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This article describes a novel method for microsimulation-based traffic state 

estimation, which adjusts individual travelers' route and activity location choice 

to anonymous measurements e.g. of flows or velocities. While a discussion of 

the algorithm's rather mathematical functioning is omitted, the approach is 

clarified by means of an illustrative example. A second example of realistic size 

underlines the method's real world applicability and its real time capabilities. 



 2

State estimation for multi-agent simulations of 
traffic 

Gunnar Flötteröd, Kai Nagel 

Technical University of Berlin 

Transport Systems Planning and Transport Telematics Group 

Salzufer 17-19, Sek SG12, 10587 Berlin 

floetteroed@vsp.tu-berlin.de, nagel@vsp.tu-berlin.de 
 

Abstract 
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1   Introduction 

The problem of traffic monitoring and prediction has been considered by many 

researchers. Various approaches are data-driven (Huisken and Berkum, 2003; 

Kamarianakis and Prastacos, 2003; Zhou and Nelson, 2002), while others 

adjust structural models to real world measurements. The latter group can 

further be classified with respect to what quantities are estimated: Some 

consider the problem of estimating physical traffic flow properties such as 

densities, velocities, or flow parameters (Lorkowski and Wagner, 2005; Wang 
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and Papageorgiou, 2005), while others (including this work) concentrate on the 

underlying demand itself and consider the physics of traffic flow as a dependent 

effect (Ashok, 1996). The second point of view is closer to the real problem's 

structure, since traffic demand is the cause of road usage. Still, estimation of 

traffic demand and of network link related quantities are two aspects of the 

same problem, and ultimately should not be separated (Antoniou, 2004). 

This article describes a method for traffic state estimation with multi-agent 

simulations. We combine a flexible but little formalized representation of 

individual mobility behavior  as implemented in the MATSim project (MATSim 

www page) with well understood methods of system engineering (e.g. Kumar 

and Varaiya, 1986). This allows us to consider the problem of estimating 

agents' route and activity location choice in a Bayesian setting by combining for 

every agent an a priori activity plan for a given day with anonymous traffic 

measurements such as flows or densities obtained during this day into a most 

likely a posteriori plan.  

Our work appears to be the first in this field which estimates fully individualized 

behavior from anonymous traffic measurements. The choice of this objective is 

justified by the observation that traffic demand results from heterogeneous 

individual mobility needs. Thus, no validated individualized knowledge should 

be aggregated away during the formalizing steps of setting up a mathematical 

estimation problem. 

The remainder of this article is organized as follows. Section 2 is devoted to 

modeling and simulation. While the focus of this article is on behavioral issues, 

an introduction to the employed mobility simulation is given as well. In section 3, 

our technical approach of extending a pure simulation system with state 

estimation capabilities is explained. Section 4 describes the methodological 
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aspects of our approach in terms of a synthetic example, while in section 5 

preliminary results from a case study of realistic size are presented. Section 6 

concludes the article and gives an outlook on future work. 

2   Deterministic modeling and simulation 

The traffic model consists of two interacting major components: A mobility 

simulation that describes the dynamics of traffic flow, and a behavioral model 

which represents spontaneous driver behavior in terms of route and activity 

location choice. 

While both model components comply with the formal requirements of the 

estimation procedure described in section 3, this section is confined to a 

conceptual outline from a practical point of view. 

2.1   Physical model of traffic flow 

The physical model combines microscopic and macroscopic aspects. The 

representation of traffic flow dynamics is a fully macroscopic 1st order traffic flow 

model which runs in discrete time and space. The model permits linearization, 

which allows predicting the effect of small parameter variations without repeated 

simulations (Flötteröd and Nagel, 2005). In this way, it allows to systematically 

search for improved parameter sets given a certain objective. In the estimation 

application, this objective will be „better explanatory power for given 

measurements“. On the other hand, we also require the model to work on a 

microscopic level in order to allow for arbitrary behavioral heterogeneity in the 

driver population, which is difficult to deal with in a macroscopic way. 

