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Abstract

This  article  describes a novel method for  microsimulation-based traffic  state

estimation, which adjusts individual travelers' route and activity location choice

to anonymous measurements e.g. of flows or velocities. While a discussion of

the  algorithm's  rather  mathematical  functioning  is  omitted,  the  approach  is

clarified by means of an illustrative example. A second example of realistic size

underlines the method's real world applicability and its real time capabilities.

1  Introduction

The problem of traffic monitoring and prediction has been considered by many

researchers. Various approaches are data-driven (Huisken and Berkum, 2003;

Kamarianakis  and  Prastacos,  2003;  Zhou  and  Nelson,  2002),  while  others

adjust  structural  models  to  real  world  measurements.  The  latter  group  can

further  be  classified  with  respect  to  what  quantities  are  estimated:  Some

consider  the  problem  of  estimating  physical  traffic  flow  properties  such  as

densities, velocities, or flow parameters (Lorkowski and Wagner, 2005; Wang

and Papageorgiou, 2005), while others (including this work) concentrate on the

underlying demand itself and consider the physics of traffic flow as a dependent

effect (Ashok, 1996). The second point of view is closer to the real problem's
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structure, since traffic demand is the cause of road usage. Still, estimation of

traffic  demand and of  network link  related quantities  are two aspects of  the

same problem, and ultimately should not be separated (Antoniou, 2004).

This  article  describes  a  method  for  traffic  state  estimation  with  multi-agent

simulations.  We  combine  a  flexible  but  little  formalized  representation  of

individual mobility behavior  as implemented in the MATSim project (MATSim

www page) with well understood methods of system engineering (e.g. Kumar

and  Varaiya,  1986).  This  allows  us  to  consider  the  problem  of  estimating

agents' route and activity location choice in a Bayesian setting by combining for

every agent  an  a priori activity  plan  for  a  given  day with  anonymous  traffic

measurements such as flows or densities obtained during this day into a most

likely a posteriori plan. 

Our work appears to be the first in this field which estimates fully individualized

behavior from anonymous traffic measurements. The choice of this objective is

justified  by  the  observation  that  traffic  demand  results  from  heterogeneous

individual mobility needs. Thus, no validated individualized knowledge should

be aggregated away during the formalizing steps of setting up a mathematical

estimation problem.

The remainder of this article is organized as follows. Section 2 is devoted to

modeling and simulation. While the focus of this article is on behavioral issues,

an introduction to the employed mobility simulation is given as well. In section

3,  our  technical  approach  of  extending  a  pure simulation  system  with  state

estimation  capabilities  is  explained.  Section  4 describes  the  methodological

aspects of our approach in terms of a synthetic  example,  while in section 5

preliminary results from a case study of realistic size are presented. Section 6

concludes the article and gives an outlook on future work.
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2  Deterministic modeling and simulation

The  traffic  model  consists  of  two  interacting  major  components:  A  mobility

simulation that describes the dynamics of traffic flow, and a behavioral model

which represents spontaneous driver behavior  in  terms of route and activity

location choice.

While  both  model  components  comply  with  the  formal  requirements  of  the

estimation  procedure  described  in  section  3,  this  section  is  confined  to  a

conceptual outline from a practical point of view.

2.1  Physical model of traffic flow

The  physical  model  combines  microscopic  and  macroscopic  aspects.  The

representation  of  traffic  flow dynamics is a fully macroscopic  1st order traffic

flow  model  which  runs  in  discrete  time  and  space.  The  model  permits

linearization,  which allows predicting the effect of small  parameter variations

without repeated simulations (Flötteröd and Nagel, 2005). In this way, it allows

to systematically search for improved parameter sets given a certain objective.

In the estimation application, this objective will be „better explanatory power for

given measurements“. On the other hand, we also require the model to work on

a microscopic level in order to allow for arbitrary behavioral heterogeneity in the

driver population, which is difficult to deal with in a macroscopic way.

