS have reached a high technical stan-
dard, the reaction of drivers to these systems is fairly un-
known. In the present paper we have investigated this loop.
The results show an improvement regarding travel time and
occupancy (thus, both the demand and supply side) when
all actors co-evolve, especially in large-scale situations e.g.
involving hundreds of drivers. This was compared with sit-
uations in which either only drivers or only traffic lights
evolve, in different scenarios, and with a centralized opti-
mization method.

This work can be extended in two main directions. First,
we plan to integrate the tools developed by the authors inde-
pendly for supply and demand which are simulators with far
more user-friendly capabilities and permit the modeling of
even more realistic scenarios as trips can be richer etc. The
results are not expect to differ in the general trends, though.
The second extension relates to the use of heuristics for a
MAS reinforcement learning in order to improve its perfor-
mance. This is not a trivial extension as it is known that
reinforcement learning for non-stationary environments is a
hard problem, especially when several agents are involved.
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