The fully macroscopic traffic flow model moves continuous flows according to 

macroscopic fundamental diagrams. However, at intersections the flow is split 
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according to turning fractions which result from individual behavior: Whenever 

an individual vehicle starts a trip, it is put into the network and an equivalent 

amount of macroscopic flow is dismissed into the system. The vehicle then is 

moved across its current link according to the velocity field as it is defined by 

the macroscopic model. Since these velocities depend on the link's 

macroscopic occupancy, the vehicle's entrance effectively influences the 

macroscopic traffic situation. At the link's downstream intersection, the vehicle is 

free to choose its next link according to its internal behavioral model. In order to 

synchronize the macroscopic flow with the individual behavior, these 

microscopic turning movements are counted, filtered, and normalized into 

macroscopic turning fractions. When the vehicle leaves the system, an 

appropriate amount of flow is removed as well at the exit point.  Overall, the 

approach is similar to what is termed “smoothed particle hydrodynamics (SPH)” 

in physics (Gingold and Monaghan, 1977) or “mesoscopic modeling” in 

transport science (Ben-Akiva et al., 1998; DYNAMIT www page; Chang et al., 

1985; DYNASMART www page; Schwerdtfeger, 1987), the main difference 

being that the model described here was designed with the explicit intention to 

obtain first derivatives from the model. 

The interplay between both simulation aspects can thus be stated as: Massless 

microscopic vehicles float through the network according to fully macroscopic 

laws, while the intersection turning moves of these vehicles determine the 

macroscopic flow splits.  In this way, mathematical feasibility (linearization of the 

macroscopic model) and expressive power (microsimulation of behavior) are 

combined (Flötteröd and Nagel, 2006a). 

FIGURE 1 APPROXIMATELY HERE 

Figure 1 shows a simple example. Vehicles move from left to the right. At the 
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diverge they choose from one of three routes, each one having a downstream 

bottleneck. The figure indicates that the macroscopic density (white=none, 

green=light, red=jammed) is smoothly synchronized with the vehicles' route 

choice. 

2.2   Behavioral model 

FIGURE 2 APPROXIMATELY HERE 

The behavioral model requires the availability of an activity plan for every agent. 

As an example, consider figure 2a. This plan comprises a three-stage sequence 

residence → work → leisure → residence, which could be typical for an 

employed person's weekday. Every stage can be associated with a certain 

activity type and contains at least one location at which this activity can be 

conducted. In this example, the residence stage is only possible at home, while 

work can be performed either at the office or at home, assuming that working at 

home is feasible for this agent. The leisure activity is possible either at home or 

at a shopping mall. 

The agent values the choice of each activity location within every stage 

according to (a) the direct benefit a choice of this location provides and (b) the 

expected benefit it can expect from the remainder of its daily plan if it is 

continued at this location. For example, when comparing the mall and the home 

location for the leisure stage, a home-working agent has to take into account 

the cost of traveling to the mall and back home which does not arise if the agent 

stayed home. 

In the figure, the cost of traveling is attached to the links connecting activity 

locations. The immediate value of choosing a location is expressed in terms of 

an “immediate cost”, which is taken as the offset-corrected negative of the 
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value. There is also a “remaining cost”, which is the additional cost if afterwards 

the least cost path is followed. Because of the plan's multi-stage structure, the 

optimal remaining cost of all activities can be calculated by straightforward 

dynamic programming, given that the cost of moving through the network is 

known from the mobility simulation and that the immediate location cost 

perception is also available from the behavioral model. Overall, this is 

consistent with a model where travel incurs negative utility while performing an 

activity incurs positive utility, and travel is only worthwhile if a larger positive 

utility from the different location overcomes the negative utility of travel. 

We generate the multi-stage structure as well as the activity location choice set 

individually for every agent using output of the MATSim demand modeling and 

simulation system. MATSim generates a number of alternative activity location 

sequences, which we combine and reshape such that all alternative sequences 

fit into a common multi-stage structure (Illenberger, in preparation). 