The fully macroscopic traffic flow model moves continuous flows according to

macroscopic fundamental diagrams. However, at intersections the flow is split

according to turning fractions which result from individual behavior: Whenever

an individual vehicle starts a trip, it is put into the network and an equivalent

amount of macroscopic flow is dismissed into the system. The vehicle then is

moved across its current link according to the velocity field as it is defined by

the  macroscopic  model.  Since  these  velocities  depend  on  the  link's

macroscopic  occupancy,  the  vehicle's  entrance  effectively  influences  the
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macroscopic traffic situation. At the link's downstream intersection, the vehicle

is free to choose its next link according to its internal behavioral model. In order

to  synchronize  the  macroscopic  flow  with  the  individual  behavior,  these

microscopic  turning  movements  are  counted,  filtered,  and  normalized  into

macroscopic  turning  fractions.  When  the  vehicle  leaves  the  system,  an

appropriate amount of flow is removed as well at the exit point.  Overall, the

approach is similar to what is termed “smoothed particle hydrodynamics (SPH)”

in  physics  (Gingold  and  Monaghan,  1977) or  “mesoscopic  modeling”  in

transport science (Ben-Akiva et al., 1998; DYNAMIT www page; Chang et al.,

1985;  DYNASMART www page;  Schwerdtfeger,  1987),  the  main  difference

being that the model described here was designed with the explicit intention to

obtain first derivatives from the model.

The interplay between both simulation aspects can thus be stated as: Massless

microscopic vehicles float through the network according to fully macroscopic

laws,  while  the  intersection  turning  moves  of  these  vehicles  determine  the

macroscopic flow splits.  In this way, mathematical feasibility (linearization of

the macroscopic model) and expressive power (microsimulation of  behavior)

are combined (Flötteröd and Nagel, 2006a).

FIGURE 1 APPROXIMATELY HERE

Figure 1 shows a simple example. Vehicles move from left to the right. At the

diverge they choose from one of three routes, each one having a downstream

bottleneck.  The  figure  indicates  that  the  macroscopic  density  (white=none,

green=light,  red=jammed)  is  smoothly  synchronized with  the  vehicles'  route

choice.

2.2  Behavioral model

FIGURE 2 APPROXIMATELY HERE

The  behavioral  model  requires  the  availability  of  an  activity  plan  for  every
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agent. As an example, consider figure 2a. This plan comprises a three-stage

sequence residence → work → leisure → residence, which could be typical for

an employed person's weekday. Every stage can be associated with a certain

activity type and contains at  least  one location  at  which this  activity can be

conducted. In this example, the residence stage is only possible at home, while

work can be performed either at the office or at home, assuming that working at

home is feasible for this agent. The leisure activity is possible either at home or

at a shopping mall.

The  agent  values  the  choice  of  each  activity  location  within  every  stage

according to (a) the direct benefit a choice of this location provides and (b) the

expected  benefit  it  can  expect  from  the  remainder  of  its  daily  plan  if  it  is

continued  at  this  location.  For  example,  when  comparing  the  mall  and  the

home location  for  the leisure stage,  a home-working agent  has to  take into

account the cost of traveling to the mall and back home which does not arise if

the agent stayed home.

In the figure, the cost of traveling is attached to the links connecting activity

locations. The immediate value of choosing a location is expressed in terms of

an  “immediate  cost”,  which  is  taken  as  the  offset-corrected negative  of  the

value. There is also a “remaining cost”, which is the additional cost if afterwards

the least cost path is followed. Because of the plan's multi-stage structure, the

optimal  remaining  cost  of  all  activities  can  be  calculated  by  straightforward

dynamic programming,  given that the cost  of moving through the network is

known  from  the  mobility  simulation  and  that  the  immediate  location  cost

perception  is  also  available  from  the  behavioral  model.  Overall,  this  is

consistent with a model where travel incurs negative utility while performing an

activity incurs positive utility,  and travel is only worthwhile if  a larger positive

utility from the different location overcomes the negative utility of travel.
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We generate the multi-stage structure as well as the activity location choice set

individually for every agent using output of the MATSim demand modeling and

simulation system. MATSim generates a number of alternative activity location

sequences, which we combine and reshape such that all alternative sequences

fit into a common multi-stage structure (Illenberger, in preparation).

This model allows to effectively represent within-day replanning, as it is clarified

in figure 2b. Assume that the agent is about to finish its work stage and leave

the office. The choice between going to the mall and going home for leisure

can technically be calculated as follows: Add an imaginary destination node to

the network  and connect  all  activity  locations  of  the next  stage  by likewise

imaginary links to that destination. Attach the sum of each activity’s immediate

cost plus its remaining cost to the according link. Then, calculate a time variant

best  path  through  the  network,  with  link  weights  according  to  the  agent's

perception of the current traffic situation. The obtained best path does not only

yield the subjectively optimal route through the network but also the chosen

next activity, which is the last real node in the path.