This model allows to effectively represent within-day replanning, as it is clarified 

in figure 2b. Assume that the agent is about to finish its work stage and leave 

the office. The choice between going to the mall and going home for leisure can 

technically be calculated as follows: Add an imaginary destination node to the 

network and connect all activity locations of the next stage by likewise 

imaginary links to that destination. Attach the sum of each activity’s immediate 

cost plus its remaining cost to the according link. Then, calculate a time variant 

best path through the network, with link weights according to the agent's 

perception of the current traffic situation. The obtained best path does not only 

yield the subjectively optimal route through the network but also the chosen 

next activity, which is the last real node in the path. 

The possibility to express the combined route and activity location choice by a 
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single best path combination greatly simplifies the behavioral estimation 

procedure, since it allows to formalize all behavioral issues into a best path 

problem through a slightly extended traffic network with individualized cost. 

3   Traffic state estimation 

3.1   Technical description 

The estimation method is derived from a Bayesian consideration: We combine a 

priori knowledge about every traveler’s behavior as it is given by its activity plan 

with anonymous measurements into an a posteriori probability of its behavior 

given both sources of information. Our method then chooses a route and a 

destination for every agent in a way that approximately maximizes this a 

posteriori probability of the entire population’s behavior (Flötteröd and Nagel, 

2006b). As stated before, the route and destination choice problem can be 

subsumed in a single best path calculation, which will be the point of view we 

adopt in the following discussion. 

FIGURE 3 APPROXIMATELY HERE 

Some aspects of the simulation system are depicted in figure 3a. It is 

decomposed into a microscopic representation of traveler behavior and a mixed 

micro/macro mobility simulation as explained before. In an attempt to realize 

their individual activity plans, travelers consider their long- and short-term 

observations of the traffic system state when performing actions within their 

physical environment. Technically, an agent modifies its path by sending an 

object representing its perceived cost of traversing the links in the network to a 

router, which then returns the resulting best path. Note that this cost is 

individually perceived and can contain perception errors as well as incomplete 

knowledge. 
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The behavioral estimation procedure results from reasonable mathematical 

inference, but can be conveniently illustrated as in figure 3b. Without 

modifications to the simulation system, the estimation algorithm only modifies 

the observed travel cost any agent uses to calculate its best path. The resulting 

behavior is different insofar as it is not optimal with respect to the agent's cost 

perception any more, but rather with respect to a more general objective 

function representing the state estimation quality by comparing the simulation 

output to data from a traffic surveillance system. 

3.2   Convergent vs. rolling horizon mode 

The estimation task can be solved either at once or in a rolling horizon manner. 

Since different applications discussed in the next section require different 

solution methods, a short overview is given here. 

In the first case, the estimation procedure iterates over the entire problem time 

window until convergence. This is called the convergent mode. Since a large 

number of iterations might be necessary and since one needs to know all 

information (such as measurements) about the entire problem time window a 

priori, it usually is not amenable to real time operations.  

In the second case, only a subinterval of the problem time window is considered 

at once. This is called the rolling horizon mode. By moving this sub-window 

forwards through time and repeatedly solving the estimation problem only within 

the sub-window, one usually obtains only a sub-optimal solution to the overall 

problem. This approach is still attractive if the sub-window's motion is 

synchronized with real world time such that its solution always provides a most 

recent estimate of the current system state given the most recent 

measurements. 
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4   Illustrative example 

FIGURE 4 APPROXIMATELY HERE 

Consider the network shown under various traffic loads in figure 4. Travelers 

enter the network at the six leftmost horizontal links and leave at the three 

rightmost horizontal links. Although demand is represented microscopically with 

each traveler having one origin and one destination, only average occupancies 

are drawn for readability. The scenario assumes a sensor at the marked link 

which reports the following velocity measurements: Free flow speed from 7:45 

to 8:00, low speed from 8:00 to 8:15, again free flow speed from 8:15 to 8:30. 