The possibility to express the combined route and activity location choice by a

single  best  path  combination  greatly  simplifies  the  behavioral  estimation

procedure, since it  allows to formalize all  behavioral  issues into a best path

problem through a slightly extended traffic network with individualized cost.

3  Traffic state estimation

3.1  Technical description

The estimation method is derived from a Bayesian consideration: We combine

a priori knowledge about every traveler’s behavior as it is given by its activity

plan  with  anonymous  measurements  into  an  a  posteriori  probability  of  its

behavior given both sources of information. Our method then chooses a route
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and a destination for every agent in a way that approximately maximizes this a

posteriori  probability of the entire population’s behavior (Flötteröd and Nagel,

2006b).  As stated before,  the route and destination  choice problem can be

subsumed in a single best path calculation, which will be the point of view we

adopt in the following discussion.

FIGURE 3 APPROXIMATELY HERE

Some  aspects  of  the  simulation  system  are  depicted  in  figure  3a.  It  is

decomposed  into  a  microscopic  representation  of  traveler  behavior  and  a

mixed micro/macro mobility  simulation as explained before.  In an attempt to

realize their individual activity  plans, travelers consider their  long- and short-

term observations  of  the traffic  system state when performing actions within

their physical environment. Technically, an agent modifies its path by sending

an object representing its perceived cost of traversing the links in the network

to a router, which then returns the resulting best path.  Note that this cost is

individually perceived and can contain perception errors as well as incomplete

knowledge.

The  behavioral  estimation  procedure  results  from  reasonable  mathematical

inference,  but  can  be  conveniently  illustrated  as  in  figure  3b.  Without

modifications to the simulation system, the estimation algorithm only modifies

the observed travel cost any agent uses to calculate its best path. The resulting

behavior is different insofar as it is not optimal with respect to the agent's cost

perception  any  more,  but  rather  with  respect  to  a  more  general  objective

function representing the state estimation quality by comparing the simulation

output to data from a traffic surveillance system.

3.2  Applicability of the method

3.2.1 Convergent vs. rolling horizon mode

The estimation task can be solved either at once or in a rolling horizon manner.
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Since  different  applications  discussed  in  the  next  section  require  different

solution methods, a short overview is given here.

In the first case, the estimation procedure iterates over the entire problem time

window until convergence. This is called the  convergent mode. Since a large

number  of  iterations  might  be  necessary  and  since  one  needs  to  know all

information (such as measurements) about the entire problem time window a

priori, it usually is not amenable to real time operations. 

In  the  second  case,  only  a  subinterval  of  the  problem  time  window  is

considered at once. This is called the rolling horizon mode. By moving this sub-

window forwards through time and repeatedly solving the estimation problem

only within the sub-window, one usually obtains only a sub-optimal solution to

the overall problem. This approach is still attractive if the sub-window's motion

is synchronized with real world time such that its solution always provides a

most  recent  estimate  of  the  current  system  state  given  the  most  recent

measurements.

3.2.2 Planning vs. telematics application

Transport  planning  models  usually  assume  that  travelers  obtained  global

knowledge of the average system state through many days of exploration and

that  the  resulting  behavioral  patterns  resemble  some  kind  of  equilibrium.

Typically, such models work at the granularity of an ``average day'' but do not

reproduce within-day fluctuations of the network state as they occur in reality

due  to  the  stochastic  nature  of  traffic  (Ortuzar  and  Willumsen,  2004).

Estimation in a planning context is possible either in convergent or in rolling

horizon mode, where the convergent mode is to be preferred since temporal

restrictions on calculation time usually play a minor role in such applications. 

Telematics models on the other hand explicitly deal with fluctuations within a

specific day. They neither assume global driver knowledge of the system state,
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nor do they assume an equilibrium. The behavioral model component in such a

system must represent spontaneous driver reactions to fluctuations in the traffic

situation (Bottom, 2000). Online applications can only be run in rolling horizon

mode  since  future  measurements  are  not  available  at  the  time  of  the

computation. Furthermore, the rolling time window's constant length ensures a

constant calculation duration for every iteration. 

Both  applications  can  be  dealt  with  by  the  proposed  method.  Beyond  the

chosen  operational  mode,  the  only  difference  is  the  information  about  the

network  state  that  is  repeatedly  given  to  the  agents  during  the  iterative

estimation procedure. If every agent is provided with global knowledge of the

system state as it resulted from the very last iteration, the algorithm converges

towards  a  user  equilibrium  (UE)  in  the  absence  of  measurements,  and

otherwise towards a statistically reasonable compromise between a UE and the

observed measurements. If, on the other hand, the information updates given

to the agents are constrained to what is actually observable to the agent in that

moment, the algorithm does not converge to a strict UE any more, but rather to

a  solution  which  realistically  regards  for  a  randomly  influenced  within-day

situation.  In  the  latter  case,  historical  information  contained  in  the  drivers’

activity plans must be used to complement the local observations.

4  Illustrative example

FIGURE 4 APPROXIMATELY HERE

Consider the network shown under various traffic loads in figure 4.  Travelers

enter the network at  the six  leftmost  horizontal  links and leave at  the three

rightmost horizontal links. Although demand is represented microscopically with

each traveler having one origin and one destination, only average occupancies

are drawn for readability. The scenario assumes a sensor at the marked link

which reports the following velocity measurements: Free flow speed from 7:45
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to 8:00, low speed from 8:00 to 8:15, again free flow speed from 8:15 to 8:30.

The  first  column  shows  the  result  of  a  dynamic  traffic  assignment  without

incorporation  of  any  measurements.  Note  that  traffic  spreads  out  about

symmetrically around the middle horizontal road.  Since the sensor information

is  not  available,  the  method can do no better  than doing  a time-dependent

equilibrium assignment.

The  second  column  shows  a  result  of  the  estimation  procedure  described

above,  with the sensor information included. One can observe a traffic jam at

the measurement point from 8:00 to 8:15. It can be interpreted as a result of the

most plausible overall behavior that resembles available measurements and is

consistent with the travelers' original plans.

FIGURE 5 APPROXIMATELY HERE

The underlying calculations  are clarified in  figure 5.  The first  column shows

relative  travel  times  from  the  estimation  method  when the  measurement  is

included. At the marked link, one can see that measurements are qualitatively

reproduced. The second column shows the modifications of travel times as they

result  from  the  estimation  procedure  that  includes  the  measurement.  By

replanning based on this modified information, agents do not maximize their

subjective  utility  any  more,  but  the  objective  a posteriori  probability  of  their

actions. 

Note that the causalities of traffic flow are properly exploited by the algorithm:

The low speeds measured from 8:00 to 8:15 are impossible to reproduce solely

by  increasing  the  inflow  to  the  according  link,  because  of  its  limited  flow

capacity. The only option is to increase the traffic load on links downstream of

the measurement location, causing spillback. This effect can be observed in

figure 4, right column. The way it is achieved by the algorithm can be seen in

figure  5b:  Downstream  links  of  the  measurement  location  are  made  more
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attractive by travel time reduction (blue color), thus more driver reroute towards

these links  and cause the spillback.  Since from 8:15 on the measurements

indicate free flow, the according cost modifications then are positive in order to

keep drivers away from critical links.

Intuitively, this means that the algorithm tests which of the travelers would help

best  to  move  the  simulation  closer  to  the  measurement.   This  becomes

particularly important when multiple sensors are involved, since improving the

situation for one sensor may make the situation worse for another sensor.

It  is  important  to  note  what  this  algorithm does and what  it  does  not  do in

response to measurements.  What the algorithm does is to modify routes and

possibly  destinations.   What  the algorithm does not is  to change the traffic

dynamics.  This means that the algorithm in its current form will never estimate

an incident (capacity reduction); this is a direct consequence of the modeling

assumption that the road network is given and not subject to estimation.  The

algorithm  will  instead  generate  measured  traffic  congestion  from  re-routing

additional  traffic  into  the  congested  area.   As  will  be  discussed  later,  it  is

possible  and  even  desirable  to  combine  the  algorithm  presented  here  with

some kind of incident  handling system that handles changes in the physical

network.

5  Realistic example

5.1.1 Setting of the test case

We  have  set  up  an  extensive  test  case  for  the  proposed  method.  The

geographical  zone of investigation  is  the  city  of  Berlin.  Its  traffic  network  is

represented by a graph of approximately 2400 links. The MATSim system has

been used to generate activity plans for a complete microscopic representation

of the Berlin population. The experiments described here use a 10% sample of
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this population (approx. 170.000 agents). The network is shown in figure 6.