The first column shows the result of a dynamic traffic assignment without 

incorporation of any measurements. Note that traffic spreads out about 

symmetrically around the middle horizontal road.  Since the sensor information 

is not available, the method can do no better than doing a time-dependent 

equilibrium assignment. 

The second column shows a result of the estimation procedure described 

above, with the sensor information included. One can observe a traffic jam at 

the measurement point from 8:00 to 8:15. It can be interpreted as a result of the 

most plausible overall behavior that resembles available measurements and is 

consistent with the travelers' original plans. 

FIGURE 5 APPROXIMATELY HERE 

The underlying calculations are clarified in figure 5. The first column shows 

relative travel times from the estimation method when the measurement is 

included. At the marked link, one can see that measurements are qualitatively 

reproduced. The second column shows the modifications of travel times as they 

result from the estimation procedure that includes the measurement. By 
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replanning based on this modified information, agents do not maximize their 

subjective utility any more, but the objective a posteriori probability of their 

actions.  

Note that the causalities of traffic flow are properly exploited by the algorithm: 

The low speeds measured from 8:00 to 8:15 are impossible to reproduce solely 

by increasing the inflow to the according link, because of its limited flow 

capacity. The only option is to increase the traffic load on links downstream of 

the measurement location, causing spillback. This effect can be observed in 

figure 4, right column. The way it is achieved by the algorithm can be seen in 

figure 5b: Downstream links of the measurement location are made more 

attractive by travel time reduction (blue color), thus more driver reroute towards 

these links and cause the spillback. Since from 8:15 on the measurements 

indicate free flow, the according cost modifications then are positive in order to 

keep drivers away from critical links. 

Intuitively, this means that the algorithm tests which of the travelers would help 

best to move the simulation closer to the measurement.  This becomes 

particularly important when multiple sensors are involved, since improving the 

situation for one sensor may make the situation worse for another sensor. 

It is important to note what this algorithm does and what it does not do in 

response to measurements.  What the algorithm does is to modify routes and 

possibly destinations.  What the algorithm does not is to change the traffic 

dynamics.  This means that the algorithm in its current form will never estimate 

an incident (capacity reduction); this is a direct consequence of the modeling 

assumption that the road network is given and not subject to estimation.  The 

algorithm will instead generate measured traffic congestion from re-routing 

additional traffic into the congested area.  As will be discussed later, it is 
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possible and even desirable to combine the algorithm presented here with some 

kind of incident handling system that handles changes in the physical network. 

5   Realistic example 

5.1.1  Setting of the test case 

We have set up an extensive test case for the proposed method. The 

geographical zone of investigation is the city of Berlin. Its traffic network is 

represented by a graph of approximately 2400 links. The MATSim system has 

been used to generate activity plans for a complete microscopic representation 

of the Berlin population. The experiments described here use a 10% sample of 

this population (approx. 170.000 agents). The network is shown in figure 6. 

FIGURE 6 APPROXIMATELY HERE 

We gained first experiences with this test case in a real-world application during 

the soccer world championship 2006. Since we encountered severe problems 

with all kind of data corruptions (including errors in the network file, unrealistic 

activity plans, unreliable measurements) during this project, this article 

considers a setting in which most uncertainties have been removed in order to 

study the method itself rather than a specific scenario. Accordingly, the results 

given here are to be understood as a study of algorithmic feasibility. Increasing 

realism with respect to various sources of disturbances is subject of our ongoing 

research. 

All experiments use synthetically generated measurements as follows: Plans 

from an imperfect MATSim traffic assignment that did not reach a user 

equilibrium were loaded onto the network using the same mobility simulation as 

the estimator itself. For two disjoint 10%-sets of all links, we collected 5-minute 
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averages of the number of vehicles on these links as measurement data. The 

experiments were run from 6am to 9am, which is the time of the strongest traffic 

variations in the simulation because of the morning rush hour. 