FIGURE 6 APPROXIMATELY HERE

We gained first experiences with this test case in a real-world application during

the soccer world championship 2006. Since we encountered severe problems

with all kind of data corruptions (including errors in the network file, unrealistic

activity  plans,  unreliable  measurements)  during  this  project,  this  article

considers a setting in which most uncertainties have been removed in order to

study the method itself rather than a specific scenario. Accordingly, the results

given here are to be understood as a study of algorithmic feasibility. Increasing

realism  with  respect  to  various  sources  of  disturbances  is  subject  of  our

ongoing research.

All experiments use synthetically generated measurements as follows: Plans

from  an  imperfect  MATSim  traffic  assignment  that  did  not  reach  a  user

equilibrium were loaded onto the network using the same mobility simulation as

the estimator itself. For two disjoint 10%-sets of all links, we collected 5-minute

averages of the number of vehicles on these links as measurement data. The

experiments were run from 6am to 9am,  which is  the time of the strongest

traffic variations in the simulation because of the morning rush hour.

Since  the  imperfect  MATSim  result  is  not  a  user  equilibrium,  it  can  be

understood as a behavioral  deviation from such, which is exactly the type of

situation our method has been designed to handle.

The  entire  software  system  is  single-threaded and  was  written  in  the  Java

programming language.

5.1.2 Experiments

(a)  A priori estimation without measurements

In this setting, the estimator is run without the use of any measurements. As a

result, it generates a best assumption of traveler behavior given the MATSim
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activity plans by iterating these plans until an approximate user equilibrium is

achieved.

FIGURE 7 APPROXIMATELY HERE

The resulting scatterplots are shown in figure 7. In this and all following figures,

„link set  0“  and „link set  1“  indicate the measurement  subset  the according

estimation  run  is  compared  against.  Within  each  scatterplot,  measurement

values define the x-coordinate and simulated values the y-coordinate of each

point. Accordingly, a perfect measurement reproduction is achieved if all points

lie  on  the  main  diagonal.  The  number  below  each  scatterplot  indicates  its

correlation coefficient, which is 1.0 in case of a perfect fit and smaller than 1.0

otherwise.

One observes  significant  deviation  between  simulation  and estimation.  This

can be explained by the working of the estimation algorithm in the absence of

any measurements:  In  this  case,  only  the  behavioral  a  priori  information  is

available,  which results  in  a plain  user equilibrium assignment  as explained

above.  Since  the  measurements  were  generated  from  a  non-equilibrium

situation,  but  are not  available  to  the  estimation  procedure,  the  scatterplots

represent  nothing  more  but  the  measurements'  deviation  from  a  user

equilibrium.

(b) Measurement reproduction

In  this  setting,  parameters  were  set  such  that  the  algorithm  attempted  to

reproduce the measurements by ignoring behavioral  a priori  assumptions as

much as possible: Only measurement-induced cost corrections were visible to

replanning agents, while the cost of travel itself was completely ignored. One

experiment was run, where the measurements from link set 0 were fed into the

simulation.   With  the  resulting  estimation,  two  comparisons  were  made

between estimated and “measured” quantities:

14



(i) In-sample estimation: Estimated and measured quantities are compared for

link  set  0,  which  are  the  measurements  that  were  fed  into  the  estimation

procedure.  This  comparison  tests  how  much  the  algorithm  follows  the

measurements at measurement locations.  Note that, as is well known, the goal

of the algorithm is in general not to just follow the measurements, but to follow

the measurements as much as is consistent with the model assumptions, one

assumption being that also the measurements contain errors.

(ii)  Out-of-sample  estimation:  Estimated  and  measured  quantities  are

compared for link set 1, in which case none of those measurements were used

by the estimation procedure (but the measurements for link set 0 were used

instead).  This comparison tests how much the algorithm is able to infer,  by

using  its  model  assumptions,  correct  quantities  at  locations  where  no

measurement is available.

FIGURE 8 APPROXIMATELY HERE 

The results  are shown in figure 8.  One observes a very good fit  for the in-

sample  estimation,  while  the  out-of-sample  estimation  indicates  heavy

deviation.

The  very  good  measurement  reproduction  indicates  that  the  method  works

well. The not  totally perfect fit  is due to various causes, some of which were

deliberately accepted while others are still under investigation. Unavoidable but

to  some degree tunable  causes of  imprecision  are:  Incorporation of  various

mathematical  simplifications  in  the estimation  algorithm in  order to  keep up

tractability;  use  of  a  random  solution  mechanism  with  finite  resolution;

discretization of a all macroscopic quantities in time and space on a quite large

scale for reasons of computational performance; use of a linearization based

method that might converge only towards a local optimum of the problem.

The  heavy  deviation  between  the  estimations  of  one  experiment  and  the
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complementary measurement set are not surprising if one remembers that all

incentive  to  reproduce  reasonable  behavior  beyond  the  available

measurements has been removed in this experiment.  This is also known as

“over-fitting”.

(c) Reasonable combination of information sources

This experiment incorporates the behavioral model with a reasonable weight.

As a result, the estimation algorithm abstains from calculating routes that are

very unrealistic  given an agent's  activity  plan,  even if  such behavior  yield a

better measurement fit. Results are depicted in figure 9.

FIGURE 9 APPROXIMATELY HERE

Again,  in-sample  estimation as well  as out-of-sample estimation are shown.

One notices the following effects: 

1. The reproduction  quality  of  measurements  involved in  the estimation  (in-

sample estimation) is now slightly worse than in figure 8. The reason for this

is  the  newly  incorporated  influence  of  the  estimator's  behavioral  model,

which  contradicts  the  unrealistic  behavioral  nature  of  the  measurements.

Since in general measurements are just as error-prone as simulation results,

such a compromise is desirable.  When judging the estimation quality, it  is

important to keep in mind that the scatterplots only depict  one half of the

entire estimation problem; the behavioral fit based on the a priori generated

activity plans is not visualized.

2. The  reproduction  of  the  complementary  measurement  set  (out-of  sample

estimation)  is  now considerably  better  than in  figure 8.  This  indicates  the

algorithm's  capability  to  interpolate  the  traffic  state  of  links  that  are  not

directly observed by application of the behavioral model.

3. When compared to figure 7, one observes that the out-of-sample estimation

on link set 1 is not improved by the inclusion of the measurements from link
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set 0.  That is, within the current experiment, knowledge of conditions on link

set 0 did not improve knowledge of conditions of link set 1.  The reasons for

this are still under investigation since ultimately the method should also yield

out-of-sample improvements.

(d) Real time capabilities

Given the general setting as described in experiment  (c), the method's real-

time capabilities were also investigated. While the previous experiments were

run to convergence, here the rolling horizon approach with a time window of 30

minutes was used. The window moved forwards at 1-minute steps,  which is

approximately the duration of one estimation iteration.

FIGURE 10 APPROXIMATELY HERE

The  results  are  shown  in  figure  10.  Only  in-sample  estimation  results  are

shown. The rows indicate different estimation step sizes in terms of the agent

percentage  for  which  a  new path  is  calculated per  iteration.  Since a  larger

percentage  implies  a  faster  adjustment  but  also  a  loss  in  precision,  the

existence of an optimal adjustment rate can be hypothesized.

The  results  indicate  that  2%  to  3%  is  a  reasonable  value.  While  the

measurement  fit  clearly  increases  from  1%  to  2%,  there  is  no  significant

improvement  in  choosing  3%  but  at  the  additional  computational  cost  of

adjusting more agents. 

This  result  has  an interesting implication.  If  2% of the entire  population  are

randomly  chosen  for  adjustment  every  minute,  there  still  are  30%  of  the

population  left  after  one hour that  have not  been adjusted at  all.  While  this

would definitely become a significant problem if totally unpredictable behavior

was  to  be  reproduced,  it  can  be  put  into  perspective  by  the  following  two

arguments: 

1. The  incorporation  of  behavioral  a  priori  knowledge  already  generates  a
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„reasonable“  initial  assumption  of  the  overall  system  state,  which then  is

further  refined  by  the  estimation  procedure.  The  better  the  a  priori

assumptions, the closer are the results to the real state even without use of

any measurements.

2. In general there are many route combinations that yield the same network

load. From this it  can be concluded that  for every agent in the population

there is a number of other agents with sufficiently similar activity  plans to

substitute the former  agent  in  an effort  to  reproduce its  observation by a

sensor. 

Even  if  much  more  experiments  will  be  necessary  to  fully  understand  all

implications  of  the  method,  these  experiments  definitely  assert  that  the

algorithm  is  computationally  capable  of  generating  significant  estimation

improvements in real-time scenarios of realistic size.