Since the imperfect MATSim result is not a user equilibrium, it can be 

understood as a behavioral deviation from such, which is exactly the type of 

situation our method has been designed to handle. 

The entire software system is single-threaded and was written in the Java 

programming language. 

5.1.2  Experiments 

(a)   A priori estimation without measurements 

In this setting, the estimator is run without the use of any measurements. As a 

result, it generates a best assumption of traveler behavior given the MATSim 

activity plans by iterating these plans until an approximate user equilibrium is 

achieved. 

FIGURE 7 APPROXIMATELY HERE 

The resulting scatterplots are shown in figure 7. In this and all following figures, 

„link set 0“ and „link set 1“ indicate the measurement subset the according 

estimation run is compared against. Within each scatterplot, measurement 

values define the x-coordinate and simulated values the y-coordinate of each 

point. Accordingly, a perfect measurement reproduction is achieved if all points 

lie on the main diagonal. The number below each scatterplot indicates its 

correlation coefficient, which is 1.0 in case of a perfect fit and smaller than 1.0 

otherwise. 

One observes significant deviation between simulation and estimation. This can 
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be explained by the working of the estimation algorithm in the absence of any 

measurements: In this case, only the behavioral a priori information is available, 

which results in a plain user equilibrium assignment as explained above. Since 

the measurements were generated from a non-equilibrium situation, but are not 

available to the estimation procedure, the scatterplots represent nothing more 

but the measurements' deviation from a user equilibrium. 

(b)  Measurement reproduction 

In this setting, parameters were set such that the algorithm attempted to 

reproduce the measurements by ignoring behavioral a priori assumptions as 

much as possible: Only measurement-induced cost corrections were visible to 

replanning agents, while the cost of travel itself was completely ignored. One 

experiment was run, where the measurements from link set 0 were fed into the 

simulation.  With the resulting estimation, two comparisons were made between 

estimated and “measured” quantities: 

(i) In-sample estimation: Estimated and measured quantities are compared for 

link set 0, which are the measurements that were fed into the estimation 

procedure. This comparison tests how much the algorithm follows the 

measurements at measurement locations.  Note that, as is well known, the goal 

of the algorithm is in general not to just follow the measurements, but to follow 

the measurements as much as is consistent with the model assumptions, one 

assumption being that also the measurements contain errors. 

(ii) Out-of-sample estimation: Estimated and measured quantities are compared 

for link set 1, in which case none of those measurements were used by the 

estimation procedure (but the measurements for link set 0 were used instead).  

This comparison tests how much the algorithm is able to infer, by using its 

model assumptions, correct quantities at locations where no measurement is 
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available. 

FIGURE 8 APPROXIMATELY HERE  

The results are shown in figure 8. One observes a very good fit for the in-

sample estimation, while the out-of-sample estimation indicates heavy 

deviation. 

The very good measurement reproduction indicates that the method works well. 

The not totally perfect fit is due to various causes, some of which were 

deliberately accepted while others are still under investigation. Unavoidable but 

to some degree tunable causes of imprecision are: Incorporation of various 

mathematical simplifications in the estimation algorithm in order to keep up 

tractability; use of a random solution mechanism with finite resolution; 

discretization of a all macroscopic quantities in time and space on a quite large 

scale for reasons of computational performance; use of a linearization based 

method that might converge only towards a local optimum of the problem. 

The heavy deviation between the estimations of one experiment and the 

complementary measurement set are not surprising if one remembers that all 

incentive to reproduce reasonable behavior beyond the available 

measurements has been removed in this experiment.  This is also known as 

“over-fitting”. 

(c)  Reasonable combination of information sources 

This experiment incorporates the behavioral model with a reasonable weight. 

As a result, the estimation algorithm abstains from calculating routes that are 

very unrealistic given an agent's activity plan, even if such behavior yield a 

better measurement fit. Results are depicted in figure 9. 