6  Conclusions and outlook

We have presented a novel method for behavioral traffic state estimation based

on a priori generated activity plans and anonymous traffic measurements. First

experiments indicate that the method works with good precision in a real-time

setting even for large problems. Still, since the experiments conducted so far

only used synthetically generated measurements, many aspects are yet to be

explored. 

On  major  simplification  was  the  generation  of  measurements  by  the  same

mobility simulation the estimator itself used. Since model-based assumptions

about traffic flow dynamics are currently incorporated as error-free information

in the estimation formulation, further investigations with real world data might

show that a relaxation of this assumption will be necessary. Since methods for

the adjustment of physical traffic flow processes to measurements are available

from  the  systems  engineering  literature,  an  integration  of  both  estimation

18



approaches appears reasonable as stated in the introduction. 

A  similar  statement  holds  for  the  occurrence  of  incidents,  which  can  be

considered as structural deviations between modeling assumptions about traffic

dynamics and the real situation. The implementation of an additional incident

detection  module  definitely  would  greatly  increase  the  system's  real-world

applicability.

An improved a priori demand also implies a better estimation quality. As the

experiments  have  shown,  a  brute  force  attempt  to  only  reproduce

measurements  does  not  provide  a  reasonable  overall  picture  of  the  traffic

situation,  which  makes  the  incorporation  of  good  behavioral  a  priori

assumptions necessary. This observation suggests a natural operation scheme

of the method in a traffic management center: In continuous operations, the

estimator could be employed to track within-day fluctuations. If an additional

update of the agents' activity plans on a daily basis was realized, the overall

system could incrementally improve a transport planning simulation based on

these plans as well.
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Captions to Illustrations

Figure 1: Screenshot of mobility simulation

Figure 2a: Multi-stage plan structure

Figure 2b: Spontaneous replanning

Figure 3a: Technical overview of simulation

Figure 3b: Technical overview of estimation

Figure 4:  State estimation results in  a given scenario  when a sensor  at  the

location denoted by the arrow reports low speeds from 8:00 to 8:15

Figure 5a: Estimated travel times

Figure 5b: Travel time corrections

Figure 6: Reduced road network of Berlin

Figure 7: Experiment (a): Results of estimation with zero measurement feed.

Figure 8: Experiment (b): Results of estimation in „measurement reproduction“

(over-fitting) mode.

Figure 9: Experiment (c): Results of estimation with reasonable incorporation of

behavioral model.

Figure 10: Experiment (d): Real-time capabilities
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Figure 1 

Screenshot of mobility simulation. Only a cutout is shown in order to increase the
figure's resolution.
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Figure 2a

Multi-stage plan structure.

Figure 2b

Spontaneous replanning.
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Figure 3a

Technical overview of simulation.

Figure 3b

Technical overview of estimation.
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Estimation without measurements Estimation with measurements

7:50

8:00

8:10

8:20

7:50

8:00

8:10

8:20
Figure 4

State estimation results in a given scenario when a sensor at the location denoted
by the arrow reports low speeds from 8:00 to 8:15.  LEFT: State estimation without
any sensor input (i.e. the result of the pure dynamic traffic assignment).  RIGHT:
State estimation when the sensor information is used. – Colors indicate relative
road occupancy: white=empty, green=light, yellow=high, red=jammed.
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Estimated travel times Travel time corrections

7:50

8:00

8:10

8:20

7:50

8:00

8:10

8:20
Figure 5a

Colors indicate actual travel times:
white=minimal; green, yellow=
increased;  red=considerably increased.

Figure 5b

Colors indicate modifications of travel
times: blue=negative; white=zero;
green, yellow, red=increasingly positive.
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Figure 6

Reduced road network of Berlin.
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Link set 0 Link set 1

r=0,785 r=0,827

Figure 7

Experiment (a): Results of estimation with zero measurement feed.
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In-sample estimation (link set 0) Out-of-sample estimation (link set 1)

r=0,988 r=0,445

Figure 8

Experiment (b): Results of estimation in „measurement reproduction“ (over-
fitting) mode.
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In-sample estimation (link set 0) Out-of-sample estimation (link set 1)

r=0,974 r=0,811

Figure 9

Experiment (c): Results of estimation with reasonable incorporation of
behavioral model.
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In-sample estimation (link set 0)

1%

r=0,852

2%

r=0,951

3%

r=0,959

Figure 10

Experiment (d): Real-time capabilities.
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