FIGURE 9 APPROXIMATELY HERE 
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Again, in-sample estimation as well as out-of-sample estimation are shown. 

One notices the following effects:  

1. The reproduction quality of measurements involved in the estimation (in-

sample estimation) is now slightly worse than in figure 8. The reason for this 

is the newly incorporated influence of the estimator's behavioral model, which 

contradicts the unrealistic behavioral nature of the measurements. Since in 

general measurements are just as error-prone as simulation results, such a 

compromise is desirable. When judging the estimation quality, it is important 

to keep in mind that the scatterplots only depict one half of the entire 

estimation problem; the behavioral fit based on the a priori generated activity 

plans is not visualized. 

2. The reproduction of the complementary measurement set (out-of sample 

estimation) is now considerably better than in figure 8. This indicates the 

algorithm's capability to interpolate the traffic state of links that are not 

directly observed by application of the behavioral model. 

3. When compared to figure 7, one observes that the out-of-sample estimation 

on link set 1 is not improved by the inclusion of the measurements from link 

set 0.  That is, within the current experiment, knowledge of conditions on link 

set 0 did not improve knowledge of conditions of link set 1.  The reasons for 

this are still under investigation since ultimately the method should also yield 

out-of-sample improvements. 

(d)  Real time capabilities 

Given the general setting as described in experiment (c), the method's real-time 

capabilities were also investigated. While the previous experiments were run to 

convergence, here the rolling horizon approach with a time window of 30 

minutes was used. The window moved forwards at 1-minute steps, which is 
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approximately the duration of one estimation iteration. 

FIGURE 10 APPROXIMATELY HERE 

The results are shown in figure 10. Only in-sample estimation results are 

shown. The rows indicate different estimation step sizes in terms of the agent 

percentage for which a new path is calculated per iteration. Since a larger 

percentage implies a faster adjustment but also a loss in precision, the 

existence of an optimal adjustment rate can be hypothesized. 

The results indicate that 2% to 3% is a reasonable value. While the 

measurement fit clearly increases from 1% to 2%, there is no significant 

improvement in choosing 3% but at the additional computational cost of 

adjusting more agents.  

This result has an interesting implication. If 2% of the entire population are 

randomly chosen for adjustment every minute, there still are 30% of the 

population left after one hour that have not been adjusted at all. While this 

would definitely become a significant problem if totally unpredictable behavior 

was to be reproduced, it can be put into perspective by the following two 

arguments:  

1. The incorporation of behavioral a priori knowledge already generates a 

„reasonable“ initial assumption of the overall system state, which then is 

further refined by the estimation procedure. The better the a priori 

assumptions, the closer are the results to the real state even without use of 

any measurements. 

2. In general there are many route combinations that yield the same network 

load. From this it can be concluded that for every agent in the population 

there is a number of other agents with sufficiently similar activity plans to 

substitute the former agent in an effort to reproduce its observation by a 
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sensor.  

Even if much more experiments will be necessary to fully understand all 

implications of the method, these experiments definitely assert that the 

algorithm is computationally capable of generating significant estimation 

improvements in real-time scenarios of realistic size.  

The presented experiments were run during a morning peak hour from 6am to 

9am which indicates the method’s capability to track strong variations in traffic 

flow. This feature is owed to the fully dynamic modeling assumptions underlying 

the estimation procedure. 

6   Conclusions and outlook 

We have presented a novel method for behavioral traffic state estimation based 

on a priori generated activity plans and anonymous traffic measurements. First 

experiments indicate that the method works with good precision in a real-time 

setting even for large problems. Still, since the experiments conducted so far 

only used synthetically generated measurements, many aspects are yet to be 

explored.  

On major simplification was the generation of measurements by the same 

mobility simulation the estimator itself used. Since model-based assumptions 

about traffic flow dynamics are currently incorporated as error-free information 

in the estimation formulation, further investigations with real world data might 

show that a relaxation of this assumption will be necessary. Since methods for 

the adjustment of physical traffic flow processes to measurements are available 

from the systems engineering literature, an integration of both estimation 

approaches appears reasonable as stated in the introduction.  

A similar statement holds for the occurrence of incidents, which can be 
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considered as structural deviations between modeling assumptions about traffic 

dynamics and the real situation. The implementation of an additional incident 

detection module definitely would greatly increase the system's real-world 

applicability. 

An improved a priori demand also implies a better estimation quality. As the 

experiments have shown, a brute force attempt to only reproduce 

measurements does not provide a reasonable overall picture of the traffic 

situation, which makes the incorporation of good behavioral a priori 

assumptions necessary. This observation suggests a natural operation scheme 

of the method in a traffic management center: In continuous operations, the 

estimator could be employed to track within-day fluctuations. If an additional 

update of the agents' activity plans on a daily basis was realized, the overall 

system could incrementally improve a transport planning simulation based on 

these plans as well. 
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Captions to Illustrations 

Figure 1: Screenshot of mobility simulation 

Figure 2a: Multi-stage plan structure 

Figure 2b: Spontaneous replanning 

Figure 3a: Technical overview of simulation 

Figure 3b: Technical overview of estimation 

Figure 4: State estimation results in a given scenario when a sensor at the 

location denoted by the arrow reports low speeds from 8:00 to 8:15 

Figure 5a: Estimated travel times 

Figure 5b: Travel time corrections 

Figure 6: Reduced road network of Berlin 

Figure 7: Experiment (a): Results of estimation with zero measurement feed. 

Figure 8: Experiment (b): Results of estimation in „measurement reproduction“ 

(over-fitting) mode. 

Figure 9: Experiment (c): Results of estimation with reasonable incorporation of 

behavioral model. 

Figure 10: Experiment (d): Real-time capabilities 
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Figure 1  
Screenshot of mobility simulation. Only a cutout is shown in order to increase the 
figure's resolution. 
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Figure 2a 
Multi-stage plan structure. 

 

Figure 2b 
Spontaneous replanning. 
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Figure 3a 
Technical overview of simulation. 
 

 

Figure 3b 
Technical overview of estimation. 
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Estimation without measurements Estimation with measurements 

 
7:50 

 
8:00 

 
8:10 

 
8:20 

 
7:50 

 
8:00 

 
8:10 

 
8:20 

Figure 4 
State estimation results in a given scenario when a sensor at the location denoted 
by the arrow reports low speeds from 8:00 to 8:15.  LEFT: State estimation without 
any sensor input (i.e. the result of the pure dynamic traffic assignment).  RIGHT: 
State estimation when the sensor information is used. – Colors indicate relative 
road occupancy: white=empty, green=light, yellow=high, red=jammed. 
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Estimated travel times Travel time corrections 
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Figure 5a 
Colors indicate actual travel times: 
white=minimal; green, yellow= 
increased;  red=considerably increased. 

Figure 5b 
Colors indicate modifications of travel 
times: blue=negative; white=zero; green, 
yellow, red=increasingly positive. 
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Figure 6 
Reduced road network of Berlin. 
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Link set 0 Link set 1 

r=0,785 r=0,827 

Figure 7 
Experiment (a): Results of estimation with zero measurement feed. 
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In-sample estimation (link set 0) Out-of-sample estimation (link set 1) 

r=0,988 r=0,445 

Figure 8 
Experiment (b): Results of estimation in „measurement reproduction“ (over-
fitting) mode. 
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In-sample estimation (link set 0) Out-of-sample estimation (link set 1) 

r=0,974 r=0,811 

Figure 9 
Experiment (c): Results of estimation with reasonable incorporation of 
behavioral model. 
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 In-sample estimation (link set 0) 

1% 

r=0,852 

2% 

r=0,951 

3% 

r=0,959 

 
Figure 10 

Experiment (d): Real-time capabilities. 

 


